
1

Integrating Scientific Cyberinfrastructures to Improve Reproducibility in 1

Computational Hydrology: Example for HydroShare and GeoTrust 2

Bakinam T. Essawy a, Jonathan L. Goodall a*, Wesley Zellb, Daniel Vocec, Mohamed M. Morsya,d, 3

Jeffrey Sadlera, Zhihao Yuane, and Tanu Malike 4

a Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick 5

Road, PO Box 400742, Charlottesville, VA, 22904, USA 6

b Earth Systems Modeling Branch, US Geological Survey, 12201 Sunrise Valley Dr., Reston, VA, 7

USA 8

c Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick 9

Road, PO Box 400743, Charlottesville, VA, 22904, USA 10

d Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Cairo University, 11

P.O. Box 12211, Giza 12613, Egypt12

e College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA 13

* To whom correspondence should be addressed (E-mail: goodall@virginia.edu; Address:14

University of Virginia, Department of Civil and Environmental Engineering, PO Box 400742, 15

Charlottesville, Virginia 22904; Tel: (434) 243-5019) 16

17

Highlights: 18

 Method for packaging and publishing scientific workflows19

 Integration between GeoTrust and HydroShare projects20

 GeoTrust is used to easily package environmental models as containers21

 HydroShare is used to document and share packaged workflows22

 An example application is provided for using a MODFLOW-NWT model23

This is a manuscript of an article that was accepted 30 March 2018 for publication in the Journal
of Environmental Modelling & Software. The final publication is available at
https://doi.org/10.1016/j.envsoft.2018.03.025.

mailto:goodall@virginia.edu

2

Abstract 24

 The reproducibility of computational environmental models is an important challenge that 25

calls for open and reusable code and data, well-documented workflows, and controlled 26

environments that allow others to verify published findings. This requires an ability to document 27

and share raw datasets, data preprocessing scripts, model inputs, outputs, and the specific model 28

code with all associated dependencies. HydroShare and GeoTrust, two scientific 29

cyberinfrastructures under development, can be used to improve reproducibility in computational 30

hydrology. HydroShare is a web-based system for sharing hydrologic data and models as digital 31

resources including detailed, hydrologic-specific resource metadata. GeoTrust provides tools for 32

scientists to efficiently reproduce and share geoscience applications. This paper outlines a use case 33

example, which focuses on a workflow that uses the MODFLOW model, to demonstrate how the 34

cyberinfrastructures HydroShare and GeoTrust can be integrated in a way that easily and 35

efficiently reproduces computational workflows. 36

Keywords: 37

 Computational reproducibility; hydrologic modeling; MODFLOW; metadata 38

 39

3

1. Software availability 40

The software created in this research is free and open source. The software information and 41

availability are as follows: 42

Developers: Bakinam T. Essawy, Daniel Voce, and Wesley Zell 43

Programming language: Python, Bash 44

GitHub link: https://github.com/uva-hydroinformatics-lab/AWS_MODFLOW. 45

 46

https://github.com/uva-hydroinformatics-lab/AWS_MODFLOW

4

2. Introduction 47

The challenge of creating more open and reusable code, data, and formal workflows that allow 48

others to verify published findings is gaining attention in the scientific community (Borgman, 49

2012; David et al., 2016; Gorgolewski and Poldrack, 2016; Meng et al., 2015; Peng, 2011; Qin et 50

al., 2016). Reproducibility is important for both verifying previous results as well as building upon 51

the prior computational research of other scientists. Although we can achieve standard 52

reproducibility for most computational research, there are certain cases in which reproducibility 53

remains difficult to achieve. This challenge is not caused only by technical barriers but also by 54

limited documentation of the research to be replicated and the potentially complex requirements 55

for how the software is packaged, installed, and executed (Piccolo and Frampton, 2016). Recent 56

papers have argued the need and have proposed approaches to improve reproducibility, both within 57

geosciences generally and the hydrologic sciences specifically (David et al., 2016; Essawy et al., 58

2016; Gil et al., 2016; Hutton et al., 2016). Reproducibility of research is said to be achieved if the 59

scientist was able to preserve sufficient computational artifacts in a way that can be replicated in 60

the future (Meng et al., 2015). 61

Here we consider reproducibility to be the ability to repeat in the same exact form and then 62

document and share digital resources previously used to complete an analysis. These digital 63

resources include (1) initial raw, unprocessed datasets; (2) data preprocessing scripts used to clean 64

and organize the data; (3) model inputs; (4) model results; and (5) the specific model code along 65

with all of its dependencies. Figure 1 shows a typical conceptual workflow that needs to be 66

repeated for computational reproducibility. These data, software, and environments are often 67

integrated into workflows (as computational experiments) that allow scientists to re-run an analysis 68

from raw initial datasets and obtain the same model results. 69

5

There are different requirements for reproducibility depending on the nature of the 70

research. For example, laboratory experiments require capturing descriptive information about 71

protocols and methods, leading to empirical reproducibility. Computational reproducibility, on the 72

other hand, requires descriptive information about the software and workflow details of model-73

based research (Todden, 2013). Any workflow that is computationally reproducible must be 74

general and able to address the heterogeneous landscape of tools and approaches used within the 75

target scientific community. In hydrology, scientists use a large variety of computational models, 76

many of which have decades of development effort behind them (Singh et al., 2002). 77

Computational modeling can often require a significant amount of effort and time to prepare model 78

inputs and to calibrate and validate model parameters. Depending on the complexity of the system 79

being modeled and the experience of the modeler, these aspects can make reproducing 80

computational hydrologic experiments particularly challenging. 81

Addressing the challenges for achieving reproducibility in computational workflow has been 82

the topic of many studies. Until now, most approaches have either focused on the logical 83

preservation (i.e., sufficient documentation of a workflow and its components to allow for 84

reproduction later on) or physical preservation (i.e., workflow conservation by packaging all of its 85

components allowing identical replication) (Santana-Perez et al., 2017). It is hard to achieve a high 86

level of reproducibility while using one of these approaches in isolation; rather, the integration of 87

both physical and logical preservation is required to achieve a high level of reproducibility. Some 88

efforts have been made to integrate both logical and physical preservation for computational 89

workflows, such as the Topology and Orchestration Specification for Cloud Applications 90

