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ABSTRACT
We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array
(HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of
redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic
mock observations. By developing a full-sky 21 cm light-cone model, taking into account the
proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and
assuming perfect foreground removal, we show that HERA will be able to recover statistics
of the sky model with high sensitivity by averaging over measurements from multiple fields.
All build-out stages will be able to detect variance, while skewness and kurtosis should be
detectable for HERA128 and larger. We identify sample variance as the limiting constraint of
the measurements at the end of reionization. The sensitivity can also be further improved by
performing frequency windowing. In addition, we find that strong sample variance fluctuation
in the kurtosis measured from an individual field of observation indicates the presence of
outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be
used as an EoR bubble indicator.

Key words: methods: statistical – dark ages, reionization, first stars – cosmology: observa-
tions.

1 INTRODUCTION

Considerable effort is under way to constrain the Epoch of Reion-
ization (EoR), an era when radiation from the first stars and galaxies
transformed gas in the intergalactic medium (IGM) from neutral to
ionized.Observations of theLyman-α forest in high-redshift quasars
have set a limit to the end of reionization of z∼ 6.5 (Fan et al. 2006),
andmeasurements of the cosmicmicrowave background (CMB) op-
tical depth by thePlanck experiment have indicated that reionization
is still progressing at z ∼ 8.8 (Planck Collaboration XIII 2016).

The 21 cm emission from the hyperfine transition in the ground
state of neutral hydrogen is arguably the most direct probe to de-
tect the EoR (Sunyaev & Zeldovich 1972; Scott & Rees 1990;
Madau, Meiksin & Rees 1997; Tozzi et al. 2000; Iliev et al. 2002).
Full-sky observations of 21 cm spectra, redshifted to metre-wave,
will produce tomographic maps of neutral hydrogen throughout the
reionization era and beyond, allowing the study of the evolution of
this structure and its implication for the underlying ionizing sources.

� E-mail: piyanat.kittiwisit@asu.edu
† Jansky Fellow of the National Radio Astronomy Observatory.

Many telescopes have been built to conduct experiments aiming
to map this signal. These include the MWA (Murchison Wide-
field Array; Tingay et al. 2013; Bowman et al. 2013), LOFAR
(Low-Frequency Array; van Haarlem et al. 2013) and PAPER (Don-
ald C. Backer Precision Array for Probing the Epoch of Reioniza-
tion; Parsons et al. 2010). These telescopes utilize many compact
antennas to yield tens-of-degrees fields of view and sub-degree to
arcminute angular resolutions. They are also capable of observing
with narrow (�10 kHz) spectral channel and simultaneously cover
wide (∼100 MHz) frequency bandwidth. These characteristics are
ideal for EoR tomographic mapping but also give rise to wide field
beam chromaticity and strong side lobe interferences that compli-
cate mitigation of bright astrophysical foregrounds.

Due to sensitivity limitations of the present experiments, much
attention has been focused on the statistical analysis of redshifted
21 cm observations, in particular with the power spectrum mea-
surements. Upper limits from current observations have recently
been released (Paciga et al. 2013; Dillon et al. 2014, 2015; Parsons
et al. 2014; Ali et al. 2015; Jacobs et al. 2015; Beardsley et al. 2016;
Patil et al. 2017), including robust characterization of the foreground
contamination and instrumental systematics in the power spectrum
(Morales et al. 2012; Hazelton, Morales & Sullivan 2013; Jacobs,
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Bowman & Aguirre 2013; Liu, Parsons & Trott 2014; Thyagarajan
et al. 2015a,b, 2016).

Lessons from the first generation of experiments have led to the
design of Hydrogen Epoch of Reionization Array (HERA; DeBoer
et al. 2017), which is currently being built in the Karoo desert in
South Africa. HERA will be a highly packed, redundant-baseline
array that is optimized for the power spectrum analysis while also
retaining imaging performance on sub-degree scales. When com-
pleted, it will consist of 350, zenith-pointed, 14-m dishes fed by
dual-polarization dipoles, with most dishes closely packed into a
hexagon core approximately 300 m in diameter and a small number
of dishes spreading around the hexagon core to improve imag-
ing performance. The Square Kilometre Array (SKA; Mellema
et al. 2013), which will be a multinational large-scale radio ob-
servatory, is also scheduled to be built in the next decade. When
completed, the SKA will be able to achieve high performance for
both the power spectrum and direct imaging of the EoR. Statistical
analysis of the EoR, however, will remain important for the next
decade.

As reionization progresses, ionized H II regions will form around
groups of sources with high-energy UV radiation, causing the dis-
tribution of 21 cm intensity field to deviate from the nearly Gaus-
sian underlying matter density field (Mellema et al. 2006; Lidz
et al. 2007), and the power spectrum alone will be insufficient to
fully describe the signal. This limitation has motivated several the-
oretical studies on alternative statistics. One promising method is
the measurement of the one-point probability distribution function
(PDF) and higher order one-point statistics (variance, skewness and
kurtosis) of the 21 cm brightness temperature fluctuations. These
statistics exhibit unique evolution throughout the reionization red-
shifts with distinct non-Gaussian features. For example, skewness
and kurtosis are shown to sharply increase near the end of reioniza-
tionwhen only isolated islands of 21 cm emission remain (Wyithe&
Morales 2007; Harker et al. 2009; Shimabukuro et al. 2015; Dixon
et al. 2016). Recent studies by Watkinson & Pritchard (2014, 2015)
and Watkinson et al. (2015) suggest that next-generation 21 cm ar-
rays will be able to measure variance and skewness to distinguish
different reionization models with high sensitivity.

In this work, we establish a detailed baseline expectation for
21 cm one-point statistics for HERA, focusing on expected thermal
uncertainty and sample variance. We consider realistic observing
scenarios and investigate the performance of various phases of the
HERA deployment with increasing numbers of antennas operating.
Our simulations incorporate the effects of time-evolution of the
signal and mapping of time-dependent redshift-space to frequency.

We describe our simulation in Section 2. We provide more back-
ground information of the HERA instruments and observations in
Section 2.1. We develop our sky model in Section 2.2 and present
its statistics as a reference for this work in Section 2.3. We describe
out mock observations in Section 2.4 and discuss the resulting mea-
surements in Section 3. In Section 3.3, we look into a way to further
improve sensitivity of the measurements through bandwidth aver-
aging. We consider performances of the planned built-out HERA
configurations in Section 3.4. We introduce a potential detection
method that takes advantage of sample variance on the kurtosis
measurements to identify ionized regions in the observing field in
Section 4. Finally, we conclude in Section 5.

2 SIMULATIONS

Weconstruct ourHERAsimulation pipeline based on existing 21 cm
models and a simple approximation of the HERA instrument. We

describe each component in the following subsections. All sim-
ulated images are noiseless. Thermal uncertainty is included in
the analysis using analytic formulas from Watkinson & Pritchard
(2014). Sample variance contributes to the uncertainty of 21 cmone-
point statistics due to the limited field of view and angular resolution
of telescope. We performMonte Carlo simulations to estimate sam-
ple variance. We ignore foreground contamination, postponing it to
a future work.

