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Carsharing has been considered as an effective means to increase mobility, reduce personal vehicle usage

and related carbon emissions. In this paper, we consider problems of allocating a carshare fleet to service

zones under uncertain one-way and round-trip rental demand. We employ a two-stage stochastic integer

programming model, where in the first stage, we allocate shared vehicle fleet and purchase parking lots

or permits in reservation-based or free-floating systems. In the second stage, we generate a finite set of

samples to represent demand uncertainty and construct a spatial-temporal network for each sample to

model vehicle movement and the corresponding rental revenue, operating cost, and penalties from unserved

demand. We minimize the expected total costs minus profit, and develop branch-and-cut algorithms with

mixed-integer rounding-enhanced Benders cuts, which can significantly improve computation efficiency when

implemented in parallel computing. We apply our model to a data set of Zipcar in the Boston-Cambridge

area to demonstrate the efficacy of our approaches and draw insights on carshare management. Our results

show that exogenously given one-way demand can increase carshare profitability under given one-way and

round-trip price difference and vehicle relocation cost, whereas endogenously generated one-way demand

as a result of pricing and strategic customer behavior may decrease carshare profitability. Our model can

also be applied in a rolling-horizon framework to deliver optimized vehicle relocation decisions and achieve

significant improvement over an intuitive fleet-rebalancing policy.

Key words : carshare; demand uncertainty; quality-of-service (QoS); two-stage stochastic integer
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1. Introduction

Increasing energy prices and parking fees in large cities have led to increased vehicle ownership

costs, resulting in many individuals turning to other means of transportation. Public transportation

has traditionally been a common alternative to private vehicle ownership. However, it is far from

being a perfect replacement due to limited accessibility, fixed schedules, and the fact that users

have to share common space and routes.
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In recent years, carsharing has become a popular means of alternative transportation, serving

as a middle ground between public transport and private ownership. It provides car rental services

to customers on a short term basis, as opposed to long term rentals provided by typical car

rental companies. The popularity of carsharing is attributed to carshare users benefiting from

private use of vehicles without having to bear the costs or responsibilities associated with car

ownership. Carsharing also provides many benefits through reducing vehicle ownership in cities,

such as reduced traffic congestion, reduced fuel consumption and vehicle emissions resulted from

the use of clean fuel vehicles and lowered overall miles traveled (Fan et al. 2008). In North America,

studies suggest that carsharing has reduced vehicle mileage by 44% on average per carshare user,

with each carshare vehicle replacing between 6 to as many as 23 vehicles (Shaheen and Cohen

2007). The benefit of carsharing is further expanded by the use of electric vehicles – advances in

electric vehicle charging technology will lower carshare fleet sizes and operational costs, and bring

greater reduction in CO2 emissions (He et al. 2016). Hence, it is not surprising that almost 1,000

cities worldwide have adopted carsharing, with over 1.3 million individuals sharing almost 20,000

vehicles through carshare programs in the United States alone as of July 2015 (EcoPlan Association

2015).

Carshare systems can be broadly categorized into two types: reservation-based, in which cus-

tomers must reserve vehicles prior to using them (e.g., Zipcar), and free-floating, in which customers

can pick up any available car for immediate use (e.g., Car2Go). Carshare rentals can be categorized

into one-way and round-trip rentals, with the former allowing customers to rent and return vehicles

in different locations, and the latter only allowing returning rental cars to the same location.

From the customers’ point of view, the availability of one-way rentals provides two main benefits.

Firstly, there can be more flexibility in vehicle use, as vehicles do not have to be dropped off at

the same location they were picked up. Secondly, customers can potentially save on rental fees by

splitting a round-trip rental into two one-way rentals.

From a carshare service provider’s point of view, although one-way rentals have been requested

by customers for a long time, providing such a service has not been a priority because of added

management complexities (de Almeida Correia and Antunes 2012, Shaheen et al. 2006). Among

these complexities, the most significant one is planning for imbalances in demand, e.g., via vehicle

relocation, which can be costly. Some of the cost can be offset by pricing one-way rentals at higher

hourly rates – for example, Zipcar charges $7.50-$8.50 per hour for round-trip rentals and $12 per

hour for one-way rentals (see Zipcar 2015). However, the overall profitability of one-way rentals

is questionable even with higher hourly rental prices. To carshare companies, optimally locating

their car fleets in response to demand is important to their profitability and quality of service
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(QoS). As more carshare companies begin to offer one-way rentals in addition to traditional round-

trip rentals, such as Zipcar through its ONE>WAY beta program, the problem of optimal fleet

allocation and vehicle relocation becomes increasingly complex.

1.1. Problem Description

In this paper, we consider allocating a carshare fleet in a region serviced by a carshare service

provider to satisfy uncertain travel demand. The region is discretized into smaller zones, with

parking costs different from zone to zone. To regulate carshares, city governments issue parking

lot contracts and free-floating parking permits for shared cars (San Francisco Chronicle 2014, The

Seattle Times 2014). Parking lot contracts grant carshare exclusivity to lots, and are typically taken

up by reservation-based carshares, for which the carshare company takes into account parking

capacities when accepting vehicle reservations. On the other hand, we consider an alternative way

as purchasing parking permits, often used by free-floating carshares, whose vehicles can be parked

at any available city parking lots. We are tasked to allocate a homogeneous fleet of vehicles to

zones, by determining the number of contracted parking lots (for reservation-based systems) in

each zone or the number of parking permits (for free-floating systems) to purchase.

The above car fleet allocation decisions are made “here-and-now” before one-way and round-

trip demand is realized at discrete time periods over a finite horizon. In each period, should the

demand in a zone exceed the number of vehicles available for use at that zone, any excess demand

is immediately lost (i.e., we assume that any excess demand is not carried over to the next period).

During the finite horizon, we may relocate vehicles as recourse actions, and customers will be unable

to use vehicles that are being relocated. Given each demand realization, we find the optimal vehicle

movement to maximize the net profit minus the penalty of undesirable QoS results associated with

unserved demand.

Indeed, efficient and economic carshare fleet allocation and reallocation is an emerging problem

in practice, faced by almost all carshare service providers as an important step towards optimizing

their profitability and QoS. Toyota, for example, provides carshare companies that purchase their

vehicles with a fleet management system, which allows the fleet operator to optimize vehicle allo-

cation in the network (ACN Newswire 2013). Miveo, an award-winning carshare solutions provider

in Europe, launched fleet management services to help customers improve fleet allocation planning

(PR Newswire 2016). In addition to fleet allocation, service providers and local governments also

need to determine the number of parking spaces or parking permits to acquire or allocate within

each region (San Francisco Chronicle 2014, The Boston Globe 2015, The Seattle Times 2014). This

paper considers both car fleet allocation and parking planning. When it comes to carsharing in

emerging economies, according to a recent survey (World Resources Institute 2015), high capi-

tal investment and limited parking spaces are two of the major barriers for carshare companies,
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while low labor cost is recognized as an opportunity. Therefore, in addition to fleet allocation, the

problem considered in this paper seeks to overcome the barriers of high capital investment and

limited parking spaces by optimizing vehicle and parking lots/permits allocation to service zones,

and takes advantage of the opportunity of low labor cost by optimizing vehicle relocation.

1.2. Methodology Overview

A carshare company may periodically check the distribution of vehicles in different zones to decide

how to relocate them based on predictions of future demand. It follows a dynamic program, which

re-examines vehicle locations and demand at each period to decide real-time vehicle reservation and

relocation. However, the computation of such a model suffers from the “curse of dimensionality”,

and usually cannot provide efficient solutions under large-scale uncertainty.

In this paper, we consider a two-stage stochastic integer programming approach to approximate

the results of the multi-stage dynamic model, by aggregating recourse decisions and uncertainties in

the second-stage problem, after the first-stage problem determines car fleet allocation and parking

lots/permits acquisition. We employ the Sample Average Approximation (SAA) method (Kleywegt

et al. 2002, Shapiro et al. 2009) based on generated i.i.d. samples of the random one-way and

round-trip rental demand. For each sample, we model the movement of vehicles from zone to zone

as flows on a spatial-temporal network, with each node in the network representing the state of a

zone in each time period during the finite horizon. Furthermore, we modify the above two-stage

stochastic programming model and implement it in a rolling-horizon manner to optimize vehicle

relocation in each period. This allows carshare service providers to obtain not only the initial

parking lot/permit acquisition and fleet allocation decisions, but also dynamic solutions of vehicle

relocation over time.

We present three advantages of using spatial-temporal networks to model recourse decisions and

outcomes related to the uncertainty. Firstly, since each zone is replicated by the number of time

periods, it is straightforward to represent vehicle movement as flows that are conserved between

the spatial-temporal nodes, and to keep track of the overall status of the vehicles (e.g., whether

they are in use or, if available, where they are located). Secondly, we do not need to consider

complex topologies of real-world road network as they will not affect the construction of spatial-

temporal networks. Thirdly, when focusing on the reservation-based or free-floating only systems,

the second-stage problem becomes a standard minimum cost flow problem (Ahuja et al. 1993)

on the corresponding spatial-temporal network, which can be solved very efficiently as a linear

program.

A spatial-temporal network constructed in this paper could still involve a large number of nodes

and arcs, as a result of the large number of locations, the large number of periods, or both. To



Lu, Chen, and Shen: Carshare System Optimization under Uncertain Demand 5

address the computational challenge, we employ the Benders decomposition approach (cf. Ben-

ders 1962, Van Slyke and Wets 1969) as a common method for optimizing two-stage stochastic

programs. Moreover, we generalize a branch-and-cut algorithm with the mixed-integer rounding

(MIR) subroutine, first proposed by Bodur and Luedtke (2014) for a call center staffing problem,

to derive stronger cuts from Benders cuts.

1.3. Contribution and Main Results

We summarize our contribution and main results as follows.

∙ We study the strategic planning problem of purchasing parking lots/permits and allocating

initial car fleet in service zones, to satisfy uncertain one-way and round-trip carshare demand. We

formulate a two-stage stochastic integer programming model to optimize both profitability and QoS

by formulating strategic decisions in the first stage and using spatial-temporal networks to capture

detailed vehicle movement in the second stage. Via decomposition, we develop a branch-and-cut

algorithm with strengthened valid inequalities, which shows promising computational performance

in parallel computing.

∙ Via extensive numerical experiments using augmented real-world data, we show that the

impact of increasing one-way demand to carshare systems is complex and depends upon whether

one-way demand is exogenously given or endogenously generated. With exogenous demand, our

results show that higher one-way proportion can increase a carshare system’s profitability. On

the other hand, if one-way demand is endogenously determined by pricing and strategic customer

behavior, our results show that higher one-way proportion could decrease a carshare system’s prof-

itability. Our results also suggest that the effective use of vehicle relocation plays an important

role in carshare systems with one-way demand. The number of vehicle relocations will increase as

one-way demand increases.

∙ We further leverage our model to optimize real-time vehicle relocation decisions in a rolling-

horizon framework. When applied to the same real-world data, our proposed rolling-horizon method

achieves significant advantage in both profitability and QoS over a benchmark policy that peri-

odically rebalances the fleet according to future demand concentration. Furthermore, we find that

increasing the carshare fleet’s vehicle relocation capacity can result in in substantial profitability

and QoS improvement.

1.4. Structure of the Paper

The remainder of this paper is organized as follows. Section 2 reviews the most relevant studies

in carshare optimization and solution techniques. Section 3 introduces the construction of the

spatial-temporal network and the two-stage stochastic integer program for fleet management, and

describes how to implement the two-stage model in a rolling-horizon framework to obtain dynamic
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vehicle relocation solutions. Section 4 develops branch-and-cut algorithms with MIR-enhanced

Benders cuts for solving these models. Section 5 provides the insights drawn from applying the

models on real-world data and also demonstrates the computational efficiency of the proposed

algorithms. Section 6 concludes the paper and discusses future research directions.

2. Literature Review

There is a rapidly growing literature on sharing economy of various forms, including peer-to-peer

product rental and service provisioning (Benjaafar et al. 2015). We focus on carsharing where a sin-

gle service provider owns the vehicles. Shaheen et al. (1998) and Shaheen and Cohen (2007) review

the history and recent rapid growth of the carsharing industry, respectively. Katzev (2003) explores

the early adoption processes of several carshare systems, and evaluates the effects of carsharing on

commuter mobility behavior and the environment. Bellos et al. (2017) study the impact of carshar-

ing on an automobile manufacturer’s product line design decisions in vehicle driving performance

and fuel efficiency. He et al. (2016) optimize service regions for fleets of electric vehicles deployed

and shared in urban environments. Jorge et al. (2014) and Kaspi et al. (2014) both consider one-

way carshare systems: the former optimizes vehicle relocation via mathematical modeling and the

latter seeks effective parking reservation policies via a Markovian model and simulation. Kaspi et al.

