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Abstract 24 

  The reproducibility of computational environmental models is an important challenge that 25 

calls for open and reusable code and data, well-documented workflows, and controlled 26 

environments that allow others to verify published findings. This requires an ability to document 27 

and share raw datasets, data preprocessing scripts, model inputs, outputs, and the specific model 28 

code with all associated dependencies. HydroShare and GeoTrust, two scientific 29 

cyberinfrastructures under development, can be used to improve reproducibility in computational 30 

hydrology. HydroShare is a web-based system for sharing hydrologic data and models as digital 31 

resources including detailed, hydrologic-specific resource metadata. GeoTrust provides tools for 32 

scientists to efficiently reproduce and share geoscience applications. This paper outlines a use case 33 

example, which focuses on a workflow that uses the MODFLOW model, to demonstrate how the 34 

cyberinfrastructures HydroShare and GeoTrust can be integrated in a way that easily and 35 

efficiently reproduces computational workflows.  36 

Keywords: 37 
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1. Software availability 40 

The software created in this research is free and open source. The software information and 41 

availability are as follows: 42 

Developers: Bakinam T. Essawy, Daniel Voce, and Wesley Zell 43 

Programming language: Python, Bash 44 

GitHub link: https://github.com/uva-hydroinformatics-lab/AWS_MODFLOW.  45 

  46 

https://github.com/uva-hydroinformatics-lab/AWS_MODFLOW
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2. Introduction  47 

The challenge of creating more open and reusable code, data, and formal workflows that allow 48 

others to verify published findings is gaining attention in the scientific community (Borgman, 49 

2012; David et al., 2016; Gorgolewski and Poldrack, 2016; Meng et al., 2015; Peng, 2011; Qin et 50 

al., 2016).  Reproducibility is important for both verifying previous results as well as building upon 51 

the prior computational research of other scientists.  Although we can achieve standard 52 

reproducibility for most computational research, there are certain cases in which reproducibility 53 

remains difficult to achieve.  This challenge is not caused only by technical barriers but also by 54 

limited documentation of the research to be replicated and the potentially complex requirements 55 

for  how the software is packaged, installed, and executed (Piccolo and Frampton, 2016). Recent 56 

papers have argued the need and have proposed approaches to improve reproducibility, both within 57 

geosciences generally and the hydrologic sciences specifically (David et al., 2016; Essawy et al., 58 

2016; Gil et al., 2016; Hutton et al., 2016). Reproducibility of research is said to be achieved if the 59 

scientist was able to preserve sufficient computational artifacts in a way that can be replicated in 60 

the future (Meng et al., 2015).    61 

Here we consider reproducibility to be the ability to repeat in the same exact form and then 62 

document and share digital resources previously used to complete an analysis.  These digital 63 

resources include (1) initial raw, unprocessed datasets; (2) data preprocessing scripts used to clean 64 

and organize the data; (3) model inputs; (4) model results; and (5) the specific model code along 65 

with all of its dependencies. Figure 1 shows a typical conceptual workflow that needs to be 66 

repeated for computational reproducibility. These data, software, and environments are often 67 

integrated into workflows (as computational experiments) that allow scientists to re-run an analysis 68 

from raw initial datasets and obtain the same model results. 69 
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There are different requirements for reproducibility depending on the nature of the 70 

research. For example, laboratory experiments require capturing descriptive information about 71 

protocols and methods, leading to empirical reproducibility. Computational reproducibility, on the 72 

other hand, requires descriptive information about the software and workflow details of model-73 

based research (Todden, 2013). Any workflow that is computationally reproducible must be 74 

general and able to address the heterogeneous landscape of tools and approaches used within the 75 

target scientific community. In hydrology, scientists use a large variety of computational models, 76 

many of which have decades of development effort behind them (Singh et al., 2002). 77 

Computational modeling can often require a significant amount of effort and time to prepare model 78 

inputs and to calibrate and validate model parameters. Depending on the complexity of the system 79 

being modeled and the experience of the modeler, these aspects can make reproducing 80 

computational hydrologic experiments particularly challenging.  81 

Addressing the challenges for achieving reproducibility in computational workflow has been 82 

the topic of many studies. Until now, most approaches have either focused on the logical 83 

preservation (i.e., sufficient documentation of a workflow and its components to allow for 84 

reproduction later on) or physical preservation (i.e., workflow conservation by packaging all of its 85 

components allowing identical replication) (Santana-Perez et al., 2017). It is hard to achieve a high 86 

level of reproducibility while using one of these approaches in isolation; rather, the integration of 87 

both physical and logical preservation is required to achieve a high level of reproducibility. Some 88 

efforts have been made to integrate both logical and physical preservation for computational 89 

workflows, such as the Topology and Orchestration Specification for Cloud Applications 90 

