
Interpretable Apprenticeship Learning with
Temporal Logic Specifications

Daniel Kasenberg and Matthias Scheutz

Abstract— Recent work has addressed using formulas in
linear temporal logic (LTL) as specifications for agents plan-
ning in Markov Decision Processes (MDPs). We consider the
inverse problem: inferring an LTL specification from demon-
strated behavior trajectories in MDPs. We formulate this as a
multiobjective optimization problem, and describe state-based
(“what actually happened”) and action-based (“what the agent
expected to happen”) objective functions based on a notion of
“violation cost”. We demonstrate the efficacy of the approach
by employing genetic programming to solve this problem in
two simple domains.

I. INTRODUCTION

Apprenticeship learning, or learning behavior by observ-
ing expert demonstrations, allows artificial agents to learn
to perform tasks without requiring the system designer to
explicitly specify reward functions or objectives in advance.
Apprenticeship learning has been accomplished in agents
in stochastic domains, such as Markov Decision Processes
(MDPs), by means of inverse reinforcement learning (IRL),
in which agents infer some reward function presumed to
underlie the observed behavior. IRL has recently been criti-
cized, especially in learning ethical behavior [2], because the
resulting reward functions (1) may not be easily explained,
and (2) cannot represent complex temporal objectives.

Recent work (e.g., [5], [7], [21]) has proposed using linear
temporal logic (LTL) as a specification language for agents
in MDPs. An agent in a stochastic domain may be provided
a formula in LTL, which it must satisfy with maximal prob-
ability. These approaches require the LTL specification to be
specified a priori (e.g., by the system designer, although [6]
construct specifications from natural language instruction).

This paper proposes combining the virtues of these ap-
proaches by inferring LTL formulas from observed behavior
trajectories. Specifically, this inference problem can be for-
mulated as multiobjective optimization over the space of LTL
formulas. The two objective functions represent (1) the extent
to which the given formula explains the observed behavior,
and (2) the complexity of the given formula. The resulting
specifications are interpretable, and can be subsequently
applied to new problems, but do not need to be specified
in advance by the system designer.

The key contributions of this work are (1) the introduction
of this problem and its formulation as an optimization
problem; and (2) the notion of violation cost, and the state-
and action-based objectives based on this notion.

Authors are with the Department of Computer Science, Tufts Uni-
versity, Medford, MA 02155, USA. The corresponding author is
dmk@cs.tufts.edu

In the remainder of the paper, we first discuss related
work; we then describe our formulation of this problem as
multiobjective optimization, defining a notion of “violation
cost” and then describing state-based and action-based objec-
tives, corresponding to inferring a specification from “what
actually happened” and “what the demonstrator expected
to happen” respectively. We demonstrate the usefulness of
the formulation by using genetic programming to optimize
these objectives in two domains, called SlimChance and
CleaningWorld. We discuss issues pertaining to our approach
and directions for future work, and summarize our results.

II. RELATED WORK

The proposed problem draws primarily upon ideas from
apprenticeship learning (particularly, inverse reinforcement
learning), stochastic planning with temporal logic specifica-
tions, and inferring temporal logic descriptions of systems.

A. Apprenticeship Learning

Apprenticeship learning, the problem of learning correct
behavior by observing the policies or behavioral trajectories
of one or more experts, has predominantly been accom-
plished by inverse reinforcement learning (IRL) [15], [1].
IRL algorithms generally compute a reward function that
“explains” the observed trajectories (typically, by maximally
differentiating them from random behavior). Complete dis-
cussion of the many types of IRL algorithms is beyond the
scope of this paper.

The proposed approach bears some resemblance to IRL,
particularly in its inputs (sets of finite behavioral trajec-
tories). Instead of computing a reward function based on
the observed trajectories, however, the proposed approach
computes a formula in linear temporal logic that optimally
“explains” the data. This addresses the criticisms of [2],
who claim that IRL is insufficient in morally and socially
important domains because (1) reward functions can be
difficult for human instructors to understand and correct,
and (2) some moral and social goals may be too temporally
complex to be representable using reward functions.

B. Stochastic Planning with Temporal Logic Specifications

There has been a wealth of work in recent years on
providing agents in stochastic domains (namely, Markov
Decision Processes) with specifications in linear temporal
logic (LTL). The most straightforward approach is [5], which
we describe further in section III-C. The problem is to
compute some policy which satisfies some LTL formula with
maximal probability.

More sophisticated approaches consider the same problem
in the face of uncertain transition dynamics [21], [7], par-
tial observability [19], [18], and multi-agent domains [13],
[10]. Also relevant to the proposed approach is the idea of
“weighted skipping” that appears (in deterministic domains)
in [17], [20], [12].

The problem of inferring LTL specifications from behavior
trajectories is complementary to the problem of stochastic
planning with LTL specifications, much as IRL is comple-
mentary to “traditional” reinforcement learning (RL). Spec-
ifications learned using the proposed approach may be used
for planning, and trajectories generated from planning agents
may be used to infer the underlying LTL specification.

C. Inferring Temporal Logic Rules from Agent Behavior

The task of generating temporal logic rules that describe
data is not a new one. Automatic identification of temporal
logic rules describing the behavior of software programs (in
the category of “specification mining”) has been attempted
in, e.g., [8], [9], [14]. Lemieux et al’s Texada [14] allows
users to enter custom templates for formulas and retrieves all
formulas satisfied by the observed traces up to user-defined
support and confidence thresholds; this differs from the work
of Gabel and Su, who decompose complex specifications
into combinations of predefined templates. Specifications in
a temporal logic (rPSTL) have also been inferred from data
in continuous control systems in [11]. Each approach deals
with (deterministic) program traces.