(2016) apply mixed-integer linear programming (MILP) models for regulating one-way carshare

systems and designing parking reservation policies, which take into account a user behavior model

for each policy design. Boyacı et al. (2015) formulate an MILP model for planning one-way car

sharing station locations, sizes, and their fleet sizes, subject to vehicle relation and electric vehicle

charging requirements. They optimize the model for large-scale problems by aggregating stations

into virtual hubs and applying the branch-and-bound algorithm.

After fixing carshare stations and transport networks, how to relocate and redistribute vehicles

during operation is a major consideration for satisfying customer demand. Relocating vehicles can

be a complex process if dynamic shared fleet and demand distributions must both be taken into

consideration. Weikl and Bogenberger (2013) summarize and categorize strategies used by carshare

companies to relocate their fleets, with real-life examples. Similar to our work, a variety of papers

consider two-stage stochastic programming formulations to approximate the multi-stage dynamic

optimization results. For example, Nair and Miller-Hooks (2011) develop a stochastic MILP model

for optimizing vehicle relocation plans for shared vehicle systems, and use a joint chance constraint

to ensure a high rate of satisfying random demand. Benjaafar et al. (2017) formulate a stochastic

dynamic programming model and characterize the structure of the optimal policy for inventory

repositioning in a product rental network. Similar planning and operational problems arise in

bicycle sharing, and have been tackled extensively in the past few years. For example, Shu et al.
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(2013) formulate a stochastic network flow optimization model to minimize the size of each sharing

station and the cost of bicycle redistribution, and approximate the optimal solutions by using a

deterministic linear program. Moreover, Febbraro et al. (2012), Waserhole et al. (2013), Pfrommer

et al. (2014) all suggest real-time price incentives as a means to shape demand and reduce the

need for excessive vehicle relocations. Vehicle allocation and repositioning has also been studied

in manufacturing systems for automated guided vehicles (e.g., Ganesharajah et al. 1998, Hall et al.

2001a,b, Asef-Vaziri et al. 2001) and healthcare systems for emergency response vehicles (e.g.,

Brotcorne et al. 2003, Alanis et al. 2013)

To represent vehicle movement, Kek et al. (2009) use spatial-temporal network remodeling tech-

niques to determine a set of nearly optimal manpower and operations to satisfy given relocation

needs. de Almeida Correia and Antunes (2012) and Fan (2014) deploy spatial-temporal networks

for optimizing the division of zones in a network and the allocation of vehicles to zones in one-way

carshare systems, respectively. Similar network structures have also been used to study other logis-

tics and transportation problems, e.g., deployment of containers (Shu and Song 2013). However,

the integration of one-way with round-trip rentals in reservation-based and free-floating carshare

systems, and the difficulty of handling a large spatial-temporal network have not been addressed

in the above literature.

We provide Table 1 below to summarize the most recent literature of car or bike sharing, classified

based on the decisions, sharing types, and methodologies employed. To our best knowledge, we

are the first to integrate both one-way and round-trip rentals, strategic and operations decisions

into comprehensive stochastic optimization models that take into account time-varying demand

uncertainty, which we model by using spatial-temporal networks. However, we do not consider

electric vehicles (EVs) and their charging problems.

Ferrero et al. (2015) provide a comprehensive survey of carsharing literature, classifying the

papers according to several taxonomical axes, including (i) rental mode, (ii) vehicle engine for the

service, and (iii) optimization objective, (iv) time horizon and (v) methodologies for the research

model. According to this taxonomy, our paper targets several areas on the axes where carsharing

literature is lacking. In particular, our paper addresses one-way and round-trip demand, in both

reservation-based and free-floating modes, and can be applied to shared car fleets with both fully

thermic and green engines. The objectives of our paper pertain mainly to fleet management, with

the target time horizon being the strategic design of the system. Finally, our models are based

on two-stage stochastic integer programming and network optimization techniques, which can be

further implemented in a rolling-horizon framework to make relocation decisions at the operational

level.
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Table 1 Classification of the related literature

Carshare or bikesharing
One-way only Round-trip or mix

Decisions
Planning
(location; fleet size;
reservation policy)

Boyacı et al. (2015) Fan (2014),
de Almeida Correia and Antunes
(2012), Kaspi et al. (2014, 2016)

Barrios and Godier (2014), Nair and Miller-Hooks
(2014), Nourinejad and Roorda (2014), Chang et al.
(2017), Martinez et al. (2012), Shu et al. (2013), He
et al. (2016)

Operational
(trip selection;
fleet relocation;
EV charging)

Boyacı et al. (2015), Fan (2014),
Febbraro et al. (2012), Jorge
et al. (2014), de Almeida Correia
and Antunes (2012)

Kek et al. (2009), Weikl and Bogenberger (2013),
Fan et al. (2008), Pfrommer et al. (2014), Shu et al.
(2013)

Methods
Deterministic
(MILP; game; DP)

Boyacı et al. (2015), Kaspi et al.
(2016)

Nair and Miller-Hooks (2011), Chang et al. (2017),
Fan et al. (2008), Martinez et al. (2012)

Stochastic
(sampling; MILP)

Fan (2014) Nair and Miller-Hooks (2011), Shu et al. (2013), He
et al. (2016)

Simulation,
predictive models,
decision-support
systems

Jorge et al. (2014) Barrios and Godier (2014), Kek et al. (2009),
Nourinejad and Roorda (2014), Weikl and Bogen-
berger (2013), Pfrommer et al. (2014)

Spacial-temporal network Kek et al. (2009), de Almeida Correia and Antunes (2012), Fan (2014)
Involving EVs in the car fleet Boyacı et al. (2015), He et al. (2016), Chang et al. (2017)

3. Problem Formulation

In this paper, we consider reservation-based or free-floating carshare systems. We first present a

general model for a hybrid system, i.e., one with both types of carshare modes, and then treat pure

reservation-based and free-floating systems as special cases of the general model.

Consider the problem where a carshare company needs to allocate a given budget of 𝑆 vehicles

in a set of zones, denoted by 𝐼, to maximize its profit and QoS over 𝑇 time periods, using con-

tracted parking lots (corresponding to a reservation-based system) and purchased parking permits

(corresponding to a free-floating system). Decisions include the number of parking lots to purchase

in zone 𝑖, denoted by 𝑤𝑖, the number of vehicles deployed in zone 𝑖 that require contracted parking

spaces, denoted by 𝑥1
𝑖 , and the number of vehicles allocated in zone 𝑖 with purchased parking

permits, denoted by 𝑥2
𝑖 , for all 𝑖∈ 𝐼. We assume that customers are indifferent to whether a vehicle

has a free-floating parking permit or requires a parking space. Let 𝑐lot𝑖 be the cost of acquiring one

parking space, 𝑐loc𝑖 be the cost of allocating a vehicle in zone 𝑖, for all 𝑖∈ 𝐼, and 𝑐ffp be the cost of

one free-floating parking permit. Note that carsharing is also applicable under certain cases where

parking space may not be a concern, e.g., non-metropolitan areas and theme parks. In those cases,

the parking-related cost can be set to zero, and the parking-related decisions will be trivial. In this

paper, we focus on carshare systems that are used in areas where parking space is limited, e.g.,

metropolitans, and thus parking cost is significant.

We denote the demand for one-way rentals from zone 𝑖 to zone 𝑗 starting at period 𝑡 and ending

at period 𝑠 by 𝑑one𝑖𝑗𝑡𝑠, and denote the demand for round-trip rentals from zone 𝑖 starting at period 𝑡

and ending at period 𝑠 by 𝑑two
𝑖𝑡𝑠 . The time taken to travel from zone 𝑖 to zone 𝑗 is denoted by ℓ𝑖𝑗,

and the data satisfies 𝑠− 𝑡≥ ℓ𝑖𝑗 for any 𝑑
one
𝑖𝑗𝑡𝑠 > 0. As carshare companies typically use a time-based

payment scheme, we assume that cost and revenue parameters for rentals are independent of zones
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but dependent on usage time. The revenue comes solely from customers using vehicles, while costs

incurred by the company include the costs of relocating vehicles, maintenance (due to wear and

tear from car usage), and vehicle idleness (such as opportunity costs and depreciation costs). We

denote the revenue per period per vehicle from one-way rentals by 𝑟one ≥ 0 and that from round-trip

rentals by 𝑟two; the relocation cost per period per vehicle is 𝑐rel. When a vehicle is in use, whether

during one-way rentals, round-trip rentals, or relocation, it incurs a maintenance cost of 𝑐mnt per

period; when it is not in use, it incurs an idle cost of 𝑐idle per period. Note that these costs can be

set to zero without loss of generality. We include them for completeness in the paper.

3.1. Construction of the Spatial-Temporal Network

To model zone-to-zone vehicle movement over 𝑇 periods, we construct a spatial-temporal network

𝐺(𝑁,𝐴), with each node 𝑛𝑖𝑡 ∈𝑁 representing a zone 𝑖 ∈ 𝐼 at period 𝑡 ∈ {0,1, . . . , 𝑇}. The arcs in

this network are directed and represent a spatial-temporal movement of vehicles from one zone to

another from an earlier period to a later one. There are four types of arcs in the network:

∙ One-way arcs (𝑛𝑖𝑡, 𝑛𝑗𝑠)∈𝐴one for each 𝑑one𝑖𝑗𝑡𝑠 > 0, with capacity 𝑑one𝑖𝑗𝑡𝑠 (for both types of vehicles,

i.e., those that require parking spaces and those with free-float parking permits) and cost −(𝑟one−

𝑐mnt)(𝑠− 𝑡) per unit flow. Flows on these arcs represent vehicles being rented one-way from zone 𝑖

starting from period 𝑡 and being returned to zone 𝑗 in period 𝑠.

∙ Round-trip arcs (𝑛𝑖𝑡, 𝑛𝑖𝑠)∈𝐴two for each 𝑑two
𝑖𝑡𝑠 > 0, with capacity 𝑑two

𝑖𝑡𝑠 (for both types of vehicles,

similar as one-way arcs) and cost −(𝑟two− 𝑐mnt)(𝑠− 𝑡) per unit flow. Flows on these arcs represent

vehicles being rented round-trip from zone 𝑖 starting from period 𝑡 and ending in period 𝑠.

∙ Relocation arcs (𝑛𝑖𝑡, 𝑛𝑗,𝑡+ℓ𝑖𝑗 ) ∈ 𝐴rel for all pairs of zones 𝑖 and 𝑗 and periods 0≤ 𝑡≤ 𝑇 − ℓ𝑖𝑗,

with infinite capacity and cost (𝑐rel + 𝑐mnt)ℓ𝑖𝑗 per unit flow. Flows on these arcs represent vehicles

being relocated from zone 𝑖 in period 𝑡, and arriving at zone 𝑗 in period 𝑡+ ℓ𝑖𝑗.

∙ Idle arcs (𝑛𝑖𝑡, 𝑛𝑖,𝑡+1) ∈ 𝐴idle for each zone 𝑖 and period 0 ≤ 𝑡 ≤ 𝑇 − 1, with capacity 𝑤𝑖 for

reservation-based vehicles (i.e., 𝑚 = 1) or infinity for free-floating vehicles (i.e., 𝑚 = 2) and cost

𝑐idle per unit flow. Flows on these arcs represent vehicles being idle in zone 𝑖 from period 𝑡 to 𝑡+1.

The set 𝐴 is the union of the four types of arcs described above, i.e., 𝐴=𝐴one∪𝐴two∪𝐴rel∪𝐴idle.

For convenience, we use arc-based notation subsequently. We denote the unit cost of flow and the

capacity of arc 𝑎 by 𝑓𝑎 and 𝑢𝑎, respectively, while 𝛿
+(𝑛𝑖𝑡) and 𝛿−(𝑛𝑖𝑡) denote the sets of arcs for

which 𝑛𝑖𝑡 is their origin and destination node, respectively. The unit flow costs and capacities of

each type of arcs are summarized in Table 2. In particular, the capacities of idle arcs for reservation-

based vehicles (i.e., 𝑚= 1) depend on the decision 𝑤𝑖 of parking lot purchases.

We illustrate the construction of a spatial-temporal network with the following example. Consider

two zones labeled B and B′ that require two periods of time to travel between them. Figure 1
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Table 2 Unit flow costs and capacities for each arc type

Type of arc Cost per unit flow 𝑓𝑎 Capacity 𝑢𝑎

One-way arc (𝑛𝑖𝑡, 𝑛𝑗𝑠) −(𝑟one − 𝑐mnt)(𝑠− 𝑡) 𝑑one𝑖𝑗𝑡𝑠

Round-trip arc (𝑛𝑖𝑡, 𝑛𝑖𝑠) −(𝑟two − 𝑐mnt)(𝑠− 𝑡) 𝑑two
𝑖𝑡𝑠

Relocation arc (𝑛𝑖𝑡, 𝑛𝑗,𝑡+ℓ𝑖𝑗 ) (𝑐rel + 𝑐mnt)ℓ𝑖𝑗 +∞
Idle arc (𝑛𝑖𝑡, 𝑛𝑖,𝑡+1) 𝑐idle 𝑤𝑖 (𝑚= 1); +∞ (𝑚= 2)

shows the corresponding spatial-temporal network over periods 𝑡= 0, . . . ,3. Included in the spatial-

temporal network is a one-way arc corresponding to a demand of four vehicles to travel from B

to B′ starting at period 0 (note that the ending period is automatically two periods after), and a

round-trip arc corresponding to a demand of two vehicles picked up at and returned to zone B′,

starting in period 1 and ending in period 3. The numbers on the two arcs denote the respective

capacities.