(TOSCA). The TOSCA framework supports documentation for both the top-level structure of the 91

abstract workflow and the execution environment details (logical). TOSCA also provides 92

6

packaging functionality for the workflow (physical) (Qasha et al., 2016). In a similar way, our 93

approach provides both logical and physical preservation. However, the functionality is extended 94

to allow for automated creation, documentation, publication, and cloud-based execution of 95

scientific workflow packages. 96

 97

Figure 1 A typical conceptual workflow that needs to be repeated for computational 98

reproducibility. Dashed lines indicate processes for model calibration that are not discussed in 99

this study. 100

This research presents a solution for achieving a higher level of reproducibility by using 101

GeoTrust’s Sciunit-CLI tool and HydroShare. HydroShare (http://www.hydroshare.org) and 102

GeoTrust (http://geotrusthub.org) are two new cyberinfrastructures under active development that 103

aim to improve reproducibility in computational hydrology. The methods described in this paper 104

can be used to assist scientists to more easily repeat, reproduce, and verify a computational 105

experiment (Malik, 2017). This method goes beyond open source and simply shared by allowing 106

portability in different hardware and software environments and reproducible analyses with 107

different datasets. This level of reproducibility is not easily achieved by using HydroShare or 108

GeoTrust in isolation. For example, GeoTrust does not provide a community of users who can 109

verify analyses or the variety of datasets that are required for verification; HydroShare, however, 110

7

does provide these. Similarly, while HydroShare simplifies the process of sharing code, data, and 111

descriptive metadata, it does not address the challenge of sharing the computational environment 112

required for the workflow and then repeating the computational workflow with different datasets. 113

This paper presents the design and implementation of a workflow that takes advantage of the 114

complementary strengths of the two systems. HydroShare is used to share key digital resources in 115

the workflow, while GeoTrust is used to capture, encapsulate, and make portable model execution. 116

An example application of the approach is presented using MODFLOW-NWT, a version of the 117

United States Geological Survey’s groundwater model, MODFLOW (Niswonger et al., 2011). 118

The remainder of the paper is organized as follows. First, additional background on the 119

HydroShare and GeoTrust projects is provided. This background section is meant to orient readers 120

on key aspects of these projects. Next, the methodology section shows the system design and the 121

use case application for the MODFLOW-NWT model. In the results section, the system 122

implementation of the HydroShare and GeoTrust integration approach is presented and 123

demonstrated by using the use case results as an example application. Finally, a discussion and 124

conclusions section summarizes the key aspects of the approach and outlines opportunities for 125

future research to advance on known limitations of the approach. 126

3. Background 127

3.1. HydroShare 128

HydroShare is an open source web-based system developed for hydrologic scientists to 129

easily share, collaborate around, and publish all types of scientific data and models including 130

detailed, hydrologic-specific resource metadata (Tarboton et al., 2014a, 2014b). HydroShare has 131

been developed with the support of the United States National Science Foundation (NSF). 132

Following the completion of the original NSF grant, the Consortium of Universities for the 133

8

Advancement of Hydrologic Sciences Incorporated (CUAHSI) (also funded by the NSF) assumed 134

long-term support for HydroShare’s operation and maintenance. In HydroShare, digital content is 135

stored and referred to as a "resource." Each resource is a unit used for management and access 136

control within HydroShare. Every resource has a resource type (Horsburgh et al., 2015). 137

HydroShare assigns a unique identifier for each newly created resource; this identifier is known as 138

the Resource ID. The "generic" resource type supports the Dublin Core metadata standard (Weibel 139

et al., 1998) and more specific resource types expand on this metadata standard for well-defined 140

data types. For example, "Model Operating System" is one of the extended metadata terms for the 141

"Model Program" resource type, which is used for sharing a computational model programs in 142

HydroShare (Morsy et al., 2017). 143

HydroShare provides a Representational State Transfer (REST) Application Program 144

Interface (API) that allows third-party applications to interact with HydroShare resources. 145

(https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API#design-document). 146

Developers can create web-apps that use HydroShare’s REST API to interact with HydroShare 147

resources. Web-app developers can catalogue their apps in HydroShare via the "Web-app" 148

resource type (Swain et al., 2016). When a developer creates a web-app resource in HydroShare, 149

the developer specifies which resource types are relevant to the web-app and the URL that will be 150

called when the web-app is executed from the landing page of the resource that the web-app is 151

acting on. After a developer adds a web-app as a resource in HydroShare, HydroShare users can 152

execute that app through HydroShare's web interface to act on relevant resources that they have 153

access to. 154

Although there are several different resource types supported by HydroShare, two of the main 155

resource types relevant to this paper deal with computational models. HydroShare divides 156

9

computational models into two separate but linked resource types: a) the model program and b) 157

the model instance. The model program includes the software for executing a specific instance of 158

the model and the model instance are the input files required for executing the model and, 159

optionally, the output files after a model instance has been executed by a model program 160

(Horsburgh et al., 2015; Morsy et al., 2017, 2014). Additionally, a Model Instance Resource type 161

can be linked to a model program resource type using the "ExecutedBy" term, assisting with 162

reproducibility of the model instance (Morsy et al., 2017). Other HydroShare resource types used 163

in this paper include the Composite resource type, which allows uploading metadata files at both 164

file and resource level; the collections resource type, which stores any number of individual 165

resources within HydroShare as a single, aggregate resource; and the web-app resource type, which 166

is the Digital content stored in HydroShare and referred to it as a "resource." 167

