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Carsharing has been considered as an effective means to increase mobility, reduce personal vehicle usage
and related carbon emissions. In this paper, we consider problems of allocating a carshare fleet to service
zones under uncertain one-way and round-trip rental demand. We employ a two-stage stochastic integer
programming model, where in the first stage, we allocate shared vehicle fleet and purchase parking lots
or permits in reservation-based or free-floating systems. In the second stage, we generate a finite set of
samples to represent demand uncertainty and construct a spatial-temporal network for each sample to
model vehicle movement and the corresponding rental revenue, operating cost, and penalties from unserved
demand. We minimize the expected total costs minus profit, and develop branch-and-cut algorithms with
mixed-integer rounding-enhanced Benders cuts, which can significantly improve computation efficiency when
implemented in parallel computing. We apply our model to a data set of Zipcar in the Boston-Cambridge
area to demonstrate the efficacy of our approaches and draw insights on carshare management. Our results
show that exogenously given one-way demand can increase carshare profitability under given one-way and
round-trip price difference and vehicle relocation cost, whereas endogenously generated one-way demand
as a result of pricing and strategic customer behavior may decrease carshare profitability. Our model can
also be applied in a rolling-horizon framework to deliver optimized vehicle relocation decisions and achieve

significant improvement over an intuitive fleet-rebalancing policy.
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1. Introduction

Increasing energy prices and parking fees in large cities have led to increased vehicle ownership
costs, resulting in many individuals turning to other means of transportation. Public transportation
has traditionally been a common alternative to private vehicle ownership. However, it is far from
being a perfect replacement due to limited accessibility, fixed schedules, and the fact that users

have to share common space and routes.
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In recent years, carsharing has become a popular means of alternative transportation, serving
as a middle ground between public transport and private ownership. It provides car rental services
to customers on a short term basis, as opposed to long term rentals provided by typical car
rental companies. The popularity of carsharing is attributed to carshare users benefiting from
private use of vehicles without having to bear the costs or responsibilities associated with car
ownership. Carsharing also provides many benefits through reducing vehicle ownership in cities,
such as reduced traffic congestion, reduced fuel consumption and vehicle emissions resulted from
the use of clean fuel vehicles and lowered overall miles traveled (Fan et al. 2008). In North America,
studies suggest that carsharing has reduced vehicle mileage by 44% on average per carshare user,
with each carshare vehicle replacing between 6 to as many as 23 vehicles (Shaheen and Cohen
2007). The benefit of carsharing is further expanded by the use of electric vehicles — advances in
electric vehicle charging technology will lower carshare fleet sizes and operational costs, and bring
greater reduction in CO, emissions (He et al. 2016). Hence, it is not surprising that almost 1,000
cities worldwide have adopted carsharing, with over 1.3 million individuals sharing almost 20,000
vehicles through carshare programs in the United States alone as of July 2015 (EcoPlan Association
2015).

Carshare systems can be broadly categorized into two types: reservation-based, in which cus-
tomers must reserve vehicles prior to using them (e.g., Zipcar), and free-floating, in which customers
can pick up any available car for immediate use (e.g., Car2Go). Carshare rentals can be categorized
into one-way and round-trip rentals, with the former allowing customers to rent and return vehicles
in different locations, and the latter only allowing returning rental cars to the same location.

From the customers’ point of view, the availability of one-way rentals provides two main benefits.
Firstly, there can be more flexibility in vehicle use, as vehicles do not have to be dropped off at
the same location they were picked up. Secondly, customers can potentially save on rental fees by
splitting a round-trip rental into two one-way rentals.

From a carshare service provider’s point of view, although one-way rentals have been requested
by customers for a long time, providing such a service has not been a priority because of added
management complexities (de Almeida Correia and Antunes 2012, Shaheen et al. 2006). Among
these complexities, the most significant one is planning for imbalances in demand, e.g., via vehicle
relocation, which can be costly. Some of the cost can be offset by pricing one-way rentals at higher
hourly rates — for example, Zipcar charges $7.50-$8.50 per hour for round-trip rentals and $12 per
hour for one-way rentals (see Zipcar 2015). However, the overall profitability of one-way rentals
is questionable even with higher hourly rental prices. To carshare companies, optimally locating

their car fleets in response to demand is important to their profitability and quality of service
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(QoS). As more carshare companies begin to offer one-way rentals in addition to traditional round-
trip rentals, such as Zipcar through its ONE>WAY beta program, the problem of optimal fleet

allocation and vehicle relocation becomes increasingly complex.

1.1. Problem Description

In this paper, we consider allocating a carshare fleet in a region serviced by a carshare service
provider to satisfy uncertain travel demand. The region is discretized into smaller zones, with
parking costs different from zone to zone. To regulate carshares, city governments issue parking
lot contracts and free-floating parking permits for shared cars (San Francisco Chronicle 2014, The
Seattle Times 2014). Parking lot contracts grant carshare exclusivity to lots, and are typically taken
up by reservation-based carshares, for which the carshare company takes into account parking
capacities when accepting vehicle reservations. On the other hand, we consider an alternative way
as purchasing parking permits, often used by free-floating carshares, whose vehicles can be parked
at any available city parking lots. We are tasked to allocate a homogeneous fleet of vehicles to
zones, by determining the number of contracted parking lots (for reservation-based systems) in
each zone or the number of parking permits (for free-floating systems) to purchase.

The above car fleet allocation decisions are made “here-and-now” before one-way and round-
trip demand is realized at discrete time periods over a finite horizon. In each period, should the
demand in a zone exceed the number of vehicles available for use at that zone, any excess demand
is immediately lost (i.e., we assume that any excess demand is not carried over to the next period).
During the finite horizon, we may relocate vehicles as recourse actions, and customers will be unable
to use vehicles that are being relocated. Given each demand realization, we find the optimal vehicle
movement to maximize the net profit minus the penalty of undesirable QoS results associated with
unserved demand.

Indeed, efficient and economic carshare fleet allocation and reallocation is an emerging problem
in practice, faced by almost all carshare service providers as an important step towards optimizing
their profitability and QoS. Toyota, for example, provides carshare companies that purchase their
vehicles with a fleet management system, which allows the fleet operator to optimize vehicle allo-
cation in the network (ACN Newswire 2013). Miveo, an award-winning carshare solutions provider
in Europe, launched fleet management services to help customers improve fleet allocation planning
(PR Newswire 2016). In addition to fleet allocation, service providers and local governments also
need to determine the number of parking spaces or parking permits to acquire or allocate within
each region (San Francisco Chronicle 2014, The Boston Globe 2015, The Seattle Times 2014). This
paper considers both car fleet allocation and parking planning. When it comes to carsharing in
emerging economies, according to a recent survey (World Resources Institute 2015), high capi-

tal investment and limited parking spaces are two of the major barriers for carshare companies,
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while low labor cost is recognized as an opportunity. Therefore, in addition to fleet allocation, the
problem considered in this paper seeks to overcome the barriers of high capital investment and
limited parking spaces by optimizing vehicle and parking lots/permits allocation to service zones,

and takes advantage of the opportunity of low labor cost by optimizing vehicle relocation.

1.2. Methodology Overview

A carshare company may periodically check the distribution of vehicles in different zones to decide
how to relocate them based on predictions of future demand. It follows a dynamic program, which
re-examines vehicle locations and demand at each period to decide real-time vehicle reservation and
relocation. However, the computation of such a model suffers from the “curse of dimensionality”,
and usually cannot provide efficient solutions under large-scale uncertainty.

In this paper, we consider a two-stage stochastic integer programming approach to approximate
the results of the multi-stage dynamic model, by aggregating recourse decisions and uncertainties in
the second-stage problem, after the first-stage problem determines car fleet allocation and parking
lots/permits acquisition. We employ the Sample Average Approximation (SAA) method (Kleywegt
et al. 2002, Shapiro et al. 2009) based on generated i.i.d. samples of the random one-way and
round-trip rental demand. For each sample, we model the movement of vehicles from zone to zone
as flows on a spatial-temporal network, with each node in the network representing the state of a
zone in each time period during the finite horizon. Furthermore, we modify the above two-stage
stochastic programming model and implement it in a rolling-horizon manner to optimize vehicle
relocation in each period. This allows carshare service providers to obtain not only the initial
parking lot/permit acquisition and fleet allocation decisions, but also dynamic solutions of vehicle
relocation over time.

We present three advantages of using spatial-temporal networks to model recourse decisions and
outcomes related to the uncertainty. Firstly, since each zone is replicated by the number of time
periods, it is straightforward to represent vehicle movement as flows that are conserved between
the spatial-temporal nodes, and to keep track of the overall status of the vehicles (e.g., whether
they are in use or, if available, where they are located). Secondly, we do not need to consider
complex topologies of real-world road network as they will not affect the construction of spatial-
temporal networks. Thirdly, when focusing on the reservation-based or free-floating only systems,
the second-stage problem becomes a standard minimum cost flow problem (Ahuja et al. 1993)
on the corresponding spatial-temporal network, which can be solved very efficiently as a linear
program.

A spatial-temporal network constructed in this paper could still involve a large number of nodes

and arcs, as a result of the large number of locations, the large number of periods, or both. To
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address the computational challenge, we employ the Benders decomposition approach (cf. Ben-
ders 1962, Van Slyke and Wets 1969) as a common method for optimizing two-stage stochastic
programs. Moreover, we generalize a branch-and-cut algorithm with the mixed-integer rounding
(MIR) subroutine, first proposed by Bodur and Luedtke (2014) for a call center staffing problem,

to derive stronger cuts from Benders cuts.

