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Abstract. We study a multiple vehicle routing problem, in which a fleet
of vehicles is available to serve different types of services demanded at lo-
cations. The goal is to minimize the makespan, i.e. the maximum length
of any vehicle route. We formulate it as a mixed-integer linear program
and propose a branch-cut-and-price algorithm. We also develop an ef-
ficient O(logn)-approximation algorithm for this problem. We conduct
numerical studies on Solomon’s instances with various demand distribu-
tions, network topologies, and fleet sizes. Results show that the approx-
imation algorithm solves all the instances very efficiently and produces
solutions with good practical bounds.

Keywords: vehicle routing, compatibility constraints, branch-cut-and-
price, approximation algorithm

1 Introduction

Vehicle routing problems (VRPs), with a goal of finding the optimal routing
assignment for a fleet of vehicles to serve demands at various locations, are
classical and well studied combinatorial optimization problems. Starting from
Dantzig and Ramser [7], many variants of VRPs have been considered, including
VRP with time windows, Capacitated VRP, VRP with heterogeneous fleet, VRP
with multiple depots, as well as hybrid versions of these variants, all of which
are discussed in detail by Golden et al. [15] and Toth and Vigo [24].

In this paper, we consider a minimum makespan VRP with compatibility
constraints (VRPCC). We assume that multiple types of services are demanded
at various locations of a given network and each type of service can only be
served by certain vehicles. The goal of the problem is to minimize the maxi-
mum traveling time of all the routes designed for fulfilling the demand, i.e., the
makespan for finishing all services. The motivation of studying the minimization
of makespan comes from applications that focus on balancing routing assign-
ment for all vehicles and minimizing the time to finish serving all customers. We
consider a salient application as deploying shared vehicles for serving patient
medical home care service demand, distributed in a geographical network, in
which we aim to balance workload of different medical staff teams dispatched
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together with the vehicles. The solution methods investigated in this paper can
help scheduling and routing for medical home care delivery.

We review the main VRP literature focusing on different solution methods.
To exactly optimize VRPs, branch-and-cut was the dominant approach before
2000s, and the related research [see, e.g., 1, 3, 19, 20, 22] develops effective
valid inequalities to improve solution efficiency. Following Fukasawa et al. [13],
branch-cut-and-price (BCP) became the best performing exact solution method
for (capacitated) VRP: this combines branch-and-cut with column generation.
There have also been many approximation algorithms for VRPs with a minimum
makespan objective [see, e.g., 4, 8, 12] that provide polynomial time algorithms
with a provable performance guarantee. To the best of our knowledge, no prior
work has provided either exact solution methods or efficient approximation al-
gorithms for VRPCC.

In this paper, we develop the following algorithms for VRPCC: (i) an exact
algorithm based on the BCP approach and (ii) an O(log n)-approximation algo-
rithm based on a budgeted covering approach. We provide preliminary numerical
experiments for both algorithms. Our results show that the approximation algo-
rithm solves the problem efficiently and yields a practical approximation ratio
of at most two (on the test instances).

The remainder of the paper is organized as follow. In Section 2, we formally
define the problem and present a mixed-integer linear programming formulation.
In Sections 3 and 4, we propose a BCP algorithm and an approximation algo-
rithm for VRPCC, respectively. In Section 5, we test our algorithms on Solomon’s
instances with diverse graph sizes, vehicle fleet sizes, and demand distributions.
We present the numerical results for our proposed solution methods. In Section
6, we conclude our findings and state future research.

2 Problem Statement and Formulation

Consider an undirected graph G = (V,E), where V = {0, 1, . . . , n} is the set of
n+1 nodes. Node 0 represents the depot and set V + = {1, 2, . . . , n} corresponds
to customer locations. Each edge (i, j) ∈ E, ∀i, j ∈ V has an associated distance
dij satisfying the triangle inequality such that dij ≤ dik + dkj , ∀i, k, j ∈ V .
A fleet K of vehicles, with K = {1, 2, . . . ,m}, initially located at the depot
can serve demand from customers. Each vehicle k ∈ K can only visit a subset
Vk ⊂ V +, based on matches of vehicles and service types. In our problem, a
routing decision assigns each vehicle a route such that: (a) the nodes visited by
vehicle k ∈ K are in the set Vk; (b) each node must be visited exactly once; and
(c) the maximum distance of all assigned routes is minimized.