3.2. GeoTrust 168

The GeoTrust project, also funded by the NSF through their EarthCube program, aims to 169

create cyberinfrastructure that assists scientists to efficiently reproduce and share geoscience 170

applications used in research (Malik et al., 2017). The project has done this primarily by 171

developing the concept of a "sciunit" (https://sciunit.run/), an efficient, lightweight, self-contained 172

digital package of an ad-hoc computational workflow that can be repeated in other environments. 173

The sciunit advances the concept of a research object, an aggregation of digital artifacts such as 174

code, data, scripts, and temporary experiment results associated with a research paper. The sciunit 175

provides an authoritative and far more complete record of a piece of research (Hai et al., 2017). 176

To create, maintain, and publish sciunits, the GeoTrust project has developed a software tool for 177

Linux environments called Sciunit-CLI. 178

One of the main advantages of a sciunit is its portability, which allows it to be easily run on 179

10

various computing environments. To accomplish this, Sciunit-CLI creates sciunits using Docker, 180

a widely used containerization software. Docker wraps a piece of software in a complete filesystem 181

that contains everything needed to run the software, including code, software runtime, system 182

tools, and system libraries in a Docker container (Owsiak et al., 2017). By leveraging Docker, 183

sciunits are packaged with all of their dependencies. In this way, any sciunit can be executed in 184

any environment in which both Docker and the Sciunit-CLI tool are installed regardless of other 185

computer configurations (Hai et al., 2017). This capability eliminates the burden of configuring a 186

running environment with all software dependencies, which can be complex, in order to reuse a 187

scientific workflow and reproduce its results. 188

In addition to ensuring the portability of sciunits, Sciunit-CLI automates some documentation 189

of the workflow packaged into a sciunit, including environment dependencies. The automation of 190

documenting all code, data, and environment dependencies alleviates what is typically a 191

burdensome task for scientists. Importantly, Sciunit-CLI also records retrospective provenance of 192

the workflow execution, which can be used for re-running containers (Pham et al., 2014). Because 193

it contains all of the required dependencies, the sciunit can be rerun, and the outputs reproduced, 194

using any other deployment configuration that also has Sciunit-CLI installed. When Sciunit-CLI 195

creates a sciunit, it includes three types of metadata: annotation metadata (populated by the user) 196

and provenance and version metadata (generated automatically by Sciunit-CLI). 197

Figure 2 shows an example user interaction with the Sciunit-CLI tool. The user runs the 198

create command and provides a name, "Model" in the example. To create a container or a package 199

within the sciunit, the user runs the package command and provides the workflow name (e.g., 200

"workflow.sh") along with any inputs for the workflow (e.g., "data"). The user application can be 201

written in any combination of programming languages, and many containers can be created within 202

11

the same sciunit. 203

Sciunit-CLI works in a distributed fashion, similar to the Git version control philosophy, 204

such that the sciunits are stored only locally until explicitly shared with a remote repository. This 205

method of operation allows distributed collaborators to work offline on the same sciunit. When a 206

user is ready to share, they can publish the sciunit container to any remote web-repository using 207

the publish command. To use the publish command, the remote repository must be configured 208

within the Sciunit-CLI tool. This command line prompts first-time users to provide their remote 209

web-repository credentials. The remote repository reads the container’s contents, stores the 210

container’s digital artifacts in the appropriate remote sciunit, and associates the container with an 211

appropriate cloud execution server on which it can potentially re-execute. In our case, we used 212

HydroShare as the remote repository to publish our packaged sciunit in order to use HydroShare’s 213

support for rich metadata and its ability to integrate third-party applications. The latter allowed us 214

to automate the cloud-based execution of this packaged sciunit. 215

 216

Figure 2 A example user interaction with sciunit client. 217

4. Methodology 218

4.1. System Design 219

The combined GeoTrust and Hydroshare system is designed to connect a repeatable 220

computational workflow with its input data in a reproducible way. As such, both the computational 221

12

workflow and the data must be stored in a public repository that has extensive metadata support. 222

In addition to public accessibility of the data and the computational workflow, the execution of the 223

workflow must also be made publicly available to ensure reproducibility and transparency. The 224

technology for producing a repeatable computational workflow is provided by the GeoTrust 225

Sciunit-CLI, while the technology for public storage and metadata support is provided by 226

CUAHSI’s HydroShare. Therefore, the main design aspect of this work consisted of designing a 227

publicly accessible method of execution in which sciunits built with the Sciunit-CLI and stored in 228

HydroShare could be executed using input data also stored in HydroShare. This was done in two 229

parts. The first was to build in functionality for publishing a sciunit through HydroShare. The 230

second part was to automate the execution of a sciunit from HydroShare using HydroShare web-231

apps. 232

4.1.1. Integrating Sciunit-CLI with HydroShare 233

Figure 3 shows an activity diagram of the system design for integrating GeoTrust Sciunit-CLI 234

and HydroShare. To achieve this integration, Sciunit-CLI was extended to support sharing of 235

sciunits through HydroShare. This functionality was implemented using HydroShare’s REST API. 236

To publish their sciunit on HydroShare, the user must provide valid HydroShare credentials. In 237

the current implementation, the sciunit resource is published on HydroShare as a Composite 238

Resource Type. Once the resource for the sciunit is created within HydroShare, the user can log 239

into HydroShare and edit the metadata fields to more fully describe the sciunit resource. 240

13

 241

Figure 3 Activity diagram showing creating a sciunit using GeoTrust and publishing that sciunit on 242