1.3. Contribution and Main Results
We summarize our contribution and main results as follows.

e We study the strategic planning problem of purchasing parking lots/permits and allocating
initial car fleet in service zones, to satisfy uncertain one-way and round-trip carshare demand. We
formulate a two-stage stochastic integer programming model to optimize both profitability and QoS
by formulating strategic decisions in the first stage and using spatial-temporal networks to capture
detailed vehicle movement in the second stage. Via decomposition, we develop a branch-and-cut
algorithm with strengthened valid inequalities, which shows promising computational performance
in parallel computing.

e Via extensive numerical experiments using augmented real-world data, we show that the
impact of increasing one-way demand to carshare systems is complex and depends upon whether
one-way demand is exogenously given or endogenously generated. With exogenous demand, our
results show that higher one-way proportion can increase a carshare system’s profitability. On
the other hand, if one-way demand is endogenously determined by pricing and strategic customer
behavior, our results show that higher one-way proportion could decrease a carshare system’s prof-
itability. Our results also suggest that the effective use of vehicle relocation plays an important
role in carshare systems with one-way demand. The number of vehicle relocations will increase as
one-way demand increases.

e We further leverage our model to optimize real-time vehicle relocation decisions in a rolling-
horizon framework. When applied to the same real-world data, our proposed rolling-horizon method
achieves significant advantage in both profitability and QoS over a benchmark policy that peri-
odically rebalances the fleet according to future demand concentration. Furthermore, we find that
increasing the carshare fleet’s vehicle relocation capacity can result in in substantial profitability

and QoS improvement.

1.4. Structure of the Paper

The remainder of this paper is organized as follows. Section 2 reviews the most relevant studies
in carshare optimization and solution techniques. Section 3 introduces the construction of the
spatial-temporal network and the two-stage stochastic integer program for fleet management, and

describes how to implement the two-stage model in a rolling-horizon framework to obtain dynamic
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vehicle relocation solutions. Section 4 develops branch-and-cut algorithms with MIR-enhanced
Benders cuts for solving these models. Section 5 provides the insights drawn from applying the
models on real-world data and also demonstrates the computational efficiency of the proposed

algorithms. Section 6 concludes the paper and discusses future research directions.

2. Literature Review

There is a rapidly growing literature on sharing economy of various forms, including peer-to-peer
product rental and service provisioning (Benjaafar et al. 2015). We focus on carsharing where a sin-
gle service provider owns the vehicles. Shaheen et al. (1998) and Shaheen and Cohen (2007) review
the history and recent rapid growth of the carsharing industry, respectively. Katzev (2003) explores
the early adoption processes of several carshare systems, and evaluates the effects of carsharing on
commuter mobility behavior and the environment. Bellos et al. (2017) study the impact of carshar-
ing on an automobile manufacturer’s product line design decisions in vehicle driving performance
and fuel efficiency. He et al. (2016) optimize service regions for fleets of electric vehicles deployed
and shared in urban environments. Jorge et al. (2014) and Kaspi et al. (2014) both consider one-
way carshare systems: the former optimizes vehicle relocation via mathematical modeling and the
latter seeks effective parking reservation policies via a Markovian model and simulation. Kaspi et al.
(2016) apply mixed-integer linear programming (MILP) models for regulating one-way carshare
systems and designing parking reservation policies, which take into account a user behavior model
for each policy design. Boyaci et al. (2015) formulate an MILP model for planning one-way car
sharing station locations, sizes, and their fleet sizes, subject to vehicle relation and electric vehicle
charging requirements. They optimize the model for large-scale problems by aggregating stations
into virtual hubs and applying the branch-and-bound algorithm.

After fixing carshare stations and transport networks, how to relocate and redistribute vehicles
during operation is a major consideration for satisfying customer demand. Relocating vehicles can
be a complex process if dynamic shared fleet and demand distributions must both be taken into
consideration. Weikl and Bogenberger (2013) summarize and categorize strategies used by carshare
companies to relocate their fleets, with real-life examples. Similar to our work, a variety of papers
consider two-stage stochastic programming formulations to approximate the multi-stage dynamic
optimization results. For example, Nair and Miller-Hooks (2011) develop a stochastic MILP model
for optimizing vehicle relocation plans for shared vehicle systems, and use a joint chance constraint
to ensure a high rate of satisfying random demand. Benjaafar et al. (2017) formulate a stochastic
dynamic programming model and characterize the structure of the optimal policy for inventory
repositioning in a product rental network. Similar planning and operational problems arise in

bicycle sharing, and have been tackled extensively in the past few years. For example, Shu et al.
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(2013) formulate a stochastic network flow optimization model to minimize the size of each sharing
station and the cost of bicycle redistribution, and approximate the optimal solutions by using a
deterministic linear program. Moreover, Febbraro et al. (2012), Waserhole et al. (2013), Pfrommer
et al. (2014) all suggest real-time price incentives as a means to shape demand and reduce the
need for excessive vehicle relocations. Vehicle allocation and repositioning has also been studied
in manufacturing systems for automated guided vehicles (e.g., Ganesharajah et al. 1998, Hall et al.
2001a,b, Asef-Vaziri et al. 2001) and healthcare systems for emergency response vehicles (e.g.,
Brotcorne et al. 2003, Alanis et al. 2013)

To represent vehicle movement, Kek et al. (2009) use spatial-temporal network remodeling tech-
niques to determine a set of nearly optimal manpower and operations to satisfy given relocation
needs. de Almeida Correia and Antunes (2012) and Fan (2014) deploy spatial-temporal networks
for optimizing the division of zones in a network and the allocation of vehicles to zones in one-way
carshare systems, respectively. Similar network structures have also been used to study other logis-
tics and transportation problems, e.g., deployment of containers (Shu and Song 2013). However,
the integration of one-way with round-trip rentals in reservation-based and free-floating carshare
systems, and the difficulty of handling a large spatial-temporal network have not been addressed
in the above literature.

We provide Table 1 below to summarize the most recent literature of car or bike sharing, classified
based on the decisions, sharing types, and methodologies employed. To our best knowledge, we
are the first to integrate both one-way and round-trip rentals, strategic and operations decisions
into comprehensive stochastic optimization models that take into account time-varying demand
uncertainty, which we model by using spatial-temporal networks. However, we do not consider
electric vehicles (EVs) and their charging problems.

Ferrero et al. (2015) provide a comprehensive survey of carsharing literature, classifying the
papers according to several taxonomical axes, including (i) rental mode, (ii) vehicle engine for the
service, and (iii) optimization objective, (iv) time horizon and (v) methodologies for the research
model. According to this taxonomy, our paper targets several areas on the axes where carsharing
literature is lacking. In particular, our paper addresses one-way and round-trip demand, in both
reservation-based and free-floating modes, and can be applied to shared car fleets with both fully
thermic and green engines. The objectives of our paper pertain mainly to fleet management, with
the target time horizon being the strategic design of the system. Finally, our models are based
on two-stage stochastic integer programming and network optimization techniques, which can be
further implemented in a rolling-horizon framework to make relocation decisions at the operational

level.
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Table 1  Classification of the related literature
Carshare or bikesharing
One-way only Round-trip or mix
Decisions Planning Boyaci et al. (2015) Fan (2014), | Barrios and Godier (2014), Nair and Miller-Hooks
(location; fleet size; | de Almeida Correia and Antunes | (2014), Nourinejad and Roorda (2014), Chang et al.
reservation policy) | (2012), Kaspi et al. (2014, 2016) | (2017), Martinez et al. (2012), Shu et al. (2013), He
et al. (2016)
Operational Boyaci et al. (2015), Fan (2014), | Kek et al. (2009), Weikl and Bogenberger (2013),
(trip selection; Febbraro et al. (2012), Jorge | Fan et al. (2008), Pfrommer et al. (2014), Shu et al.
fleet relocation; et al. (2014), de Almeida Correia | (2013)
EV charging) and Antunes (2012)
Deterministic Boyaci et al. (2015), Kaspi et al. | Nair and Miller-Hooks (2011), Chang et al. (2017),
Methods (MILP; game; DP) | (2016) Fan et al. (2008), Martinez et al. (2012)
Stochastic Fan (2014) Nair and Miller-Hooks (2011), Shu et al. (2013), He
(sampling; MILP) et al. (2016)
Simulation, Jorge et al. (2014) Barrios and Godier (2014), Kek et al. (2009),
predictive models, Nourinejad and Roorda (2014), Weikl and Bogen-
decision-support berger (2013), Pfrommer et al. (2014)
systems
Spacial-temporal network Kek et al. (2009), de Almeida Correia and Antunes (2012), Fan (2014)
Involving EVs in the car fleet Boyaci et al. (2015), He et al. (2016), Chang et al. (2017)

3. Problem Formulation

In this paper, we consider reservation-based or free-floating carshare systems. We first present a
general model for a hybrid system, i.e., one with both types of carshare modes, and then treat pure
reservation-based and free-floating systems as special cases of the general model.

Consider the problem where a carshare company needs to allocate a given budget of S vehicles
in a set of zones, denoted by I, to maximize its profit and QoS over 1" time periods, using con-
tracted parking lots (corresponding to a reservation-based system) and purchased parking permits
(corresponding to a free-floating system). Decisions include the number of parking lots to purchase
in zone ¢, denoted by w;, the number of vehicles deployed in zone 7 that require contracted parking
spaces, denoted by z;, and the number of vehicles allocated in zone ¢ with purchased parking
permits, denoted by z?, for all i € I. We assume that customers are indifferent to whether a vehicle
has a free-floating parking permit or requires a parking space. Let cl°* be the cost of acquiring one
parking space, cl°¢ be the cost of allocating a vehicle in zone i, for all i € I, and ¢ be the cost of
one free-floating parking permit. Note that carsharing is also applicable under certain cases where
parking space may not be a concern, e.g., non-metropolitan areas and theme parks. In those cases,
the parking-related cost can be set to zero, and the parking-related decisions will be trivial. In this
paper, we focus on carshare systems that are used in areas where parking space is limited, e.g.,
metropolitans, and thus parking cost is significant.

We denote the demand for one-way rentals from zone ¢ to zone j starting at period ¢ and ending

at period s by d97¢, and denote the demand for round-trip rentals from zone ¢ starting at period ¢

ijts)
and ending at period s by dy°. The time taken to travel from zone i to zone j is denoted by ¢;;,

and the data satisfies s —¢ > {;; for any d7}i; > 0. As carshare companies typically use a time-based

payment scheme, we assume that cost and revenue parameters for rentals are independent of zones
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but dependent on usage time. The revenue comes solely from customers using vehicles, while costs
incurred by the company include the costs of relocating vehicles, maintenance (due to wear and
tear from car usage), and vehicle idleness (such as opportunity costs and depreciation costs). We
denote the revenue per period per vehicle from one-way rentals by 7°*¢ > 0 and that from round-trip
rentals by r*¥°; the relocation cost per period per vehicle is ¢*®!. When a vehicle is in use, whether

during one-way rentals, round-trip rentals, or relocation, it incurs a maintenance cost of ¢™* per

idle

period; when it is not in use, it incurs an idle cost of ¢"*¢ per period. Note that these costs can be

set to zero without loss of generality. We include them for completeness in the paper.