(TOSCA). The TOSCA framework supports documentation for both the top-level structure of the 91 

abstract workflow and the execution environment details (logical). TOSCA also provides 92 



 

6 
 

packaging functionality for the workflow (physical) (Qasha et al., 2016). In a similar way, our 93 

approach provides both logical and physical preservation. However, the functionality is extended 94 

to allow for automated creation, documentation, publication, and cloud-based execution of 95 

scientific workflow packages.  96 

 97 

Figure 1 A typical conceptual workflow that needs to be repeated for computational 98 

reproducibility. Dashed lines indicate processes for model calibration that are not discussed in 99 

this study. 100 

This research presents a solution for achieving a higher level of reproducibility by using 101 

GeoTrust’s Sciunit-CLI tool and HydroShare. HydroShare (http://www.hydroshare.org) and 102 

GeoTrust (http://geotrusthub.org) are two new cyberinfrastructures under active development that 103 

aim to improve reproducibility in computational hydrology. The methods described in this  paper  104 

can be used to assist scientists to more easily repeat, reproduce, and verify a computational 105 

experiment (Malik, 2017). This method goes beyond open source and simply shared by allowing 106 

portability in different hardware and software environments and reproducible analyses with 107 

different datasets. This level of reproducibility is not easily achieved by using HydroShare or 108 

GeoTrust in isolation.  For example, GeoTrust does not provide a community of users who can 109 

verify analyses or the variety of datasets that are required for verification; HydroShare, however, 110 
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does provide these. Similarly, while HydroShare simplifies the process of sharing code, data, and 111 

descriptive metadata, it does not address the challenge of sharing the computational environment 112 

required for the workflow and then repeating the computational workflow with different datasets. 113 

This paper presents the design and implementation of a workflow that takes advantage of the 114 

complementary strengths of the two systems. HydroShare is used to share key digital resources in 115 

the workflow, while GeoTrust is used to capture, encapsulate, and make portable model execution. 116 

An example application of the approach is presented using MODFLOW-NWT, a version of the 117 

United States Geological Survey’s groundwater model, MODFLOW (Niswonger et al., 2011). 118 

The remainder of the paper is organized as follows. First, additional background on the 119 

HydroShare and GeoTrust projects is provided. This background section is meant to orient readers 120 

on key aspects of these projects. Next, the methodology section shows the system design and the 121 

use case application for the MODFLOW-NWT model.  In the results section, the system 122 

implementation of the HydroShare and GeoTrust integration approach is presented and 123 

demonstrated by using the use case results as an example application. Finally, a discussion and 124 

conclusions section summarizes the key aspects of the approach and outlines opportunities for 125 

future research to advance on known limitations of the approach.  126 

3. Background 127 

3.1. HydroShare 128 

HydroShare is an open source web-based system developed for hydrologic scientists to 129 

easily share, collaborate around, and publish all types of scientific data and models including 130 

detailed, hydrologic-specific resource metadata (Tarboton et al., 2014a, 2014b). HydroShare has 131 

been developed with the support of the United States National Science Foundation (NSF). 132 

Following the completion of the original NSF grant, the Consortium of Universities for the 133 
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Advancement of Hydrologic Sciences Incorporated (CUAHSI) (also funded by the NSF) assumed 134 

long-term support for HydroShare’s operation and maintenance. In HydroShare, digital content is 135 

stored and referred to as a "resource." Each resource is a unit used for management and access 136 

control within HydroShare. Every resource has a resource type (Horsburgh et al., 2015). 137 

HydroShare assigns a unique identifier for each newly created resource; this identifier is known as 138 

the Resource ID. The "generic" resource type supports the Dublin Core metadata standard (Weibel 139 

et al., 1998) and more specific resource types expand on this metadata standard for well-defined 140 

data types. For example, "Model Operating System" is one of the extended metadata terms for the 141 

"Model Program" resource type, which is used for sharing a computational model programs in 142 

HydroShare (Morsy et al., 2017). 143 

HydroShare provides a Representational State Transfer (REST) Application Program 144 

Interface (API) that allows third-party applications to interact with HydroShare resources. 145 