The proposed approach is most strongly influenced by [4],
which casts the task of inferring temporal logic specifications
for finite state machines as a multiobjective optimization
problem amenable to genetic programming. Much of our
approach follows from this work; our novel contribution is
introducing the problem of applying such methods to agent
behavior in stochastic domains, and in particular our notion
of the violation cost as an objective function.

III. PRELIMINARIES

In this section we provide formal definitions of Markov
Decision Processes (MDPs) and linear temporal logic (LTL);
we then outline the approach taken in [5] for planning to
satisfy (with maximum probability) LTL formulas in MDPs.

A. Markov Decision Processes

The proposed approach pertains to agents in Markov De-
cision Processes (MDPs) augmented with a set, Π, of atomic
propositions. Since reward functions are not important to this
problem, we omit them. All notation and references to MDPs
in this paper assume this construction.

Formally, a Markov Decision Process is a tuple

M = ⟨S,U,A, P, s0,Π,L⟩

where
• S is a (finite) set of states;
• U is a (finite) set of actions;
• A : S → 2U specifies which actions are available in

each state;

• P : S × U × S → [0, 1] is a transition function, with
P (s, a, s′) = 0 if a /∈ A(s), so that P (s, a, s′) is the
probability of transitioning to s′ by beginning in s and
taking action a;

• s0 is an initial state;
• Π is a set of atomic propositions; and
• L : S → 2Π is the labeling function, so that L(s) is the

set of propositions that are true in state s.

A trajectory in an MDP specifies the path of an agent
through the state space. A finite trajectory is a finite se-
quence of state-action pairs followed by a final state (e.g.,
τ = (s0, a0), · · · , (sT−1, aT−1), sT); an infinite trajectory
takes T → ∞, and is an infinite sequence of state-action
pairs (e.g., τ = (s0, a0), (s1, a1), · · ·). A sequence (finite or
infinite) is only a trajectory if P (st, at, st+1) > 0 for all
t ∈ {0, · · · , T − 1}. We will denote by TrajM the set of
all finite trajectories in an MDP M, and by ITrajM the set
of all infinite trajectories in M. We will denote by τ |T the
T -time step truncation (s0, a0), · · · , (sT−1, aT−1), sT of an
infinite trajectory r = (s0, a0), (s1, a1), · · · .

A policy M : TrajM × U → [0, 1] is a probability
distribution over an agent’s next action, given its previous
(finite) trajectory. A policy is said to be deterministic if,
for each trajectory, the returned distribution allots nonzero
probability for only one action; we write M : TrajM → U .
A policy is said to be stationary if the returned distribution
depends only on the last state of the trajectory; we write
π : S × U → [0, 1].

We denote ITrajMM the set of all infinite trajectories that
may occur under a given policy M . More formally,

ITrajMM = {τ = (s0, a0), (s1, a1), · · · ∈ ITrajM :

M(τ |T , aT) > 0 for all T}

B. Linear Temporal Logic

Linear temporal logic (LTL) [16] is a multimodal logic
over propositions that linearly encodes time. Its syntax is as
follows:

ϕ ::=⊤ | ⊥ | p,where p ∈ Π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
ϕ1 → ϕ2 | Xϕ | Gϕ | Fϕ | ϕ1 U ϕ2

Here Xϕ means “in the next time step, ϕ”; Gϕ means “in
all present and future time steps, ϕ”; Fϕ means “in some
present or future time step, ϕ”; and ϕ1 U ϕ2 means “ϕ1 will
be true until ϕ2 holds”.

The truth-value of an LTL formula is evaluated over an
infinite sequence of valuations σ0, σ1, · · · , where for all i,
σi ⊆ Π. We say σ0, σ1, · · · ⊨ ϕ if ϕ is true given the infinite
sequence of valuations σ0, σ1, · · · .

There is thus a clear mapping between infinite trajectories
and LTL formulas. We abuse notation slightly and define

L((s0, a0), (s1, a1), · · ·) = L(s0),L(s1), · · ·

We abuse notation further and say that for any τ ∈ ITrajM,
τ ⊨ ϕ if L(τ) ⊨ ϕ.

We define the probability that a given policy satisfies an
LTL formula ϕ by

PrMM(ϕ) = Pr{τ ∈ ITrajMM : τ ⊨ ϕ}

That is, the probability that an infinite trajectory under M
will satisfy ϕ.

Each LTL formula can be translated into a deterministic
Rabin automaton (DRA), a finite automaton over infinite
words. DRAs are the standard approach to model checking
for LTL. A DRA is a tuple

D = ⟨Q,Σ, δ, q0, F ⟩

where
• Q is a finite set of states;
• Σ is an alphabet (in this case, Σ = 2Π, so words are

infinite sequences of valuations);
• δ : Q× Σ→ Q is a (deterministic) transition function;
• q0 is an initial state; and
• F = {(Fin1, Inf1), · · · , (Fink, Infk)}, where Fin ⊆ Q,

Inf ⊆ Q for all (Inf,Fin) ∈ F specifies the acceptance
conditions.

A run r = q0, q1, · · · of a DRA is an infinite sequence of
DRA states such that there is some word σ0σ1 · · · such that
δ(qi, σi) = qi+1 for all i. A run r is considered accepting if
there exists some (Fin, Inf) ∈ F such that for all q ∈ Fin, q
is visited only finitely often in r, and Inf is visited infinitely
often in r.

C. Stochastic Planning with LTL Specifications

Planning to satisfy a given LTL formula ϕ within an
MDP M with maximum probability generally follows the
approach of [5].