2.1 HERA

HERA is a second-generation radio interferometer optimized for
redshifted 21 cm power spectrum detection. Presently, under con-
struction, HERA uses large, 14-m parabolic dishes as antenna el-
ements with most dishes densely packed into hexagon shape to
increase the sensitivity at the short baselines and aid with cali-
bration. A number of outriggers are spread around the hexagon
core to improve imaging performance. The construction of the tele-
scope will be divided into five stages. As of 2017, the first stage
with 19 dishes has been completed and commissioned. The second
stage with 37 dishes is being constructed at the time of writing
of this manuscript, and the third, fourth and the final fifth stages
with 128, 240 and 350 dishes are scheduled to be constructed in
2017, 2018 and 2019. Observations with each build-out stage will
be conducted subsequently following each construction period. For
redshifted 21 cm observations, only the hexagon core will be used,
yielding a maximum angular resolution of ∼0.5 deg from the full
array. The telescope will have an ∼9 deg primary field of view and
will operate between 100 and 200 MHz with a channel bandwidth
of 100 kHz.

Pointed at the zenith at all time, HERA will observe in a drift-
scan mode and records ≈0.7 h of integration for each observed
field on the sky per day. Only nighttime observations will be used
for redshifted 21 cm science, resulting in 125 h of integration per
field per year. Assuming≈20 per cent of observations are discarded
due to poor weather conditions or radio-frequency interference, we
expect an effective integration of 100 h per year for any given region
observed by HERA. As the array is located at −30◦ latitude, the
Galactic Centre and anti-Centre pass almost overhead through the
telescope beam. HERA will only compile 21 cm drift scans when
the high-Galactic latitudes are overhead, yielding a strip of a sky
that spans approximately 180 deg of right ascension nested between
the Galactic plane.

However, simulating a full drift scans andmaking a single mosaic
image from the observations are both very challenging. In this work,
we approximate the drift scan by combining the analysis of multiple
independent ∼9 deg fields that span the drift scan length. Less sky
coverage of individual fields will yield measurements with higher
sample variance, but we will show that statistics of the sky model
can be recovered by averaging over multiple measurements from
different fields, as well as deriving sample variance and thermal
noise uncertainties of these measurements. For the rest of this paper,
we will simply refer to these multiple-field measurements as drift
scan measurements.

Additional details of the specifications of the HERA instru-
ments and planned observations are in Dillon & Parsons (2016) and
DeBoer et al. (2017).

2.2 Sky model

Our sky model consists of 21 cm brightness temperature intensity
fluctuations (δTb(ν)), which are characterized by the 21 cm spin
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temperature (TS), the CMB temperature (Tγ ), the fractional over-
density of baryons (1 + δ), and the gradient of the proper velocity
along the line of sight (dv‖/dr‖),

δTb(ν) ≈ 9xH I(1 + δ)(1 + z)1/2

×
[
1 − Tγ

TS

] [
H (z)/(1 + z)

dv‖/dr‖

]
mK. (1)

Many current state-of-the-art 21 cm simulators use semi-analytic
methods to produce three-dimensional cubes of 21 cm brightness
temperature fluctuation at different redshifts. These cubes are rep-
resented in rectangular comoving coordinates and can be up to a
couple of (Gpc h−1)3 in size (e.g.Mesinger, Furlanetto&Cen 2010),
roughly equivalent to ∼100 deg2 regions of sky and corresponding
depth at the relevant redshifts. In contrast, EoR observations pro-
duce three-dimensional data where two of the dimensions map the
spatial dimensions of the sky and one dimension measures red-
shift (frequency), conflating line-of-sight distances with time, also
known as the light-cone effect.

In order to match existing 21 cm models to an instrumental ob-
servation, we transform the four-dimensional (three spatial and
one time) outputs of theoretical 21 cm simulations into a three-
dimensional (two angular and one frequency) 21 cm observation
cube. Existing techniques for generating light-cone cubes concate-
nate slices from simulated cubes at multiple redshifts into a single
observational cube (Datta et al. 2012, 2014; Zawada et al. 2014).
This method captures the time evolution, but not the curvature of
the sky. To extend on these methods, we developed a tile-and-grid
process that maps a set of simulation cubes from different redshifts
to a set of full-sky maps in HEALPix1 coordinates. We elaborate
and discuss the procedure in Appendix A. The output from this
process is a set of full-sky maps spanning redshifts observed by
HERA in steps of 80 kHz spectral channels between ∼139 and
195 MHz, which forms a sky model for this work. We use 80-kHz
spectral channel as we adopted the sky model from our previous
effort to simulate the MWA. We decided to keep this bandwidth
because extensive computing time would be required to rerun the
light-cone tiling to match 100-kHz spectral channel, and a 20-kHz
increase in channel bandwidth will only improve the thermal noise
by≈10 per cent. Besides, final measurements are usually taken after
averaging multiple spectral channels into a larger observed band-
width to gain additional sensitivity, which we cover in Section 3.3.

2.3 One-point Statistics

In this work, we focus on the variance (S2), skewness (S3) and
kurtosis2 (S4), which are standardizations of the 2nd, 3rd and 4th
statistical moments (m2, m3 and m4),

S2 = m2, (2)

S3 = m3/(m2)
3/2, (3)

S4 = m4/(m2)
2 − 3, (4)

1 http://healpix.jpl.nasa.gov
2 In statistics, the precise term of this definition is excess kurtosis, which
subtracts 3 from the standard definition of kurtosis, m4/(m2)2, to yield zero
kurtosis for Gaussian distribution. Here, we simply use kurtosis to refer to
excess kurtosis.

Figure 1. Variance (solid line), skewness (dashed line) and kurtosis (dot–
dashed line) of the input light-cone model calculated using all of its pixels
as a function of frequency and redshift. The ionized fraction of the model at
each redshift is shown as the dotted line. The left y-axis shows corresponding
statistical values, whereas the right y-axis shows the ionized fraction. These
measurements illustrate the redshift evolution of one-point statistics and act
as references for our analysis.

where

mp = 1

Npix

Npix∑
i=0

(xi − x)p, (5)

denoted a pth order statistical moment for a map with data values
xi and mean value x.

Along with the mean, these three quantities describe deviations
in the shape of the brightness temperature PDF relative to a standard
Gaussian PDF. The variance measures the spread of the PDF. Both
skewness and kurtosis describe the outliers, or the tails, of the PDF
in different ways. Skewness measures asymmetry of the outliers,
in which positive or negative skewness values indicate that the
values of the outliers are greater or less than the mean value of
the distribution. Kurtosis describes the tailedness, or density of
the outliers; a positive kurtosis indicates more outliers whereas a
negative kurtosis indicate fewer outliers. A perfect Gaussian PDF
has zero skewness and kurtosis.