(https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API#design-document). 146 

Developers can create web-apps that use HydroShare’s REST API to interact with HydroShare 147 

resources. Web-app developers can catalogue their apps in HydroShare via the "Web-app" 148 

resource type (Swain et al., 2016). When a developer creates a web-app resource in HydroShare, 149 

the developer specifies which resource types are relevant to the web-app and the URL that will be 150 

called when the web-app is executed from the landing page of the resource that the web-app is 151 

acting on. After a developer adds a web-app as a resource in HydroShare, HydroShare users can 152 

execute that app through HydroShare's web interface to act on relevant resources that they have 153 

access to. 154 

Although there are several different resource types supported by HydroShare, two of the main 155 

resource types relevant to this paper deal with computational models. HydroShare divides 156 
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computational models into two separate but linked resource types: a) the model program and b) 157 

the model instance. The model program includes the software for executing a specific instance of 158 

the model and the model instance are the input files required for executing the model and, 159 

optionally, the output files after a model instance has been executed by a model program 160 

(Horsburgh et al., 2015; Morsy et al., 2017, 2014). Additionally, a Model Instance Resource type 161 

can be linked to a model program resource type using the "ExecutedBy" term, assisting with 162 

reproducibility of the model instance (Morsy et al., 2017). Other HydroShare resource types used 163 

in this paper include the Composite resource type, which allows uploading metadata files at both 164 

file and resource level; the collections resource type, which stores any number of individual 165 

resources within HydroShare as a single, aggregate resource; and the web-app resource type, which 166 

is the Digital content stored in HydroShare and referred to it as a "resource."  167 

3.2. GeoTrust  168 

The GeoTrust project, also funded by the NSF through their EarthCube program, aims to 169 

create cyberinfrastructure that assists scientists to efficiently reproduce and share geoscience 170 

applications used in research (Malik et al., 2017). The project has done this primarily by 171 

developing the concept of a "sciunit" (https://sciunit.run/), an efficient, lightweight, self-contained 172 

digital package of an ad-hoc computational workflow that can be repeated in other environments. 173 

The sciunit advances the concept of a research object, an aggregation of digital artifacts such as 174 

code, data, scripts, and temporary experiment results associated with a research paper. The sciunit 175 

provides an authoritative and far more complete record of a piece of research (Hai et al., 2017). 176 

To create, maintain, and publish sciunits, the GeoTrust project has developed a software tool for 177 

Linux environments called Sciunit-CLI.  178 

One of the main advantages of a sciunit is its portability, which allows it to be easily run on 179 
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various computing environments.  To accomplish this, Sciunit-CLI creates sciunits using Docker, 180 

a widely used containerization software. Docker wraps a piece of software in a complete filesystem 181 

that contains everything needed to run the software, including code, software runtime, system 182 

tools, and system libraries in a Docker container (Owsiak et al., 2017). By leveraging Docker, 183 

sciunits are packaged with all of their dependencies. In this way, any sciunit can be executed in 184 

any environment in which both Docker and the Sciunit-CLI tool are installed regardless of other 185 

computer configurations (Hai et al., 2017). This capability eliminates the burden of configuring a 186 

running environment with all software dependencies, which can be complex, in order to reuse a 187 

scientific workflow and reproduce its results.  188 

In addition to ensuring the portability of sciunits, Sciunit-CLI automates some documentation 189 

of the workflow packaged into a sciunit, including environment dependencies. The automation of 190 

documenting all code, data, and environment dependencies alleviates what is typically a 191 

burdensome task for scientists. Importantly, Sciunit-CLI also records retrospective provenance of 192 

the workflow execution, which can be used for re-running containers (Pham et al., 2014). Because 193 

it contains all of the required dependencies, the sciunit can be rerun, and the outputs reproduced, 194 

using any other deployment configuration that also has Sciunit-CLI installed. When Sciunit-CLI 195 

creates a sciunit, it includes three types of metadata: annotation metadata (populated by the user) 196 

and provenance and version metadata (generated automatically by Sciunit-CLI). 197 

Figure 2 shows an example user interaction with the Sciunit-CLI tool. The user runs the 198 

create command and provides a name, "Model" in the example.  To create a container or a package 199 

within the sciunit, the user runs the package command and provides the workflow name (e.g., 200 

"workflow.sh") along with any inputs for the workflow (e.g., "data"). The user application can be 201 

written in any combination of programming languages, and many containers can be created within 202 
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the same sciunit.  203 