The planning agent runs the DRA for ϕ alongside M by
constructing a product MDP M× which augments the state
space to include information about the current DRA state.

Formally, the product of an MDP M =
⟨S,U,A, T, s0,Π,L⟩ and a DRA D = ⟨Q, 2Π, δ, q0, F ⟩ is
an MDP

M× = ⟨S×, U×, A×, P×, s×0 ,Π
×,L×⟩

where
• S× = S ×Q;
• U× = U ;A× = A;
• P×((s, q), a, (s′, q′)) ={

P (s, a, s′) if q′ = δ(q,L(s′))
0 otherwise

• s×0 = (s0, δ(q0,L(s0)))
• Π× = Π; and L× = L.

The agent constructs the product MDP M×, and then
computes its accepting maximal end components (AMECs).
An end component E of an MDP M× is a set of states
SE ⊂ S× and an action restriction (mapping from states to
sets of actions) AE : SE → 2U such that (1) any agent in SE
that performs only actions as specified by AE will remain

in SE ; and (2) any agent with a policy assigning nonzero
probability to all actions in AE is guaranteed to eventually
visit each state in AE infinitely often.

An end component thus specifies a set of states SE such
that with an appropriate choice in policy, the agent can
guarantee that it will remain in SE forever, and that it will
reach every state in SE infinitely often. An end component
is maximal if it is not a proper subset of another end
component. An end component is accepting if there is some
(Fin, Inf) ∈ F such that (1) if q ∈ Fin, then (s, q) /∈ SE
for all s ∈ S; and (2) there exists some q ∈ Inf, s ∈ S
such that (s, q) ∈ SE . In this case, by entering SE and
choosing an appropriate policy (for instance, a uniformly
random policy over AE), the agent guarantees that the DRA
run will be accepting. A method for computing the AMECs
of the product MDP is found in [3].

The problem of satisfying ϕ with maximal probability
is thus reduced to the problem of reaching, with maximal
probability, any state in any AMEC. [5] shows how this can
be solved using linear programming.

IV. OPTIMIZATION PROBLEM

Suppose that an agent is given some set of finite be-
havior trajectories τ1, · · · , τm ∈ TrajM, where τ i =
(si0, a

i
0), · · · , (siTi−1, a

i
Ti−1), s

i
Ti

for all i ∈ {1, · · · ,m}.
We refer to the agent whose trajectories are observed as

the demonstrator, and the agent that observes the trajectories
as the apprentice. There may be several demonstrators satis-
fying the same objectives; this does not affect the proposed
approach.

The proposed problem is to infer an LTL specification that
well (and succinctly) explains the observed trajectories. This
can be cast as a multiobjective optimization problem with
two objective functions:

1) An objective function representing how well a can-
didate LTL formula explains the observed trajectories
(and distinguishes them from random behavior); and

2) An objective function representing the complexity of
a candidate LTL formula.

This section proceeds by describing a notion of “violation
cost” (and defining the violation cost of infinite trajectories
and policies) and using it to define two alternate objective
functions representing (a) how well a candidate formula
explains the actual observed state sequence (a “state-based”
objective function), and (b) how well a candidate formula
explains the actions of the demonstrator in each state (an
“action-based” objective function). We then describe the
simple notion of formula complexity we will utilize, and
formulate the optimization problem.

A. Violation Cost

We are interested in computing LTL formulas that well ex-
plain the demonstrator’s trajectories. These formulas should
be satisfied by the observed behavior, but not by random
behavior within the same MDP (since, for example, the trivial
formula G ⊤ will be satisfied by the observed behavior,
but also by random behavior). Ideally we could assign a

“cost” either to trajectories (finite or infinite) or to policies
(and, particularly, to the uniformly random policy in M),
where the cost of a trajectory or policy corresponds to
its adherence to or deviance from the specification. Given
such a cost function C, the objective would be to minimize∑

i

(
C(τ i)− C(πrand)

)
, where πrand : S × U → [0, 1] is

the uniformly-random (stationary) policy over M:

πrand(s, a) =

{
1

|A(s)| if a ∈ A(s)

0 otherwise

The obvious choice of such a cost function (over infinite
trajectories τ) would be the indicator function 1τ⊭ϕ which
returns 0 if τ ⊨ ϕ and 1 otherwise; this function may be
extended to general policies M by 1− PrMM(ϕ). This func-
tion, however, cannot distinguish between small and large
deviances from the specification. For example, given the
specification G p, this function cannot differentiate between
τ such that p is almost always true and τ such that p is never
true. We thus propose a more sophisticated cost function.

For τ ∈ ITrajM, N a set of nonnegative integers, we
define τ\N to be the subsequence of τ omitting the state-
action pairs with time step indices in N . For example,
(s0, a0), (s1, a1), (s2, a2), , · · · \{1} = (s0, a0), (s2, a2), · · · .
Each time step with an index in N is said to be “skipped”.

We define the violation cost of an infinite trajectory
τ ∈ ITrajM subject to the formula ϕ as the (discounted)
minimum number of time steps that must be skipped in order
for the agent to satisfy the formula:

Violϕ(τ) = min
N⊆N0

τ\N⊨ϕ

∞∑
t=0

γt1t∈N (1)

Note that if τ ⊨ ϕ, then Violϕ(τ) = 0.
In order to define a similar measure for policies, we

must construct an augmented product MDP M⊗, which is
similar to M× as described in section III-C, but allows
an agent to “skip” states by performing at each time step
(simultaneously with their normal actions), a “DRA action”
ã ∈ {keep, susp}, where keep causes the DRA to transition
as usual, and susp causes the DRA to not update in response
to the new state.