As a reference, we show in Fig. 1 the one-point statistics calcu-
lated from our full-sky light-cone, using all of its pixels (without
smoothing to HERA’s resolution), along with the ionized fraction
of the model, as a function of frequency and redshift. In conjunc-
tion, we show in Fig. 2 the PDF of our full-sky light-cone at several
ionization fractions to illustrate how the unique evolutions of these
statistics arise. Early in reionization (xi < 0.5), the brightness tem-
perature fluctuation is relativelyGaussianwith small pockets of cold
spots that are growing into ionized regions, resulting in a Gaussian-
like PDFwith a long tail towards zero and hence a negative skewness
and a positive kurtosis. As reionization progresses (xi ≈ 0.7), ion-
ized regions start to dominate the underlying fluctuation, shifting
the PDF to a bi-modal. A qualitative interpretation of skewness and
kurtosis of a bi-modal distribution is complicated and unintuitive,
but this transitional period can be roughly identified by the peak of
the variance and the dip of kurtosis between its two zero crossings.
As more ionized regions form, the density of the peak of ionized
pixels increases. At the very end of reionization, when most of the
sky exhibits no 21 cm signal and only a few isolated pockets of
emission remain, the PDF becomes a Delta-like function, centring
at zero with a long tail towards the warmer temperature, resulting
in high skewness and kurtosis. Although we do not explicitly show
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Figure 2. Brightness temperature PDF of the 21 cm light-cone sky model
from xi = 0.3–0.8, at every 0.1 step, and at xi = 0.95 ionized fraction.
The shape of the PDF changes from Gaussian-like to bi-modal to delta-like
function as reionization progresses and manifest the redshift evolution of
the statistics shown in Fig. 1.

it, the statistics derived from the light-cone match those of the input
21 cm simulation cubes. The scalloped shape of the variance curve
in Fig. 1 is due to the interpolation between theoretical 21 cm sim-
ulation redshifts. The scalloping is largely removed when the maps
are smoothed to the resolution of HERA.

When discussing the detectability of one-point statistics in the
following sections, it will be convenient to characterize the evolu-
tion of the statistics at these three characteristic times. For our sky
model, they correspond to frequency ranges of �160, ∼170–190
and ∼190–195 MHz, respectively. When HERA angular resolution
is taken into account, these features will be weakened, and the cor-
responding frequency might be shifted, but the rise of skewness and
kurtosis near the end of reionization along with the negative kurto-
sis during the bi-modal transition of the PDF will remain as strong
indicators of non-Gaussianity in 21 cm signal as we will show in
the following sections.

It is also important to note that images from HERA observations
will have zeromean as a radio interferometer cannot measure the to-
tal power of the sky. Thus, the PDF derived from actual observations
will be centred around zero. With angular resolution smoothing, the
resulting PDF will be similarly blurred, but the basic evolution of
the one-point statistics will persist as they are measured relative to
the mean of the signal.

2.4 Mock observations

To simulate mock observations of HERA as described in Sec-
tion 2.1, we first smooth our sky model with a Gaussian kernel
with a full width at half-maximum (FWHM) corresponding to the
angular resolution of each of the HERA build-out stages. Then,
we pre-allocate 200 non-overlapping fields across the sky project,
each field to the instrument observed sine coordinates and measure
variance, skewness and kurtosis, using only pixels within a radius
equal to half of an FWHM of the HERA primary beam from the
field centre. Before calculating statistics, each field is subtracted
by its mean value to emulate the absence of the mean value of the
sky in interferometric observations. Then, we randomly select 20
measurements and use their mean as an estimate for statistics re-
coverable by an HERA drift scan. To estimate the sample variance
of the drift scan, we repeat the random draw of the 20 measure-

ments, calculate the drift scan estimate from each draw, and use the
standard deviation of all estimates as the drift scan sample variance
uncertainty. In addition, we use the standard deviation of all 200,
single-field, measurements as an estimate for the single field sample
variance uncertainty, and statistics calculated from all pixels of the
sky model smoothed to HERA angular resolution as the estimate of
the ideal signal.

We adopt thermal noise uncertainty calculations fromWatkinson
& Pritchard (2014), expanding their derivation to kurtosis. In sum-
mary, the uncertainty in interferometric observations (�Tn) can be
described by the system temperature (Tsys) of the array, array filling
factor (ηf), spectral channel bandwidth (�ν) and integration time
of the observations (tint) (Furlanetto, Oh & Briggs 2006),

�Tn = Tsys

ηf
√

�ν tint
. (6)

By assuming that the system temperature is dominated by theGalac-
tic synchrotron radiation at the EoR observing frequency, Tsys ≈
Tsky = 180(ν/180 MHz)−2.6 K (Mozdzen et al. 2016), equation (6)
can be expanded to obtain the thermal noise uncertainty (σ n) in
redshifted 21 cm observations,

σn = 2.9mK

(
105 m2

Atot

) (
10 arcmin

�θ

)2

×
(
1 + z

10.0

)4.6
√(

1MHz

�ν

100 h

tint

)
, (7)

which depends on the total effective collecting area of the array
(Atot), the angular resolution of the array (�θ), redshift (z) and
integration time of the observations (tint) in addition to the spectral
channel bandwidth.

Thermal noise induced estimator variance of the 2nd (Vm̂2 ), 3rd
(Vm̂3 ) and 4th (Vm̂4 ) order statistical moments can be derived from
this noise description based on a statistical framework to obtain,

Vm̂2 = 2

N
(2m2σ

2
n + σ 4

n ), (8)

Vm̂3 = 3

N
(3m4σ

2
n + 12m2σ

4
n + 5σ 6

n ), (9)

Vm̂4 = 8

N
(2m6σ

2
n + 21m4σ

4
n + 48m2σ

6
n + 12σ 8

n ), (10)

and later propagated to derive the estimator variance of the signal
variance (VŜ2

), skewness (VŜ3
) and kurtosis (VŜ4

), yielding,

VŜ2
= Vm̂2 (11)

VŜ3
≈ 1

(m2)3
Vm̂3 + 9

4

(m3)2

(m2)5
Vm̂2 − 3

m3

(m2)4
Cm̂2m̂3 , (12)

VŜ4
≈ 1

(m2)4
Vm̂4 + 4

(m4)2

(m2)6
Vm̂4 − 4

m4

(m2)5
Cm̂2m̂4 , (13)

where N is the number of samples in a measurement. Cm̂2m̂3 and
Cm̂2m̂4 are the estimator covariance of the relevant moments, which
can be derived in the same manner to obtain,

Cm̂2m̂3 = 6

N
m3σ

2
n , (14)

Cm̂2m̂4 = 4

N
(2m4σ

2
n + 9m2σ

4
n + 3σ 6

n ). (15)

The thermal noise uncertainty of each statistical measurement is
then just a square root of its estimator variance. Appendix B pro-
vides a more detailed summary of Watkinson & Pritchard (2014)
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Table 1. Instrument specifications for the HERA build-out stages used in our mock observations. We perform the simulation over∼56MHz bandwidth,
from ∼139 to 195 MHz, with 80 kHz spectral channel bandwidth. Further information on the array configurations can be found in DeBoer et al. (2017).

Simulation Parameters HERA19 HERA37 HERA128 HERA240 Core HERA350 Core

Collecting area (m2) 2 925 5 696 19 550 33 405 50 953
Maximum baseline (m) 70 98 182 238 294
Angular resolution (deg) ∼1.53–2.16 ∼1.10–1.54 ∼0.59–0.83 ∼0.45–0.63 ∼0.37–0.51

procedure as well as our derivation of the estimator variance of the
4th statistical moments and the kurtosis.