Figure 1 A spatial-temporal network example for a two-zone, three-period instance

3.2. A Two-Stage Stochastic Integer Programming Formulation

We employ a two-stage stochastic program, where w ∈Z|𝐼|
+ denotes the vector of 𝑤𝑖’s, and x𝑚 ∈Z|𝐼|

+

denotes the vector of 𝑥𝑚
𝑖 ’s with 𝑚= 1,2. Moreover, let 𝑐1𝑖 = 𝑐loc𝑖 , 𝑐2𝑖 = 𝑐ffp+ 𝑐loc𝑖 , for each zone 𝑖∈ 𝐼,

and 𝑀 = {1,2}. We formulate the carshare fleet allocation problem as

min
w,x1,x2

∑︁
𝑖∈𝐼

(︁
𝑐lot𝑖 𝑤𝑖 +

∑︁
𝑚∈𝑀

𝑐𝑚𝑖 𝑥
𝑚
𝑖

)︁
+𝑄(w,x1,x2) (1)

s.t. (w,x1,x2)∈𝑋 =

{︃
w,x1,x2 ∈Z|𝐼|

+ :
∑︁
𝑖∈𝐼

∑︁
𝑚∈𝑀

𝑥𝑚
𝑖 ≤ 𝑆, 𝑥1

𝑖 ≤𝑤𝑖, ∀𝑖∈ 𝐼

}︃
. (2)

The set 𝑋 requires that the number of vehicles initially deployed to each zone that require parking

lots does not exceed the number of parking lots purchased, and the total number of vehicles does

not exceed the given budget 𝑆. We minimize the total costs of allocating vehicles and purchasing

parking lots/permits. The function 𝑄(w,x1,x2) returns the optimal cost in the second stage, given

first-stage decisions w,x1,x2, of which the formulation details are given as follows.

The second-stage problem optimizes flows in the spatial-temporal network given that the supply

level at each node 𝑛𝑖0 is 𝑥𝑖 and the capacity on each arc 𝑎 is 𝑢𝑎 determined by the random demand
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and the number of parking spaces 𝑤𝑖, for all 𝑖∈ 𝐼. We define recourse decisions 𝑦𝑚𝑎 , 𝑎∈𝐴, 𝑚∈𝑀 ,

to represent reservation-based (𝑚= 1) and free-floating (𝑚= 2) vehicle movements in the spatial-

temporal network. Letting u be the vector of arc capacities 𝑢𝑎, the feasible region of shared vehicle

movement is given by

𝑌 (w,x1,x2,u) :={𝑦𝑚𝑎 ≥ 0, ∀𝑎∈𝐴, ∀𝑚∈𝑀 :

∑︁
𝑎∈𝛿+(𝑛𝑖𝑡)

𝑦𝑚𝑎 −
∑︁

𝑎∈𝛿−(𝑛𝑖𝑡)

𝑦𝑚𝑎 =

⎧⎪⎨⎪⎩
𝑥𝑚
𝑖 if 𝑡= 0

0 if 𝑡= 1, . . . , 𝑇 − 1

−𝑥𝑚
𝑖 if 𝑡= 𝑇,

∀𝑖∈ 𝐼, 𝑚∈𝑀 (3)

∑︁
𝑚∈𝑀

𝑦𝑚𝑎 ≤ 𝑢𝑎, ∀𝑎∈𝐴one ∪𝐴two (4)

𝑦1𝑎 ≤𝑤𝑖, ∀𝑖∈ 𝐼, 𝑎= (𝑛𝑖𝑡, 𝑛𝑖,𝑡+1)∈𝐴idle (5)

𝑦𝑚𝑎 ∈Z+, ∀𝑎∈𝐴}, (6)

where (3) is the multi-commodity flow balance constraint, (4)–(5) are the capacity constraints,

and (6) is the integrality constraint. The flow balance constraint for the spatial-temporal nodes in

the last period requires the final allocation of vehicles being the same as the initial allocation, for

the purpose of operating the carshare system every 𝑇 periods with the same initial deployment of

vehicles.

Capacities 𝑢𝑎 of the one-way and round-trip arcs in Table 2 are random due to demand uncer-

tainty. In this paper, we employ Monte Carlo sampling to generate a finite number of demand

scenarios from a joint distribution of one-way and round-trip rentals. We index the scenarios by

𝑘 ∈𝐾, and denote the vector of capacities of the arcs in scenario 𝑘 by u𝑘 = [𝑢𝑘
𝑎, 𝑎 ∈𝐴one ∪𝐴two]T

and the probability of occurrence of scenario 𝑘 by 𝑝𝑘. For the objective, we minimize the expected

cost of scenario-based vehicle movements y𝑘 = [𝑦𝑘𝑚𝑎 , 𝑚 ∈𝑀, 𝑎 ∈ 𝐴]T, 𝑘 ∈𝐾, plus some random

penalty incurred from unserved demands. Thus,

𝑄(w,x1,x2) = min
y1,...,y|𝐾|

∑︁
𝑘∈𝐾

𝑝𝑘
∑︁
𝑎∈𝐴

𝑓𝑎
∑︁
𝑚∈𝑀

𝑦𝑘𝑚𝑎 + 𝑔(y1, . . . ,y|𝐾|) (7)

s.t. y𝑘 ∈ 𝑌 (w,x1,x2,u𝑘) ∀𝑘 ∈𝐾. (8)

The first term in the objective function (7) denotes the expected cost of vehicle traveling, idleness,

and relocation, while the second denotes the penalty incurred in all the scenarios. According to (8),

each decision vector y𝑘 needs to satisfy constraints defined earlier in (3)–(5) with u= u𝑘, ∀𝑘 ∈𝐾.

A Risk-Neutral Model – Minimizing the Expected Penalty: Note that the number of unserved

customers equals to unused capacities on the one-way and round-trip arcs. We impose penalty

𝐺𝑎 ≥ 0 for each unit of unused capacities on arcs 𝑎∈𝐴one∪𝐴two, and propose a risk-neutral model

for maintaining a desired QoS level. As a result, we specify

𝑔(y1, . . . ,y|𝐾|) =
∑︁
𝑘∈𝐾

𝑝𝑘
∑︁

𝑎∈𝐴one∪𝐴two

𝐺𝑎(𝑢
𝑘
𝑎 −

∑︁
𝑚∈𝑀

𝑦𝑘𝑚𝑎 ).
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Remark 1. Penalty in the risk-neutral case can be incorporated into regular arc flow cost. We

keep the penalty term separate in order to present a general model. Different risk measures can be

used in function 𝑔 to formulate risk-averse optimization models. In Appendix A, we describe one

that penalizes the Conditional Value-at-Risk (CVaR) of unserved demand. CVaR is a coherent risk

measure that is well studied in the stochastic programming literature; moreover, when demand has

a finite support with a moderate number of scenarios, we can reformulate a CVaR-based model by

using linear constraints, and thus keep the same computational tractability of the solution methods

proposed in Section 4 for solving the risk-neutral model.

Remark 2. Model (1)–(2) formulates a hybrid carshare system that possibly involves both

reservation-based and free-floating vehicle flows, with a two-commodity network flow problem in

the second-stage. In the rest of the paper, we focus on single-commodity carshare systems with

either 𝑀 = {1} (reservation-based) or 𝑀 = {2} (free-floating). They can also be viewed as two

special cases of the two-commodity model with 𝑐ffp or 𝑐lot𝑖 set to infinity. These systems are more

common in practice, with Zipcar and Car2Go as the respective examples. (Zipcar also has free-

floating vehicles in selected markets for experimental purposes. Car2Go also has contracted parking

garages to encourage round trips. However, the majority of their vehicles are still pure reservation-

based or free-floating, respectively.) Moreover, focusing on single-commodity also allows us to solve

the second-stage problem efficiently as linear programs.

3.3. Rolling-Horizon Method for Vehicle Relocation

The above models provide an initial assignment of vehicles to regions on a day-to-day basis. How-

ever, a carshare service provider may also need to make real-time vehicle relocation decisions for

each period during the day. Here, we elaborate how to extend our models in a rolling-horizon

framework to solve this problem. For ease of exposition, we consider the reservation-based system,

i.e.,𝑀 = {1}. Development for the free-floating system or the general hybrid system will be similar.

Let 𝑠 ∈ {1,2, · · · , 𝑇 − 1} denote the current time period. We assume the following sequence of

events in each period. Firstly, vehicles that will finish rental or relocation in the current period

are returned and immediately become available for rental. Secondly, rental demand is realized and

fulfilled on a first-come-first-served basis. Any unmet demand is lost. Thirdly, remaining vehicles, if

any, after fulfilling demand are repositioned or remain in the same location. Let 𝑟𝑠𝑖 be the number

of available vehicles in zone 𝑖 after demand has been fulfilled in the current period. Let 𝑣𝑠𝑖𝑡 be the

number of vehicles that are currently rented out or being relocated, but will be returned to zone 𝑖 in

period 𝑡 > 𝑠. Let 𝑅𝑠 be the relocation capacity in period 𝑠, e.g., the number of employed relocation

drivers who are available. Note that 𝑅𝑠 is updated periodically. Define decision variables 𝑧𝑠𝑖𝑗 as the

number of vehicles that start being relocated from zone 𝑖 to zone 𝑗 in the current period. Recall
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that ℓ𝑖𝑗 is the time for relocating a vehicle from 𝑖 to 𝑗. Let 𝑐rel𝑖𝑗 denote the cost of relocating a vehicle

from 𝑖 to 𝑗. Let 𝑧𝑠𝑖𝑖 denote the number of vehicles that remain in zone 𝑖, with ℓ𝑖𝑖 = 1 and 𝑐rel𝑖𝑖 = 𝑐idle.

Let r𝑠, v𝑠, and z𝑠 denote vectors of 𝑟𝑠𝑖 , 𝑣
𝑠
𝑖𝑡, and 𝑧

𝑠
𝑖𝑗, respectively. The rest of the notation follows

those previously defined. We present the rolling-horizon vehicle relocation problem in period 𝑠 as

min
z𝑠

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐼

𝑐rel𝑖𝑗 𝑧
𝑠
𝑖𝑗 +

∑︁
𝑘∈𝐾

𝑝𝑘𝑄
𝑠+1
𝑘 (z𝑠,v𝑠) (9)

s.t.
∑︁
𝑗∈𝐽

𝑧𝑠𝑖𝑗 = 𝑟𝑠𝑖 , ∀𝑖∈ 𝐼 (10)

𝑧𝑠𝑖𝑖 ≤𝑤𝑖, ∀𝑖∈ 𝐼 (11)∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑧𝑠𝑖𝑗 ≤𝑅𝑠 (12)

𝑧𝑠𝑖𝑗 = 0, ∀𝑖∈ 𝐼, ∀𝑗, ℓ𝑖𝑗 >𝑇 − 𝑠 (13)

𝑧𝑠𝑖𝑗 ∈Z+, ∀𝑖, 𝑗 ∈ 𝐼 (14)

The objective in (9) minimizes relocation and idling cost in period 𝑠 plus expected total cost from

all scenarios in set 𝐾 over periods 𝑠+1 through 𝑇 . Constraint (10) guarantees that all available

vehicles either remain at the current zone or are relocated to a different zone. Constraint (11) is

the parking space constraint. Constraint (12) is the relocation capacity constraint. Constraint (13)

guarantees that all relocations must finish by the beginning of period 𝑇 .