Formally, given an MDP M = ⟨S,U,A, T, s0,Π,L⟩
and a DRA D = ⟨Q,Σ, δ, q0, F ⟩ corresponding to the
specification ϕ, we may construct a product MDP M⊗ =
⟨S⊗, U⊗, A⊗, T⊗, s⊗−1,Π

⊗,L⊗⟩ as follows:
• S⊗ = (S ∪ {s−1})×Q
• U⊗ = (U ∪ {a−1})× Ũ , where Ũ = {keep, susp}

• A⊗((s, q)) =

{
{a−1} × Ũ if s = s−1

A(s)× Ũ otherwise
• s⊗−1 = (s−1, q0)
• P⊗(s⊗−1, (a−1, keep), (s0, δ(q0,L(s0)))) = 1
• P⊗(s⊗−1, (a−1, susp), (s0, q0)) = 1
• Otherwise, P⊗((s, q), (a, ã), (s′, q′)) =⎧⎪⎨⎪⎩

P (s, a, s′) if q′ = δ(q,L(s′)) and ã = keep

P (s, a, s′) if q′ = q and ã = susp

0 otherwise

• Π⊗ = Π,L⊗ = L
The state s−1 and action a−1 are added so that the agent
may choose to “skip” time step t = 0. This is necessary for
the case that s0 violates the specification.

Note that the transition dynamics ofM⊗ are such that N
(the set of “skipped” time step indices) can be defined as

N = {t ∈ N0 : ãt−1 = susp} (2)

Define the transition cost s⊗, (a, ã), s⊗′ in M⊗ as

TC(s⊗, (a, ã), s⊗
′
) = 1ã=susp (3)

The violation cost of a (non-product) trajectory τ can then
be rewritten as a discounted sum of the transition costs at
each stage, minimized over the DRA actions ã−1, ã0, ã1, · · · ,
subject to the constraint that the DRA run from carrying out
τ and the DRA actions must be accepting. This indicates
that the violation cost of a policy π may be thought of as
the state-value function for the policy π with respect to TC.
Indeed, we will define the violation cost of a policy this way.

We define a product policy to be a stationary policy π⊗ :
S⊗× (U ∪{a−1})→ [0, 1]. When we consider the violation
cost of a policy, we will assume a product policy of this
form.

There are two reasons for this. First, when evaluating a
candidate specification, we wish to assume the demonstrator
had knowledge of that specification (or else we would
be unable to notice complex temporal patterns in agent
behavior), and thus that the demonstrator’s policy is over
product states. Second, we wish to allow the demonstrator
to observe the new (non-product) state st before deciding
whether to “skip” time step t. That is, st should be observed
before ãt−1 is chosen, which is inconsistent with the typical
policy π : S⊗ × U⊗ → [0, 1] over the product space.

We can easily construct a product policy from the uni-
formly random policy on M. We define π⊗

rand((s, q), a) =
πrand(s, a) for all s ∈ S, a ∈ A.

Upon constructing the product MDPM⊗, we compute its
AMECs (as in section III-C). Then let Sgood =

⋃
i∈{1,··· ,p}

SEi
,

and let Sbad be the set of states in the product space
from which no state in Sgood can be reached; these can be
determined by breadth-first search.

We can use a form of the Bellman update equation to
perform policy evaluation on a product policy π⊗. For
each state s⊗ ∈ Sbad, we initialize the cost of this state
to the maximum discounted cost, 1

1−γ , and we do not
update these costs. This is done to enforce the constraint
that the minimization should be over accepting DRA runs.
Otherwise, the violation cost will always be trivially zero
(since ã = keep will always be picked). The update equation
has the following form:

Viol(k+1)((s, q))←
(∑

a∈A(s)

π⊗((s, q), a)
(∑

s′∈S

P (s, a, s′)

min{1 + γViol(k)(s′, q), γViol(k)(s′, δ(q,L(s′)))}
))
(4)

Algorithm 1 Best DRA state sequence for finite state
sequence s0, · · · , sT

1: function GETRABINSTATESEQUENCE(V iol
π⊗
rand

ϕ , M⊗,
Sbad, s0, · · · , sT)

2: Ct[s
⊗]←∞ for all t ∈ {−1, 0, · · · , T}, s⊗ ∈ S⊗

3: R−1 = {s⊗−1}
4: C−1[s

⊗
−1]← 0

5: seq−1[s
⊗
−1]← q0

6: for t ∈ {0, · · · , T} do
7: Rt = ∅
8: for (s, q) ∈ Rt−1 do
9: q′ ← δ(q,L(st))

10: Rt ← Rt ∪ {(st, q), (st, q′)}
11: if Ct−1[(s, q)] + γt < Ct[(st, q)] then
12: Ct[(st, q)]← Ct−1[(s, q)] + γt

13: seqt[(st, q)]← (seqt−1[(s, q)], q)
14: end if
15: if Ct−1[(s, q)] < Ct−1[(st, q

′)] then
16: Ct[(st, q

′)]← Ct−1[(s, q)]
17: seqt[(st, q

′)]← (seqt−1[(s, q)], q
′)

18: end if
19: end for
20: end for
21: s⊗T ← argmin

s⊗∈RT \Sbad

CT [s
⊗] + γT+1Viol

π⊗
rand

ϕ (s⊗) return

seqT [s
⊗
T], CT [s

⊗
T] + γT+1Viol

π⊗
rand

ϕ (s⊗T)
22: end function

The min{·} in (4) is where the optimization over ã
(implicitly) occurs. Choosing ã = susp incurs a transition
cost of 1 and then causes the DRA to remain in state q;
choosing ã = keep incurs no transition cost, but causes the
DRA to transition to state δ(q,L(s′)). The ability for the
demonstrator to optimize over ã after observing the new state
s′ corresponds to the location of the min{·} in the Bellman
update.