We assume tint = 100 h for every �ν = 80 kHz spectral channel
as discussed earlier. The number of samples per measurement in a
observation will be limited by the field of view and the angular res-
olution of the telescope. Because our maps oversample the angular
resolution with multiple pixels, we calculate the number of inde-
pendent resolution elements per pixel from the ratio of the pixel and
the resolution element areas, fs = ��pix/��res, and multiply this
factor to the number of pixels in a measurement to obtain N. The
oversampling of the angular resolution does not affect the statistics
because the oversampling factor is cancelled out in the moment
equation (see equation 5).

Table 1 summarizes the parameters of our mock observations,
where we refer to HERA240 and HERA350 arrays without their
outriggers as HERA240 Core and HERA350 Core, respectively.

3 RESULTS

In this section, we present one-point statistical measurements from
the simulated observations. We will first show images of the mock
observations and present measurements from the HERA350 Core
simulation with 80 kHz channel bandwidth. Then, we will investi-
gate if sensitivity could be further improved with bandwidth aver-
aging.

3.1 Simulated observations

Fig. 3 shows simulated observations at xi = 0.5, 0.7 and 0.95 for
all of the HERA build-out stages with all panels taken from the
same field in our sky model. The angular resolution increases as
the telescope grows and the fluctuations become more pronounced.
Fig. 4 shows a cut along the frequency direction from the same
field at HERA350 Core angular resolution to illustrate the light-
cone evolution. The size scale along the frequency direction grows
as reionization progresses and reaches a typical size of ∼4 MHz
near the end of reionization. The brightness temperature scale of
the observed maps is centred around zero with both negative and
positive values due to the lack of mean measurements.

3.2 HERA350 core measurements

Fig. 5 shows drift scan measurements derived from HERA350 Core
simulation with 80 kHz bandwidth, an example of single field mea-
surements, and statistics of the sky model smoothed to HERA350
Core angular resolution. Comparing the drift scan measurements
with the input model statistics in Fig. 1, we see the effect of HERA’s
relatively poor angular resolution, which acts to smooth the input
maps, reducing the observed variance, skewness and kurtosis. We
will see below that this effect is especially pronounced for the
HERA build-out phases, where the coarser angular resolution is
predicted to yield one-point statistics that are only weakly non-
Gaussian (Mondal et al. 2015).

Nevertheless, it is evident that HERA350 Core will be sensitive
to one-point statistics, particularly in the second half of reionization
where the rise of skewness and the pronounced negative dip and rise
of kurtosis indicate non-Gaussian fluctuations. Uncertainty from
thermal noise in skewness and kurtosis measurements is large at
the beginning of reionization and decreases as frequency increases,
becoming negligible in comparison to sample variance at the end of
reionization, beyond∼170MHz for our skymodel. The result is that
skewness and kurtosis measurements are limited by thermal noise
early in reionization and by sample variance later in reionization.
For variancemeasurements, both thermal noise and sample variance
are insignificant and should allow high-sensitivity measurements.

As expected, statistics from single field measurements exhibit
fluctuations due to sample variance as opposed to the smoothly
evolving ensemble statistics derived from the full-sky model. The
fluctuations are interesting in their own right, and we explore their
behaviour in Section 4. The 20-field averaged, drift scan observa-
tions provide a much more faithful recovery of the model statistics.

3.3 Improving sensitivity with bandwidth averaging

We have only considered measurements from mock observations
with 80 kHz channel bandwidth in Section 3.2. The narrow channel
bandwidth limits thermal noise performance in the measurements.
In this section, we introduce two methods of bandwidth averaging,
a commonly used ‘frequency binning’ and a less-common method,
mainly used in the 21 cm power spectrum measurements that we
term ‘frequency windowing’.

Frequency binning improves thermal noise uncertainty and can
be done by averaging maps of neighbouring spectral channels to
produce a single outputmapwith larger effective channel bandwidth
and lower thermal noise. This is an effective strategy to improve
thermal noise until the bin size becomes larger than the typical size
of the features in the signal, at which point further increasing the
bin size will diminish the strength of the signal by averaging over
uncorrelated regions.

We find in Section 3.2 that measurements of one-point statistics
by HERA will be constrained by sample variance at high frequen-
cies towards the end of reionization, rather than by thermal noise.
Frequency binning will not improve sample variance sensitivity be-
cause the number of samples that can be used in a measurement is
the same for both the binned and un-binned maps when observing
over the same fieldwith the same instrument. Thus, it is of interest to
explore an additional approach aimed at reducing sample variance.
Since sample variance depends on the number of samples per map,
which is fixed by the angular resolution and the field of view, the
only way to increase the number of samples used in an estimate is to
use maps frommultiple spectral channels as a single data set. In this
method, we form a three-dimensional data cube frommultiple maps
of neighbouring spectral channels and measure the statistics of the
cube, using all samples within the field of view. We term this pro-
cess frequency windowing. Thermal noise per pixel is unchanged
with frequency windowing because the native spectral channel is
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Figure 3. Simulated observations at ionized fraction of 0.5, 0.7 and 0.95 (top to bottom rows) with different HERA build-out stages (left-to-right columns).
The 21 cm light-cone model is smoothed to the resolution of each array, showing more pronounced fluctuations as the angular resolution increases. No thermal
noise is included in the simulation.

Figure 4. Light-coneslice from the HERA350 Core mock observations. The size scale along the frequency direction grows as reionization progresses and
reaches a typical size of ∼4 MHz near the end of reionization.

preserved, but thermal noise uncertainty on the one-point statistic
estimates will still decrease due to the 1/N factor in the estimator
variance equations (see equations 8–10).

To explore the relative trade-offs between the two methods, we
perform frequency binning and frequency windowing on the bright-
ness temperature maps from our HERA350 Core simulation, vary-
ing bin and window sizes from 1 to 8 MHz with 1 MHz increment.
We start from the highest spectral channel in our ∼60-MHz band-
width, at 195 MHz, and bin or window, progressing down to lower
frequencies. The process is repeated on all 200 sample fields. Then,
we make drift scan measurements and estimate thermal noise and
sample variance uncertainties for each case using the same method
as described in Section 2.

The observed variance decreases across the observed frequency
range when frequency binning is used, with particularly rapid de-
cline near the variance maxima. This is expected as the signal
strength along the frequency dimension in our HERA350 Core

mock observations, shown in Fig. 4, is smaller and more uniform
early in reionization but grows and reaches the maximum strength
and maximum variance at around 185 MHz. Binning the signal
when both the signal strength and signal variance are high will
greatly reduce the signal amplitude, resulting in much smaller ob-
served variance. As a side note, the observed variance only slightly
declines between the native 80-kHz channel bandwidth and 1-MHz
binning case. This is expected as the coherence length of the 21 cm
signal is predicted to be approximately 1 MHz (Santos, Cooray &
Knox 2005). Thus, the bin size finer than 1 MHz would not dra-
matically alter the signal variance. Although not shown, we find
that the overall evolution of skewness and kurtosis recovered by
the instrument do not change when frequency binning is used apart
from slight variations between bins.