The second-stage problem in the above formulation is also a minimum cost network flow problem

on a spatial-temporal network, denoted by 𝐺(𝑉𝑠,𝐴𝑠), which is similar to the one described in

Section 3.1, except that it only includes periods 𝑠+ 1, . . . , 𝑇 and that all the nodes in 𝐺(𝑉𝑠,𝐴𝑠)

may have supplies. Let 𝐽(𝑖, 𝑡) = {𝑗 ∈ 𝐼 : ℓ𝑗𝑖 = 𝑡}, i.e., the set of zones from which it takes 𝑡 periods

to relocate a vehicle to zone 𝑖. Let 𝐼𝑡′(𝑡) = 1 if 𝑡 = 𝑡′ and 𝐼𝑡′(𝑡) = 0 if 𝑡 ̸= 𝑡′. For each 𝑘 ∈𝐾, the

second-stage cost 𝑄𝑠+1
𝑘 (z𝑠,v𝑠) in (9) is the total cost over periods 𝑠+1, . . . , 𝑇 , under scenario 𝑘. It

can be specified as

𝑄𝑠+1
𝑘 (z𝑠,v𝑠) =min

y

∑︁
𝑎∈𝐴𝑠

𝑓𝑎𝑦𝑎 +
∑︁

𝑎∈𝐴one
𝑠 ∪𝐴two

𝑠

𝐺𝑎(𝑢
𝑘
𝑎 − 𝑦𝑎) (15)

s.t.
∑︁

𝑎∈𝛿+(𝑛𝑖𝑡)

𝑦𝑎 −
∑︁

𝑎∈𝛿−(𝑛𝑖𝑡)

𝑦𝑎 = 𝑣𝑠𝑖𝑡 +
∑︁

𝑗∈𝐽(𝑖,𝑡−𝑠)

𝑧𝑠𝑗𝑖 − 𝐼𝑇+1(𝑡)𝑥
1
𝑖 , ∀(𝑖, 𝑡)∈ 𝑉𝑠+1(16)

0≤ 𝑦𝑎 ≤ 𝑢𝑘
𝑎, ∀𝑎∈𝐴𝑠+1. (17)

Note that the flow balance constraint (16) has node supplies resulting from rentals and relocations,

i.e., 𝑣𝑠𝑖𝑡 and 𝑧
𝑠
𝑗𝑖. A detailed description of the rolling-horizon approach is included in Appendix B.

The rolling-horizon model provides carshare systems with real-time vehicle relocation decisions

that can be implemented in practice. In Section 5.5, we implement the rolling-horizon model and
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show that it could achieve significant improvement over an intuitively appealing benchmark policy

that periodically rebalances fleet allocation according to future demand concentration. Note that

Model (9)-(14) assumes that vehicles have already been allocated to fulfill current period demand.

We could also include vehicle allocation decisions in the model to select the optimal subset of rental

requests to fulfill and further maximize profit.

4. Solution Approaches

Due to the large number of variables and constraints involved in the MILP models proposed in

Section 3, in this section, we develop a branch-and-cut algorithm with cuts enhanced by mixed-

integer rounding (MIR), which was first proposed by Bodur and Luedtke (2014) for a stochastic

call-center staffing problem. We demonstrate later that this algorithm outperforms the state-of-

the-art solver in optimizing our model for instances with diverse sizes generated from real data.

The basic procedure branches on the integer variables and solves individual nodes via Benders

decomposition (see Benders 1962, Van Slyke and Wets 1969); the Benders cuts at each node are

added to the master problems of subsequent nodes, which, however, could be weak due to the

relaxed integer constraints in the first-stage. Consequently, the branch-and-cut algorithm may

branch many times before termination. This motivates us to apply MIR to pairs of previously

generated Benders cuts to obtain stronger valid cuts.

We present our solution algorithm in two parts. Section 4.1 decomposes the problem to solve

with a branch-and-cut algorithm and Section 4.2 describes the MIR-enhanced algorithm.

4.1. Benders Decomposition

Consider Model (1)–(2) with 𝑀 = {1} and the objective specified as minimizing
∑︀

𝑖∈𝐼

(︁
𝑐lot𝑖 𝑤𝑖 +

𝑐1𝑖𝑥
1
𝑖

)︁
+𝑄(w,x1). We decompose the problem into a master problem, consisting of the variables

not indexed by 𝑘, and |𝐾| subproblems, consisting of the remaining variables separable by index

𝑘. Each subproblem corresponds to the spatial-temporal network based on a scenario in 𝐾. The

Benders approach iteratively generates cuts from each subproblem and adds them to a relaxed

version of the master problem. Specifically, the variables in the master problem are the first-stage

variables w, x1, and auxiliary variables q= (𝑞1, · · · , 𝑞|𝐾|)T, denoting the values of the subproblems

at optimality. We formulate the master problem as

MP : min
(w,x1)∈ ̃︀𝑋,q∈R|𝐾|

{︃∑︁
𝑖∈𝐼

(︁
𝑐lot𝑖 𝑤𝑖 + 𝑐1𝑖𝑥

1
𝑖

)︁
+
∑︁
𝑘∈𝐾

𝑝𝑘𝑞𝑘 :𝐿𝑘(𝑞𝑘,w,x1)≥ 0, ∀𝑘 ∈𝐾

}︃
,

where set ̃︀𝑋 includes all the constraints in 𝑋 except the integrality constraints on variables 𝑤𝑖

and 𝑥1
𝑖 , ∀𝑖∈ 𝐼; 𝐿𝑘(𝑞𝑘,𝑤,𝑥)≥ 0 includes the set of cuts generated from solving the 𝑘th subproblem,

∀𝑘 ∈𝐾. We formulate the subproblems as the duals of the primal 𝑄(w,x1), separated by 𝑘 ∈𝐾:

SP𝑘(w,x
1) : max

𝜋,𝜆

∑︁
𝑖∈𝐼

𝑥1
𝑖 (𝜋𝑖0 −𝜋𝑖𝑇 )+

∑︁
𝑎∈𝐴one∪𝐴two

𝑢𝑘
𝑎𝜆𝑎 +

∑︁
𝑖∈𝐼

𝑤𝑖

⎛⎝ ∑︁
𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

𝜆𝑎

⎞⎠
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s.t. 𝜋𝑖𝑡 −𝜋𝑗,𝑡+ℓ𝑖𝑗 +𝜆𝑎 ≤ 𝑓𝑎 −𝐺𝑎 ∀𝑎= (𝑛𝑖𝑡, 𝑛𝑗𝑠)∈𝐴one

𝜋𝑖𝑡 −𝜋𝑖𝑠 +𝜆𝑎 ≤ 𝑓𝑎 −𝐺𝑎 ∀𝑎= (𝑛𝑖𝑡, 𝑛𝑖𝑠)∈𝐴two

𝜋𝑖𝑡 −𝜋𝑗,𝑡+ℓ𝑖𝑗 ≤ 𝑓𝑎 ∀𝑎= (𝑛𝑖𝑡, 𝑛𝑗,𝑡+ℓ𝑖𝑗 )∈𝐴
rel

𝜋𝑖𝑡 −𝜋𝑖,𝑡+1 +𝜆𝑎 ≤ 𝑓𝑎 ∀𝑎= (𝑛𝑖𝑡, 𝑛𝑖,𝑡+1)∈𝐴idle

𝜆𝑎 ≤ 0 ∀𝑎∈𝐴one ∪𝐴two ∪𝐴idle,

where 𝜋𝑖𝑡 and 𝜆𝑎 are the dual variables associated with the flow balance constraints (3) and the

capacity constraints (4)–(5), respectively.

At each iteration of the Benders decomposition algorithm, we optimize a relaxed master problem

MP, to obtain optimal solutions (ŵ, x̂1, q̂). We pass the solutions to the respective subproblems,

and optimize SP𝑘(ŵ, x̂
1). If the optimal objective value of the subproblem corresponding to sce-

nario 𝑘 is greater than the optimal value of 𝑞𝑘 given by the master problem, an optimality cut is

generated to the master problem to remove this solution. For an optimal dual solution (̂︀𝜋,̂︀𝜆) to

SP𝑘(ŵ, x̂
1) for scenario 𝑘, the Benders optimality cut is of the form

𝑞𝑘 −
∑︁
𝑖∈𝐼

⎛⎝ ∑︁
𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

̂︀𝜆𝑎

⎞⎠𝑤𝑖 −
∑︁
𝑖∈𝐼

(̂︀𝜋𝑖0 − ̂︀𝜋𝑖𝑇 )𝑥
1
𝑖 −

∑︁
𝑎∈𝐴one∪𝐴two

̂︀𝜆𝑎𝑢
𝑘
𝑎 ≥ 0. (18)

Feasibility cuts are not generated, because for any feasible x1 and w, having the vehicles idle

until the last period (i.e., 𝑦𝑎 = 𝑥1
𝑖 for all arcs 𝑎= (𝑛𝑖𝑡, 𝑛𝑖,𝑡+1) ∈ 𝐴idle and 𝑦𝑎 = 0 for all other arcs

𝑎∈𝐴one ∪𝐴two ∪𝐴rel) is always a feasible solution to the primal problem.

4.2. MIR Procedure

MIR is a procedure used to remove non-integer extreme point solutions from the linear relaxation

of a mixed-integer program. We first introduce a generic form of the MIR inequality with a non-

negative real variable and multiple non-negative integer variables.

Proposition 1. (Wolsey 1998) Let 𝑈 := {(𝜓,𝜔) ∈ R+ × Z𝑚
+ : 𝜓 +

∑︀𝑚

𝑖=1𝛼𝑖𝜔𝑖 − 𝛿 ≥ 0} and let

Δ> 0. If frac (Δ𝛿)> 0, then the cut

𝜓+
𝑚∑︁
𝑖=1

min{⌈Δ𝛼𝑖⌉ frac (Δ𝛿) , frac (Δ𝛼𝑖)+ ⌊Δ𝛼𝑖⌋ frac (Δ𝛿)}
Δ

𝜔𝑖 −
⌈Δ𝛿⌉ frac (Δ𝛿)

Δ
≥ 0

is valid for 𝑈 .

The function frac (𝑏) is defined as frac (𝑏) := 𝑏− ⌊𝑏⌋, i.e., the fractional part of a scalar 𝑏. Bodur

and Luedtke (2014) extend Proposition 1 for a set defined by two inequalities. Following their idea,

consequently, one can generate a different valid cut from two valid Benders cuts. We describe this

result below in Theorem 1 with nomenclature relevant to our model and the corresponding Benders

cuts.
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Theorem 1. Let 𝑘 ∈𝐾 and

𝑞𝑘 −
∑︁
𝑖∈𝐼

⎛⎝ ∑︁
𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

̂︀𝜆𝑗
𝑎

⎞⎠𝑤𝑖 −
∑︁
𝑖∈𝐼

(̂︀𝜋𝑗
𝑖0 − ̂︀𝜋𝑗

𝑖𝑇 )𝑥
1
𝑖 −

∑︁
𝑎∈𝐴one∪𝐴two

̂︀𝜆𝑗
𝑎𝑢

𝑘
𝑎 ≥ 0, 𝑗 = 1,2

be any pair of Benders cuts (18) that are valid for the set of cuts 𝐿𝑘(𝑞𝑘,𝑤,𝑥)≥ 0 and let Δ> 0.

Define

𝛼𝑖 :=−
∑︁

𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

(︁̂︀𝜆2
𝑎 − ̂︀𝜆1

𝑎

)︁
,

𝛽𝑖 :=−
(︀(︀̂︀𝜋2

𝑖0 − ̂︀𝜋1
𝑖0

)︀
−
(︀̂︀𝜋2

𝑖𝑇 − ̂︀𝜋1
𝑖𝑇

)︀)︀
,

𝛿 :=
∑︁

𝑎∈𝐴one∪𝐴two

(︁̂︀𝜆2
𝑎𝑢

𝑘
𝑎 − ̂︀𝜆1

𝑎𝑢
𝑘
𝑎

)︁
.

If frac (Δ𝛿)> 0, then the cut

𝑞𝑘 +
∑︁
𝑖∈𝐼

⎛⎝min{⌈Δ𝛼𝑖⌉ frac (Δ𝛿) , frac (Δ𝛼𝑖)+ ⌊Δ𝛼𝑖⌋ frac (Δ𝛿)}
Δ

−
∑︁

𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

̂︀𝜆1
𝑎

⎞⎠𝑤𝑖

+
∑︁
𝑖∈𝐼

(︂
min{⌈Δ𝛽𝑖⌉ frac (Δ𝛿) , frac (Δ𝛽𝑖)+ ⌊Δ𝛽𝑖⌋ frac (Δ𝛿)}

Δ
− (̂︀𝜋1

𝑖0 − ̂︀𝜋1
𝑖𝑇 )

)︂
𝑥1
𝑖

−

(︃
⌈Δ𝛿⌉ frac (Δ𝛿)

Δ
+

∑︁
𝑎∈𝐴one∪𝐴two

̂︀𝜆1
𝑎𝑢

𝑘
𝑎

)︃
≥ 0 (19)

is valid for 𝐿𝑘(𝑞𝑘,w,x1)≥ 0.

We present a detailed proof in Appendix C. In the branch-and-cut algorithm, we directly apply

Theorem 1 to pairs of Benders cuts (18) generated by SP𝑘(w,x
1) to generate new valid cuts. We

include in Appendix D the implementation details of the branch-and-cut algorithms with MIR-

enhanced Benders cuts.