We define the vector x = (xkij , (i, j) ∈ E, k ∈ K)T where xkij takes value 1 if
edge (i, j) ∈ E is used in the route for vehicle k, and 0 otherwise. Consider the
binary parameter u = (uki , k ∈ K, i ∈ V +)T where uki takes value 1 if i ∈ Vk
for vehicle k ∈ K, and 0 otherwise. Let τ represent the maximum distance of all
the routes. We formulate a mixed-integer program for the VRPCC as follows.

(MIP) minimize
x,τ

τ (1)
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subject to
∑

(i,j)∈E

dijx
k
ij ≤ τ ∀k ∈ K, (2)

∑
j:(v,j)∈E

xkvj −
∑

i:(i,v)∈E

xkiv = 0 ∀v ∈ V, ∀k ∈ K, (3)

∑
k∈K

∑
i:(i,j)∈E

xkij = 1 ∀j ∈ V +, (4)

∑
i:(i,j)∈E

xkij ≤ ukj ∀j ∈ V +, ∀k ∈ K, (5)

∑
(i,j)∈E,i,j∈S

xkij ≤ |S| − 1 ∀S ⊂ V +, ∀k ∈ K, (6)

xkij ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K, (7)

where constraints (2) ensure that τ equals to the maximum distance of all the
routes, which is minimized in the objective function (1); constraints (3) enforce
flow balance at each node for routing each vehicle; constraints (4) ensure that
each node is visited exactly once; constraints (5) ensure that vehicle k can only
visit nodes in Vk; constraints (6) are sub-tour elimination constraints.

3 Branch-Cut-and-Price Algorithm

We describe a BCP approach for VRPCC based on a set partition formulation
where each decision variable represents a feasible route [18]. Let P k be the set
containing all feasible routes for vehicle k ∈ K. We define the binary decision
variable λ = (λp, p ∈ P k, k ∈ K)T where λp takes value 1 if route p ∈ P k is
used by vehicle k and 0 otherwise. Denote the binary parameter a = (aip, i ∈
V, p ∈ P k, k ∈ K)T where aip takes value 1 if p ∈ P k visits node i ∈ V , and 0
otherwise. We consider cp as the cost of route p ∈ P k, k ∈ K. The set partition
formulation is given by

(SP) minimize
λ,τ

τ (8)

subject to
∑
k∈K

∑
p∈Pk

ajpλp = 1 ∀j ∈ V +, (9)

∑
p∈Pk

cpλp ≤ τ ∀k ∈ K, (10)

λp ∈ {0, 1} ∀p ∈ P k, ∀k ∈ K, (11)

where constraints (9) enforce that each node is visited exactly once and con-
straints (10) enforce that τ is the maximum cost of all routes. Due to the expo-
nential size of P k, k ∈ K, we exploit the BCP method to solve SP.

3.1 Column Generation

The idea of column generation is to maintain a subset P̄ k ⊂ P k for each k ∈ K.
We solve SP with P k replaced by P̄ k and detect whether any p ∈ P k\P̄K can
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improve the solution: if yes, we add those favorable routes p to P̄ k and repeat the
process; otherwise we claim optimality. We define a restricted master problem
(RMP) as linear relaxation of SP with P k replaced by P̄ k for all k ∈ K.

Clearly, any feasible primal solution to RMP is feasible to the linear relax-
ation of SP, but this is not necessarily true for their dual solutions. For each
vehicle k ∈ K, we want to find if there exists some favorable route p ∈ P k\P̄ k

that can improve the objective value of RMP. We define α, β as the dual variables
corresponding to constraints (9) and (10), respectively, and define the decision
variable y = (yijp, (i, j) ∈ E, p ∈ P k, k ∈ K)T where yijp takes value 1 if

(i, j) ∈ p and 0 otherwise. For each vehicle k ∈ K, with α̂, β̂ being current opti-
mal dual solution, the problem of pricing out a new route p (if exists) is given
by

(PP) zkPP(α̂, β̂) = min
y

β̂k ∑
(i,j)∈E

dijy
k
ijp −

∑
(i,j)∈E,j 6=0

α̂jy
k
ijp | p ∈ P k

 (12)

If the optimal objective value of PP is less than 0, then route p can poten-
tially improve the current best solution to RMP. For each vehicle k ∈ K, PP
is equivalent to the problem finding the shortest path in G(V,E), where the

cost of the edge is replaced by its reduced cost c̄ij = β̂kdij − α̂j for each edge