Compared to frequency binning, frequency windowing simply
adds more samples along the frequency dimension. With no aver-
aging of maps from neighbouring spectral channels, variance of the
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Figure 5. Variance, skewness and kurtosis (top-to-bottom panels) mea-
sured from simulated HERA 350 Core observations with 80 kHz channel
bandwidth as a function of observing frequency and ionized fraction. The
dotted line shows an example of statistics measured from a single field. The
solid line shows the drift scan measurements, defined as the mean of 20
single-field measurements. The dashed line shows statistics derived from
the full sky after smoothing to HERA350 Core angular resolution as a ref-
erence. The two shaded regions show sample variance uncertainty (dark),
which is only clearly visible in the kurtosis, and the combined sample vari-
ance and thermal noise uncertainty (light) calculated in quadrature for drift
scan measurements. HERA350 Core will be sensitive to one-point statistics,
particularly in the second half of reionization. Skewness and kurtosis mea-
surements are limited by thermal noise early in reionization and by sample
variance later in reionization, while both thermal noise and sample variance
are insignificant in variance measurements.

signal within each spectral channel is preserved, and the observed
variance would be the mean value of variance of all spectral chan-
nels within that window. Skewness and kurtosis are also preserved
as the added samples from neighbouring spectral channels do not
alter the shape of the PDF but contribute to form a more well sam-
pled PDF, unless strong redshift evolution occurs between spectral
channels. All statistics measured from frequency windowing data
also show less variation between window to window and follow the
sky model more closely.

We find that frequency windowing improves the sensitivity more
than frequency binning at nearly all redshifts in our simulations
since sample variance dominates the uncertainty over much of the
modelled band. To illustrate, we compare in Fig. 6 the signal-to-
noise ratio (SNR) of the statistics for different binning and win-
dowing cases measured from the HERA350 Core simulation. We
calculate SNR by dividing the absolute values of statistics with the
square root of the quadrature sum of thermal noise uncertainty and
sample variance uncertainty. As evidence from the figure, SNR of
variance and skewness are much improved when frequency win-
dowing is used, especially with larger window sizes. In contrast,
frequency binning only improves SNR at higher redshift where ther-
mal noise dominates the uncertainty and larger frequency bins yield
lower thermal noise. However, this improvement stops after the bin

size reaches a few MHz because thermal noise has been reduced
below sample variance at that point, putting the measurements in
sample variance limited regime. With frequency windowing, SNR
continues to improve with larger windows. Although we only inves-
tigate up to an 8-MHzwindow case, we expect further improvement
beyond the 8 MHz window. However, redshift evolution will have
detrimental effect on the signal with that large bandwidth; thus, the
logical choice would be to perform frequency windowing only with
a large enough window size to obtain sufficient SNR.

We must note that mathematically predicting the trend of the
SNR improvements from frequency windowing is challenging be-
cause sample variance is signal dependent and depends on several
factors. Our results in Fig. 6 show no correlation between SNR im-
provements and the window size, and the improvements appear to
be frequency-specific. With frequency windowing, skewness shows
the maximum increases in the SNR at xi ≈ 0.5 while kurtosis SNR
is the most improved at xi ≈ 0.85, in the negative kurtosis regions.
Since frequency windowing does not change the statistics, the dif-
ference in SNR improvementsmust depend on the underlying nature
of the signal.

It is also worthy to note that frequency windowing improves SNR
by reducing thermal noise, but the improvement from thermal noise
reduction is generally less effective than when frequency binning
is used. This is easiest to show quantitatively. For an observation
at a particular frequency, integration time and angular resolution,
the thermal noise description from equation (7) can be plugged into
the estimator variance formulas in equations (8)–(10) to obtain a
simplified thermal noise uncertainty equation for pth order one-
point statistics,

σm̂p =
√

Vm̂p ∝ σp
n√
N

∝ 1√
N (�ν)p

. (16)

When performing frequency binning with nch channels, the number
of sample in a measurement N is unchanged, but the frequency
binned map will have an effective channel bandwidth of � ∝ nch,
resulting in

√
n

p
ch reduction of thermal noise uncertainty. In contrast,

performing frequencywindowingwith nch channelswill not alter the
channel bandwidth, but the number of samples in a measurement
is multiplied by nch, reducing thermal noise uncertainty by just√

nch. Regardless, the increased number of samples from frequency
windowing will reduce sample variance, allowing detection with
higher sensitivity; thus, it should be used on all observations of one-
point statistics by HERA when observations are sample variance
dominated,whereas frequency binningmaybemore beneficialwhen
observations is thermal noise dominated (depending on the spectral
coherence of the underlying signal).

3.4 Performance of HERA build-out stages

Although it is clear from Sections 3.2 and 3.3 that the complete
HERA 350 Core array will be able to mitigate sample variance by
averaging statistics measured over multiple fields across the sky
and utilizing frequency windowing, it is important to see how the
smaller, planned built-out, arrays will perform as data from HERA
350 Core will not be available until after 2020.

In general, smaller arrays have two key disadvantages of less
collecting area and worse angular resolution. Typically, smaller
collecting area increases the thermal uncertainty, while poorer an-
gular resolution smooths over the intrinsic 21 cm features, yielding
a more-Gaussian like signal with lower amplitude than for higher
angular resolutions. However, HERA is very close to being a filled
aperture array, resulting in the angular resolution and array col-
lecting area that roughly scale as the maximum baseline and the
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Figure 6. Comparing SNRmeasured fromHERA350 Core simulation with different frequency binning (left column) and frequency windowing (right column)
cases. SNR is defined as the ratio of the absolute values of statistics and the square root of the quadrature sum of thermal noise uncertainty and sample variance
uncertainty. Frequency windowing improves the sensitivity more than frequency binning at nearly all redshifts due to the reduced sample variance.

maximum baseline squared, respectively. As a consequence, it can
be shown from equation (7) that the thermal uncertainty per resolu-
tion element of HERA does not change with the size of the array.
Thus, the only disadvantage of smaller HERA array is the reduced
angular resolution that damps the signal and lowers the number of
independent resolution elements per map.

For a detailed investigation, we perform frequency binning and
frequency windowing on the mock observations of all HERA build-
out stages, and calculate the mean drift scan statistics, sample vari-
ance uncertainty and thermal noise uncertainty for each case fol-
lowing the methods described in Section 2.4. The HERA build-out
arrays cover angular resolution from ∼1.5 deg to 0.5 deg as the
array grows. Thus, this study also gives an insight into the effects
of angular resolution on the one-point statistics.

Fig. 7 shows the one-point statistics measured from the mock
observations of each of the build-out stages, along with the corre-
sponding SNR calculated in the same manners as in Section 3.3,
with 4 MHz frequency windowing applied before the calculations.
It is clear that the derived statistics are affected by the increasing an-
gular resolution as the array grows. Variance decreases with smaller
arrays, similar to the effect of frequency binning. Skewness and kur-
tosis measured from smaller, HERA19 and HERA37, arrays also
vanish, only fluctuating near zero throughout much of reionization.
In contrast, the larger HERA128, HERA240 Core and HERA350
Core arrays exhibit non-zero skewness and kurtosis even early in
reionization, diverging more from zero as the angular resolution im-
proves. The negative region of kurtosis near the end of reionization
only reaches significance in observations with these large build-out
phases.