5. Numerical Results

In this section, we test instances generated based on real company data and conduct computational

studies to demonstrate the results of our approach. Section 5.1 describes the details of experimen-

tal setup. Section 5.2 analyzes how one-way and round-trip demand proportions affect solution

profitability and QoS, given fixed prices used in practice. Section 5.3 studies the impact of other

important factors such as the size of available fleet, and the penalty cost of lost demand. Section

5.4 examines the profitability and QoS impact of endogenously generated one-way demand as a

result of pricing and strategic customer behavior. Section 5.5 presents results of the rolling-horizon

method for optimizing vehicle relocation. Section 5.6 demonstrates the efficacy of MIR-enhanced

Benders cuts and parallel computing. Section 5.7 compares the results of our models with the ones
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Table 3 Summary statistics of demand data

One-way Round-trip

Average number of trips per day 91.39 1510.90
Proportion of trips (%) 5.70 94.30
Average trip duration 36 min 2 hr 14 min
Standard deviation of trip duration 21 min 1 hr 16 min

of a deterministic benchmark and presents the Value of Stochastic Solutions (VSS). It should be

pointed out that these numerical results are obtained based on one data set and specific assump-

tions. We have tested the robustness of our results by modifying demand distribution and vari-

ability, as well as important parameters such as relocation cost. Our key observations still hold

under these changes. However, as more real-world carshare demand data become publicly available

in the future, it is important to test our models with new data and generalize the observations to

carshare operations in different situations and areas.

5.1. Numerical Experiment Settings

5.1.1. Data Generation. We use Zipcar’s rental data collected from the Boston-Cambridge

area. There are in total 61 days of data, from Oct 1 to Dec 1, 2014, containing the information of

the starting-ending time, and the zip codes of the origin and destination zones of each rental. Only

successful rentals were recorded, i.e., demand is right censored with unobservable lost sales. (In

practice, uncensored data could be available to the service provider from users’ search history.) We

divide the Boston-Cambridge area into nine zones according to significant traveling patterns shown

in the data, which is also consistent with Zipcar’s current zone partition. Note that these zones

should not be considered as individual service locations. Allocating vehicles to individual service

locations will require much finer zone division. The rentals are labeled as one-way or round-trip,

depending on whether they have different or the same starting and ending zones, respectively. In

this dataset, one-way rental service is available in all zones, and thus, there is no one-way demand

censoring as a result of limited service coverage. (In other situations where one-way service is only

available in selected zones, one must also consider potential one-way demand that is lost because

of limited coverage.) Table 3 shows some summary statistics of the data. Since we consider a

discrete time-horizon with one period equal to one hour, all trip durations are rounded to the

nearest integer greater than or equal to one hour. One-way rentals are aggregated by the quadruple

(origin, destination, starting hour, ending hour), while round-trip rentals are aggregated by the

triple (origin, starting hour, ending hour). There is one observation for each rental demand record

(quadruple/triple) every day, resulting in 61 observations for each record.

To generate more samples for the stochastic programming model and vary the proportion of

one-way rentals in our analysis, we generate the number of rentals for each aggregated record using
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Gamma distributions with means and variances equal to the empirical means and variances of

the Zipcar data. The simulated Gamma random variables are rounded to the nearest integers. We

choose the Gamma distribution because demand is non-negative and has high probability of being

zero. We have performed Kolmogorov-Smirnov tests and found no statistically significant difference

between the distributions of the observed data and the data simulated using Gamma distribution.

Figure 2 shows two examples with high and low demand volumes, respectively. Furthermore, we

have also tested other demand distributions such as the log-normal distribution and found that

our key observations still hold.

Figure 2 Observed distributions compared with Gamma distributions with the same means and variances

In our experiments, we fix the mean total rental hours over a 24-hour period (one day) to 1000

vehicle-hours. In order to vary the proportion of one-way demand, the means and variances of the

number of hourly rental requests are scaled accordingly. For example, to have approximately 40%

one-way rental hours, we divide 1000× 40% = 400 by the average daily one-way rental hours to

obtain a scale factor 𝜎. We first multiply the means and standard deviations of the number of

hourly rental requests for each one-way rental triplets by 𝜎, and then compute the scale and shape

parameters of the Gamma distributions for generating one-way demand.

For each mix of one-way and round-trip demand, we use ten training samples each having 100

scenarios, independently generated following the above procedures, for computing optimal first-

stage decisions (w,x1) for the reservation-based system, and x2 for the free-floating system. The

performance of the first stage solutions is evaluated using a test sample of 1000 scenarios with the

same mix of one-way and round-trip demand. The model used in this out-of-sample evaluation is
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(7)–(8) with the penalty term 𝑔(y1, . . . ,y|𝐾|) = 0 (i.e. the second stage problem with zero penalty on

lost demand). We have compared different choices of the number of training samples and the sizes

of training/test samples used for the SAA method. The current settings of ten training samples

each with 100 scenarios and 1000 scenarios in the evaluation sample result in very small optimality

gaps between the estimated upper and lower bounds, with all being under 0.5%.

5.1.2. Parameter Settings. In our numerical study, we consider daily operations of a car-

share fleet. All reported profitability and QoS results are daily numbers. We use a time granularity

of one hour per period, and the problem is solved over 𝑇 = 24 periods. Up to 𝑆 = 100 vehicles

are available for initial allocation in all the zones. The parking lot costs are set as 𝑐lot𝑖 = $9.6 per

day in zones 𝑖= 1,2,5,6,9 and 𝑐lot𝑖 = $7.4 per day in other zones. The parking permit cost is set

as 𝑐ffp = $9.6 per day. These are based on annual parking lot reservation cost being $3,500 per

lot in Boston downtown, $2,700 per lot outside downtown, and annual parking permit cost being

$3,500 per car (The Boston Globe 2015). We use revenue parameters 𝑟two = $7.75 per hour and

𝑟one = $12 per hour based on Zipcar’s Boston rental rates for round-trip and one-way rentals in

its ONE>WAY program (see Zipcar 2015). Relocation cost is 𝑐rel = $10 per car per hour. Note

that vehicle relocation cost is not necessarily higher than the hourly wage of drivers employed to

relocate vehicles. Low cost relocation is possible through innovative methods such as providing

bonus to attract potential drivers who need to travel along desired routes during desired time.

Furthermore, we have tested different relocation costs ranging from $6 to $18 per hour and found

that our observations regarding the impact of one-way demand on profitability and QoS still hold.

The maintenance cost 𝑐mnt and idling cost 𝑐idle are assumed to be negligible and thus set to zero.

Finally, 𝐺𝑎 =−5𝑓𝑎 for all arcs 𝑎 ∈𝐴one ∪𝐴two, i.e., the per unit penalty for lost demand on each

arc is five times per unit net revenue.

5.2. Vehicle Allocation, Profitability, and QoS under Different Demand Mix

A primary factor affecting profit and QoS of a carshare service is the mix of one-way and round-

trip demand. Volatile prices of rentals often negatively impact customer experience, but customer

demand, and consequently the ratio of one-way to round-trip rentals, are volatile and change

from day to day. Hence, it is important to understand the impact that this ratio has on carshare

operations and management. In our first set of experiments, we evaluate the effects of the mix of

one-way and round-trip rentals on reservation-based and on free-floating carshare systems.

5.2.1. Demand Concentration versus Vehicle Allocation. First, we compare the average

total number of rentals demanded in each zone against the first-stage vehicle allocation obtained

through the models. Figure 3 shows the relative concentration of demand starting in each zone

and the relative allocation of vehicles obtained by solving Default when the proportion of one-way
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rentals is 40%. A darker colored zone represents a higher demand concentration in Figure 3(a) and

more initially allocated vehicles in Figure 3(b).

(a) Demand concentration (b) Vehicle allocation

Figure 3 Visual comparison of demand concentration (by starting zone) versus vehicle allocation

The data indicates that more demand starts from the zones to the north of the Boston-Cambridge

area than from the southern zones. Meanwhile, we observe more vehicles allocated to the northern

zones. However, the allocation of vehicles does not match the demand concentrations directly, as

the optimal allocation of vehicles also depends on ending zones and relocation. This validates the

non-triviality of the problem in this paper.

5.2.2. Profitability. The profitability of the carshare system comprises the following main

components: the cost of purchasing parking lots or free-floating permits, the expected revenue from

one-way and round-trip rentals, and the expected cost of relocating vehicles. Table 4 shows these

components for all proportions of one-way rentals we tested in the two types of carshare systems.

In Table 4, for both systems, the total profit increases as the proportion of one-way rentals

increases. This suggests that one-way rentals are more profitable than round-trip rentals under the

current price difference ($12 versus $7.75 per hour) and estimated relocation cost ($10 per hour).

Higher proportions of one-way rentals require more vehicle relocation. However, the additional

relocation cost is well offset by the higher revenue generated from one-way rentals. Overall, the

reservation-based system has higher relocation cost, but lower parking cost than the free-floating

system. This shows limited parking spaces lead to more vehicle relocation. In the meantime, the

effective use of vehicle relocation allows reservation-based systems to strategically locate parking

spaces in regions where parking cost is lower.
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Table 4 Profitability of solutions for carshare systems with different one-way proportions

One-way Carshare Parking Revenue from Revenue from Relocation Total
proportion system cost ($) one-way ($) round-trip ($) cost ($) profit ($)

0%
Free-floating 960.00 - 6964.79 840.64 5164.15
Reservation-based 918.20 - 6964.03 867.82 5178.02

20%
Free-floating 960.00 1921.74 5514.01 1117.05 5358.71
Reservation-based 911.60 1922.49 5511.61 1202.03 5320.47

40%
Free-floating 960.00 4302.11 4041.96 1327.59 6056.48
Reservation-based 910.20 4302.81 4040.49 1415.05 6018.04

60%
Free-floating 960.00 6832.03 2567.84 1541.66 6898.21
Reservation-based 899.20 6832.84 2564.95 1620.39 6878.21

80%
Free-floating 960.00 9407.29 1169.23 1782.97 7833.55
Reservation-based 897.00 9407.88 1166.72 1833.06 7844.54

100%
Free-floating 960.00 11950.58 - 2033.96 8956.62
Reservation-based 861.00 11951.42 - 2092.89 8997.53

5.2.3. QoS Performance. We evaluate the QoS of the solutions given by the models using the

expected number of unserved rental requests, the expected proportion of unserved rental requests,

and the expected number of unserved vehicle hours. All three metrics are given in Table 5, together

with the expected total number of vehicle hours spent idle. These measures are widely used

in practice and can be obtained from our models. Determining other important carsharing QoS

measures through user survey remains as an important research problem. We see that as one-way

demand proportion increases, the QoS measures will improve in general. This is because the one-

way rentals in our data set have much shorter durations compared to round-trip rentals, making

one-way rentals more flexible and easier to fulfill. Consequently, the QoS will improve as one-way

proportion increases. The reduction in idle vehicle hours as one-way proportion increases is a joint

effect of more rental hours being fulfilled and more vehicle relocation required by higher one-way

proportion.

Table 5 QoS of solutions for carshare systems with different one-way proportions

One-way Carshare Unserved rentals Idle

proportion system Requests Proportion Vehicle hours vehicle-hours

0%
Free-floating 38.87 8.72% 84.17 1317.25
Reservation-based 38.97 8.75% 84.27 1314.63

20%
Free-floating 40.39 7.42% 74.54 1316.66
Reservation-based 40.46 7.43% 74.79 1308.41

40%
Free-floating 38.13 5.64% 68.63 1287.19
Reservation-based 38.16 5.64% 68.76 1278.57

60%
Free-floating 33.31 4.06% 56.03 1245.16
Reservation-based 33.37 4.07% 56.34 1237.60

80%
Free-floating 26.33 2.72% 43.61 1186.89
Reservation-based 26.39 2.73% 43.89 1182.16

100%
Free-floating 17.39 1.69% 17.39 1100.72
Reservation-based 17.32 1.69% 17.32 1094.76
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5.2.4. Denied Rentals. A denied rental is defined as a rental request that is unserved even

though there is a vehicle available for use in that zone at that time. Such a phenomenon is unlikely

to occur in a free-floating system as companies cannot prevent customers from renting available

vehicles. Constraints (3)–(5) in our model do not specify that all available vehicles must be rented

out if there exists unserved demand. This is mainly due to computational tractability concerns.

Allowing trip denial, we can formulate the subproblem of each scenario as a minimum-cost flow

problem that can be solved as a linear program. Adding constraints to prevent trip denial, on

the other hand, will make the subproblems non-convex. Because of the existence of service denial,

for free-floating systems, the second-stage problem in our model is less accurate. However, in a

reservation-based system, customers could potentially be blocked from renting certain available

vehicles. Denied rentals, in this case, provide another measure of QoS.