We define the violation cost of a policy as the function that
results when running this update equation to convergence:

Violπ
⊗

ϕ ((s, q)) = lim
k→∞

Viol(k)((s, q)) (5)

We now consider state-based (“what actually happened”)
and action-based (“what the agent expected to happen”)
objective functions, for explaining sets of finite trajectories.

The crux of both the state- and action-based objective
functions is Algorithm 1. Given a finite sequence of states
s0, · · · , sT , Algorithm 1 determines the “optimal product-
space interpretation” of s0, · · · , sT . We define a product
space interpretation of a sequence of states s0, · · · , sT in
an MDP M as a sequence of DRA states q0, · · · , qT+1

such that, for all i ∈ {1, · · · , T + 1}, either qi = qi−1, or
qi = δ(qi−1,L(si−1)). That is, a product-space interpretation
specifies a possible trajectory in M⊗ that is consistent with
the observed trajectory in M.

Algorithm 1 uses dynamic programming to determine, for
each time step t, the set of states Rt of DRA states that the
demonstrator could be in at time t (lines 3,7, and 10), as well
as the minimal violation cost Ct[qt+1] that would need to be
accrued in order to be in each such state qt+1 (lines 2,4, 12,

and 16). The sequence seqt[(st, qt+1)] = q0, · · · , qT+1 that
achieves this minimal cost is also computed (lines 5, 13, and
17).

The apprentice then assumes that the demonstrator acted
randomly from time step T + 1 onward. Although this
assumption is probably incorrect, it is not entirely unreason-
able, since it avoids the assumption that the demonstrator
attempted to satisfy the formula after time step T + 1,
which would artificially drive the net violation cost down;
this allows the apprentice to reuse values that are already
computed in order to evaluate the random policy.

Employing this assumption, the apprentice determines the
optimal product-space interpretation as seqT [s

⊗
T], where

s⊗T = argmin
s⊗∈RT \Sbad

CT [s
⊗] + γT+1Viol

π⊗
rand

ϕ (s⊗) (6)

1) State-based objective function: We first consider an
approach to estimating the violation cost of a finite trajec-
tory that considers only the states visited in the trajectory,
ignoring the demonstrator’s actions.

The state-based violation cost is the minimand of (6),
which is the second value returned by Algorithm 1:

ViolSϕ(τ) = CT [s
⊗
T] + γT+1Viol

π⊗
rand

ϕ (s⊗T) (7)

Thus the state-based objective function for τ1, · · · , τm is the
sum of the estimated violation costs of all observed finite
trajectories, less m times the expected violation cost of the
random policy from the initial state:

ObjS(ϕ) =

(
m∑
i=1

ViolSϕ(τ
i)

)
−mViol

π⊗
rand

ϕ (s⊗−1) (8)

The main drawback of the state-based approach is that
by ignoring the observed actions, the apprentice neglects
a crucial detail: that what the demonstrator “expected” or
“intended” to satisfy may differ from what actually was
satisfied. The fact that p did not occur does not mean that
the demonstrator was not attempting to make p occur with
maximal probability, particularly if p is a very rare event. To
solve this problem, we consider an action-based approach.

2) Action-based objective function: We now consider
estimating the violation cost of a finite trajectory τ by using
the observed state-action pairs to compute a partial policy
over the product MDP M⊗.

To compute the action-based violation cost of a set of
trajectories τ1, · · · , τm (Algorithm 2), the apprentice first
runs Algorithm 1 to determine the optimal product-space in-
terpretation qi0, · · · , qiT+1 for each trajectory τ i (line 4), and
uses this to compute the resulting product-space sequence
s⊗i
−1, · · · , s

⊗i
T where s⊗i

t = (sit, q
i
t+1).

The assumption that for each i ∈ {1, · · · ,m}, t ∈
{0, · · · , Ti− 1}, the demonstrator performed ait when in the
inferred product MDP state s⊗i

t , induces an action restriction
(lines 6 and 11) A∗ : S⊗ → 2U where

A∗(s⊗) =

⎧⎪⎨⎪⎩
⋃
i,t:

s⊗=s⊗i
t

{ait} if
⋃
i,t:

s⊗=s⊗i
t

{ait} ≠ ∅

A⊗(s⊗) otherwise

Algorithm 2 Action-based violation cost of set of finite
set of finite state-action trajectories τ1, · · · , τm where τ i =
(si0, a

i
0), · · · , (siTi−1, a

i
Ti−1), s

i
Ti

1: function ACTIONBASEDVIOLATIONCOST(V iol
πrand
M

ϕ , M⊗,
Sbad, τ1, · · · , τm)

2: A∗[s⊗]← ∅ for s⊗ ∈ S⊗

3: for i ∈ {1, · · · ,m} do
4: qi0, · · · , qiTi+1, V ← GETRABINSTATESE-

QUENCE(si0, · · · , siTi
)

5: for t ∈ {−1, 0, · · · , Ti − 1} do
6: A∗[(sit, q

i
t+1)]← A∗[(sit, q

i
t+1)] ∪ {ai

t}
7: end for
8: end for
9: for s⊗ = (s, q) ∈ S⊗ do

10: if A∗[s⊗] = ∅ then
11: A∗[s⊗] = A(s)
12: end if
13: end for
14: Compute Viol

π⊗
A∗

ϕ using (4)