3.1. Construction of the Spatial-Temporal Network

To model zone-to-zone vehicle movement over T' periods, we construct a spatial-temporal network
G(N, A), with each node n;; € N representing a zone i € I at period t € {0,1,...,T}. The arcs in
this network are directed and represent a spatial-temporal movement of vehicles from one zone to
another from an earlier period to a later one. There are four types of arcs in the network:

e One-way arcs (n;,n;,) € A°™ for each dgjy, > 0, with capacity df}y, (for both types of vehicles,
i.e., those that require parking spaces and those with free-float parking permits) and cost —(r°*® —
™) (s —t) per unit flow. Flows on these arcs represent vehicles being rented one-way from zone i

starting from period ¢t and being returned to zone j in period s.

two
its

e Round-trip arcs (n;,n;s) € A™° for each di}° > 0, with capacity di° (for both types of vehicles,
similar as one-way arcs) and cost —(r"™° — ¢™*)(s —t) per unit flow. Flows on these arcs represent
vehicles being rented round-trip from zone ¢ starting from period ¢ and ending in period s.

e Relocation arcs (nit7nj,t+€ij) € A for all pairs of zones i and j and periods 0 <¢<T — ¢,
with infinite capacity and cost (¢ + ¢™)¢;; per unit flow. Flows on these arcs represent vehicles
being relocated from zone ¢ in period ¢, and arriving at zone j in period t + /;;.

o Idle arcs (ni;,n;.11) € A for each zone i and period 0 <t <T — 1, with capacity w; for
reservation-based vehicles (i.e., m = 1) or infinity for free-floating vehicles (i.e., m =2) and cost
¥ per unit flow. Flows on these arcs represent vehicles being idle in zone i from period ¢ to ¢ + 1.

The set A is the union of the four types of arcs described above, i.e., A = AU A™W° U ATy Aldle,
For convenience, we use arc-based notation subsequently. We denote the unit cost of flow and the
capacity of arc a by f, and u,, respectively, while §*(n;;) and 6~ (n;) denote the sets of arcs for
which n; is their origin and destination node, respectively. The unit flow costs and capacities of
each type of arcs are summarized in Table 2. In particular, the capacities of idle arcs for reservation-
based vehicles (i.e., m = 1) depend on the decision w; of parking lot purchases.

We illustrate the construction of a spatial-temporal network with the following example. Consider

two zones labeled B and B’ that require two periods of time to travel between them. Figure 1
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Table 2 Unit flow costs and capacities for each arc type

Type of arc Cost per unit flow f, Capacity u,
One-way arc (n, n;s) —(reme — ™t (s —t) 3y,
Round-trip arc (ni,n;s) | —(r™° —c™) (s —t) dwre
Relocation arc (n,n;.1e,;) (et 4 ™), +00
Idle arc (ns, nis41) cidle w; (m=1); +00 (m=2)
shows the corresponding spatial-temporal network over periods t =0, ..., 3. Included in the spatial-

temporal network is a one-way arc corresponding to a demand of four vehicles to travel from B
to B’ starting at period 0 (note that the ending period is automatically two periods after), and a
round-trip arc corresponding to a demand of two vehicles picked up at and returned to zone B/,
starting in period 1 and ending in period 3. The numbers on the two arcs denote the respective

capacities.

\/N Q?l . N - .-_;\7; Types of arcs:

~— One-way arc
“—= Round-trip arc
----- » Relocation arc

o) Q K —H\nf;'z — —/—"\nBy ——» [dle arc
2

Figure 1 A spatial-temporal network example for a two-zone, three-period instance

3.2. A Two-Stage Stochastic Integer Programming Formulation
We employ a two-stage stochastic program, where w € le\ denotes the vector of w;’s, and x™ € Zlil
denotes the vector of z7"’s with m = 1,2. Moreover, let ¢! = cl°¢, ¢? = ¢ + cl°¢| for each zone i € I,

and M = {1,2}. We formulate the carshare fleet allocation problem as

min Z (clOth—i— Z cr ) +Q(w,x", x?) (1)

1 2
W, X, X
0 i€l meM

st (w,x',x*)eX = {w,xl,x2 ezl Z Z "< S, x} <w;, Vi€ I} . (2)
i€l meM
The set X requires that the number of vehicles initially deployed to each zone that require parking
lots does not exceed the number of parking lots purchased, and the total number of vehicles does
not exceed the given budget S. We minimize the total costs of allocating vehicles and purchasing
parking lots/permits. The function Q(w,x',x?) returns the optimal cost in the second stage, given
first-stage decisions w,x!,x?, of which the formulation details are given as follows.

The second-stage problem optimizes flows in the spatial-temporal network given that the supply

level at each node n;g is x; and the capacity on each arc a is u, determined by the random demand
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and the number of parking spaces w;, for all i € I. We define recourse decisions y.*, a € A, m € M,
to represent reservation-based (m = 1) and free-floating (m = 2) vehicle movements in the spatial-
temporal network. Letting u be the vector of arc capacities u,, the feasible region of shared vehicle

movement is given by

Y(w,x'x%u):={y" >0, Vac A, Vme€ M :

" ift=0
D wis ) wi=40 ift=1,....,T—1  Viel, meM (3)
acst (ngy) a€d (ngg) 7mzn lft:T
Z Yo' < Ug, Ya € A°Pe U AtWO "
meM
Yo <wy, Viel, a=(ng,n; )€ Ade )
y;nEZ+a VG/EA}7 (6)

where (3) is the multi-commodity flow balance constraint, (4)—(5) are the capacity constraints,
and (6) is the integrality constraint. The flow balance constraint for the spatial-temporal nodes in
the last period requires the final allocation of vehicles being the same as the initial allocation, for
the purpose of operating the carshare system every T' periods with the same initial deployment of
vehicles.

Capacities u, of the one-way and round-trip arcs in Table 2 are random due to demand uncer-
tainty. In this paper, we employ Monte Carlo sampling to generate a finite number of demand
scenarios from a joint distribution of one-way and round-trip rentals. We index the scenarios by
k € K, and denote the vector of capacities of the arcs in scenario k by u* = [u¥, a € A" U A™°]T
and the probability of occurrence of scenario k by p*. For the objective, we minimize the expected
cost of scenario-based vehicle movements y* = [y*™, m e M, a € A]", k € K, plus some random
penalty incurred from unserved demands. Thus,

Qw' )= min ST ey ) )

kEK a€A meM

st. y"eY(w,x! x*u") VkEe K. (8)

The first term in the objective function (7) denotes the expected cost of vehicle traveling, idleness,
and relocation, while the second denotes the penalty incurred in all the scenarios. According to (8),
each decision vector y* needs to satisfy constraints defined earlier in (3)—(5) with u=u*, Vk € K.

A Risk-Neutral Model — Minimizing the Expected Penalty: Note that the number of unserved
customers equals to unused capacities on the one-way and round-trip arcs. We impose penalty
G, > 0 for each unit of unused capacities on arcs a € A°*°U A™°, and propose a risk-neutral model
for maintaining a desired QoS level. As a result, we specify

g LYY =D YT Gl = Y k)

k€K  aeAomeyAtwo meM
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REMARK 1. Penalty in the risk-neutral case can be incorporated into regular arc flow cost. We
keep the penalty term separate in order to present a general model. Different risk measures can be
used in function g to formulate risk-averse optimization models. In Appendix A, we describe one
that penalizes the Conditional Value-at-Risk (CVaR) of unserved demand. CVaR is a coherent risk
measure that is well studied in the stochastic programming literature; moreover, when demand has
a finite support with a moderate number of scenarios, we can reformulate a CVaR-based model by
using linear constraints, and thus keep the same computational tractability of the solution methods
proposed in Section 4 for solving the risk-neutral model.

REMARK 2. Model (1)-(2) formulates a hybrid carshare system that possibly involves both
reservation-based and free-floating vehicle flows, with a two-commodity network flow problem in
the second-stage. In the rest of the paper, we focus on single-commodity carshare systems with
either M = {1} (reservation-based) or M = {2} (free-floating). They can also be viewed as two
special cases of the two-commodity model with ¢ or ¢l°* set to infinity. These systems are more
common in practice, with Zipcar and Car2Go as the respective examples. (Zipcar also has free-
floating vehicles in selected markets for experimental purposes. Car2Go also has contracted parking
garages to encourage round trips. However, the majority of their vehicles are still pure reservation-
based or free-floating, respectively.) Moreover, focusing on single-commodity also allows us to solve

the second-stage problem efficiently as linear programs.

3.3. Rolling-Horizon Method for Vehicle Relocation
The above models provide an initial assignment of vehicles to regions on a day-to-day basis. How-
ever, a carshare service provider may also need to make real-time vehicle relocation decisions for
each period during the day. Here, we elaborate how to extend our models in a rolling-horizon
framework to solve this problem. For ease of exposition, we consider the reservation-based system,
i.e., M ={1}. Development for the free-floating system or the general hybrid system will be similar.
Let s € {1,2,---,T — 1} denote the current time period. We assume the following sequence of
events in each period. Firstly, vehicles that will finish rental or relocation in the current period
are returned and immediately become available for rental. Secondly, rental demand is realized and
fulfilled on a first-come-first-served basis. Any unmet demand is lost. Thirdly, remaining vehicles, if
any, after fulfilling demand are repositioned or remain in the same location. Let r{ be the number
of available vehicles in zone 7 after demand has been fulfilled in the current period. Let v}, be the
number of vehicles that are currently rented out or being relocated, but will be returned to zone i in
period t > s. Let R® be the relocation capacity in period s, e.g., the number of employed relocation
drivers who are available. Note that R* is updated periodically. Define decision variables z;; as the

number of vehicles that start being relocated from zone 7 to zone j in the current period. Recall
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that ¢;; is the time for relocating a vehicle from ¢ to j. Let 0”1 denote the cost of relocating a vehicle

from i to j. Let z;; denote the number of vehicles that remain in zone 4, with £;; = 1 and ¢! = cidle.