Table 6 Proportions of denied rentals for carshare systems with different one-way proportions

One-way Carshare
Mean

Percentile

proportion system 25% 50% 75% 90% 95% 99%

0%
Free-floating 1.12% 0.00% 0.00% 0.60% 3.39% 6.45% 15.04%
Reservation-based 1.12% 0.00% 0.00% 0.59% 3.35% 6.33% 15.61%

20%
Free-floating 0.60% 0.00% 0.00% 0.25% 1.50% 3.10% 9.52%
Reservation-based 0.57% 0.00% 0.00% 0.24% 1.46% 2.98% 8.89%

40%
Free-floating 0.36% 0.00% 0.00% 0.19% 0.88% 1.69% 5.48%
Reservation-based 0.33% 0.00% 0.00% 0.19% 0.85% 1.57% 4.59%

60%
Free-floating 0.25% 0.00% 0.00% 0.15% 0.66% 1.14% 3.05%
Reservation-based 0.23% 0.00% 0.00% 0.16% 0.66% 1.09% 2.55%

80%
Free-floating 0.18% 0.00% 0.00% 0.13% 0.52% 0.85% 1.88%
Reservation-based 0.23% 0.00% 0.00% 0.22% 0.62% 0.96% 2.34%

100%
Free-floating 0.18% 0.00% 0.00% 0.24% 0.58% 0.81% 1.35%
Reservation-based 0.18% 0.00% 0.00% 0.27% 0.59% 0.83% 1.32%

We present the average proportion of denied rentals and selected percentiles of this proportion

in Table 6. The proportion of denied rentals decreases as the one-way proportion increases. This is

because one-way rentals are more profitable under the current settings of price and relocation cost,

and also more flexible and easier to fulfill because of their shorter durations. Also, the proportion

of denied rentals is not substantial in most of the cases. With 100% round-trip, the proportion of

denied rentals is around 1.1% on average. However, there does exist a heavy tail where over 15%

of the rentals are denied at the 99% percentile. Note that the results in Table 6 are obtained with

fleet size 𝑆 = 100. When more vehicles are available, the proportion of denied rentals will be much

smaller. Thus, we think our model can well approximate the free-floating system under practical

choices of fleet size, while keeping the problem computationally tractable. Designing efficient opti-

mization algorithms for free-floating systems where service denial is explicitly prohibited remains

as a direction for future research.
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5.3. Sensitivity Analysis of Fleet Size and QoS Penalty

In this section, we study the impact of fleet size and penalty factor for unserved demand. Fleet

size is defined as the number of vehicles that are available for deployment and is varied from 50

to 300 vehicles in increments of 50. The penalty factor is defined as the ratio between the per unit

penalty and lost revenue of unserved demand and is varied from 5 to 20 in increments of 5. We

report the results of the free-floating system with trip mix of 40% one-way rentals. Results of the

reservation-based system are very similar and thus omitted.
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Figure 4 The impact of fleet size and penalty factor on some system performance measures

In Figure 4, we show several system performance measures under different choices of fleet size

and penalty factor. We see from Figures 4(a) and 4(b) that the proportion of unserved or denied

trips decreases rapidly as more vehicles are available. On average, with 100 vehicles, less than 10%

of the demand is unserved and less than 1% of the demand is denied. In Figure 4(c), we show

the utilization of available fleet defined as the number of vehicles that are actually deployed and

the number of vehicles that are available. The available fleet is fully utilized when the fleet size is

less than or equal to 200. When the fleet size is larger than 200, it may be optimal not to deploy
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all available vehicles. Higher penalty cost will lead to more vehicles being deployed. In Figure

4(d), when the fleet size is small (i.e., 50), the use of vehicle relocation is limited, since relocating

vehicles will further reduce available vehicle hours. When the fleet size increases to 100, relocation

cost increases significantly. As the fleet size further grows, the need for vehicle relocation decreases

as more vehicles are available. These results suggest that fleet deployment and vehicle relocation

can be either complements (i.e., deploying more vehicles will increase relocation) or substitutes

(i.e., deploying more vehicles will reduce relocation) to each other. The impact of penalty factor

on vehicle relocation is more complex. When available fleet is fully utilized (i.e., 𝑆 ≤ 200), higher

penalty leads to more vehicle relocation to satisfy one-way demand. When fleet size is large (i.e.,

𝑆 ≥ 250), higher penalty causes more vehicles to be deployed and in turn reduces vehicle relocation.

In general, the impact of penalty factor is not significant in most cases. Thus, we choose a penalty

factor of five in our other experiments. For fleet size, we choose 𝑆 = 100 in our other experiments,

since it leads to satisfactory QoS performance, fully utilized fleet, and effective use of vehicle

relocation.

5.4. Impact of One-Way Rental Pricing

In Section 5.2, we study the carshare system with different exogenously given proportions of one-

way rentals. In this section, we consider the case where this proportion is endogenously determined

by the price of one-way rentals. Since the original Zipcar data set only includes one fixed one-way

rental price, we must generate new demand realizations under different prices. We hold the price of

round-trip rentals fixed at $7.75 and only vary the rental price of one-way rentals. We assume that

lower one-way rental price does not attract additional one-way rental customers, but rather results

in some round-trip customers dividing their trips into two segments, departure and return, each

being a one-way rental. We start with the original data set with 100% round-trip rentals (i.e., row

0% in Table 4). For each round-trip, we randomly select a zone different from the departure zone as

its “destination”. We assume that the customer can divide her round-trip rental into two one-way

segments by returning the vehicle at the destination and renting another vehicle for her trip back.

The customer then compares the total rental price of the round-trip and its corresponding one-way

segments, and chooses the option with lower total price.

Table 7 shows the revenue, cost, and profit under different one-way rental prices. We only show

results for price = $8, $16, and $24 per hour, because they are the price break-points for our data

set. The last row where one-way price is set to infinity, corresponds to the pure round-trip case

in Table 4. We see that as one-way price is $24, 15.55% of the customers will have cost savings

by splitting their round-trips to two one-way segments. As one-way price further decreases, more

customers will choose one-way (40.67% when price is $16, and 75.03% when price is $8). When
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Table 7 Profitability with different one-way rental prices and endogenous one-way demand

One-way One-way Total Carshare Parking Revenue from Revenue from Relocation Total Profit
price proportion rental hours system cost ($) one-way ($) round-trip ($) cost ($) profit ($) per hour ($)

8 75.03% 381.86
free-floating 960.00 3381.13 714.72 1517.78 1618.07 4.24
Reservation 937.60 3381.19 714.66 1705.56 1452.69 3.80

16 40.67% 475.15
free-floating 960.00 2260.62 2127.15 1232.10 2195.66 4.62
Reservation 922.00 2260.51 2126.99 1417.89 2047.61 4.31

24 15.55% 657.15
free-floating 960.00 1162.17 4126.51 1058.47 3270.21 4.98
Reservation 907.20 1162.54 4125.87 1198.71 3182.50 4.84

∞ 0% 990.69
free-floating 960.00 0 6941.61 1030.48 4951.12 5.00
Reservation 916.00 0 6939.82 1074.60 4949.22 5.00

Table 8 QoS measures with different one-way rental prices and endogenous one-way demand

One-way One-way Total Carshare Unserved demand Idle

price proportion rental hours system Requests Proportion Vehicle hours Proportion vehicle hours

8 75.03% 381.86
free-floating 7.88 1.68% 7.88 2.06% 1774.24
Reservation 7.88 1.67% 7.88 2.06% 1755.46

16 40.67% 475.15
free-floating 10.67 2.31% 12.29 2.59% 1713.93
Reservation 10.69 2.31% 12.32 2.59% 1695.38

24 15.55% 657.15
free-floating 19.18 4.27% 27.85 4.24% 1564.85
Reservation 19.17 4.26% 27.91 4.25% 1550.88

∞ 0% 990.69
free-floating 44.39 10.32% 95.00 9.59% 1301.26
Reservation 44.49 10.34% 95.23 9.61% 1297.08

customers split their trips to one-way segments, the carshare system will lose part of the original

rental hours, because round-trip customers will pay for the time they spend at the “destination”

even though they are not driving the vehicle. This can be seen from the column “Total rental

hours”. As a result, the total profit decreases significantly as more customers rent one-way. In this

case, it is more appropriate to compare the profit generated per rental hour (the last column in

Table 7). We see that, endogenous one-way demand as a result of pricing has different impact on

carshare system’s profitability as opposed to exogenous one-way demand. When one-way demand

is exogenously given, higher proportion of one-way demand increases the system’s profitability.

However, when one-way demand is endogenously generated by pricing, higher proportion of one-way

demand reduces the system’s profitability. Comparing the free-floating and the reservation-based

systems, we see that the reservation-based system suffers from higher loss in profitability as one-way

demand increases. This is because limited parking spaces lead to higher relocation cost.

Because of the reduction in total rental hours, the QoS measures will improve as one-way demand

increases, and the results are shown in Table 8. Note that, when one-way service is first intro-

duced in a pure round-trip system (i.e., when one-way proportion increases from 0 to 15.55%), the

QoS measures improve dramatically. This is because round-trips that first get split into one-way

segments are those with longer durations, which are also the most difficult and costly to fulfill.

By converting these trips into one-way, the QoS measures are improved and the improvement is

sufficient to offset the demand imbalance caused by one-way rentals.
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5.5. Performance of the Rolling-Horizon Method for Vehicle Relocation

In this section, we present results from the rolling-horizon approach for optimizing real-time vehicle

relocation discussed in Section 3.3. In this approach, first, Model (1)-(2) is solved to obtain initial

vehicle allocation. Then, in each period, demand is realized and fulfilled first-come-first-served;

after demand has been fulfilled, any remaining available vehicles are relocated using Model (9)-(14).

We focused on the free-floating system. We used a trip-mix with 40% one-way rentals, and rental

rates of $7.75 per hour round-trip and $12 per hour one-way. Relocation cost is assumed to be $10

per hour. Fleet size and QoS penalty factor are 100 and 5, respectively. We considered different

levels of relocation capacity, which is defined as the maximum number of vehicles that can be in

the process of relocation at the same time.

Table 9 Expected objective value (total cost plus QoS penalty minus revenue) using the rolling-horizon vehicle

relocation model and the benchmark policy, denoted by “RBx”, where x is the rebalancing frequency.

Relocation Benchmark policy Rolling
Benefit

capacity RB1 RB2 RB3 RB4 RB6 RB8 RB12 RB24 horizon

5 5482.45 7240.96 8188.97 8724.41 9523.99 9630.47 10171.57 10911.23 4829.56 652.90 13.52%
7 5060.91 6478.34 7487.37 8057.48 9056.33 9167.24 9857.64 10886.03 4105.75 955.16 23.26%
10 5058.99 5830.97 6750.62 7309.85 8512.96 8561.60 9454.18 10822.66 3710.34 1348.65 36.35%
12 5106.14 5648.15 6422.97 6932.72 8259.26 8218.27 9184.58 10773.72 3608.91 1497.23 41.49%
15 5300.48 5550.45 6100.06 6535.17 7912.36 7851.97 8882.07 10770.84 3553.93 1746.55 49.14%
17 5526.41 5591.57 5999.16 6380.26 7728.05 7646.12 8673.97 10759.27 3537.86 1988.54 56.21%
20 5800.86 5720.08 5947.52 6250.21 7529.36 7450.16 8415.52 10752.38 3529.54 2190.54 62.06%
∞ 7841.97 7024.51 6591.04 6751.11 7360.72 7427.24 7909.69 10880.92 3525.92 3065.12 86.93%

We compared the performance of the rolling-horizon model with that of an intuitively appealing

benchmark policy that rebalances the entire fleet according to future demand concentration with

a pre-specified frequency. For more details of the benchmark policy, please refer to Appendix B.

Table 9 presents the expected total cost plus QoS penalty minus rental revenue over 24 periods

when vehicles are relocated using the proposed rolling-horizon model and the benchmark policy.

The numbers shown are averages from 1000 replications, each of which includes 24 periods of

demand realizations. For the benchmark policy, we tested different frequencies where the entire

fleet is rebalanced every 1, 2, 3, 4, 6, 8, 12, or 24 periods. For each relocation capacity, the result

using the best relocation frequency is shown in boldface. We can see that the rolling-horizon model

performs better than the benchmark policy with the best relocation frequency under all relocation

capacities. Moreover, as the relocation capacity increases, the benefit of using the rolling-horizon

model increases significantly.

Next, we take a closer look at the performance of the proposed rolling-horizon vehicle relocation

model. Table 10 shows detailed profitability and QoS results under different relocation capacities.

Increasing relocation capacity can increase revenue, reduce unserved demand and QoS penalty, and
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Table 10 Summary of profitability and QoS measures using the rolling-horizon vehicle relocation model.