HydroShare. 243

4.1.2. Automating sciunit execution through HydroShare 244

Integrating the cloud-based sciunit execution from the HydroShare user interface was done 245

using a HydroShare web-app. This web-app directs Hyper Text Transfer Protocol (HTTP) request 246

to a web server where sciunits can be executed. The web-app configured to run a particular sciunit 247

can be accessed through the "Open with" button on the landing page for the resource that stores 248

the raw input data. When the scientist clicks on the web-app button from the "Open with" menu, 249

an HTTP request containing the raw input data's resource ID will be sent to the server. With the 250

resource ID, the HydroShare REST API can be used to download the raw input data and the sciunit 251

to the server. The server can then execute the sciunit using the raw data, and return the output to 252

the scientist as a new HydroShare resource. 253

Figure 4 shows the steps done in a generic form for the integration between the two 254

cyberinfrastructures, GeoTrust and HydroShare, to improve reproducibility by automating the 255

14

execution of the published sciunit. The figure shows how the "Open with" app will perform a 256

HTTP GET request to a remote server, which has already been configured with the Sciunit-CLI. 257

This automation process is done using a Python script created on the web server machine. This 258

Python script uses the flask library to act as a web server with NGINX (https://www.nginx.com/) 259

used as a proxy to forward all HTTP requests from the user browser to the Python script, which 260

can handle multiple users simultaneously. The Python script is using the POST request to create a 261

new resource and upload the output generated from running the sciunit on this resource. 262

Simultaneously, a webserver is running on the remote machine, which handles the HTTP request 263

and automatically executes a Python script. This script uses the HydroShare user authentication to 264

download the input data from the resource and downloads the Composite resource that includes 265

the sciunit container. Once both resources are downloaded, the resources are unzipped and moved 266

to the working directory for the analysis. The Sciunit-CLI executes the downloaded sciunit 267

package. After the sciunit is executed, a new resource is created in HydroShare and the output 268

from the Sciunit-CLI execution is uploaded into this new resource. A new collection resource is 269

also created on HydroShare to group all resources that were included during this execution. In this 270

paper we used HydroShare API. Our Python script uses the Python Client Library for the REST 271

API (http://hs-restclient.readthedocs.io/en/latest/). 272

http://hs-restclient.readthedocs.io/en/latest/

15

 273

Figure 4 The generic implementation for automating the execution of the published sciunit from 274

the HydroShare web-app 275

4.2. Use Case Application 276

A use case application was designed to demonstrate the integration of GeoTrust Sciunit-CLI 277

and HydroShare. This integration allows GeoTrust to package and publish a sciunit through 278

HydroShare, after which HydroShare automates the execution of this sciunit. Execution of the 279

packaged sciunit through HydroShare was demonstrated using EC2 instances from Amazon Web 280

Services (AWS). A Linux-based, micro-sized machine (t2) was used for prototyping and 281

demonstration purposes; this machine had 1 Gb of memory, 1 vCPU, 32 Gb of Solid State Drive 282

(SSD)-based local instance storage, and a 64-bit platform (“Amazon EC2 Instances,” 2015). This 283

use case consisted of a workflow used for preprocessing model input data, running a computational 284

16

model, and handling the model outputs. The computational model used for the use case was 285

MODFLOW-NWT. 286

4.2.1. MODFLOW-NWT Use Case 287

MODFLOW-NWT is a standalone version of MODFLOW, a commonly used groundwater 288

model (Niswonger et al., 2011). The concept of "packages" is key to the modularity of the different 289

versions of MODFLOW (including MODFLOW-NWT); packages are input files that define some 290

individual component of the groundwater-flow conceptual model or specify the solution method 291

used for the flow equation that is collectively formulated from the individual components. For 292

example, the basic (BAS) and discretization (DIS) packages define the spatial and temporal 293

framework of the model, including the grid dimensions and the location of active and inactive grid 294

cells, while the recharge (RCH) package defines the spatial-distribution and rate of recharge to the 295

water-table. For our use case using MODFLOW-NWT, the Newton-Raphson (NWT) package 296

defines the variables required to implement the Newton-Raphson solution method. 297

For this study, MODFLOW-NWT was used to simulate the shallow groundwater flow in the 298

James River watershed upstream of Richmond, VA, USA. The model includes recharge to the 299

water table, subsurface flow through the saturated zone, and base-flow discharge to surface water 300

bodies including the James, Rivanna, and Hardware Rivers and several smaller-order streams. 301

Depth-integrated effective transmissivity was assumed to be constant throughout the active model 302

area and spatially-distributed recharge was derived from the national recharge dataset developed 303

by Reitz et al. (2017). Base-flow discharge was simulated using the MODFLOW drain (DRN) 304

package with all drain elevations (i.e., the water-table elevation required to discharge base-flow to 305

a receiving stream) extracted from the National Elevation Dataset. The model runs to completion 306

and is unconstrained by calibration; as such it is to be only used as an example for the workflow 307

17

processes described in this paper (i.e., no hydrologic or management conclusions were drawn from 308

the results of the model). This workflow could be extended to include calibration (Figure 1). For 309

example, a HydroShare resource for a parameter estimation program such as PEST (Doherty and 310

Hunt, 2010) could be created and included in the sciunit container. Similarly, the pre-processing 311

script could include data retrieval from web services such as the USGS water services API 312

(https://waterservices.usgs.gov/) and the automated generation of PEST input files. 313

The FloPy library was used to create the MODFLOW-NWT model from raw input datasets 314

(Bakker et al., 2016). FloPy is a library of Python modules that allows scripting of the various 315

steps in MODFLOW model development, execution, and analysis. By combining FloPy with 316

GeoTrust and HydroShare, the workflow used to create and execute MODFLOW model (e.g., the 317

steps shown in Figure 1) can be stored within a reproducible container with descriptive metadata 318

in HydroShare. 319

5. Results 320

5.1. System Implementation 321

The system was implemented using the following steps. First, the script downloads raw input 322

data and the sciunit resources from HydroShare. Second, the script will unzip both the data and 323

sciunit, pass the data to the sciunit as an argument (this is how the sciunit accepts the input data), 324

and then run the sciunit with the downloaded data. Last, after the execution is completed, the 325