Let r®, v*, and z° denote vectors of 77, vj,, and z7;, respectively. The rest of the notation follows

those previously defined. We present the rolling-horizon vehicle relocation problem in period s as

D9 POERD YRS ®

iel jeI keK

s.t. szj:rf, Viel (10)
jeJ
zi <w;, Viel (11)
IR &
)
ij:(]’ V’LEI, Vj,gij>T_5 (13>
2, €Ly, Vi, jel (14)

The objective in (9) minimizes relocation and idling cost in period s plus expected total cost from
all scenarios in set K over periods s+ 1 through T'. Constraint (10) guarantees that all available
vehicles either remain at the current zone or are relocated to a different zone. Constraint (11) is
the parking space constraint. Constraint (12) is the relocation capacity constraint. Constraint (13)
guarantees that all relocations must finish by the beginning of period T

The second-stage problem in the above formulation is also a minimum cost network flow problem
on a spatial-temporal network, denoted by G(Vj, A,), which is similar to the one described in
Section 3.1, except that it only includes periods s+ 1,...,7T and that all the nodes in G(V,, A,)
may have supplies. Let J(i,t) ={j € [:{;; =t}, i.e., the set of zones from which it takes ¢ periods
to relocate a vehicle to zone i. Let I/(t) =1 if t =t and I;(t) =0 if t #¢'. For each k € K, the
second-stage cost Q57! (z*,v*) in (9) is the total cost over periods s+1,...,T, under scenario k. It

can be specified as

Z+1(ZS,V mln Z faya Z Ga(uﬁ _ya) (15)

a€As aerneUAtwo

s.t. Z Ya — Z Ya = vzt + Z - IT+1 ) 117 V(Z7 t) € V;+1 (16)
a€dt (ng) a€d™ (ny) JEJ(ist—s)
0<y, Su'j, Va € Agyq. (17)

Note that the flow balance constraint (16) has node supplies resulting from rentals and relocations,
ie., v, and zj;. A detailed description of the rolling-horizon approach is included in Appendix B.
The rolling-horizon model provides carshare systems with real-time vehicle relocation decisions

that can be implemented in practice. In Section 5.5, we implement the rolling-horizon model and
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show that it could achieve significant improvement over an intuitively appealing benchmark policy
that periodically rebalances fleet allocation according to future demand concentration. Note that
Model (9)-(14) assumes that vehicles have already been allocated to fulfill current period demand.
We could also include vehicle allocation decisions in the model to select the optimal subset of rental

requests to fulfill and further maximize profit.

4. Solution Approaches
Due to the large number of variables and constraints involved in the MILP models proposed in
Section 3, in this section, we develop a branch-and-cut algorithm with cuts enhanced by mixed-
integer rounding (MIR), which was first proposed by Bodur and Luedtke (2014) for a stochastic
call-center staffing problem. We demonstrate later that this algorithm outperforms the state-of-
the-art solver in optimizing our model for instances with diverse sizes generated from real data.

The basic procedure branches on the integer variables and solves individual nodes via Benders
decomposition (see Benders 1962, Van Slyke and Wets 1969); the Benders cuts at each node are
added to the master problems of subsequent nodes, which, however, could be weak due to the
relaxed integer constraints in the first-stage. Consequently, the branch-and-cut algorithm may
branch many times before termination. This motivates us to apply MIR to pairs of previously
generated Benders cuts to obtain stronger valid cuts.

We present our solution algorithm in two parts. Section 4.1 decomposes the problem to solve

with a branch-and-cut algorithm and Section 4.2 describes the MIR-enhanced algorithm.

4.1. Benders Decomposition

Consider Model (1)-(2) with M = {1} and the objective specified as minimizing ), ; (cﬁ"twi +
c}x}) + Q(w,x"). We decompose the problem into a master problem, consisting of the variables
not indexed by k, and | K| subproblems, consisting of the remaining variables separable by index
k. Each subproblem corresponds to the spatial-temporal network based on a scenario in K. The
Benders approach iteratively generates cuts from each subproblem and adds them to a relaxed
version of the master problem. Specifically, the variables in the master problem are the first-stage
variables w, x!, and auxiliary variables q = (¢',--- ,¢/®)T, denoting the values of the subproblems
at optimality. We formulate the master problem as

MP : min {Z (Ci‘)twi+c}$})+Zpqu:Lk(qk,w,xl)20, Vk‘EK},
(wx!)eX,qerl K] iel keK
where set X includes all the constraints in X except the integrality constraints on variables w;

and z}, Vi € I; L*(¢",w,z) > 0 includes the set of cuts generated from solving the k" subproblem,
Vk € K. We formulate the subproblems as the duals of the primal Q(w,x!), separated by k € K:

SP,(w,x"): max Zm} (mi0 — mir) + Z ub )\, + Zwi Z Ao

i€l ag Aoney Atwo i€l a:(nit,niyt_*_l)GAidle
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st i = Tiqe, +Aa < fo—Ga Va = (ng,n;s) € A
Ty — Tis + Ao < fo— Ga Va = (ng,n;) € A™
it — Tty < fa Va = (ng, njytﬂzu) c A
Tit — Tiit1 + Ao < fa Va=(ni,n;441) € Aldle

)\a < 0 Va € A°e U Atwo U Aidle’

where 7;; and )\, are the dual variables associated with the flow balance constraints (3) and the
capacity constraints (4)—(5), respectively.

At each iteration of the Benders decomposition algorithm, we optimize a relaxed master problem
MP, to obtain optimal solutions (W, %',q). We pass the solutions to the respective subproblems,
and optimize SP;(W,x'). If the optimal objective value of the subproblem corresponding to sce-
nario k is greater than the optimal value of ¢* given by the master problem, an optimality cut is
generated to the master problem to remove this solution. For an optimal dual solution (%,X) to

SP, (w,x") for scenario k, the Benders optimality cut is of the form

¢ - Z Z Ao | wi— Z(%z‘o — Mir)2; — Z Aotk > 0. (18)

i€l a:(nitsni,t+1)eAidle i€l ac Aone Atwo

Feasibility cuts are not generated, because for any feasible x' and w, having the vehicles idle
until the last period (i.e., y, =z} for all arcs a = (ny,n;41) € A and y, =0 for all other arcs

a € A°" U AU A™) is always a feasible solution to the primal problem.

4.2. MIR Procedure
MIR is a procedure used to remove non-integer extreme point solutions from the linear relaxation
of a mixed-integer program. We first introduce a generic form of the MIR inequality with a non-

negative real variable and multiple non-negative integer variables.

PROPOSITION 1. (Wolsey 1998) Let U := {(¢,w) € Ry X Z7 : ) + > 1" oyw; — 6 > 0} and let
A >0. If frac(Ad) >0, then the cut

v+ Z min {[Aq;] frac (AJ) , frac (Aw;) + | A, | frac (Ad)} [Ad] frac (AJ)

L >
A w; A >0

i=1

is valid for U.

The function frac (b) is defined as frac (b) :=b— |b], i.e., the fractional part of a scalar b. Bodur
and Luedtke (2014) extend Proposition 1 for a set defined by two inequalities. Following their idea,
consequently, one can generate a different valid cut from two valid Benders cuts. We describe this
result below in Theorem 1 with nomenclature relevant to our model and the corresponding Benders

cuts.
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THEOREM 1. Let ke K and

qk—z Z }\\Zl wi—Z(%fo—ﬁzT)xg— Z }‘\ZUEEO, j=1,2

i€l \a=(n;,n; ¢41)EAlle iel aE Aoney Atwo

be any pair of Benders cuts (18) that are valid for the set of cuts L*(¢*,w,x) >0 and let A > 0.
Define

w=— X (=),

(”zt ST t+1 ) cAidle

Bii= = (7% = Fio) = (Fir = Tir))
0:= Z (Aiu’; )\au’;>.

ac Aone Atwo

If frac (A6) > 0, then the cut

X min {[Aq;] frac (AJ) , frac (Aw;) + | Aa; | frac (Ad)} ~
q +Z A — Z . )\a w;
iel a=(n;t,n; 441)€AMe
min {[AS;]| frac (Ad), frac (AB;) + | AB; | frac (Ad - -
D (L EALLTELE LT REL UTEL SRS B
iel
[Ad] frac (A6) ~
_ (A + 0> ANk =0 (19)
aerneUAtwa

is valid for L*(¢*,w,x') > 0.

We present a detailed proof in Appendix C. In the branch-and-cut algorithm, we directly apply
Theorem 1 to pairs of Benders cuts (18) generated by SP,(w,x!) to generate new valid cuts. We
include in Appendix D the implementation details of the branch-and-cut algorithms with MIR-

enhanced Benders cuts.

5. Numerical Results

In this section, we test instances generated based on real company data and conduct computational
studies to demonstrate the results of our approach. Section 5.1 describes the details of experimen-
tal setup. Section 5.2 analyzes how one-way and round-trip demand proportions affect solution
profitability and QoS, given fixed prices used in practice. Section 5.3 studies the impact of other
important factors such as the size of available fleet, and the penalty cost of lost demand. Section
5.4 examines the profitability and QoS impact of endogenously generated one-way demand as a
result of pricing and strategic customer behavior. Section 5.5 presents results of the rolling-horizon
method for optimizing vehicle relocation. Section 5.6 demonstrates the efficacy of MIR-enhanced

Benders cuts and parallel computing. Section 5.7 compares the results of our models with the ones
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Table 3  Summary statistics of demand data

One-way Round-trip

Average number of trips per day 91.39 1510.90
Proportion of trips (%) 5.70 94.30
Average trip duration 36 min 2 hr 14 min

Standard deviation of trip duration 21 min 1 hr 16 min

of a deterministic benchmark and presents the Value of Stochastic Solutions (VSS). It should be
pointed out that these numerical results are obtained based on one data set and specific assump-
tions. We have tested the robustness of our results by modifying demand distribution and vari-
ability, as well as important parameters such as relocation cost. Our key observations still hold
under these changes. However, as more real-world carshare demand data become publicly available
in the future, it is important to test our models with new data and generalize the observations to

carshare operations in different situations and areas.