(i, j) ∈ E, j ∈ V +, and c̄i0 = β̂kdi,0 for each edge (i, 0) ∈ E. Since edge costs
can be negative in PP, this problem is NP-hard [2]. Solution approaches for PP
have been studied in [5, 10]. In this paper, we identify and generate the so-called
“ng-route” by implementing the following procedure. Suppose that we assign a
neighbor set to each node. An ng-route is a route where a node i ∈ V + can be
revisited after a vehicle visits a node whose neighbor set does not contain node i.
A label-setting algorithm, as shown in [5], can solve ng-route relaxation to PP
that would improve the solution time of RMP.

3.2 Cutting Planes

Valid inequalities help improving the quality of the solution produced by RMP.
We add subset-row inequalities from [17] as valid cuts when solving RMP. For any
set S = {i1, i2, i3} containing three vertices i1, i2, i3 ∈ V +, the corresponding
subset-row inequalities ensure that the sum of corresponding variables of all
selected routes that visit at least two vertices in S is at most 1. With set IS
containing all the routes in

⋃
k∈K P̄ k that visit at least two nodes in S, subset-

row inequalities are in the form of:∑
k∈K

∑
p∈IS

λp ≤ 1 ∀S ⊆ V, |S| = 3. (13)

We use the algorithm from [21] to solve PP with additional dual variables asso-
ciated with the added (13).
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3.3 Branching Rule

We adopt the following branching rules from [9]: we calculate the sum of flows for
each edge as fkij =

∑
p∈Pk aijpλp for all (i, j) ∈ E and k ∈ K. If fkij is fractional,

we generate two branches: fkij = 1, where vehicle k has to use edge (i, j), and

fkij = 0, where we exclude edge (i, j) from any route traveled by vehicle k ∈ K.

4 Approximation Algorithm

Our later computational results show that a straightforward implementation of
BCP is time consuming for VRPCC. Here we propose an O(log n)-approximation
algorithm, where we recall that n is the number of customer locations. The
algorithm is based on the solution approach for the following problem defined
on a network G = (V,E).

Problem 1. Maximum Budgeted Cover Problem
Input : A node subset X ⊂ V , a fleet K of vehicles and a budget B ≥ 0.
Output : A set H of routes, one for each vehicle k ∈ K, where each route has
cost less than B.
Objective: Maximize |H ∩X|.

A greedy 2-approximation algorithm for this problem follows from [6]. This
algorithm was based on the idea of iteratively picking a route that covers the
maximum number of remaining nodes for the current node subset X. We propose
a variant of this algorithm which is faster and still achieves a 2-approximation.

Our greedy algorithm works with an oracle for the orienteering problem,
where O(X,B, i) outputs a route, with cost less than B, for vehicle i ∈ K, which
covers the maximum number of nodes inX. The greedy algorithm,Greedy(X,B),
for the maximum budgeted cover problem is described in Algorithm 1.

Algorithm 1: A greedy algorithm for maximum budgeted cover

input : A fleet K of vehicles, a subset X ⊂ V and a budget of route B
output: A set H of routes with cost less than B, one route for each vehicle

1 H ← ∅, X ′ ← X
2 for i in K do
3 Ai = O(X ′, B, i)
4 H ← H ∪ {Ai}, X ′ ← X ′\Ai
5 end
6 return H

We propose the following lemmas to analyze the above algorithm. The proofs
are deferred to a full version.

Lemma 1. Algorithm 1 is a 2-approximation algorithm for the maximum bud-
geted cover problem.



6

Lemma 2. Greedy Algorithm needs to be executed at most log |X|+ 1 times to
cover all nodes in X with sufficient large budget B.

Next, we propose an approximation algorithm for VRPCC based on Algo-
rithm 1. We set X = V +, where recall that V + is the set of customer locations.
If budget B is sufficiently large that an optimal solution of maximum budgeted
cover problem covers every node in X, then by Lemma 2, we can use Algorithm 1
to produce a feasible solution to VRPCC, where each vehicle carries routes with
total cost at most (log n + 1)B. We apply binary search to find the smallest
budget B. We detail the algorithmic steps in Algorithm 2.