This resolution effect is an expected consequence from the an-
gular resolution smoothing. With finer angular resolution, larger
HERA arrays can resolve more of the intrinsic underlying fluctu-
ation and preserve the amplitude of the signals. The shape of the
PDF distribution of the signal is also preserved, and thus the values
of skewness and kurtosis remain closer to the intrinsic level of the
signals. When the angular resolution becomes larger than the typ-
ical sizes of the underlying signals, angular resolution smoothing
blurs out the fluctuations, reduces the overall signal amplitude and
shift the PDF from non-Gaussian to Gaussian. As a result, vari-
ance is greatly reduced, and skewness and kurtosis vanish. These
results are in agreement with Mondal et al. (2015), who suggests,
based on the study of 21 cm power spectrum SNR, that 21 cm signal
would only be weakly non-Gaussian at a degree scale near the end
of reionization, comparable to angular resolution of HERA19 and
HERA37 arrays, and be mostly Gaussian otherwise.

Apart from better resolving the intrinsic fluctuations, increasing
the angular resolution will also reduce sample variance. However,
the signal-dependent nature of sample variance is still true. Thus, we
see the same frequency-specific SNR improves as the array grows
in size similar to the SNR improvement from frequency windowing
as the window size grows (see Fig. 6). All statistics measured from
the mock observations of the arrays with finer angular resolutions
also show less variation between window to window and follow the
sky model more closely.

Our simulations suggest that all HERA configurations should be
able tomeasure the variancewith high SNR. In addition, HERA128,
HERA240 Core and HERA350 Core will be able to measure the
characteristic rise of skewness and the dip, then rise, of kurtosis
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Figure 7. Drift scan statistics (left) and SNR (right) measured from the mock observations of all planned built-out HERA stages with 4-MHz frequency
windowing applied before the calculations. All HERA configurations should be able to measure the variance with high SNR. In addition, HERA128 and above
will be able to measure the characteristic rise of skewness and the dip, then rise, of kurtosis near the end of reionization with sufficient SNR.

near the end of reionization with sufficient SNR, especially when
frequency windowing is used, as demonstrated in Fig. 7.

4 INDIVIDUAL FIELD OBSERVATIONS

In this paper, we focus on recovering the one-point statistics over
multiple fields corresponding the full drift scan area that will be
surveyed by HERA. Here, we briefly turn our attention to the in-
dividual 9 × 9 deg2 HERA beam fields in our simulations. As
expected, statistics measured within individual fields are more sus-
ceptible to sample variance. For example, there are two strong kur-
tosis spikes near 160 MHz in the measurement from field number
25 from our HERA350 Core simulation as shown in Fig. 5. These
kurtosis spikes are factors of 7 and 5 above the sample variance
expected for the field. Significant outlier deviations such as these
are seen in fields with one or two large cold or hot spots. Fig. 8
illustrates the case. When cold or hot spots appear in the observed
fields, they perturb the PDF, adding more density to the tails of the
distribution, and causing kurtosis to rise. In some occasions, these
outliers also shift the symmetry of the PDF and cause strong troughs
in the skewness as appeared in Fig. 5. Outlier one-point statistics of
small fields may provide a simple and robust bubble detector and
a new tool to constrain reionization models. Statistical study of the
frequency of occurrence of the outlier kurtosis (or skewness) peaks
could be conducted for a given instrument and related to predictions
from reionization models. The outliers should be less susceptible
to noise in the underlying fluctuations than typical estimates of the
statistics. Investigation of this possible metric would require further
study that is beyond the scope of this work.

Figure 8. Illustrating the correlation between strong sample variance fluc-
tuation in the single-field measurement of kurtosis and the outlying cold
or hot spots in the observed field. The bottom panel re-draws the kurtosis
measured from field 25 as in Fig. 5, overlaid on top of a 1σ single-field sam-
ple variance uncertainty plotted around the mean of kurtosis measurements
from all fields. The top two panels show maps of the underlying brightness
temperature signal at ∼158 MHz, where the kurtosis rises above the sample
variance uncertainty (left), and at ∼170 MHz, where the kurtosis is near
zero (right). The outlying cold spots perturbs the tail of the PDF, causing
kurtosis to rise. This statistical feature could potentially be used as a bubble
indicator.
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5 CONCLUSION

We have established a baseline sensitivity analysis of 21 cm one-
point statistics from the EoR for HERA through realistic mock
observations of redshifted 21 cm brightness temperature fluctua-
tions.

We develop a tile-and-gridmethod that transforms a suite of small
21 cm simulation cubes into a full-sky light-cone input model that
matches the dimensionality of the observational data. We incorpo-
rate the angular resolution effects of all of the planned build-out
stages of HERA to gauge the sensitivity of the array as it grows in
size. We use simple Gaussian smoothing to incorporate the array
angular resolution, using multiple kernel sizes that match angular
resolutions of the different build-out stages. The span of resolutions
also allows us to study their effects on the statistics. Apart from the
variance and skewness that have extensively been covered in previ-
ous studies, we also measure kurtosis from our mock observations
as well as deriving sample variance uncertainty associated with the
measurements. Uncertainty from thermal noise is mathematically
derived from the framework developed in Watkinson & Pritchard
(2014), where we have extended their derivation to kurtosis. We
calculate SNR to gauge the sensitivity of the measurement and per-
form frequency binning and frequency windowing to investigate if
the sensitivity can be further improved. We ignore foreground con-
tamination and other systematics in this work, postponing them to
future works.

Our results show that measurements of 21 cm one-point statis-
tics by HERA will likely be limited by sample variance, at least
near the end of reionization. Particularly, the variance sensitivity
is sample variance limited throughout reionization while skewness
and kurtosis sensitivities will be limited by thermal noise early in
reionization and by sample variance later in reionization. Frequency
windowing can be used in all measurements to improve the sensi-
tivity. However, care must be taken to not use a window size that is
too large to avoid redshift evolution. In addition, all build-out stages
of HERAwill be able to measure variance with high sensitivity, and
HERA128 and above will also be able to measure skewness and
kurtosis.

An introduction of kurtosis into our analysis has led us to identify
kurtosis peaks as potential indicators of outlying cold or hot spots
in individual fields of observations. Kurtosis will sharply rise when
a few hot or cold outlying regions appear on top of the underlying
Gaussian-like signal in the observed field. Further investigation of
this feature is beyond the scope of this work.

Although we only focus on HERA in this paper, our results
should be applicable to future arrays such as the SKA. In particular,
sample variance uncertainty will be further improved due to its
higher angular resolution.