15: return Viol
π⊗
A∗

ϕ (s⊗−1)
16: end function

The apprentice may then compute, using the Bellman update
(4), the violation cost of the policy πrand

A∗ (s⊗) that uniformly-
randomly chooses an action from A∗(s⊗) at each state s⊗

(line 14):

π⊗
A∗(s

⊗, a) =

{
1

|A∗(s⊗)| if a ∈ A∗(s⊗)

0 otherwise

The action-based objective function is then

ObjA(ϕ) = Viol
π⊗
A∗

ϕ (s⊗−1)−Viol
π⊗
rand

ϕ (s⊗−1) (9)

B. Formula Complexity

Given two formulas that equally distinguish between the
observed behavior and random behavior, we wish to select
the less complex of the two. Here it suffices to simply
minimize the number of nodes in the parse tree for the
LTL formula (that is, the total number of symbols in the
formula). There are also more sophisticated ways to evaluate
formula complexity (such as that used in [4]), but they are
not necessary for our purposes.

C. Multiobjective Optimization Problem

Given some set of finite trajectories τ1, · · · , τm, we thus
frame the problem of inferring some LTL formula ϕ that
describes τ1, · · · , τm as

min
ϕ∈LTL

(Obj(ϕ), FC(ϕ))

where Obj is either ObjS , as described in (8), or ObjA, as
described in (9); FC is formula complexity (in this case,
the number of nodes in the formula) as specified in section
IV-B.

V. EXAMPLES

To demonstrate the effectiveness of the proposed objective
functions, we employed genetic programming to evolve a set
of LTL formulas (where formulas are represented by their
parse trees) in two domains. A summary of the domains used
is in Table I. In all demonstrations, we used MOEAFrame-
work [?] for genetic programming, using standard tree
crossover and mutation operations [?]. We consider (sepa-
rately) the state-based and action-based objectives. NSGA-
II over each set of objectives was run for 50 generations
with a population size of 100. This process was repeated 20
times. We employed BURLAP [?] for MDP planning, and
Rabinizer 3 [?] for converting LTL formulas to DRAs. In
each case, we restricted search to formulas of the form G ϕ.

The tables in this section show formulas that are Pareto
efficient in at least two NSGA-II runs - that is, there were
no solutions within those runs that outperformed them on
both objectives. For any Pareto inefficient formula ϕ, there
is some formula ϕ′ which both (1) better explains the
demonstrated trajectories (as measured by the violation-cost
objective function) and (2) is simpler. Thus it is reasonable
to restrict consideration to only Pareto efficient solutions.

A. SlimChance domain

The SlimChance domain consists of two states: sGOOD,
a “good” state, and sBAD, a “bad” state. The agent has two
actions: try, and notry. If the agent performs notry, the
next state is always sBAD; if the agent performs try, the
next state is sGOOD with small probability ϵ = 0.01 and
sBAD otherwise. Thus, performing the try action is “trying”
to make the good state occur, but will rarely succeed.

The set Π of atomic propositions for this problem consists
of a single proposition good, which is true in sGOOD but
false in sBAD. We then suppose that the agent is attempting
to satisfy the simple LTL formula G good.

A demonstrator attempting to minimize violation cost
generated three trajectories of 10 time steps each. This
resulted in the following trajectories (note that τ1 = τ3,
which occurred randomly):

τ1, τ3 =(sBAD, try), (sBAD, try), (sBAD, try),

(sBAD, try), (sBAD, try), (sBAD, try), (sBAD, try),

(sBAD, try), (sBAD, try), (sBAD, try), sBAD

τ2 =(sBAD, try), (sGOOD, try), (sBAD, try), (sBAD, try),

(sBAD, try), (sBAD, try), (sBAD, try), (sBAD, try),

(sBAD, try), (sBAD, try), sBAD

Tables II and III show all solutions that were Pareto efficient
in at least two runs, for ObjS and ObjA respectively. The
results emphasize the distinction between the two objective
functions. In Table II the correct formula G good is Pareto
efficient in two runs, but in most runs the obviously-incorrect
G ⊥ is the only Pareto efficient formula (and note that
ObjS(G ⊥) ≊ ObjS(G good)). In contrast, Table III shows
that when using ObjA, the true function G good is Pareto
efficient in all twenty runs.

TABLE I
SUMMARY OF EXAMPLE DOMAINS, WITH RUN TIMES FOR STATE-BASED/ACTION-BASED OBJECTIVES

Domain # States # Actions “Actual” specification Time, state-based (s) Time, action-based (s)
SlimChance 2 2 G good 174.8± 18.0 372.0± 43.3