Algorithm 2: An approximation algorithm for VRPCC

input : A network G = (V,E), a fleet set of vehicles K, an budget B
output: Routing assignment for each vehicle in k ∈ K

1 Initialize Sk = ∅ for all k ∈ K, X ← V +, Solve← true
2 while X 6= ∅ do
3 H ← output of Algorithm 1 with input K,X,B
4 n = |X|, X ← X\H
5 if |X| > n

2 then Solve← false, go to Step 8
6 Update Sk with Ak ∈ H for all k ∈ K
7 end
8 Apply binary search to find optimal B based on the result of Solve, go to

Step 1 if B is not optimal
9 Shortcut the routes in Sk, k ∈ K to produce solution for VRPCC

The approximation factor of Algorithm 2 depends on the oracle for orien-
teering problem in Algorithm 1. If we use a “bicriteria” approximation for ori-
enteering that covers the optimal number of nodes with cost at most βB then
Algorithm 2 yields an approximation factor of β(log n + 1) following the result
from Lemma 2. In particular, we use a procedure from [14] which implies β = 3.

5 Numerical Results

We conduct numerical experiments to evaluate the performance of directly com-
puting the MIP, the BCP algorithm, and the approximation algorithm. We con-
duct experiments on Solomon’s instances [23] adapted to VRPCC settings. The
Solomon’s instances are classified into three classes according to different distri-
butions of customer locations: random distribution (R), clustered distribution
(C), and a mix of both (RC). The customer locations are distributed on a [0, 100]2

square. In the Solomon’s instances, there are 100 locations for each instance. We
pick the first n locations to test our algorithms, where n ∈ {10, 15, 20, 25, 30}.
We also test the performance of our algorithms on different fleet sizes m ∈ {3, 5}.
For each location v ∈ V +, we randomly pick two vehilces that are capable of
serving the corresponding customer. In practice, the average productivity of a
medical home crew ranges from 4–6 visits per day [11]. Therefore, the sizes of
our test instances are close to real-world medical home care instances.
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In our numerical experiments, for each test instance, we first solve the prob-
lem with model MIP and use the result as a benchmark. We use Gurobi 6.5 [16]
as the optimization solver. For the BCP algorithm, we use Gurobi as a linear
programming solver of RMP at each branched node, and managing the branch-
ing process by following the branching rule in Section 3.3. For the approximation
algorithm, we apply a procedure by Garg [14] that solves orienteering problem
for optimal number of nodes but with a budget 5B in Algorithm 1. We set the
running time limit for all programs as 1,200 seconds. We use Java and perform
numerical test on a Dell desktop with an Intel i7-3770 processor and 16 GB
memory.

For each instance, we report the following information: for MIP and BCP,
we report their best upper bounds (“UB”) and lower bounds (“LB”) achieved,
their gaps (“Gap”) and computational time (“Time(s)”); for approximation algo-
rithm, we report the objective values of its solutions (“Obj”) and computational
time (“Time(s)”). Tables 1 and 2 summarize the numerical performances of the
three methods. We use “–” to indicate that time limit for the computation of
the instance is reached.

Table 1. Numerical results with m = 3

MIP BCP Approx.

Type n LB UB Gap Time(s) LB UB Gap Time(s) Obj Time(s)

R101

10 87.00 87.00 0.00% 0.15 87.00 87.00 0.00% 4.26 147.00 0.16
15 100.00 100.00 0.00% 3.77 100.00 100.00 0.00% 288.20 155.00 0.19
20 114.00 114.00 0.00% 26.94 104.00 143.00 27.27% – 200.00 0.57
25 140.00 140.00 0.00% 912.77 122.00 223.00 45.29% – 230.00 1.10
30 138.00 153.00 9.80% – 132.58 252.00 47.39% – 247.00 1.83

C101

10 40.00 40.00 0.00% 1.12 40.00 40.00 0.00% 6.58 48.00 0.18
15 59.00 79.00 25.32% – 40.84 80.00 48.95% – 93.00 0.20
20 42.00 87.00 51.72% – 53.00 93.00 43.01% – 102.00 0.58
25 44.00 93.00 52.69% – 57.71 109.00 47.06% – 111.00 1.20
30 44.00 94.00 53.19% – 62.41 136.00 54.11% – 140.00 3.48