5.1. Numerical Experiment Settings

5.1.1. Data Generation. We use Zipcar’s rental data collected from the Boston-Cambridge
area. There are in total 61 days of data, from Oct 1 to Dec 1, 2014, containing the information of
the starting-ending time, and the zip codes of the origin and destination zones of each rental. Only
successful rentals were recorded, i.e., demand is right censored with unobservable lost sales. (In
practice, uncensored data could be available to the service provider from users’ search history.) We
divide the Boston-Cambridge area into nine zones according to significant traveling patterns shown
in the data, which is also consistent with Zipcar’s current zone partition. Note that these zones
should not be considered as individual service locations. Allocating vehicles to individual service
locations will require much finer zone division. The rentals are labeled as one-way or round-trip,
depending on whether they have different or the same starting and ending zones, respectively. In
this dataset, one-way rental service is available in all zones, and thus, there is no one-way demand
censoring as a result of limited service coverage. (In other situations where one-way service is only
available in selected zones, one must also consider potential one-way demand that is lost because
of limited coverage.) Table 3 shows some summary statistics of the data. Since we consider a
discrete time-horizon with one period equal to one hour, all trip durations are rounded to the
nearest integer greater than or equal to one hour. One-way rentals are aggregated by the quadruple
(origin, destination, starting hour, ending hour), while round-trip rentals are aggregated by the
triple (origin, starting hour, ending hour). There is one observation for each rental demand record
(quadruple/triple) every day, resulting in 61 observations for each record.

To generate more samples for the stochastic programming model and vary the proportion of

one-way rentals in our analysis, we generate the number of rentals for each aggregated record using
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Gamma distributions with means and variances equal to the empirical means and variances of
the Zipcar data. The simulated Gamma random variables are rounded to the nearest integers. We
choose the Gamma distribution because demand is non-negative and has high probability of being
zero. We have performed Kolmogorov-Smirnov tests and found no statistically significant difference
between the distributions of the observed data and the data simulated using Gamma distribution.
Figure 2 shows two examples with high and low demand volumes, respectively. Furthermore, we
have also tested other demand distributions such as the log-normal distribution and found that

our key observations still hold.
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Figure 2  Observed distributions compared with Gamma distributions with the same means and variances

In our experiments, we fix the mean total rental hours over a 24-hour period (one day) to 1000
vehicle-hours. In order to vary the proportion of one-way demand, the means and variances of the
number of hourly rental requests are scaled accordingly. For example, to have approximately 40%
one-way rental hours, we divide 1000 x 40% = 400 by the average daily one-way rental hours to
obtain a scale factor . We first multiply the means and standard deviations of the number of
hourly rental requests for each one-way rental triplets by o, and then compute the scale and shape
parameters of the Gamma distributions for generating one-way demand.

For each mix of one-way and round-trip demand, we use ten training samples each having 100
scenarios, independently generated following the above procedures, for computing optimal first-
stage decisions (w,x') for the reservation-based system, and x? for the free-floating system. The
performance of the first stage solutions is evaluated using a test sample of 1000 scenarios with the

same mix of one-way and round-trip demand. The model used in this out-of-sample evaluation is
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(7)—(8) with the penalty term g(y!,...,y!¥!) =0 (i.e. the second stage problem with zero penalty on
lost demand). We have compared different choices of the number of training samples and the sizes
of training/test samples used for the SAA method. The current settings of ten training samples
each with 100 scenarios and 1000 scenarios in the evaluation sample result in very small optimality

gaps between the estimated upper and lower bounds, with all being under 0.5%.

5.1.2. Parameter Settings. In our numerical study, we consider daily operations of a car-
share fleet. All reported profitability and QoS results are daily numbers. We use a time granularity
of one hour per period, and the problem is solved over T' = 24 periods. Up to S = 100 vehicles
are available for initial allocation in all the zones. The parking lot costs are set as cl°* = $9.6 per

lot __

day in zones i =1,2,5,6,9 and ¢°* = $7.4 per day in other zones. The parking permit cost is set

as c™ = $9.6 per day. These are based on annual parking lot reservation cost being $3,500 per
lot in Boston downtown, $2,700 per lot outside downtown, and annual parking permit cost being
$3,500 per car (The Boston Globe 2015). We use revenue parameters r™° = $7.75 per hour and
r°" = $12 per hour based on Zipcar’s Boston rental rates for round-trip and one-way rentals in
its ONE>WAY program (see Zipcar 2015). Relocation cost is ¢! = $10 per car per hour. Note
that vehicle relocation cost is not necessarily higher than the hourly wage of drivers employed to
relocate vehicles. Low cost relocation is possible through innovative methods such as providing
bonus to attract potential drivers who need to travel along desired routes during desired time.

Furthermore, we have tested different relocation costs ranging from $6 to $18 per hour and found

that our observations regarding the impact of one-way demand on profitability and QoS still hold.

mnt idle

The maintenance cost ¢™™ and idling cost ¢“*° are assumed to be negligible and thus set to zero.
Finally, G, = —5f, for all arcs a € A°* U A"™°, i.e., the per unit penalty for lost demand on each

arc is five times per unit net revenue.

5.2. Vehicle Allocation, Profitability, and QoS under Different Demand Mix

A primary factor affecting profit and QoS of a carshare service is the mix of one-way and round-
trip demand. Volatile prices of rentals often negatively impact customer experience, but customer
demand, and consequently the ratio of one-way to round-trip rentals, are volatile and change
from day to day. Hence, it is important to understand the impact that this ratio has on carshare
operations and management. In our first set of experiments, we evaluate the effects of the mix of

one-way and round-trip rentals on reservation-based and on free-floating carshare systems.

5.2.1. Demand Concentration versus Vehicle Allocation. First, we compare the average
total number of rentals demanded in each zone against the first-stage vehicle allocation obtained
through the models. Figure 3 shows the relative concentration of demand starting in each zone

and the relative allocation of vehicles obtained by solving Default when the proportion of one-way
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rentals is 40%. A darker colored zone represents a higher demand concentration in Figure 3(a) and

more initially allocated vehicles in Figure 3(b).

Fewer [T T T TIT0 More Fewer [T T T"ITImM More

(a) Demand concentration (b) Vehicle allocation

Figure 3 Visual comparison of demand concentration (by starting zone) versus vehicle allocation

The data indicates that more demand starts from the zones to the north of the Boston-Cambridge
area than from the southern zones. Meanwhile, we observe more vehicles allocated to the northern
zones. However, the allocation of vehicles does not match the demand concentrations directly, as
the optimal allocation of vehicles also depends on ending zones and relocation. This validates the

non-triviality of the problem in this paper.

5.2.2. Profitability. The profitability of the carshare system comprises the following main
components: the cost of purchasing parking lots or free-floating permits, the expected revenue from
one-way and round-trip rentals, and the expected cost of relocating vehicles. Table 4 shows these
components for all proportions of one-way rentals we tested in the two types of carshare systems.

In Table 4, for both systems, the total profit increases as the proportion of one-way rentals
increases. This suggests that one-way rentals are more profitable than round-trip rentals under the
current price difference ($12 versus $7.75 per hour) and estimated relocation cost ($10 per hour).
Higher proportions of one-way rentals require more vehicle relocation. However, the additional
relocation cost is well offset by the higher revenue generated from one-way rentals. Overall, the
reservation-based system has higher relocation cost, but lower parking cost than the free-floating
system. This shows limited parking spaces lead to more vehicle relocation. In the meantime, the
effective use of vehicle relocation allows reservation-based systems to strategically locate parking

spaces in regions where parking cost is lower.
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Table 4 Profitability of solutions for carshare systems with different one-way proportions

One-way Carshare Parking Revenue from Revenue from Relocation Total
proportion system cost ($) one-way (9) round-trip ($) cost ($) profit ($)
0% Free-floating 960.00 - 6964.79 840.64  5164.15
¢ Reservation-based  918.20 - 6964.03 867.82 5178.02
20% Free-floating 960.00 1921.74 5514.01 1117.05 5358.71
0 Reservation-based  911.60 1922.49 5511.61 1202.03 5320.47
40% Free-floating 960.00 4302.11 4041.96 1327.59  6056.48
0 Reservation-based ~ 910.20 4302.81 4040.49 1415.05  6018.04
60% Free-floating 960.00 6832.03 2567.84 1541.66  6898.21
0 Reservation-based ~ 899.20 6832.84 2564.95 1620.39  6878.21
80% Free-floating 960.00 9407.29 1169.23 1782.97  7833.55
0 Reservation-based ~ 897.00 9407.88 1166.72 1833.06  7844.54
100% Free-floating 960.00 11950.58 - 2033.96  8956.62
© Reservation-based  861.00 11951.42 - 2092.89 8997.53

5.2.3. QoS Performance. We evaluate the QoS of the solutions given by the models using the
expected number of unserved rental requests, the expected proportion of unserved rental requests,
and the expected number of unserved vehicle hours. All three metrics are given in Table 5, together
with the expected total number of vehicle hours spent idle. These measures are widely used
in practice and can be obtained from our models. Determining other important carsharing QoS
measures through user survey remains as an important research problem. We see that as one-way
demand proportion increases, the QoS measures will improve in general. This is because the one-
way rentals in our data set have much shorter durations compared to round-trip rentals, making
one-way rentals more flexible and easier to fulfill. Consequently, the QoS will improve as one-way
proportion increases. The reduction in idle vehicle hours as one-way proportion increases is a joint
effect of more rental hours being fulfilled and more vehicle relocation required by higher one-way

proportion.