Python script will upload the results to HydroShare by using a POST request to create two new 326

resources: one for the sciunit output, which has the MODFLOW-NWT Model Instance Resource 327

type, and the other the collection resource that will include all the resources used within the study. 328

The script then returns the command status (including any errors) to the user. 329

https://waterservices.usgs.gov/

18

5.2. Use Case Results 330

A digital workflow (bash script) was packaged into a sciunit using the Sciunit-CLI tool. 331

The digital workflow runs a Python script to prepare the MODFLOW-NWT input data files and 332

then executes a single run of the model. Figure 5 shows the component of the packaged digital 333

workflow. 334

 335

Figure 5 component of the packaged digital workflow. 336

Figure 6 outlines the first steps taken in the process to start and create a new sciunit through 337

the GeoTrust Sciunit-CLI tool for the example workflow while Figure 7 shows the execution and 338

packaging of the digital workflow into a sciunit package. This package command traces all 339

dependencies for the workflow and includes them in a single Docker file. Figure 8 shows how the 340

publish command is used to publish a sciunit package on HydroShare. If this is the user's first time 341

connecting to HydroShare, Sciunit-CLI will ask for HydroShare user credentials, otherwise the 342

credentials stored will be used. Once the package is published, metadata can be provided by the 343

user via the HydroShare Graphical User Interface (GUI). Future implementations of the Sciunit-344

CLI may expand this functionality by automatically populating more detailed metadata for 345

describing resources. 346

 347

Figure 6 The creation of a new sciunit through the GeoTrust Sciunit-CLI tool for the use case 348

19

 349

Figure 7 Execution of the use case workflow through sciunit to create a package 350

 351

Figure 8 Publishing the use case sciunit to HydroShare 352

The newly created resource on HydroShare is a Composite Resource Type. This resource 353

type allows the resource to include multiple files without file format limitations and with metadata 354

associated at a file level within the resource. The Composite resource contains two files. The first 355

is the provenance metadata file created while packaging the workflow; this metadata file contains 356

information concerning the creation and version history of the managed data. The second file is 357

the zipped package for the sciunit itself. 358

Once the sciunit is available as a HydroShare resource, HydroShare’s integration with 359

third-party web apps is used to execute the sciunit. In order to store data and make it accessible to 360

be used as the input required by the sciunit, we made a new model instance-type resource titled 361

"ModflowNwtRawData" (Essawy, 2018b). We also created a web-app resource titled "GeoTrust" 362

(Essawy, 2018a). This web-app pointed to the AWS-EC2 instance where the Sciunit-CLI tool and 363

our Python script were installed. The connection between the HydroShare resource and the web 364

server was made by providing the web server’s URL as the "App-launching URL Pattern" 365

metadata term in the resource. The GeoTrust web-app resource is linked to the 366

ModflowNwtRawData resource by the SupportedResourceType metadata property. This metadata 367

20

property was set to include the Composite Resource Type, which allowed the web-app to appear 368

in a drop-down list in the "Open with" menu on the ModflowNwtRawData resource landing page. 369

Figure 9 shows the Model Instance Resource type that includes the raw data, and the web apps 370

linked to this resource type to automate the sciunit execution. When the GeoTrust web-app on this 371

page is selected, the HTTP request is sent to server and the workflow is executed. The output is 372

written back to HydroShare as a new resource with the MODFLOW Model Instance Resource 373

type. This resource type is used because the resource can be executed by a MODFLOW model 374

program and it allows for adding extended metadata specific to MODFLOW (Morsy et al., 2017). 375

 376

Figure 9 The raw data within the Model Instance Resource type, and the web apps linked to this 377

resource type to automate the sciunit execution. 378

Figure 10 presents the activity diagram for the steps that occur when the "Open with" button 379

is clicked and the "GeoTrust" app is selected on the ModflowNwtRawData resource landing page. 380

The "GeoTrust" app will perform an HTTP GET request to the AWS-EC2 machine, which has 381

already been configured with the Sciunit-CLI. The webserver running on the AWS-EC2 machine 382

handles the HTTP request and automatically executes a Python script. The script uses the 383

21

HydroShare user authentication to download both the raw data of the ModflowNwtRawData 384

resource and the sciunit container included within the ModflowNwtSciunit resource (Essawy, 385

2018c). Once the ModflowNwtSciunit and the ModflowNwtRawData resources are downloaded, 386

the script unzips the resources and moves them to the working directory for the analysis. The 387

Sciunit-CLI tool executes the downloaded sciunit package, which pre-processes the raw input data 388

for the model and executes the MODFLOW-NWT model. After the model is executed, a new 389

resource is created in HydroShare with the MODFLOW Model Instance Resource type named 390

ModflowNwtSciunitOutput (Essawy, 2018d) and the output from the Sciunit-CLI execution is 391

uploaded into this new resource. A new collection resource is also created on HydroShare to group 392

all the resources: the ModflowNwtRawData generic Model Instance Resource (the resource type 393

is a generic model instance because the data uploaded have no specific metadata or format that 394

could be tied to a specific resource type), the web-app GeoTrust resource, the ModflowNwtSciunit, 395

MODFLOW Model Instance Resource, the ModflowNwtSciunit Composite resource, and the 396

ModflowNwtSciunitOutput resource that includes the output resulting from executing the sciunit 397

package. 398

 399

22

 400

Figure 10 Activity diagram showing the steps for the online execution of the sciunit through 401

HydroShare. 402

Figure 11 shows HydroShare user "My Resources page" after using the "Open with" action 403

button on the GeoTrust web-app on the ModflowNwtRawData resource for the online execution. 404

Two new resources are created. The first resource in the workflow is the 405

ModflowNwtSciunitOutput resource, which includes the input files for the MODFLOW-NWT 406

model program that are prepared through the preprocessing script and the output from the model 407

run. This resource is given the MODFLOW Model Instance Resource type, because the resource 408

has the inputs that are required by the MODFLOW-NWT model. This resource type allows for 409

extended metadata specific to a MODFLOW model instance. The second resource created is the 410