There are three main obstacles in pursuing future detection and
characterization of the EoR with 21 cm one-point statistics: (1) the
sensitivity of existing reionization arrays to the statistics, (2) mitiga-
tion of astrophysical foreground contamination, and (3) estimation
of reionization parameter constraint from the statistics. We have
extensively covered the first point in this paper, focusing on the
HERA array, and we are actively investigating the effects of fore-
ground contamination on our results. The last point is arguably the
least well-understood, and we will investigation the topic in the
future.
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APPENDIX A: FULL-SKY LIGHT-CONE

The observable sky at a particular redshift is a sphere in comoving
space. No existing 21 cm simulation spans a volume large enough
to contain the whole observable sky at the redshifts of interest
for reionization. The typical size of a large 21 cm simulation box

Figure A1. Schematic diagram illustrating the tiling of simulation cubes
with periodic boundary conditions to produce a full-sky light-cone. The
diagram shows the process for a single redshift. The process is repeated for
every observed redshift using an evolved simulation cube for each redshift
and the appropriate comoving distance diameter for each redshift. The (x,
y, z) coordinates in the diagram represent both the comoving coordinates of
the simulation cubes and the Cartesian coordinates of the HEALPix sphere.

presently is ∼2 Gpc while a comoving distance to redshift 8.5
(νobs ≈ 150 MHz) is ∼9.3 Gpc. To create a full-sky 21 cm model,
we exploit the periodic boundary condition of the 21 cm simulations
and effectively tile the simulation volume in comoving space to
obtain a sufficiently large volume before gridding on to the sky
sphere. The process is repeated at each redshift of interest to create
maps for the full light-cone. Fig. A1 shows a schematic diagram of
our tiling and gridding process.

We start with a suite of theoretical 21 cm cubes from the semi-
analytic simulations of Malloy & Lidz (2013). The cubes span the
redshift range 9.3 > z > 6.2, with �z = 0.1 steps, representing the
universe from ∼30 per cent to 96 per cent ionized. The simulation
volume is 1Gpc3 in a 5123 pixel box with periodic boundary. We
linearly interpolate the simulated 21 cm cubes across redshift to
produce new cubes that more-closely match the redshifts observed
by HERA in steps of 80 kHz spectral channels between ∼139 and
195 MHz. The interpolation step is not required to construct the
light-cone if simulation cubes matching the redshift of interests are
available. For each of the redshifts, we tile the interpolated cubewith
itself in three dimensions to construct an arbitrarily large simulated
volume for that redshift. Then, we draw an observable sky at that
redshift as a sphere of radius equal to the comoving distance of
that redshift from a fixed origin inside the volume and interpolate
the nearest neighbouring pixel from the cube to the corresponding
HEALPix pixel location on the sphere. Before tiling and gridding,
we degrade each simulation cube to 1283 box to reduced computing
time while retaining all size scales that can be probed by HERA.We
useHEALPix pixel area that is∼10 times smaller than the resolution
of the simulations (NSIDE = 4096) to avoid sampling artefacts.
This process is repeated for every observed redshift to produce a
suit of full-sky maps that accurately represent the redshifted 21 cm
light-cone model.

Figure A2. Comparison of flat-field light-cone tiling with our spherical surface projection. Top panel shows the flat-field light-cone and the bottom panel
shows the spherical surface light-cone. Even over the relatively small area plotted, repetition of structure is visible in the flat-field light-cone, whereas the
spherical surface method results in a random appearance while still preserving the one-point statistics of the original simulation cubes. The flat-field light-cone
cube is interpolated from comoving (x, y, z) directly to celestial image coordinates. The two images are identical along Dec = 0 deg row.
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Compared to flat-field approximations for tiling and gridding
that do not take into account the spherical surface of the sky, our
method is equivalent to slicing a simulation cube from different
angles and rotational axes and mapping the slices on to a sphere
at different locations. Thus, even within the ∼9 deg HERA fields,
we see significantly reduced repetition of spatial structure in the re-
sulted maps in comparison to the flat-field approximation. Fig. A2
illustrate this point, where we use the method from Zawada et al.
(2014) to produce a standard flat-field light-cone cube and compare
it with a light-cone cube produced by gridding on to spherical sur-
faces. The full-sky HEALPix maps produced with spherical surface
gridding preserve one-point statistics of the original simulations,
showing changes less than 0.001 per cent of the original values for
our simulation sets.

APPENDIX B: KURTOSIS UNCERTAINTY
PROPAGATION

The method of uncertainty propagation for one-point statistics is
first described in Watkinson & Pritchard (2014). Here, we summa-
rize and expand on their work, deriving uncertainty propagation for
the kurtosis in addition to variance and skewness.

To recap, for a 21 cm intensity map with pixel value xi, mean x

and Npix pixels, the pth central moment of the map is defined as,

mp = 1

Npix

Npix∑
i=0

(xi − x)p. (B1)

The variance, skewness and kurtosis are standardizations of 2nd,
3rd and 4th central moments defined as follows:

Variance : S2 = m2, (B2)

Skewness : S3 = m3

(m2)3/2
, (B3)

Kurtosis : S4 = m4

(m2)2
− 3. (B4)

If every pixel xi consists of only an independent signal with no
noise contribution, we can simply substitute xi = δTi and x = δT

to compute the ‘true’ moments and one-point statistics of the map.
Adding noise ni with standard deviation σ i to the signal, each

pixel now consists of the signal plus the noise, xi = δTi + ni, and
the noise will bias the moment measurements. An unbiased esti-
mator for the pth moments (m̂p) can be estimated by averaging the
moment equations over noise realization. Assuming that the noise
is Gaussian and independent in each pixel, the averaged noise terms
can be rewritten as functions of standard deviation of the noise,
using Gaussian moment identities derivable from the following
formula,

〈nl
i〉 =

{
(1)(3)(5) · · · (l − 1)σ l

i if l is even
0 if l is odd

, (B5)

where the angle bracket designates an average. Table B1 in this
work provide additional identities necessary for the derivation of the
kurtosis uncertainty in addition to equation (B5) and the identities
given in the table A1 in Watkinson & Pritchard (2014).
Using these identities, the estimator variance and covariance of

the unbiased estimator of the moments can be derived,

Vm̂p = 〈m̂pm̂p
†〉 − 〈m̂p〉2, (B6)

Cm̂pm̂q = 〈m̂pm̂q〉 − 〈m̂p〉〈m̂q〉, (B7)

Table B1. Additional Gaussian noise identities for derivation of estimator
variance of kurtosis. Please see table A1 in Watkinson & Pritchard (2014)
for more identities.

〈nin
4
j 〉

〈n5i 〉 = 0 (i = j )

〈ni〉〈n4j 〉 = 0 (i �= j )

}
0

〈n2i n4j 〉
〈n6i 〉 = 15σ 6

i (i = j )

〈n2i 〉〈n4j 〉 = 3σ 2
i σ 4

j (i �= j )

}
(3 + 12δij )σ 2

i σ 4
j

〈n3i n4j 〉
〈n7i 〉 = 0 (i = j )
〈n3i 〉〈n4j 〉 = 0 (i �= j )

}
0

〈n4i n4j 〉
〈n8i 〉 = 105σ 8

i (i = j )
〈n4i 〉〈n4j 〉 = 9σ 4

i σ 4
j (i �= j )

}
(9 + 96δij )σ 4

i σ 4
j

and propagate to skewness and kurtosis with Taylor expansion,

Vf (X,Y ) ≈
(

∂f

∂X

)2

VX +
(

∂f

∂Y

)2

VY

+ 2

(
∂f

∂X

) (
∂f

∂Y

)
CXY . (B8)

Here, f(X, Y) is a function of two non-independent variables X and
Y. In other word, X = m̂2 and Y = m̂3 for skewness, and X = m̂2

and Y = m̂4 for kurtosis. The uncertainty for each statistic is then
just the square root of the estimator variance.