Table 5 QoS of solutions for carshare systems with different one-way proportions

One-way Carshare Unserved rentals Idle
proportion system Requests Proportion Vehicle hours vehicle-hours
0% Free-floating 38.87 8.72% 84.17 1317.25
0 Reservation-based 38.97 8.75% 84.27 1314.63
20% Free-floating 40.39 7.42% 74.54 1316.66
0 Reservation-based 40.46 7.43% 74.79 1308.41
10% Free-floating 38.13 5.64% 68.63 1287.19
0 Reservation-based 38.16 5.64% 68.76 1278.57
60% Free-floating 33.31 4.06% 56.03 1245.16
© Reservation-based 33.37 4.07% 56.34 1237.60
80% Free-floating 26.33 2.72% 43.61 1186.89
© Reservation-based 26.39 2.73% 43.89 1182.16
100% Free-floating 17.39 1.69% 17.39 1100.72

Reservation-based 17.32 1.69% 17.32 1094.76
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5.2.4. Denied Rentals. A denied rental is defined as a rental request that is unserved even
though there is a vehicle available for use in that zone at that time. Such a phenomenon is unlikely
to occur in a free-floating system as companies cannot prevent customers from renting available
vehicles. Constraints (3)—(5) in our model do not specify that all available vehicles must be rented
out if there exists unserved demand. This is mainly due to computational tractability concerns.
Allowing trip denial, we can formulate the subproblem of each scenario as a minimum-cost flow
problem that can be solved as a linear program. Adding constraints to prevent trip denial, on
the other hand, will make the subproblems non-convex. Because of the existence of service denial,
for free-floating systems, the second-stage problem in our model is less accurate. However, in a
reservation-based system, customers could potentially be blocked from renting certain available

vehicles. Denied rentals, in this case, provide another measure of QoS.

Table 6 Proportions of denied rentals for carshare systems with different one-way proportions

One-way Carshare Mean Percentile
proportion system 25% 50% 75% 90% 95% 99%
0% Free-floating 1.12% 0.00% 0.00% 0.60% 3.39% 6.45% 15.04%
0 Reservation-based 1.12% 0.00% 0.00% 0.59% 3.35% 6.33% 15.61%
20% Free-floating 0.60% 0.00% 0.00% 0.25% 1.50% 3.10%  9.52%
0 Reservation-based 0.57% 0.00% 0.00% 0.24% 1.46% 2.98% 8.89%
40% Free-floating 0.36% 0.00% 0.00% 0.19% 0.88% 1.69% 5.48%
0 Reservation-based 0.33% 0.00% 0.00% 0.19% 0.85% 1.57% 4.59%
60% Free-floating 0.25% 0.00% 0.00% 0.15% 0.66% 1.14% 3.05%
0 Reservation-based 0.23% 0.00% 0.00% 0.16% 0.66% 1.09% 2.55%
80% Free-floating 0.18% 0.00% 0.00% 0.13% 0.52% 0.85% 1.88%
0 Reservation-based 0.23% 0.00% 0.00% 0.22% 0.62% 0.96%  2.34%
100% Free-floating 0.18% 0.00% 0.00% 0.24% 0.58% 0.81% 1.35%

Reservation-based 0.18% 0.00% 0.00% 0.27% 0.59% 0.83% 1.32%

We present the average proportion of denied rentals and selected percentiles of this proportion
in Table 6. The proportion of denied rentals decreases as the one-way proportion increases. This is
because one-way rentals are more profitable under the current settings of price and relocation cost,
and also more flexible and easier to fulfill because of their shorter durations. Also, the proportion
of denied rentals is not substantial in most of the cases. With 100% round-trip, the proportion of
denied rentals is around 1.1% on average. However, there does exist a heavy tail where over 15%
of the rentals are denied at the 99% percentile. Note that the results in Table 6 are obtained with
fleet size S = 100. When more vehicles are available, the proportion of denied rentals will be much
smaller. Thus, we think our model can well approximate the free-floating system under practical
choices of fleet size, while keeping the problem computationally tractable. Designing efficient opti-
mization algorithms for free-floating systems where service denial is explicitly prohibited remains

as a direction for future research.
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5.3. Sensitivity Analysis of Fleet Size and QoS Penalty

In this section, we study the impact of fleet size and penalty factor for unserved demand. Fleet
size is defined as the number of vehicles that are available for deployment and is varied from 50
to 300 vehicles in increments of 50. The penalty factor is defined as the ratio between the per unit
penalty and lost revenue of unserved demand and is varied from 5 to 20 in increments of 5. We
report the results of the free-floating system with trip mix of 40% one-way rentals. Results of the

reservation-based system are very similar and thus omitted.
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Figure 4 The impact of fleet size and penalty factor on some system performance measures

In Figure 4, we show several system performance measures under different choices of fleet size
and penalty factor. We see from Figures 4(a) and 4(b) that the proportion of unserved or denied
trips decreases rapidly as more vehicles are available. On average, with 100 vehicles, less than 10%
of the demand is unserved and less than 1% of the demand is denied. In Figure 4(c), we show
the utilization of available fleet defined as the number of vehicles that are actually deployed and
the number of vehicles that are available. The available fleet is fully utilized when the fleet size is

less than or equal to 200. When the fleet size is larger than 200, it may be optimal not to deploy
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all available vehicles. Higher penalty cost will lead to more vehicles being deployed. In Figure
4(d), when the fleet size is small (i.e., 50), the use of vehicle relocation is limited, since relocating
vehicles will further reduce available vehicle hours. When the fleet size increases to 100, relocation
cost increases significantly. As the fleet size further grows, the need for vehicle relocation decreases
as more vehicles are available. These results suggest that fleet deployment and vehicle relocation
can be either complements (i.e., deploying more vehicles will increase relocation) or substitutes
(i.e., deploying more vehicles will reduce relocation) to each other. The impact of penalty factor
on vehicle relocation is more complex. When available fleet is fully utilized (i.e., S < 200), higher
penalty leads to more vehicle relocation to satisfy one-way demand. When fleet size is large (i.e.,
S > 250), higher penalty causes more vehicles to be deployed and in turn reduces vehicle relocation.
In general, the impact of penalty factor is not significant in most cases. Thus, we choose a penalty
factor of five in our other experiments. For fleet size, we choose S = 100 in our other experiments,
since it leads to satisfactory QoS performance, fully utilized fleet, and effective use of vehicle

relocation.

5.4. Impact of One-Way Rental Pricing

In Section 5.2, we study the carshare system with different exogenously given proportions of one-
way rentals. In this section, we consider the case where this proportion is endogenously determined
by the price of one-way rentals. Since the original Zipcar data set only includes one fixed one-way
rental price, we must generate new demand realizations under different prices. We hold the price of
round-trip rentals fixed at $7.75 and only vary the rental price of one-way rentals. We assume that
lower one-way rental price does not attract additional one-way rental customers, but rather results
in some round-trip customers dividing their trips into two segments, departure and return, each
being a one-way rental. We start with the original data set with 100% round-trip rentals (i.e., row
0% in Table 4). For each round-trip, we randomly select a zone different from the departure zone as
its “destination”. We assume that the customer can divide her round-trip rental into two one-way
segments by returning the vehicle at the destination and renting another vehicle for her trip back.
The customer then compares the total rental price of the round-trip and its corresponding one-way
segments, and chooses the option with lower total price.

Table 7 shows the revenue, cost, and profit under different one-way rental prices. We only show
results for price = $8, $16, and $24 per hour, because they are the price break-points for our data
set. The last row where one-way price is set to infinity, corresponds to the pure round-trip case
in Table 4. We see that as one-way price is $24, 15.55% of the customers will have cost savings
by splitting their round-trips to two one-way segments. As one-way price further decreases, more

customers will choose one-way (40.67% when price is $16, and 75.03% when price is $8). When
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Table 7 Profitability with different one-way rental prices and endogenous one-way demand

One-way One-way Total Carshare Parking Revenue from Revenue from Relocation Total Profit

price proportion rental hours system cost () one-way (9) round-trip ($) cost ($) profit ($) per hour ($)
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Table 8 QoS measures with different one-way rental prices and endogenous one-way demand

One-way One-way Total Carshare Unserved demand Idle

price proportion rental hours system Requests Proportion Vehicle hours Proportion vehicle hours
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customers split their trips to one-way segments, the carshare system will lose part of the original
rental hours, because round-trip customers will pay for the time they spend at the “destination”
even though they are not driving the vehicle. This can be seen from the column “Total rental
hours”. As a result, the total profit decreases significantly as more customers rent one-way. In this
case, it is more appropriate to compare the profit generated per rental hour (the last column in
Table 7). We see that, endogenous one-way demand as a result of pricing has different impact on
carshare system’s profitability as opposed to exogenous one-way demand. When one-way demand
is exogenously given, higher proportion of one-way demand increases the system’s profitability.
However, when one-way demand is endogenously generated by pricing, higher proportion of one-way
demand reduces the system’s profitability. Comparing the free-floating and the reservation-based
systems, we see that the reservation-based system suffers from higher loss in profitability as one-way
demand increases. This is because limited parking spaces lead to higher relocation cost.

Because of the reduction in total rental hours, the QoS measures will improve as one-way demand
increases, and the results are shown in Table 8. Note that, when one-way service is first intro-
duced in a pure round-trip system (i.e., when one-way proportion increases from 0 to 15.55%), the
QoS measures improve dramatically. This is because round-trips that first get split into one-way
segments are those with longer durations, which are also the most difficult and costly to fulfill.
By converting these trips into one-way, the QoS measures are improved and the improvement is

sufficient to offset the demand imbalance caused by one-way rentals.
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5.5. Performance of the Rolling-Horizon Method for Vehicle Relocation

In this section, we present results from the rolling-horizon approach for optimizing real-time vehicle
relocation discussed in Section 3.3. In this approach, first, Model (1)-(2) is solved to obtain initial
vehicle allocation. Then, in each period, demand is realized and fulfilled first-come-first-served;
after demand has been fulfilled, any remaining available vehicles are relocated using Model (9)-(14).
We focused on the free-floating system. We used a trip-mix with 40% one-way rentals, and rental
rates of $7.75 per hour round-trip and $12 per hour one-way. Relocation cost is assumed to be $10
per hour. Fleet size and QoS penalty factor are 100 and 5, respectively. We considered different
levels of relocation capacity, which is defined as the maximum number of vehicles that can be in

the process of relocation at the same time.

Table 9 Expected objective value (total cost plus QoS penalty minus revenue) using the rolling-horizon vehicle

relocation model and the benchmark policy, denoted by “RBx”, where x is the rebalancing frequency.