23

ModflowNwtCollection resource (Essawy, 2018e), which includes all the resources used in the 411

online execution for the MODFLOW-NWT. This provides a grouping of resources used for an 412

analysis and allows the user to share or download this collection of resources more easily. 413

 414

Figure 11 HydroShare user My Resources page after using the GeoTrust web app for the online 415

execution. 416

24

Figure 12 shows the output files within ModflowNwtSciunitOutput resource as viewed on 417

this resource’s HydroShare landing page. The resource contains the output generated from running 418

the sciunit that prepares the model input for MODFLOW-NWT and the output from running the 419

MODFLOW-NWT model program itself. The MODFLOW Model Instance Resource type 420

includes extended metadata terms specific for MODFLOW. In this use case the model has eight 421

packages. In addition to the packages already described, this model instance includes: the output 422

control (OC) package, which specifies how the model output is written; the upstream-weighting 423

(UPW) groundwater flow package, which describes the system properties (e.g., 424

transmissivity/conductivity); and the one output listing file (LIST), which contains all the 425

information about the current run (e.g., stress period, time step and the number of active and 426

inactive cells, the recharge, drains, and any errors). The name file (NAM) specifies the name of 427

the input and output files for the model instance. 428

 429

 430

Figure 12 The output files within the ModflowNwtSciunitOutput resource landing page in 431

HydroShare. 432

25

Additional metadata associated with the MODFLOW output resource is divided into four 433

categories: 1) Authorship, 2) Related resources, 3) Resource Specific, and 4) Web Apps. Figure 434

13 shows the "Related Resources" metadata. Here all resources linked to the MODFLOW output 435

resource through formal relationships are listed. In this case, the MODFLOW output resource is 436

linked to the ModflowNwtRawData resource through the "Derived From" relationship and to the 437

MODFLOW-NWT resource through the "isExecutedBy" relationship. Figure 14 shows the 438

"Resource Specific" metadata. These are non-null metadata terms that apply only to the 439

MODFLOW Model Instances' such as grid attributes, solver, and boundary condition package 440

choices. Additional metadata terms not previously populated by the user can be populated later 441

within the edit mode and will appear in this section once populated. 442

 443

Figure 13 The ModflowNwtSciunitOutput Related Resources metadata tracking the resource's 444

provenance within HydroShare. 445

26

 446

Figure 14 ModflowNwtSciunitOutput specific metadata capturing key MODFLOW model 447

properties. 448

Figure 15 shows details for the resulting ModflowNwtCollection resource as viewed on 449

this resource’s landing page. The collection resource contains four sub-resources: 1) the 450

ModflowNwtRawData resource with the raw input data ready to be prepared for the MODFLOW-451

NWT model engine; 2) the ModflowNwtSciunit resource with the sciunit pre-processing 452

workflow, which also includes running the MODFLOW-NWT model; 3) the 453

ModflowNwtSciunitOutput resource, which stores the output generated from running the sciunit 454

workflow; and 4) the GeoTrust web app used to perform the online model execution using AWS-455

EC2. By organizing all these resources into a single collection, it is possible to have one landing 456

page where users can, referring back to the stated goals in the introduction of this paper, view, 457

obtain, and execute (1) raw initial datasets, (2) data preprocessing scripts used to clean and 458

27

organize the data, (3) model inputs, (4) model results, and (5) the specific model code along with 459

of all its dependencies used for a computational analysis. 460

28

 461

Figure 15 The collection resource that includes all resources used within the study. 462

29

6. Discussion and Conclusions 463

In this paper, we demonstrated how HydroShare and GeoTrust can be integrated to easily and 464

efficiently package, share, and publish model workflows. MODLFOW-NWT was used as an 465

example application to demonstrate the functionality provided by these cyberinfrastructures for 466

creating open, reusable data analysis and cloud-based model execution services. The approach 467

showed how containers built using GeoTrust tools can be shared as HydroShare resources. A 468

cloud-based service was created to automatically retrieve raw input data from HydroShare, execute 469

a sciunit container that both prepares and runs a MODFLOW-NWT model, and share the results 470

on HydroShare using a MODFLOW Model Instance Resource type. All the resources are 471

aggregated in HydroShare into one collection resource with domain-specific metadata. 472

The integration of scientific cyberinfrastructures such as the HydroShare and GeoTrust 473

projects can improve reproducibility in computational hydrology. New MODFLOW models can 474

be directly built from unprocessed input data (e.g., land-surface DEMs or stream-network 475

shapefiles) by running a sciunit container that includes automated data preparation steps 476

implemented using the FloPy Python package. The container is run online using AWS resources 477

initiated directly through the HydroShare user interface. A particular advantage of this approach 478

is that the GeoTrust Sciunit-CLI tool provides scientists a method for efficiently creating containers 479

for script-driven modeling workflows. Thus, the general approach demonstrated here for the 480

MODFLOW-NWT use case could be applied for any workflow that can be automated and that is 481

compatible with Docker requirements. For example, in prior work we have constructed pre- and 482

post-processing workflows for the Variable Infiltration Capacity (VIC) hydrologic model (Liang 483

et al., 1996) that could directly benefit from this method for packaging, sharing, and publishing 484

resources (Billah et al., 2016; Essawy et al., 2016). These containers are efficient, lightweight, 485

30

self-contained packages of computational experiments that can be repeated or reproduced 486

regardless of deployment configurations. 487

In addition to integration with HydroShare for storing and publishing a sciunit, cloud resources 488

were used to execute sciunits directly through the HydroShare user interface. While only AWS 489

was presented, we evaluated as part of this work three different cloud computing services: 490

EarthCube Integration and Testing Environment (ECITE), CyVerse, and Amazon Web Services 491

(AWS). ECITE and CyVerse are funded by NSF and both are under active development. One main 492

advantage for using ECITE or CyVerse is that they are free of charge for scientific studies. AWS, 493

though not free, does offer a competitive grant program for researchers. From our experience, the 494