Relocation Revenue Revenue Relocation Relocation Total Unserved demand Idle QoS Objective

capacity one-way round-trip cost utilization profit Requests Proportion Hours hours penalty value

5 4146.12 2979.66 884.39 73.70% 6241.39 127.41 20.48% 260.00 1581.57 11070.95 4829.56
7 4240.90 3035.66 1065.25 63.41% 6211.31 116.74 18.77% 244.88 1548.37 10317.06 4105.75
10 4303.80 3069.00 1247.31 51.97% 6125.49 109.80 17.65% 235.33 1520.60 9835.83 3710.34
12 4320.49 3080.19 1313.17 45.60% 6087.51 107.92 17.35% 232.50 1511.18 9696.42 3608.91
15 4331.32 3086.58 1361.50 37.82% 6056.40 106.72 17.16% 230.77 1504.62 9610.33 3553.93
17 4333.70 3089.13 1375.06 33.70% 6047.78 106.41 17.10% 230.24 1502.74 9585.64 3537.86
20 4335.37 3090.18 1383.02 28.81% 6042.53 106.22 17.08% 229.97 1501.67 9572.07 3529.54
∞ 4335.52 3090.92 1384.73 – 6041.71 106.17 17.07% 229.86 1501.22 9567.63 3525.92

improve (i.e., decrease) the objective value. Moreover, these benefits can be achieved to a large

extent with relatively low relocation capacity. For example, increasing relocation capacity from

five to infinity, the objective value can be improved from $4829.56 to $3525.92, i.e., a reduction of

$1303.64. However, increasing relocation capacity to ten leads to a reduction of $1119.22, which

is equal to 86% of the reduction achieved by infinite capacity. Similar patterns are observed for

revenue and QoS performance.

5.6. Computational Efficacy of MIR-Enhanced Benders Cuts

In this section, we evaluate the computational efficiency of the MIR procedure for problems with dif-

ferent sizes. We generate samples with 100, 200, 500 and 1000 scenarios from the Boston-Cambridge

Zipcar data (following the procedures in Section 5.1.1). Five samples are generated for each prob-

lem size, to obtain the average results. For all the samples, we consider 40% proportion of one-way

demand. All the other parameters are set according to Section 5.1.2.

We compare the solution time of three methods, i.e., solving the MILP directly (Default),

solving it via branch-and-cut without MIR cuts (B&C), or solving it via branch-and-cut with MIR

cuts (MIR). When solving the MILP model directly, we use Gurobi 6.0.3 with its Java API and all

default settings. For branch-and-cut with or without MIR cuts, we use parallel computing via a

Master-Worker scheme by OpenMPI 1.6, and perform all the computation on Flux HPC cluster,

with each computing node having twelve 2.67 GHz Intel Xeon X5650 processors and 48GB RAM.

We use 20 cores for processing all subproblems in parallel. The same computer settings are also

used before for obtaining the results in Sections 5.2–5.4.

Table 11 compares the computation time for different problem sizes (number of scenarios), aver-

aged over five samples for each problem size. All the results in Table 11 are reported in milliseconds.

The computation times are decomposed into several components. The column “MP solve time”

gives the total solution time in the case of solving directly (no suffix). For B&C and MIR, this column

gives the total time spent solving of the master problem (MP) and updating the flow balance con-

stants according to the current first-stage solution. The next column, relevant only to the B&C and

MIR solution methods gives the average solution time for each subproblem (SP). In other words,



28 Lu, Chen, and Shen: Carshare System Optimization under Uncertain Demand

this is the total amount of time spent solving the subproblems divided by the number of scenarios.

The last column gives the number of iterations required to converge on the solution, also only

relevant to B&C and MIR.

Table 11 Computational time (in milliseconds) comparison between models for different problem sizes

# scenarios Method MP Avg solve time Series Parallel # iterations
(subproblems) solve time per SP solve time solve time

100
Default 4,251 - 4,251 4,251 -
B&C 181 78 9,311 1,857 31
MIR 173 75 8,953 1,771 30

200
Default 13,436 - 13,436 13,436 -
B&C 602 80 19,703 2,837 32
MIR 659 82 20,338 2,549 34

500
Default 65,231 - 65,231 65,231 -
B&C 2,839 76 48,933 5,387 29
MIR 2,284 78 49,251 3,795 28

1,000
Default 236,207 - 236,207 236,207 -
B&C 18,529 252 291,389 34,430 39
MIR 16,015 126 160,272 27,175 37

Our results show that B&C and MIR are generally faster than Gurobi’s default MILP solver if the

subproblems are computed in parallel. As the number of scenarios increases, the gap in parallel

solve time becomes even more significant. Moreover, the method MIR results in shorter time for

solving master problem and shorter overall solution time when being implemented in parallel.

5.7. The Value of Stochastic Solutions (VSS)

Lastly, we compute optimal solutions to a benchmark deterministic model that uses empirical mean

values of the demand, to examine the VSS (Birge and Louveaux 2011). We compare the results of

the deterministic model with the ones of Default based on the same test instances. While all the

approaches result in similar numbers of denied trips, the stochastic approaches have better QoS

results than the deterministic model, with 5%–7% shorter vehicle idle hours when 𝑐rel = $10, and

almost no unserved demands when 𝑐rel = $10. The stochastic approaches dominate the deterministic

one in metrics of profitability, especially under higher one-way proportions (e.g., when ≥ 60% of

the total demand are one-way rentals). The optimal solutions by the stochastic approaches yield

60.9%–153.2% more total revenue, while the deterministic model yields 1.75 to 2.24 times more

relocation cost. This confirms the importance of using stochastic optimization for carshare service

planning under demand uncertainty.

6. Concluding Remarks

In this paper, we develop two-stage stochastic integer programming models and branch-and-cut

algorithms for optimizing strategic parking planning and vehicle allocation for carshare systems

under uncertain demand with both one-way and round-trip rentals. The models are applied to

diverse instances generated based on a real-world data set of Zipcar in the Boston-Cambridge area.
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Our results indicate that the impact of one-way demand on profitability and QoS is significant.

Furthermore, depending on whether one-way demand is exogenously or endogenously generated,

a higher proportion of one-way demand may have opposite effects. When exogenously given, e.g.,

from natural market penetration and user adoption, higher one-way demand could increase a

carshare system’s profitability. On the other hand, when exogenously generated by pricing and

strategic customer behavior, higher one-way demand could decrease profitability. Thus, under-

standing the market dynamics of one-way rentals is of great importance for carshare companies

as well as local governments that try to solve their urban transportation problems by promoting

carsharing. We also leverage our model to optimize real-time vehicle relocation operations in a

rolling-horizon framework. Comparison with an intuitive benchmark policy shows that our model

could lead to significant improvement in both profitability and QoS. With respect to computational

performance, our proposed branch-and-cut algorithms perform significantly better than the state-

of-the-art commercial mixed-integer program solver. Also, using MIR-strengthened cuts result in

more improvement than using only Benders cuts when using parallel computing.

There are several limitations of our models. Firstly, we focus on the reservation-based and free-

floating systems, which are two special cases of a general hybrid system with both contracted

parking lots and free-floating parking permits. Studying a general system requires new optimization

algorithms and is left as a future research direction. Secondly, we formulate a two-stage stochas-

tic programming model, which provides an approximation of the expected profit from uncertain

demand. Robust optimization is also suitable for modeling and optimizing such systems. For future

research, we plan to study multi-stage stochastic programming and multi-stage robust models

for optimizing vehicle relocation in real-time operations. Thirdly, we focus on carshare systems

in metropolitan areas where parking is extremely limited. It is also important to study carshare

systems where parking is abundant. Finally, our numerical results are obtained using one specific

data set, and thus may not be easily generalizable. As more data become publicly available, it

is necessary to test our models with new data sets to verify current observations and draw more

general insights.
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Appendix A: A Risk-Averse Model based on CVaR of QoS Penalty

Conditional value-at-risk (CVaR) is a risk measure employed to cope with loss distributions. It is also known

as mean excess loss or mean shortfall for continuously distributed random variables. Its value depends on

the value-at-risk (VaR) of the same random variable. We consider a reservation-based carshare system with

𝑚 = 1. Given 0 < 𝜖 < 1, the (1 − 𝜖)-VaR (the VaR at confidence level 1 − 𝜖 of the number of unserved

customers, denoted
∑︀

𝑎∈𝐴one∪𝐴two 𝐻𝑎(w,x
1)) is given by

VaR1−𝜖

(︃ ∑︁
𝑎∈𝐴one∪𝐴two

𝐻𝑎(w,x
1)

)︃
=min

{︃
𝜂 : P

(︃ ∑︁
𝑎∈𝐴one∪𝐴two

𝐻𝑎(w,x
1)≤ 𝜂

)︃
≥ 1− 𝜖

}︃
.

That is, when ranking all scenarios 𝑘 ∈𝐾 by the number of unserved customers, the (1− 𝜖)-VaR is the best

value of the 100𝜖% worst scenarios. It is important to note that in our model, higher values of unserved

customers are worse. Then the (1− 𝜖)-CVaR is the expected number of unserved customers given that the

number exceeds the (1− 𝜖)-VaR, or equivalently the average value of the 100𝜖% worst scenarios.

We propose a risk-averse model, and impose a penalty 𝐺0 on the (1− 𝜖)-CVaR of unserved customers,

with 𝜖 being a given risk parameter. Such a model is appropriate when a company accepts that not providing

service to a small number of customers is inevitable but wants to ensure a relatively high QoS on average

in the worst-case scenarios. Employing the well-known reformulation of CVaR in Rockafellar and Uryasev

(2000), we have

𝐺0CVaR1−𝜖

(︃ ∑︁
𝑎∈𝐴one∪𝐴two

𝐻𝑎(w,x
1)

)︃
=𝐺0min

𝜂≥0

⎧⎨⎩𝜂+ 1

𝜖
EP

⎡⎣(︃ ∑︁
𝑎∈𝐴one∪𝐴two

𝐻𝑎(w,x
1)− 𝜂

)︃+
⎤⎦⎫⎬⎭ , (20)

where EP measures the expectation given the probability distribution P of the underlying uncertain demand;

the non-negative variable 𝜂, when optimized, is equal to VaR1−𝜖

(︀∑︀
𝑎∈𝐴one∪𝐴two 𝐻𝑎(w,x

1)
)︀
. We incorporate

(20) to replace 𝑔(y1, . . . ,y|𝐾|) in the second-stage problem 𝑄(w,x1), and define auxiliary variables 𝜁𝑘, 𝑘 ∈𝐾

such that 𝜁𝑘 = max
{︀∑︀

𝑎∈𝐴one∪𝐴two(𝑢𝑘
𝑎 − 𝑦𝑘𝑎)− 𝜂,0

}︀
, representing the number of unserved customers that

exceed the threshold value 𝜂 in each scenario 𝑘, for all 𝑘 ∈𝐾. As a result, the risk-averse second-stage value

function based on the CVaR measure is given by

𝑄(w,x1) = min
y,𝜁,𝜂≥0

∑︁
𝑘∈𝐾

𝑝𝑘
∑︁
𝑎∈𝐴

𝑓𝑎𝑦
𝑘
𝑎 +𝐺0

(︃
𝜂+

1

𝜖

∑︁
𝑘∈𝐾

𝑝𝑘𝜁𝑘

)︃
(21)

s.t. 𝑦𝑘 ∈ 𝑌 (w,x1,u𝑘) ∀𝑘 ∈𝐾 (22)

𝜁𝑘 ≥
∑︁

𝑎∈𝐴one∪𝐴two

(𝑢𝑘
𝑎 − 𝑦𝑘𝑎)− 𝜂, 𝜁𝑘 ≥ 0 ∀𝑘 ∈𝐾, (23)

where the definition of variables 𝜁𝑘, 𝑘 ∈𝐾 is ensured by constraint (23).

Appendix B: Rolling-Horizon Vehicle Relocation Model and Benchmark Policy

A detailed description of the rolling-horizon vehicle relocation model is given in Algorithm 1.

Given the number of vehicles that are currently on rent along each route, v𝑠, and the relocation decision

z𝑠, the total cost plus QoS penalty minus rental revenue in future periods under demand scenario 𝑘 is
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Algorithm 1 A Rolling-Horizon Approach for Vehicle Relocation
1: Solve initial allocation problem; obtain x1 and w
2: Initialize r0 := 0
3: Initialize v0 := 0
4: for 𝑖∈ 𝐼 do
5: Update 𝑣0

𝑖1← 𝑥1
𝑖

6: end for
7: for 𝑠∈ {1, . . . , 𝑇 − 1} do
8: for 𝑖∈ 𝐼 do
9: Intialize number of vehicles available: 𝑟𝑠𝑖 := 𝑣𝑠−1

𝑖𝑠 +
∑︀

𝑗∈𝐽(𝑖,1)
𝑧𝑠−1
𝑗𝑖

10: for 𝑡∈ {𝑠+1, . . . , 𝑇} do
11: Initialize number of vehicles that will be available in period 𝑡: 𝑣𝑠

𝑖𝑡 := 𝑣𝑠−1
𝑖𝑡 +

∑︀
𝑗∈𝐽(𝑖,𝑡−𝑠+1)

𝑧𝑠−1
𝑗𝑖

12: end for
13: Idealize demand list 𝐷𝑠

𝑖

14: while 𝐷𝑠
𝑖 ̸= ∅ do

15: Get the first demand in 𝐷𝑠
𝑖 , (𝑗, 𝑡) (vehicle will be returned to zone 𝑗 in period 𝑡)

16: Update demand list 𝐷𝑠
𝑖 ←𝐷𝑠

𝑖 ∖{(𝑗, 𝑡)}
17: if 𝑟𝑠𝑖 > 0 then
18: Update number of available vehicles 𝑟𝑠𝑖 ← 𝑟𝑠𝑖 − 1
19: Update number of vehicles in rent 𝑣𝑠

𝑗𝑡← 𝑣𝑠
𝑗𝑡 +1

20: end if
21: end while
22: end for
23: Solve vehicle relocation Model (9)–(17) with input r𝑠 and v𝑠, obtain z𝑠

24: end for

approximated by the function 𝑄𝑠+1
𝑘 (z𝑠,v𝑠) given by (15) to (17). In Model (15)–(17), we have omitted the

special case of period 𝑇 , during which the fleet is rebalanced to its initial allocation for the next day.