Equations (B9)–(B14) summarize results from Watkinson &
Pritchard (2014). For this work, σ i is assumed to be equal to σ n

in equation (7) in the main text for all pixels. We also simply use N
in the main text instead of Npix to emphasize that an individual pixel
in an image from an observation may not represent an independent
sample.

m̂2 = 1

Npix

Npix∑
i=0

(xi − x)2 − σ 2
n , (B9)

m̂3 = 1

Npix

Npix∑
i=0

(xi − x)3 = m3 = 1

Npix

Npix∑
i=0

(δTi − δT )3, (B10)

Cm̂2m̂3 = 6

Npix
m3σ

2
n , (B11)

Vm̂2 = VŜ2
= 2

Npix
(2m2σ

2
n + σ 4

n ), (B12)

Vm̂3 = 3

Npix
(3m4σ

2
n + 12m2σ

4
n + 5σ 6

n ), (B13)

VŜ3
≈ 1

(m2)3
Vm̂3 + 9

4

(m3)2

(m2)5
Vm̂2 − 3

m3

(m2)4
Cm̂2m̂3 . (B14)

We follow the procedure in Watkinson & Pritchard (2014) and
are able to confirm their results. In addition, we derive the estimator
variance for kurtosis as follows.

First the 4th moment with noise bias is constructed.

mbiased
4 = 1

Npix

Npix∑
i=0

(xi − x)4

= 1

Npix

Npix∑
i=0

[(δTi − δT ) + ni]
4. (B15)
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Then, we expand the equation and average over the noise.

〈mbiased
4 〉 = 1

Npix

Npix∑
i=0

[(δTi − δT )4 + 4(δTi − δT )3〈ni〉

+ 6(δTi − δT )2〈n2
i 〉 + 4(δTi − δT )〈n3

i 〉 + 〈n4
i 〉]

= 1

Npix

Npix∑
i=0

(δTi − δT )4

+ 6
1

Npix

Npix∑
i=0

(δTi − δT )2σ 2
i + 3σ 4

i

= 1

Npix

Npix∑
i=0

(δTi − δT )4 + 6m2σ
2
n + 3σ 4

n . (B16)

The first term in equation (B16) is simply the 4th moment while
other terms arise from the added noise. This implies that an unbiased
estimator of the 4th moment is,

m̂4 = 1

Npix

Npix∑
i=0

(xi − x)4 − 6m2σ
2
n − 3σ 4

n

= 1

Npix

Npix∑
i=0

(xi − x)4 − 3

2
NpixVm̂2 . (B17)

Next, we derive the estimator variance of the 4th moment. We
substitute μi = δTi − δT and κ = 3NpixVm̂2/2 to simplify equa-
tion (B17) before plugging into equation (B6) to obtain,

Vm̂4 =
〈

1

N2
pix

Npix∑
i=0

Npix∑
j=0

[(μi + ni)
4 − κ][(μj + nj )

4 − κ]

〉

−(m4)
2, (B18)

where the second term is reduced to the square of the unbiased 4th
moment.

Expanding this expression andmoving the noise averaging brack-
ets inside the summation gives,

Vm̂4 = 1

N2
pix

Npix∑
i=0

Npix∑
j=0

[
μ4

i μ
4
j + 4μ4

i μ
3
j 〈nj 〉

+ 6μ4
i μ

2
j 〈n2

j 〉 + 4μ4
i μj 〈n3

j 〉 + μ4
i 〈n4

j 〉 − κμ4
i

+ 4μ3
i μ

4
j 〈ni〉 + 16μ3

i μ
3
j 〈ninj 〉 + 24μ3

i μ
2
j 〈nin

2
j 〉

+ 16μ3
i μj 〈nin

3
j 〉 + 4μ3

i 〈nin
4
j 〉 − 4κμ3

i 〈ni〉
+ 6μ2

i μ
4
j 〈n2

i 〉 + 24μ2
i μ

3
j 〈n2

i nj 〉 + 36μ2
i μ

2
j 〈n2

i n
2
j 〉

+ 24μ2
i μj 〈n2

i n
3
j 〉 + 6μ2

i 〈n2
i n

4
j 〉 − 6κμ2

i 〈n2
i 〉

+ 4μiμ
4
j 〈n3

i 〉 + 16μiμ
3
j 〈n3

i nj 〉 + 24μiμ
2
j 〈n3

i n
2
j 〉

+ 16μiμj 〈n3
i n

3
j 〉 + 4μi〈n3

i n
4
j 〉 − 4κμi〈n3

i 〉
+ μ4

j 〈n4
i 〉 + 4μ3

j 〈n4
i nj 〉 + 6μ2

j 〈n4
i n

2
j 〉

+ 4μj 〈n4
i n

3
j 〉 + 〈n4

i n
4
j 〉 − κ〈n4

i 〉
−κμ4

j − 4κμ3
j 〈nj 〉 − 6κμ2

j 〈n2
j 〉 − 4κμj 〈n3

j 〉

− κ〈n4
j 〉 + κ2

]
− (m4)

2. (B19)

Applying Gaussian noise identities will reduce the expression to,

Vm̂4 = 1

N2
pix

Npix∑
i=0

Npix∑
j=0

[
μ4

i μ
4
j + 6μ4

i μ
2
j σ

2
j + 3μ4

i σ
4
j − κμ4

i

+ 16μ3
i μ

3
j δij σ

2
j + 48μ3

i μj δij σ
4
i + 6μ2

i μ
4
j σ

2
i

+ 36μ2
i μ

2
j (1 + 2δij )σ

2
i σ 2

j + 6μ2
i (3 + 12δij )σ

2
i σ 4

j

− 6κμ2
i σ

2
i + 48μiμ

3
j δij σ

4
j + 240μiμj δij σ

6
i

+ 3μ4
j σ

4
i + 6μ2

j (3 + 12δij )σ
4
i σ 2

j + (9 + 96δij )σ
4
i σ 4

j

− 3κσ 4
i − κμ4

j − 6κμ2
j σ

2
j − 3κσ 4

j + κ2

]
− (m4)

2. (B20)

Doing the summation to perform index conversion via δij, substi-

tuting all 1
Npix

∑Npix
i=0 μk

i terms with the unbiased pth moments mp

and σ i with σ n, re-substituting κ = 3NpixVm̂2/2 = 6m2σ
2
n + 3σ 4

n

back to the expression, and cancelling out many terms will yield the
estimator variance of the 4th moment,

Vm̂4 = 8

Npix
(2m6σ

2
n + 21m4σ

4
n + 48m2σ

6
n + 12σ 8

n ). (B21)

The estimator covariance between 2nd and 4th moment can be
found in a similar manner, resulting in,

Cm̂2m̂4 = 4

Npix
(2m4σ

2
n + 9m2σ

4
n + 3σ 6

n ). (B22)

Finally, we can propagate equations (B21) and (B22) using equa-
tion (B8) to obtain the estimator variance for kurtosis,

VŜ4
= 1

(m2)4
Vm̂4 + 4

(m4)2

(m2)6
Vm̂4 − 4

m4

(m2)5
Cm̂2m̂4 . (B23)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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