AWS platform made the process of obtaining computer resources the simplest when compared to 495

ECITE and CyVerse. The AWS user simply logs in to the console, selects the type of the machine 496

needed, and launches it. When using ECITE, we had to contact the developer and ask for an 497

instance with the required specifications and a short paragraph summarizing the project we are 498

working on to justify the allocation of compute resources. We also needed to contact the developer 499

each time we wanted to open a port (e.g., port 22 to SSH or port 80 for HTTP). The service did 500

not support Elastic IPs like AWS, so each time we restarted an instance and wanted to use SSH to 501

access to the machine, we needed to report the IP address used to access the machine to the 502

developer to add this address to the security rules. CyVerse is a more mature service, but allows 503

each user only a certain allocation of computational time. Once the user exceeds this allocation the 504

instance is suspended and the user needs to request more time from the administrators. This feature 505

was problematic for our use case of a continually available cloud-based resource for online model 506

execution. For these reasons, we used AWS-EC2 for much of the testing work described in this 507

31

paper, but ECITE and CyVerse are in active development and will likely be good options for this 508

use case in the future. 509

While this approach shows great promise, it is not without limitations: (1) the Sciunit-CLI tool 510

must be installed in order to re-execute a sciunit container and (2) HydroShare lacks methods for 511

uniquely identifying and managing web-app resources that will be needed as the number of these 512

resources continues to increase. Regarding the latter limitation, without a more organized structure, 513

naming conflicts could cause confusion when using the "Open with" button over which app is to 514

be requested. Also, this work does not fully explore computational challenges associated with the 515

proposed methodology. Using cloud services like AWS provides the opportunity for scalability as 516

more users are added. For example, this solution used small EC2 instances for prototyping. Future 517

work could explore AWS EC2 Container Service (ECS) as an alternative for a more scalable 518

solution to support multiple concurrent users. Data movement between HydroShare and AWS is 519

another potential issue as data volumes increase, which is not uncommon for hydrologic modeling. 520

HydroShare is built on iRODS (Integrated Rule-Oriented Data System), which includes the ability 521

to interface with AWS S3 storage resources. Future work could explore using this functionality to 522

automate the movement of large files between HydroShare and AWS to support computation 523

within AWS and still maintain access through the HydroShare user interface. iRODS is 524

specifically designed to handle such data federation needs and should provide a robust solution for 525

managing the large data flows common in hydrologic modeling. Lastly, future work should 526

explore scaling of the general approach presented here to use cases in which multiple sciunits are 527

available for execution within a remote, cloud-based resource. In this case, a user could select from 528

available sciunits to process input data stored with HydroShare, making for a potentially very 529

32

powerful general approach applicable to many different modeling and analysis use cases that 530

require remote data processing. 531

7. Acknowledgements and Disclaimer 532

We gratefully acknowledge the National Science Foundation for support of this work under awards 533

ACI-0940841, ICER-1343800, and ICER-1440323. Any use of trade, firm, or product names is 534

for descriptive purposes only and does not imply endorsement by the U.S. Government. 535

8. References 536

Amazon EC2 Instances [WWW Document], 2015. URL http://aws.amazon.com/ec2/instance-537

types/ (accessed 6.7.15). 538

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N., 2016. 539

Scripting MODFLOW Model Development Using Python and FloPy. Groundwater 54, 733–540

739. https://doi.org/10.1111/gwat.12413 541

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W., 542

2016. Using a data grid to automate data preparation pipelines required for regional-scale 543

hydrologic modeling. Environ. Model. Softw. 78, 31–39. 544

https://doi.org/10.1016/j.envsoft.2015.12.010 545

Borgman, C.L., 2012. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 63, 546

1059–1078. 547

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of 548

RAPID—Reflections on the development of an open source geoscience code. Earth Sp. Sci. 549

226–244. https://doi.org/10.1002/2014EA000014.Received 550

Doherty, J.E., Hunt, R.J., 2010. Approaches to highly parameterized inversion-A guide to using 551

PEST for groundwater-model calibration. US Geol. Surv. Sci. Investig. Rep. 552

33

Essawy, B., 2018a. GeoTrust,. HydroShare, 553

http://www.hydroshare.org/resource/126701df868e4da9872d9b533db34ae6. 554

Essawy, B., 2018b. ModflowNwtRawData, HydroShare, 555

http://www.hydroshare.org/resource/4c9f9daa09e745a5b285481c7903c759. 556

Essawy, B., 2018c. ModflowNwtSciunit. HydroShare, 557

http://www.hydroshare.org/resource/995479b35b62486783e0da63e937ca89. 558

Essawy, B., 2018d. ModflowNwtSciunitOutput, HydroShare, 559

http://www.hydroshare.org/resource/19605cf6e91e415fb98b7a28cad263d6. 560

Essawy, B., 2018e. ModflowNwtCollection, HydroShare, 561

http://www.hydroshare.org/resource/bf598099ed384540aaa9284b7343a717. 562

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M., 563

Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid 564

technology for reproducible analyses of data-intensive hydrologic systems. Earth Sp. Sci. 3, 565

163–175. https://doi.org/10.1002/2015EA000139 566

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee, 567

H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X., 568

2016. Towards the Geoscience Paper of the Future : Best Practices for Documenting and 569

Sharing Research from Data to Software to Provenance. Earth Sp. Sci. 1–75. 570

https://doi.org/10.1002/2015EA000136 571

Gorgolewski, K.J., Poldrack, R.A., 2016. A Practical Guide for Improving Transparency and 572

Reproducibility in Neuroimaging Research. PLoS Biol. 14, 1–13. 573

https://doi.org/10.1371/journal.pbio.1002506 574

Hai, D., That, T., Fils, G., Yuan, Z., Malik, T., 2017. Sciunits : Reusable Research Objects. Tech. 575