CleaningWorld 77 5 G (X(vacuum) U roomClean) 19139.3± 671.2 32932.3± 1755.0

TABLE II
PARETO EFFICIENT SOLUTIONS IN STATE-BASED SLIMCHANCE

Formula ϕ ObjS(ϕ) FC(ϕ) # Runs
G⊥ -0.3139852 2 18

G good -0.3139852 2 2

TABLE III
PARETO EFFICIENT SOLUTIONS IN ACTION-BASED SLIMCHANCE

Formula ϕ ObjA(ϕ) FC(ϕ) # Runs
G good -0.4623490 2 20

G(good U (X good)) -0.4939355 5 5
G(good ∨ X good) -0.9400473 5 5

G((X good) U good) -0.9400473 5 3
G((X good) ∨ good) -0.9400424 5 2

B. CleaningWorld domain

In the CleaningWorld domain, the agent is a vacuum
cleaning robot in a dirty room. The room is characterized
by some initial amount dirt ∈ N0 of dirt; the agent has
some battery level battery ∈ N0. The actions available to
the agent are: vacuum, which reduces both dirt and battery
by one; dock, which plugs the robot into a charger, allowing
it to increment battery for each time step it remains docked;
undock, which unplugs the robot from the charger; wait,
which allows the robot to remain docked if it is currently
docked, but otherwise simply decrements battery. If the
robot’s battery dies (battery = 0), the robot may only
perform the dummy action beDead. The domain has two
propositions batteryDead, which is true iff battery = 0,
and roomClean, which is true iff dirt = 0. There are also
propositions corresponding to each action (where, e.g., the
proposition vacuum is true whenever the agent’s last action
was to vacuum). The agent is to satisfy the LTL objective
G ((X vacuum) U roomClean).

An agent attempting to minimize violation cost for this
specification produced three demonstration trajectories of 10
time steps each. Because CleaningWorld is deterministic, all
three trajectories were identical. Here we represent each state
s by (d, b) where d is the amount of dirt still in the room in
state s and b is the robot’s current battery level.

τ1, τ2, τ3 =((5, 3), vacuum), ((4, 2), vacuum),

((3, 1), dock), ((3, 1), wait), ((3, 3), undock),

((3, 3), vacuum), ((2, 2), vacuum), ((1, 1), dock),

((1, 1), wait), ((1, 3), undock), (1, 3)

Tables IV and V show all solutions that were Pareto
efficient in at least two runs, for ObjS and ObjA respectively.
The formulas G roomClean and G(F roomClean) are
generated in all 20 runs by both ObjS and ObjA. These

TABLE IV
PARETO EFFICIENT SOLUTIONS IN STATE-BASED CLEANINGWORLD

Formula ϕ ObjS(ϕ) FC(ϕ) # Runs
G roomClean -208.69876 2 20

G(F roomClean) -216.91139 3 20
G((X roomClean) ∨ vacuum) -217.40816 5 2

G((G ⊤) U roomClean) -216.91169 5 2
G(F(undock U roomClean)) -216.91170 5 2

TABLE V
PARETO EFFICIENT SOLUTIONS IN ACTION-BASED CLEANINGWORLD

Formula ϕ ObjA(ϕ) FC(ϕ) # Runs
G(roomClean) -72.74240 2 20
G(F roomClean) -75.15686 3 20

G(vacuum ∨ F roomClean) -75.15832 5 3
G(F(roomClean ∨ dock)) -75.15782 5 3
G((F roomClean) ∨ dock) -75.15832 5 2

G((XroomClean) ∨ vacuum) -75.64639 5 2

formulas (in particular, G roomClean) arguably better de-
scribe agent behavior than the “actual” specification ϕact =
G((X vacuum) U roomClean): they are simpler than ϕact

while generating identical trajectories. This is reflected by
the fact that ϕact was generated by the algorithm for both
state- and action-based runs, but ObjS(ϕact) = −215.78773,
ObjA(ϕact) = −75.10621, and FC(ϕact) = 5, which is
Pareto dominated by G(F roomClean) when considering
either ObjS or ObjA. Perhaps because of this, the actual
formula is never recovered (although similar formulas occa-
sionally are, such as G((XroomClean) ∨ vacuum)).

VI. DISCUSSION

While for demonstration purposes we chose to use NSGA-
II for optimization, in principle any algorithm that can
optimize over LTL formulas should suffice. Exploring other
algorithms is a topic for future work. In particular, the
genetic programming methods employed operate entirely on
the syntax of LTL; a method that can make some use of LTL
semantics may find optimal solutions more efficiently.

Optimizing over the space of all LTL formulas is difficult
because of the combinatorial nature of this space. Since the
number of LTL formulas of length ℓ increases exponentially
in ℓ, optimization algorithms like NSGA-II are likely to
recover simple formulas that explain the demonstrator’s be-
havior reasonably well, but are less likely to recover complex
formulas that better explain the behavior.

We do not specify how to select between Pareto efficient
solutions; this depends on the relative degree to which
system designers value simplicity versus explanatory power.
In practice, system designers with clear preferences could
convert the given problem into a single-objective problem
with objective f(Obj(ϕ), FC(ϕ)) where f is some nonde-
creasing function encoding these preferences.

The major drawback of the proposed approach is its scal-
ability. Table I indicates that evaluation on CleaningWorld

with the action-based objective took, on average, roughly
9h 9m. For problems with much larger state and action
spaces, this approach is certainly intractable. Theoretically,
a single iteration in the computation of Violπϕ takes time in
O(|S|2|Q||U |). Run time for objective function evaluation
also scales linearly in the total number of demonstration
time steps. Identifying approaches with better theoretical and
practical run times is a topic for future work.

This paper also assumes that the demonstrator is operating
in an environment with complete information (e.g., an MDP),
no other agents, and known transition dynamics. Extensions
to unknown transition dynamics, POMDPs, and multi-agent
domains are a topic for future work.

In both given examples, the “true” specification can be
modeled using a reward function: in SlimChance, give high
reward if and only if the agent is in sGOOD; in Cleaning-
World, give high reward only when roomClean is true. IRL
may easily recover these reward functions, and would likely
converge more quickly than our approach. These examples
are meant more to show the viability of the proposed
approach than its superiority to IRL in these domains.

While the given problem assumes that the apprentice pas-
sively observes the demonstrator’s trajectories, future work
could consider an active learning approach, in which the
apprentice (for example) poses new MDPs involving the
same predicates (or perturbs the given MDP), and ‘asks’ the
demonstrator to generate trajectories in the posed MDPs.