Relocation Benchmark policy Rolling

capacity RB1 RB2 RB3 RB4 RB6 RB8 RB12 RB24  horizon Benefit
5 5482.45 7240.96 8188.97 8724.41 9523.99 9630.47 10171.57 10911.23 4829.56 652.90 13.52%
7 5060.91 6478.34 7487.37 8057.48 9056.33 9167.24 9857.64 10886.03 4105.75 955.16 23.26%
10 5058.99 5830.97 6750.62 7309.85 8512.96 8561.60 9454.18 10822.66 3710.34 1348.65 36.35%
12 5106.14 5648.15 6422.97 6932.72 8250.26 8218.27 9184.58 10773.72 3608.91 1497.23 41.49%
15 5300.48 5550.45 6100.06 6535.17 7912.36 7851.97 8882.07 10770.84 3553.93 1746.55 49.14%
17 5526.41 5591.57 5999.16 6380.26 7728.05 7646.12 8673.97 10759.27 3537.86 1988.54 56.21%
20 5800.86 5720.08 5947.52 6250.21 7520.36 7450.16 841552 10752.38 3529.54 2190.54 62.06%
00 7841.97 7024.51 6591.04 6751.11 7360.72 7427.24  7909.69 10880.92 3525.92 3065.12 86.93%

We compared the performance of the rolling-horizon model with that of an intuitively appealing
benchmark policy that rebalances the entire fleet according to future demand concentration with
a pre-specified frequency. For more details of the benchmark policy, please refer to Appendix B.
Table 9 presents the expected total cost plus QoS penalty minus rental revenue over 24 periods
when vehicles are relocated using the proposed rolling-horizon model and the benchmark policy.
The numbers shown are averages from 1000 replications, each of which includes 24 periods of
demand realizations. For the benchmark policy, we tested different frequencies where the entire
fleet is rebalanced every 1, 2, 3, 4, 6, 8, 12, or 24 periods. For each relocation capacity, the result
using the best relocation frequency is shown in boldface. We can see that the rolling-horizon model
performs better than the benchmark policy with the best relocation frequency under all relocation
capacities. Moreover, as the relocation capacity increases, the benefit of using the rolling-horizon
model increases significantly.

Next, we take a closer look at the performance of the proposed rolling-horizon vehicle relocation
model. Table 10 shows detailed profitability and QoS results under different relocation capacities.

Increasing relocation capacity can increase revenue, reduce unserved demand and QoS penalty, and
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Table 10  Summary of profitability and QoS measures using the rolling-horizon vehicle relocation model.

Relocation Revenue Revenue Relocation Relocation Total Unserved demand Idle QoS Objective

capacity one-way round-trip cost utilization profit Requests Proportion Hours hours penalty  value
5 4146.12 2979.66 884.39 73.70% 6241.39 127.41 20.48% 260.00 1581.57 11070.95 4829.56
7 4240.90 3035.66 1065.25 63.41% 6211.31 116.74 18.77% 244.88 1548.37 10317.06 4105.75
10 4303.80 3069.00 1247.31 51.97% 6125.49 109.80 17.65% 235.33 1520.60 9835.83 3710.34
12 4320.49 3080.19 1313.17 45.60% 6087.51 107.92 17.35% 232.50 1511.18  9696.42 3608.91
15 4331.32 3086.58 1361.50 37.82% 6056.40 106.72 17.16% 230.77 1504.62 9610.33 3553.93
17 4333.70 3089.13 1375.06 33.70% 6047.78 106.41 17.10% 230.24 1502.74 9585.64 3537.86
20 4335.37 3090.18 1383.02 28.81% 6042.53 106.22 17.08% 229.97 1501.67 9572.07 3529.54
9 4335.52 3090.92 1384.73 - 6041.71 106.17 17.07% 229.86 1501.22  9567.63 3525.92

improve (i.e., decrease) the objective value. Moreover, these benefits can be achieved to a large
extent with relatively low relocation capacity. For example, increasing relocation capacity from
five to infinity, the objective value can be improved from $4829.56 to $3525.92, i.e., a reduction of
$1303.64. However, increasing relocation capacity to ten leads to a reduction of $1119.22, which
is equal to 86% of the reduction achieved by infinite capacity. Similar patterns are observed for

revenue and QoS performance.

5.6. Computational Efficacy of MIR-Enhanced Benders Cuts

In this section, we evaluate the computational efficiency of the MIR, procedure for problems with dif-
ferent sizes. We generate samples with 100, 200, 500 and 1000 scenarios from the Boston-Cambridge
Zipcar data (following the procedures in Section 5.1.1). Five samples are generated for each prob-
lem size, to obtain the average results. For all the samples, we consider 40% proportion of one-way
demand. All the other parameters are set according to Section 5.1.2.

We compare the solution time of three methods, i.e., solving the MILP directly (Default),
solving it via branch-and-cut without MIR cuts (B&C), or solving it via branch-and-cut with MIR
cuts (MIR). When solving the MILP model directly, we use Gurobi 6.0.3 with its Java API and all
default settings. For branch-and-cut with or without MIR cuts, we use parallel computing via a
Master-Worker scheme by OpenMPI 1.6, and perform all the computation on Flux HPC cluster,
with each computing node having twelve 2.67 GHz Intel Xeon X5650 processors and 48GB RAM.
We use 20 cores for processing all subproblems in parallel. The same computer settings are also
used before for obtaining the results in Sections 5.2—5.4.

Table 11 compares the computation time for different problem sizes (number of scenarios), aver-
aged over five samples for each problem size. All the results in Table 11 are reported in milliseconds.
The computation times are decomposed into several components. The column “MP solve time”
gives the total solution time in the case of solving directly (no suffix). For B&C and MIR, this column
gives the total time spent solving of the master problem (MP) and updating the flow balance con-
stants according to the current first-stage solution. The next column, relevant only to the B&C and

MIR solution methods gives the average solution time for each subproblem (SP). In other words,
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this is the total amount of time spent solving the subproblems divided by the number of scenarios.
The last column gives the number of iterations required to converge on the solution, also only

relevant to B&C and MIR.

Table 11 Computational time (in milliseconds) comparison between models for different problem sizes

# scenarios Method MP Avg solve time Series Parallel # iterations
(subproblems) solve time per SP solve time solve time

Default 4,251 - 4,251 4,251 -

100 B&C 181 78 9,311 1,857 31

MIR 173 75 8,953 1,771 30

Default 13,436 - 13,436 13,436 -

200 B&C 602 80 19,703 2,837 32

MIR 659 82 20,338 2,549 34

Default 65,231 - 65,231 65,231 -

500 B&C 2,839 76 48,933 5,387 29

MIR 2,284 78 49,251 3,795 28

Default 236,207 - 236,207 236,207 -

1,000 B&C 18,529 252 291,389 34,430 39

MIR 16,015 126 160,272 27,175 37

Our results show that B&C and MIR are generally faster than Gurobi’s default MILP solver if the
subproblems are computed in parallel. As the number of scenarios increases, the gap in parallel
solve time becomes even more significant. Moreover, the method MIR results in shorter time for

solving master problem and shorter overall solution time when being implemented in parallel.

5.7. The Value of Stochastic Solutions (VSS)

Lastly, we compute optimal solutions to a benchmark deterministic model that uses empirical mean
values of the demand, to examine the VSS (Birge and Louveaux 2011). We compare the results of
the deterministic model with the ones of Default based on the same test instances. While all the
approaches result in similar numbers of denied trips, the stochastic approaches have better QoS
results than the deterministic model, with 5%-7% shorter vehicle idle hours when ¢ = $10, and
almost no unserved demands when ¢**! = $10. The stochastic approaches dominate the deterministic
one in metrics of profitability, especially under higher one-way proportions (e.g., when > 60% of
the total demand are one-way rentals). The optimal solutions by the stochastic approaches yield
60.9%-153.2% more total revenue, while the deterministic model yields 1.75 to 2.24 times more
relocation cost. This confirms the importance of using stochastic optimization for carshare service

planning under demand uncertainty.

6. Concluding Remarks

In this paper, we develop two-stage stochastic integer programming models and branch-and-cut
algorithms for optimizing strategic parking planning and vehicle allocation for carshare systems
under uncertain demand with both one-way and round-trip rentals. The models are applied to

diverse instances generated based on a real-world data set of Zipcar in the Boston-Cambridge area.



Lu, Chen, and Shen: Carshare System Optimization under Uncertain Demand 29

Our results indicate that the impact of one-way demand on profitability and QoS is significant.
Furthermore, depending on whether one-way demand is exogenously or endogenously generated,
a higher proportion of one-way demand may have opposite effects. When exogenously given, e.g.,
from natural market penetration and user adoption, higher one-way demand could increase a
carshare system’s profitability. On the other hand, when exogenously generated by pricing and
strategic customer behavior, higher one-way demand could decrease profitability. Thus, under-
standing the market dynamics of one-way rentals is of great importance for carshare companies
as well as local governments that try to solve their urban transportation problems by promoting
carsharing. We also leverage our model to optimize real-time vehicle relocation operations in a
rolling-horizon framework. Comparison with an intuitive benchmark policy shows that our model
could lead to significant improvement in both profitability and QoS. With respect to computational
performance, our proposed branch-and-cut algorithms perform significantly better than the state-
of-the-art commercial mixed-integer program solver. Also, using MIR-strengthened cuts result in
more improvement than using only Benders cuts when using parallel computing.