34

Report, DBGroup, Sch. Comput. DePaul Univ. 576

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J., 577

Tarboton, D.G., 2015. Hydroshare: Sharing diverse environmental data types and models as 578

social objects with application to the hydrology domain. JAWRA J. Am. Water Resour. 579

Assoc. 52. https://doi.org/10.1111/1752-1688.12363 580

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational 581

hydrology is not reproducible, so is it really science? Water Resour. Res. 50. 582

https://doi.org/10.1002/ 2016WR019285 583

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996. One-dimensional statistical dynamic 584

representation of subgrid spatial variability of precipitation in the two-layer variable 585

infiltration capacity model. J. Geophys. Res. Atmos. 101(D16), 21403–21422. 586

Malik, T., 2017. GeoTrust: Improving Sharing and Reproducibility of Geoscience Applications 587

[WWW Document]. EOL Semin. Ser. URL https://www2.ucar.edu/for-588

staff/daily/announcement-calendar-event/eol-seminar-series-dr-tanu-malik (accessed 589

6.6.17). 590

Malik, T., Valescu, C., Pham, Q., 2017. Sciunit, a system for creating, sharing, and running light-591

weight containers. [WWW Document]. URL http://www.geotrusthub.org/ (accessed 1.1.17). 592

Meng, H., Kommineni, R., Pham, Q., Gardner, R., Malik, T., Thain, D., 2015. An invariant 593

framework for conducting reproducible computational science. J. Comput. Sci. 9, 137–142. 594

https://doi.org/10.1016/j.jocs.2015.04.012 595

Morsy, M.M., Goodall, J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata 596

for Describing Water Models, in: In Proceedings of the 7th International Congress on 597

Environmental Modelling and Software, DP Ames, NWT QuinnMorsy, M.M., Goodall, J.L., 598

35

Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata for Describing Water 599

Models, in: In Proceedings of the. pp. 978–988. 600

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A., 601

Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for environmental 602

models with an example hydrologic application in HydroShare. Environ. Model. Softw. 93, 603

13–28. https://doi.org/10.1016/j.envsoft.2017.02.028 604

Niswonger, R.G., Panday, S., Motomu, I., 2011. MODFLOW-NWT , A Newton Formulation for 605

MODFLOW-2005. U.S. Geol. Surv. Tech. Methods 6, 44. 606

Peng, R.D., 2011. Reproducible research in computational science. Science. 334, 1226–1227. 607

Pham, Q., Malik, T., Foster, I., 2014. Auditing and maintaining provenance in software packages. 608

Int. Proven. Annot. Work. 97–109. 609

Piccolo, S.R., Frampton, M.B., 2016. Tools and techniques for computational reproducibility. 610

Gigascience 5, 1–13. https://doi.org/10.1186/s13742-016-0135-4 611

Qasha, R., Cala, Jacek, Watson, P., 2016. A Framework for Scientific Workflow Reproducibility 612

in the Cloud. IEEE 12th Int. Conf. e-Science 81–90. 613

Qin, J., Dobreski, B., Brown, D., 2016. Metadata and Reproducibility : A Case Study of 614

Gravitational Wave Research Data. J. Digit. Curation 11, 218–231. 615

https://doi.org/10.2218/ijdc.v11i1.399 616

Reitz, M., Sanford, W.E., Senay, Gabriel B., and Cazenas, J., 2017. Annual estimates of recharge, 617

quick-flow runoff, and ET for the contiguous US using empirical regression equations, 2000-618

2013. U.S. Geol. Surv. data release. https://doi.org/https://doi.org/10.5066/F7PN93P0. 619

Reproducibility Guide - The rOpenSci Project [WWW Document], n.d. . 2017. URL 620

http://ropensci.github.io/reproducibility-guide/sections/introduction/ (accessed 6.16.17). 621

36

Santana-Perez, I., Ferreira da Silva, R., Rynge, M., Deelman, E., Pérez-Hernández, M.S., Corcho, 622

O., 2017. Reproducibility of execution environments in computational science using 623

Semantics and Clouds. Futur. Gener. Comput. Syst. 67, 354–367. 624

https://doi.org/10.1016/j.future.2015.12.017 625

Singh, V.P., Asce, F., Woolhiser, D.A., Asce, M., 2002. Mathematical Modeling of Watershed 626

Hydrology. J. Hydrol. Eng. 7, 270–292. 627

Stodden, V., 2013. Resolving Irreproducibility in Empirical and Computational Research. IMS 628

Bull. Online. 629

Swain, N.R., Christensen, S.D., Snow, A.D., Dolder, H., Espinoza-Dávalos, G., Goharian, E., 630

Jones, N.L., Nelson, E.J., Ames, D.P., Burian, S.J., 2016. A new open source platform for 631

lowering the barrier for environmental web app development. Environ. Model. Softw. 85, 632

11–26. https://doi.org/10.1016/j.envsoft.2016.08.003 633

Tarboton, D.G., Horsburgh, J.S., Idaszak, R., Heard, J., Valentine, D., Couch, A., Ames, D., 634

Goodall, J.L., Band, L., Merwade, V., Arrigo, J., Hooper, R., Maidment, D., 2014a. a 635

Resource Centric Approach for Advancing Collaboration Through Hydrologic Data and 636

Model Sharing. 11th Int. Conf. Hydroinformatics, HIC 2014, New York City, USA. 637

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L., 638

Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D., 2014b. 639

HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. Int. 640

Environ. Model. Softw. Soc. 7th Int. Congr. Environ. Model. Software, San Diego, 641

California, USA. www. iemss. org/society/index/php/iemss-2014-proceedings. 642

https://doi.org/10.13140/2.1.4431.6801 643

Weibel, S., Kunze, J., Carl Lagoze, A., Wolf, M., 1998. Dublin core metadata for resource 644

37

discovery. No. RFC 2413. 645

 646