VII. CONCLUSION

In this paper, we introduced the problem of inferring linear
temporal logic (LTL) specifications from agent behavior in
Markov Decision Processes as a road to interpretable appren-
ticeship learning, combining the representational power and
interpretability of temporal logic with the generalizability of
inverse reinforcement learning. We formulated this as a two-
objective optimization problem, and introduced objective
functions using a notion of “violation cost” to quantify the
ability of an LTL formula to explain demonstrated behavior.
We presented results using genetic programming to solve this
problem in the SlimChance and CleaningWorld domains.

VIII. ACKNOWLEDGEMENTS

This project was in part supported by ONR grant N00014-
16-1-2278.

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via
inverse reinforcement learning. Proc. 21st International Conference
on Machine Learning (ICML), pages 1–8, 2004.

[2] Thomas Arnold, Daniel Kasenberg, and Matthias Scheutz. Value
alignment or misalignment–what will keep systems accountable? In
3rd International Workshop on AI, Ethics, and Society, 2017.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[4] Daniil Chivilikhin, Ilya Ivanov, and Anatoly Shalyto. Inferring
Temporal Properties of Finite-State Machine Models with Genetic
Programming. In Proc. 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1185–1188, 2015.

[5] Xu Chu Ding, Stephen L. Smith, Calin Belta, and Daniela Rus.
LTL control in uncertain environments with probabilistic satisfaction
guarantees. In Proceedings - IFAC World Congress, volume 18, pages
3515–3520, 2011.

[6] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn.
What to do and how to do it: Translating natural language directives
into temporal and dynamic logic representation for goal management
and action execution. In Proceedings - IEEE International Conference
on Robotics and Automation, pages 4163–4168, 2009.

[7] Jie Fu and Ufuk Topcu. Probably Approximately Correct MDP
Learning and Control With Temporal Logic Constraints. In Robotics:
Science and Systems X, 2014.

[8] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifica-
tions. In Proc. 30th International Conference on Software Engineering,
ICSE ’08, pages 51–60, New York, NY, USA, 2008. ACM.

[9] Mark Gabel and Zhendong Su. Online inference and enforcement
of temporal properties. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
’10, pages 15–24, New York, NY, USA, 2010. ACM.

[10] M. Guo and D. V. Dimarogonas. Multi-agent plan reconfiguration
under local LTL specifications. The International Journal of Robotics
Research, 34(2):218–235, 2014.

[11] Zhaodan Kong, Austin Jones, Ana Medina Ayala, Ebru Aydin Gol,
and Calin Belta. Temporal Logic Inference for Classification and Pre-
diction from Data. Proceedings of the 17th International Conference
on Hybrid Systems: Computation and Control, pages 273–282, 2014.

[12] Morteza Lahijanian, Shaull Almagor, Dror Fried, Lydia E Kavraki,
and Moshe Y Vardi. This Time the Robot Settles for a Cost:
A Quantitative Approach to Temporal Logic Planning with Partial
Satisfaction. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, pages 3664–3671, 2015.

[13] Kevin Leahy, Austin Jones, Mac Schwager, and Calin Belta. Dis-
tributed Information Gathering Policies under Temporal Logic Con-
straints. In IEEE Conference on Decision and Control (CDC),
volume 54, pages 6803–6808, 2015.

[14] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General ltl
specification mining. In Automated Software Engineering (ASE), 30th
IEEE/ACM International Conference on, pages 81–92. IEEE, 2015.

[15] Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement
learning. In Proc. Seventeenth International Conference on Machine
Learning, volume 0, pages 663–670, 2000.

[16] Amir Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, 1977.

[17] Luis I. Reyes Castro, Pratik Chaudhari, Jana Tümová, Sertac Kara-
man, Emilio Frazzoli, and Daniela Rus. Incremental sampling-based
algorithm for minimum-violation motion planning. In Proc. IEEE
Conference on Decision and Control, pages 3217–3224, 2013.

[18] Rangoli Sharan and Joel Burdick. Finite state control of POMDPs
with LTL specifications. In Proceedings of the American Control
Conference, pages 501–508, 2014.

[19] Mária Svoreňová, Martin Chmelı́k, Kevin Leahy, Hasan Ferit Eniser,
Krishnendu Chatterjee, Ivana Černá, and Calin Belta. Temporal logic
motion planning using POMDPs with parity objectives. In Proceedings
of the 18th International Conference on Hybrid Systems Computation
and Control, pages 233–238, 2015.

[20] Jana Tumova, Gavin C Hall, Sertac Karaman, Emilio Frazzoli, and
Daniela Rus. Least-violating control strategy synthesis with safety
rules. In Proceedings of the 16th International Conference on Hybrid
Systems: Computation and Control, pages 1–10, 2013.

[21] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Robust
control of uncertain Markov Decision Processes with temporal logic
specifications. In IEEE Conference on Decision and Control (CDC),
volume 51, pages 3372–3379, 2012.

	Introduction
	Related Work
	Apprenticeship Learning
	Stochastic Planning with Temporal Logic Specifications
	Inferring Temporal Logic Rules from Agent Behavior

	Preliminaries
	Markov Decision Processes
	Linear Temporal Logic
	Stochastic Planning with LTL Specifications

	Optimization Problem
	Violation Cost
	State-based objective function
	Action-based objective function

	Formula Complexity
	Multiobjective Optimization Problem

	Examples
	SlimChance domain
	CleaningWorld domain

	Discussion
	Conclusion
	Acknowledgements
	References