There are several limitations of our models. Firstly, we focus on the reservation-based and free-
floating systems, which are two special cases of a general hybrid system with both contracted
parking lots and free-floating parking permits. Studying a general system requires new optimization
algorithms and is left as a future research direction. Secondly, we formulate a two-stage stochas-
tic programming model, which provides an approximation of the expected profit from uncertain
demand. Robust optimization is also suitable for modeling and optimizing such systems. For future
research, we plan to study multi-stage stochastic programming and multi-stage robust models
for optimizing vehicle relocation in real-time operations. Thirdly, we focus on carshare systems
in metropolitan areas where parking is extremely limited. It is also important to study carshare
systems where parking is abundant. Finally, our numerical results are obtained using one specific
data set, and thus may not be easily generalizable. As more data become publicly available, it
is necessary to test our models with new data sets to verify current observations and draw more

general insights.
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Appendix A: A Risk-Averse Model based on CVaR of QoS Penalty

Conditional value-at-risk (CVaR) is a risk measure employed to cope with loss distributions. It is also known
as mean excess loss or mean shortfall for continuously distributed random variables. Its value depends on
the value-at-risk (VaR) of the same random variable. We consider a reservation-based carshare system with
m =1. Given 0 < e < 1, the (1 —¢)-VaR (the VaR at confidence level 1 — € of the number of unserved

customers, denoted Y7 _ joney gewo H,(w,x!)) is given by

VaR;_. ( Z Ha(w,x1)> :min{n:]P’< Z H,(w,x") <77> > 1—6}.

a€Aoney Atwo a€Aoney Atwo
That is, when ranking all scenarios k € K by the number of unserved customers, the (1 —¢)-VaR is the best
value of the 100¢% worst scenarios. It is important to note that in our model, higher values of unserved
customers are worse. Then the (1 —¢)-CVaR is the expected number of unserved customers given that the
number exceeds the (1 —€)-VaR, or equivalently the average value of the 100e% worst scenarios.

We propose a risk-averse model, and impose a penalty Gy on the (1 —€)-CVaR of unserved customers,
with € being a given risk parameter. Such a model is appropriate when a company accepts that not providing
service to a small number of customers is inevitable but wants to ensure a relatively high QoS on average
in the worst-case scenarios. Employing the well-known reformulation of CVaR in Rockafellar and Uryasev

(2000), we have

+
1
GoCVaR,_, ( Z Ha(w,x1)> =Gy rg1>1{)1 n+ EEP ( Z H,(w,x") —7}) , (20)

a€ AoneyAtwo a€ AoneyAtwo

where Ep measures the expectation given the probability distribution P of the underlying uncertain demand;

the non-negative variable 7, when optimized, is equal to VaR;_. (Z Ha(w,xl)). We incorporate

aeAOHEUAtWO
(20) to replace g(y?!,...,y'¥l) in the second-stage problem Q(w,x!), and define auxiliary variables ¢*, k€ K
such that ¢* = max{ZaGAm,euAtwo (u’; — yf) — 77,0}7 representing the number of unserved customers that
exceed the threshold value 7 in each scenario k, for all k € K. As a result, the risk-averse second-stage value

function based on the CVaR measure is given by

Qw,x")= min Y p* " fyk+G 77—|—}Zpkck (21)
y,¢,n=>0 €

kEK  acA kEK
st. yFeY(w,x'u") Vke K (22)
> Y (ub—yh)-n, (F>0  VkeK, (23)

ac Aone Atwo

where the definition of variables (¥, k € K is ensured by constraint (23).

Appendix B: Rolling-Horizon Vehicle Relocation Model and Benchmark Policy

A detailed description of the rolling-horizon vehicle relocation model is given in Algorithm 1.
Given the number of vehicles that are currently on rent along each route, v®, and the relocation decision

z*®, the total cost plus QoS penalty minus rental revenue in future periods under demand scenario k is
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Algorithm 1 A Rolling-Horizon Approach for Vehicle Relocation

: Solve initial allocation problem; obtain x! and w

2 Initialize r® := 0
3: Initialize v°:=
4: for t€1 do
5: Update v)) <z}
6: end for
7: for se{l,...,T—1} do
8 for 1 €I do
9: Intialize number of vehicles available: ¢ :=vi " + et 25t
10: forte{s+1,...,T} do
11: Initialize number of vehicles that will be available in period ¢: v§, := v}, ' + D et z5t
12: end for '
13: Idealize demand list Dy
14: while D # 0 do
15: Get the first demand in D3, (j,t) (vehicle will be returned to zone j in period t)
16: Update demand list D; < D:\{(j,t)}
17: if r7 >0 then
18: Update number of available vehicles 7§ <—rf —1
19: Update number of vehicles in rent v$, < v3, +1
20: end if
21: end while
22: end for
23: Solve vehicle relocation Model (9)—(17) with input r® and v?®, obtain z*
24: end for

approximated by the function Q;™"(z*,v*) given by (15) to (17). In Model (15)—(17), we have omitted the

special case of period T', during which the fleet is rebalanced to its initial allocation for the next day.

Q" (z" ', v ') =min Z Z szl (24)

Ay jer

st > ah=Y 2ol Viel (25)
JjeI JerI
> eli=m, Viel (26)
JjelI
zh€ly, Vi, jel (27)

In the benchmark policy with rebalancing frequency A, the fleet is rebalanced to fit future demand con-
centration every A periods. Rebalancing will take place at time mA, m=0,1,..., M, with MA =T. Let D"
be the average total demand that will originate from zone ¢ from period mA +1 to period T, with DM = D?
as a special case. Let 7 be the number of current available vehicles in period m after all demand has been

fulfilled, with ", =S as a special case. We assume that all rentals or relocations must end by period

e 7,
T.So ., ri=25. This is to guarantee that the system can be restored to initial status. Let v* be the
number of vehicles that are currently being rented or relocated but will be returned to zone 4, with v? =0
as a special case. The decision is the number of vehicles relocated from zone i to zone j, denoted by z77. The
objective is to make the proportion of v]™ + Z]. ¢ 251 as close to the proportion of D" as possible. We solve

the following constrained least-squares problem:

VY 2 D™ )2
min - : (28)
=" ( S ZiEI‘D’Zn
s.t. E zig =1, Viel (29)

Jjel
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SN < mm (30)
i€l j#i

2 €Ly Vi, jeI (31)

Constraint (29) guarantees that the total number of relocated vehicles equals to the number of available
vehicles (after fulfilling demand) in the current period for each zone. Constraint (30) is the relocation capacity
constraint. In the last period, RM is assumed to be infinity to guarantee that the initial state can be restored.
The benchmark policy is implemented in a similar way as Algorithm 1, except that vehicles are only relocated

in periods mA, m=0,1,..., M, and the relocation decisions are obtained using Model (28)—(31).
Appendix C: Proofs of Theorem 1

Proof of Theorem 1. Let (¢*, w,x!) be an arbitrary solution satisfying the set of cuts L*(¢*, w,x!) >0
and define

q :=q¢" — Z Z /):(11 w; — Z(%jo - %JT):'L.ZI - Z X}luﬁ

el a:(”itv"i,tJrl)EAidle el a€ Aoney Atwo

Then ¢’ >0 and

¢>q- |- > N w =Y G-l - Y b

iel a=(n;¢,n; ¢41)€Aldle i€l a€AoPneyAtwo
— E E 1
i€l iel

That is, (¢,w,x') € U := {(q’,w,xl) eR, x Z'i' X Z‘ﬂ Y aw Y Bt — 0> 0}. Applying
Proposition 1, we obtain the cut

o Z min {[Aq; | frac (Ad) , frac (Aw;) + | A, | frac (Ad)}

vl A o

min{[ApS;] frac (A¢) ,frac (AB;) + |AB, | frac (AS)}

n ZI: {[AB:] frac (AJ) A( ) + |AB:] frac( )}Ii
_ [Ad] frac (AJ) >0 (32)

A >
valid for U. Finally, we substitute the expression ¢’ to obtain (19), valid forL*(¢*, w,x!)>0. O
Appendix D: Branch-and-Cut Algorithm with MIR Procedure

We outline the branch-and-cut algorithm with MIR below in pseudo-code. For ease of referencing the coef-
ficients in the cuts, we define o and 3 as the coefficients of variables w and x!, respectively, and —4§ as the
constant in the cut. Therefore, the cuts for the risk-neutral model are of the form
¢+ aw + Y B —5>0.
i€l iel

There are two main parts to the algorithm. The outer algorithm is a regular branch-and-cut algorithm
that branches on fractional x;’s and adds cuts generated from the subproblems. The inner algorithm (lines
14-37 in both algorithms) is a Benders decomposition algorithm with an additional MIR, procedure that
pairs Benders cuts to generate additional valid cuts. The most violated cut is added to the relaxed master

problem, while the remaining cuts are stored for subsequent pairings with the MIR procedure.
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Algorithm 2 Branch-and-cut algorithm with MIR for carsharing system design model

Initialize MP with no cuts
Initialize sol:=null
Initialize optval:=0

for k€ K do

Initialize cutlist®

end for
Initialize S := {0}
Initialize s: =0

Define Problemg as MP

while S # () do

Define 5:=min{s:s€ S}
Initialize repeat:=true
while repeat=true do
repeat<—false
Solve Problems to obtain optimal solution (W,X',q) and objective 633

forke K d

Solve SP;(W,X") to obtain optimal dual solution (%,/):) and optimal objective

o
7*

if g" > ¢" then
repeat<—true
Define cutA as cut (18)
Add cutA to cutlist”
for cutB € cutlist® do
A1

Ap
Ad

ply Theorem 1 to cutA and cutB to generate cutCy
d cutCp to cutlist”

for i€l do

A+ ﬁ, where o* and of are coefficients of w in cutA and cutB respectively
P i

Apply Theorem 1 to cutA and cutB to generate cutC;
Add cutC; to cutlist”

A+ ﬁ, where 8* and (3% are coefficients of x! in cutA and cutB respectively

Apply Theorem 1 to cutA and cutB to generate cutD;
Add cutD; to cutlist”

end for
end for
Among cutA and cutC; and cutD; Vi € I, add to L* > 0 the cut with the smallest

end if
end for
end while
if ggj<optva1

d— (@ + Zi€1 a;w; + Ziel BiT})
T+ er(@)?+ 32, (Bi)?

then

if 3i:7] — [Z]] #0 then

Define i :

=min{i:z! — |T!| #0}

S+ Su{s+1,s+2}

S s+2

else if 37 :jT),; — |w;] #0 then

Define 7 :

=min{i:w; — |w; | #0}

Define Problem,; as Problems with additional constraint wy < | ;]
Define Problem; . as Problem; with additional constraint w; > [w;]
S+ SuU{s+1,s+2}

S s+2
else

optval<— ggj

sol+(q,
end if
end if
S+ S\{s}

: end while
: optval is optimal objective function value and sol is optimal solution

X, W)