RC101

10 87.00 87.00 0.00% 0.63 87.00 87.00 0.00% 5.90 131.00 0.14
15 119.00 119.00 0.00% 1137.84 71.02 120.00 40.82% – 171.00 0.27
20 112.00 132.00 15.15% – 86.48 132.00 34.48% – 199.00 0.43
25 92.00 157.00 41.40% – 105.27 192.00 45.17% – 261.00 1.40
30 137.00 218.00 37.16% – 126.90 332.00 61.78% – 282.00 1.88

In Table 1, when m = 3, we see that MIP performs well for instances of type
R, in which it can solve up to 25-node instances. For instances of types C and RC,
we can no longer use MIP to solve instances with more than 15 nodes. This shows
that clustered distribution of nodes is more challenging to handle. At the same
time, BCP does not outperform MIP, and we can only use BCP to solve instances
with 15 nodes or fewer. Although BCP algorithm cannot be solved very efficiently
yet, it can produce better lower bound for instances that both MIP and BCP
cannot solve to optimality, e.g., instances with 20, 25, and 30 nodes of type C. On
the other hand, approximation algorithm solves all the instances very quickly.
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Table 2. Numerical results with m = 5

MIP BCP Approx.

Type n LB UB Gap Time(s) LB UB Gap Time(s) Obj Time(s)

R

10 69.00 69.00 0.00% 0.02 69.00 69.00 0.00% 0.74 119.00 0.04
15 97.00 97.00 0.00% 0.23 97.00 97.00 0.00% 115.94 162.00 0.09
20 106.00 106.00 0.00% 3.75 93.00 116.00 19.83% – 210.00 0.25
25 120.00 120.00 0.00% 29.45 98.00 142.00 30.99% – 220.00 0.50
30 123.00 123.00 0.00% 59.36 103.92 148.00 29.78% – 193.00 0.78

C

10 40.00 40.00 0.00% 0.04 40.00 40.00 0.00% 0.99 42.00 0.03
15 78.00 78.00 0.00% 4.71 78.00 78.00 0.00% 465.68 85.00 0.10
20 82.00 82.00 0.00% 914.80 50.00 85.00 41.18% – 96.00 0.22
25 62.00 85.00 27.06% – 52.38 123.00 57.41% – 127.00 0.45
30 61.00 87.00 29.89% – 55.43 106.00 47.71% – 110.00 1.00

RC

10 83.00 83.00 0.00% 0.09 83.00 83.00 0.00% 2.08 115.00 0.03
15 105.00 105.00 0.00% 7.00 105.00 105.00 0.00% 344.88 131.00 0.12
20 130.00 130.00 0.00% 25.76 94.33 169.00 44.18% – 197.00 0.28
25 137.00 139.00 1.44% – 95.28 202.00 52.83% – 246.00 0.50
30 167.00 171.00 2.34% – 109.27 328.00 66.69% – 307.00 0.82

The computation can be finished within 4 seconds for all instances, and there
is no significant difference in computational time when solving instances of type
C/RC than type R. Moreover, despite that the theoretical approximation bound
of our algorithm could be large when n increases, the practical approximation
ratio is within a factor of 2 when comparing the objective values of solutions
produced by the approximation algorithm with the best lower bounds produced
by MIP and BCP for all instances.

Table 2 summarizes the numerical results for instances with larger fleet size
m = 5. Results show that the computational time has been significantly im-
proved and more instances can be solved by MIP and BCP. Our approximation
algorithm can solve all instances within one second, and the practical approxima-
tion ratio is still within a factor of 2 comparing its objective values of solutions
with the best lower bounds of MIP and BCP.

To summarize, we recognize that different distributions of demand locations
could affect the computational time of our proposed exact solution methods.
Despite lacking efficient exact solution approaches for VRPCC, our proposed
approximation algorithm can efficiently solve the problem and provides good
practical solutions.

6 Conclusions and Future Research

In this paper, we formulated a minimum makespan routing problem with com-
patibility constraints. We proposed three solution approaches for the problem:
MIP, BCP, and an approximation algorithm. Numerical results showed that MIP
and BCP could not solve many of these instances to optimality (within our time
limit), whereas the approximation algorithm obtained good quality solutions
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within seconds. Moreover, our approximate solutions (for these instances) are
within two times the best lower bounds from MIP or BCP. Future research in-
cludes further investigation on BCP to improve its efficiency and designing good
implementations to improve the practical approximation factor of the approxi-
mation algorithm.
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