𝑄𝑇 (z𝑇−1,v𝑇−1) =min
z𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐼

𝑐rel𝑖𝑗 𝑧
𝑇
𝑖𝑗 (24)

s.t.
∑︁
𝑗∈𝐼

𝑧𝑇𝑖𝑗 =
∑︁
𝑗∈𝐼

𝑧𝑇−1
𝑗𝑖 + 𝑣𝑇−1

𝑖𝑇 , ∀𝑖∈ 𝐼 (25)∑︁
𝑗∈𝐼

𝑧𝑇𝑗𝑖 = 𝑥𝑖, ∀𝑖∈ 𝐼 (26)

𝑧𝑇𝑖𝑗 ∈Z+, ∀𝑖, 𝑗 ∈ 𝐼 (27)

In the benchmark policy with rebalancing frequency Δ, the fleet is rebalanced to fit future demand con-

centration every Δ periods. Rebalancing will take place at time 𝑚Δ, 𝑚= 0,1, . . . ,𝑀 , with𝑀Δ= 𝑇 . Let 𝐷𝑚
𝑖

be the average total demand that will originate from zone 𝑖 from period 𝑚Δ+1 to period 𝑇 , with 𝐷𝑀
𝑖 =𝐷0

𝑖

as a special case. Let 𝑟𝑚𝑖 be the number of current available vehicles in period 𝑚 after all demand has been

fulfilled, with
∑︀

𝑖∈𝐼 𝑟
0
𝑖 = 𝑆 as a special case. We assume that all rentals or relocations must end by period

𝑇 . So
∑︀

𝑖∈𝐼 𝑟
𝑀
𝑖 = 𝑆. This is to guarantee that the system can be restored to initial status. Let 𝑣𝑚𝑖 be the

number of vehicles that are currently being rented or relocated but will be returned to zone 𝑖, with 𝑣0𝑖 = 0

as a special case. The decision is the number of vehicles relocated from zone 𝑖 to zone 𝑗, denoted by 𝑧𝑚𝑖𝑗 . The

objective is to make the proportion of 𝑣𝑚𝑖 +
∑︀

𝑗∈𝐼 𝑧
𝑚
𝑗𝑖 as close to the proportion of 𝐷𝑚

𝑖 as possible. We solve

the following constrained least-squares problem:

min
z𝑚

∑︁
𝑖∈𝐼

(︂
𝑣𝑚𝑖 +

∑︀
𝑗∈𝐽 𝑧

𝑚
𝑗𝑖

𝑆
− 𝐷𝑚

𝑖∑︀
𝑖∈𝐼𝐷

𝑚
𝑖

)︂2

(28)

s.t.
∑︁
𝑗∈𝐼

𝑧𝑚𝑖𝑗 = 𝑟𝑚𝑖 , ∀𝑖∈ 𝐼 (29)
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∑︁
𝑖∈𝐼

∑︁
𝑗 ̸=𝑖

𝑧𝑚𝑖𝑗 ≤𝑅𝑚 (30)

𝑧𝑚𝑖𝑗 ∈Z+ ∀𝑖, 𝑗 ∈ 𝐼 (31)

Constraint (29) guarantees that the total number of relocated vehicles equals to the number of available

vehicles (after fulfilling demand) in the current period for each zone. Constraint (30) is the relocation capacity

constraint. In the last period, 𝑅𝑀 is assumed to be infinity to guarantee that the initial state can be restored.

The benchmark policy is implemented in a similar way as Algorithm 1, except that vehicles are only relocated

in periods 𝑚Δ, 𝑚= 0,1, . . . ,𝑀 , and the relocation decisions are obtained using Model (28)–(31).

Appendix C: Proofs of Theorem 1

Proof of Theorem 1. Let (𝑞𝑘,w,x1) be an arbitrary solution satisfying the set of cuts 𝐿𝑘(𝑞𝑘,w,x1)≥ 0

and define

𝑞′ := 𝑞𝑘 −
∑︁
𝑖∈𝐼

⎛⎝ ∑︁
𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

̂︀𝜆1
𝑎

⎞⎠𝑤𝑖 −
∑︁
𝑖∈𝐼

(̂︀𝜋1
𝑖0 − ̂︀𝜋1

𝑖𝑇 )𝑥
1
𝑖 −

∑︁
𝑎∈𝐴one∪𝐴two

̂︀𝜆1
𝑎𝑢

𝑘
𝑎.

Then 𝑞′ ≥ 0 and

𝑞′ ≥ 𝑞′ −

⎡⎣𝑞𝑘 −∑︁
𝑖∈𝐼

⎛⎝ ∑︁
𝑎=(𝑛𝑖𝑡,𝑛𝑖,𝑡+1)∈𝐴idle

̂︀𝜆2
𝑎

⎞⎠𝑤𝑖 −
∑︁
𝑖∈𝐼

(̂︀𝜋2
𝑖0 − ̂︀𝜋2

𝑖𝑇 )𝑥
1
𝑖 −

∑︁
𝑎∈𝐴one∪𝐴two

̂︀𝜆2
𝑎𝑢

𝑘
𝑎

⎤⎦
= 𝛿−

∑︁
𝑖∈𝐼

𝛼𝑖𝑤𝑖 −
∑︁
𝑖∈𝐼

𝛽𝑖𝑥
1
𝑖 .

That is, (𝑞′,w,x1) ∈ 𝑈 :=
{︁
(𝑞′,w,x1)∈R+ ×Z|𝐼|

+ ×Z|𝐼|
+ : 𝑞′ +

∑︀
𝑖∈𝐼 𝛼𝑖𝑤𝑖 +

∑︀
𝑖∈𝐼 𝛽𝑖𝑥

1
𝑖 − 𝛿≥ 0

}︁
. Applying

Proposition 1, we obtain the cut

𝑞′ +
∑︁
𝑖∈𝐼

min{⌈Δ𝛼𝑖⌉ frac (Δ𝛿) , frac (Δ𝛼𝑖)+ ⌊Δ𝛼𝑖⌋ frac (Δ𝛿)}
Δ

𝑤𝑖

+
∑︁
𝑖∈𝐼

min{⌈Δ𝛽𝑖⌉ frac (Δ𝛿) , frac (Δ𝛽𝑖)+ ⌊Δ𝛽𝑖⌋ frac (Δ𝛿)}
Δ

𝑥1
𝑖

− ⌈Δ𝛿⌉ frac (Δ𝛿)
Δ

≥ 0 (32)

valid for 𝑈 . Finally, we substitute the expression 𝑞′ to obtain (19), valid for𝐿𝑘(𝑞𝑘,w,x1)≥ 0. �

Appendix D: Branch-and-Cut Algorithm with MIR Procedure

We outline the branch-and-cut algorithm with MIR below in pseudo-code. For ease of referencing the coef-

ficients in the cuts, we define 𝛼 and 𝛽 as the coefficients of variables w and x1, respectively, and −𝛿 as the

constant in the cut. Therefore, the cuts for the risk-neutral model are of the form

𝑞𝑘 +
∑︁
𝑖∈𝐼

𝛼𝑖𝑤𝑖 +
∑︁
𝑖∈𝐼

𝛽𝑖𝑥𝑖 − 𝛿≥ 0.

There are two main parts to the algorithm. The outer algorithm is a regular branch-and-cut algorithm

that branches on fractional 𝑥𝑖’s and adds cuts generated from the subproblems. The inner algorithm (lines

14–37 in both algorithms) is a Benders decomposition algorithm with an additional MIR procedure that

pairs Benders cuts to generate additional valid cuts. The most violated cut is added to the relaxed master

problem, while the remaining cuts are stored for subsequent pairings with the MIR procedure.
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Algorithm 2 Branch-and-cut algorithm with MIR for carsharing system design model
1: Initialize MP with no cuts
2: Initialize sol:=null

3: Initialize optval:= 0
4: for 𝑘 ∈𝐾 do
5: Initialize cutlist𝑘

6: end for
7: Initialize 𝑆 := {0}
8: Initialize 𝑠 := 0
9: Define Problem0 as MP
10: while 𝑆 ̸= ∅ do
11: Define 𝑠 :=min{𝑠 : 𝑠∈ 𝑆}
12: Initialize repeat:=true

13: while repeat=true do
14: repeat←false

15: Solve Problem𝑠 to obtain optimal solution (̃︀w,̃︀x1,̃︀q) and objective ̃︂obj
16: for 𝑘 ∈𝐾 do
17: Solve SP𝑘(̃︀w,̃︀x1) to obtain optimal dual solution (̂︀𝜋,̂︀𝜆) and optimal objective ̂︀𝑞𝑘
18: if ̂︀𝑞𝑘 > ̃︀𝑞𝑘 then
19: repeat←true

20: Define cutA as cut (18)
21: Add cutA to cutlist𝑘

22: for cutB ∈ cutlist𝑘 do
23: Δ← 1
24: Apply Theorem 1 to cutA and cutB to generate cutC0

25: Add cutC0 to cutlist𝑘

26: for 𝑖∈ 𝐼 do
27: Δ← 1

|𝛼B
𝑖
−𝛼A

𝑖
| , where 𝛼A and 𝛼B are coefficients of w in cutA and cutB respectively

28: Apply Theorem 1 to cutA and cutB to generate cutC𝑖

29: Add cutC𝑖 to cutlist𝑘

30: Δ← 1

|𝛽B
𝑖
−𝛽A

𝑖
| , where 𝛽A and 𝛽B are coefficients of x1 in cutA and cutB respectively

31: Apply Theorem 1 to cutA and cutB to generate cutD𝑖

32: Add cutD𝑖 to cutlist𝑘

33: end for
34: end for
35: Among cutA and cutC𝑖 and cutD𝑖 ∀𝑖∈ 𝐼, add to 𝐿𝑘 ≥ 0 the cut with the smallest

𝛿− (̃︀𝑞𝑘 +
∑︀

𝑖∈𝐼 𝛼𝑖 ̃︀𝑤𝑖 +
∑︀

𝑖∈𝐼 𝛽𝑖̃︀𝑥1
𝑖 )

1+
∑︀

𝑖∈𝐼
(𝛼𝑖)2 +

∑︀
𝑖∈𝐼

(𝛽𝑖)2

36: end if
37: end for
38: end while
39: if ̃︂obj<optval then
40: if ∃𝑖 : ̃︀𝑥1

𝑖 −⌊̃︀𝑥1
𝑖 ⌋ ̸= 0 then

41: Define 𝑖 :=min{𝑖 : ̃︀𝑥1
𝑖 −⌊̃︀𝑥1

𝑖 ⌋ ̸= 0}
42: Define Problem𝑠+1 as Problem̃︀𝑠 with additional constraint x1

𝑖
≤

⌊︀̃︀𝑥1
𝑖

⌋︀
43: Define Problem𝑠+2 as Problem̃︀𝑠 with additional constraint x1

𝑖
≥

⌈︀̃︀𝑥1
𝑖

⌉︀
44: 𝑆← 𝑆 ∪{𝑠+1, 𝑠+2}
45: 𝑠← 𝑠+2
46: else if ∃𝑖 : ̃︀𝑤𝑖−⌊ ̃︀𝑤𝑖⌋ ̸= 0 then
47: Define 𝑖 :=min{𝑖 : ̃︀𝑤𝑖−⌊ ̃︀𝑤𝑖⌋ ̸= 0}
48: Define Problem𝑠+1 as Problem̃︀𝑠 with additional constraint w𝑖 ≤ ⌊ ̃︀𝑤𝑖⌋
49: Define Problem𝑠+2 as Problem̃︀𝑠 with additional constraint w𝑖 ≥ ⌈ ̃︀𝑤𝑖⌉
50: 𝑆← 𝑆 ∪{𝑠+1, 𝑠+2}
51: 𝑠← 𝑠+2
52: else
53: optval←̃︂obj
54: sol←(̃︀q,̃︀x1, ̃︀w)
55: end if
56: end if
57: 𝑆← 𝑆∖{𝑠}
58: end while
59: optval is optimal objective function value and sol is optimal solution