Sciunit-CLI works in a distributed fashion, similar to the Git version control philosophy, 204 

such that the sciunits are stored only locally until explicitly shared with a remote repository.  This 205 

method of operation allows distributed collaborators to work offline on the same sciunit. When a 206 

user is ready to share, they can publish the sciunit container to any remote web-repository using 207 

the publish command. To use the publish command, the remote repository must be configured 208 

within the Sciunit-CLI tool. This command line prompts first-time users to provide their remote 209 

web-repository credentials. The remote repository reads the container’s contents, stores the 210 

container’s digital artifacts in the appropriate remote sciunit, and associates the container with an 211 

appropriate cloud execution server on which it can potentially re-execute. In our case, we used 212 

HydroShare as the remote repository to publish our packaged sciunit in order to use HydroShare’s 213 

support for rich metadata and its ability to integrate third-party applications. The latter allowed us 214 

to automate the cloud-based execution of this packaged sciunit. 215 

 216 

Figure 2 A example user interaction with sciunit client. 217 

4. Methodology 218 

4.1. System Design 219 

The combined GeoTrust and Hydroshare system is designed to connect a repeatable 220 

computational workflow with its input data in a reproducible way. As such, both the computational 221 
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workflow and the data must be stored in a public repository that has extensive metadata support. 222 

In addition to public accessibility of the data and the computational workflow, the execution of the 223 

workflow must also be made publicly available to ensure reproducibility and transparency.  The 224 

technology for producing a repeatable computational workflow is provided by the GeoTrust 225 

Sciunit-CLI, while the technology for public storage and metadata support is provided by 226 

CUAHSI’s HydroShare. Therefore, the main design aspect of this work consisted of designing a 227 

publicly accessible method of execution in which sciunits built with the Sciunit-CLI and stored in 228 

HydroShare could be executed using input data also stored in HydroShare. This was done in two 229 

parts. The first was to build in functionality for publishing a sciunit through HydroShare. The 230 

second part was to automate the execution of a sciunit from HydroShare using HydroShare web-231 

apps. 232 

4.1.1. Integrating Sciunit-CLI with HydroShare 233 

Figure 3 shows an activity diagram of the system design for integrating GeoTrust Sciunit-CLI 234 

and HydroShare. To achieve this integration, Sciunit-CLI was extended to support sharing of 235 

sciunits through HydroShare. This functionality was implemented using HydroShare’s REST API.  236 

To publish their sciunit on HydroShare, the user must provide valid HydroShare credentials.  In 237 

the current implementation, the sciunit resource is published on HydroShare as a Composite 238 

Resource Type. Once the resource for the sciunit is created within HydroShare, the user can log 239 

into HydroShare and edit the metadata fields to more fully describe the sciunit resource.  240 
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 241 

Figure 3 Activity diagram showing creating a sciunit using GeoTrust and publishing that sciunit on 242 

HydroShare. 243 

4.1.2. Automating sciunit execution through HydroShare 244 

Integrating the cloud-based sciunit execution from the HydroShare user interface was done 245 

using a HydroShare web-app. This web-app directs Hyper Text Transfer Protocol (HTTP) request 246 

to a web server where sciunits can be executed. The web-app configured to run a particular sciunit 247 

can be accessed through the "Open with" button on the landing page for the resource that stores 248 

the raw input data. When the scientist clicks on the web-app button from the "Open with" menu, 249 

an HTTP request containing the raw input data's resource ID will be sent to the server. With the 250 

resource ID, the HydroShare REST API can be used to download the raw input data and the sciunit 251 

to the server. The server can then execute the sciunit using the raw data, and return the output to 252 

the scientist as a new HydroShare resource. 253 

Figure 4 shows the steps done in a generic form for the integration between the two 254 

cyberinfrastructures, GeoTrust and HydroShare, to improve reproducibility by automating the 255 
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execution of the published sciunit. The figure shows how the "Open with" app will perform a 256 

HTTP GET request to a remote server, which has already been configured with the Sciunit-CLI. 257 

This automation process is done using a Python script created on the web server machine. This 258 

Python script uses the flask library to act as a web server with NGINX (https://www.nginx.com/) 259 

used as a proxy to forward all HTTP requests from the user browser to the Python script, which 260 

can handle multiple users simultaneously. The Python script is using the POST request to create a 261 

new resource and upload the output generated from running the sciunit on this resource. 262 

Simultaneously, a webserver is running on the remote machine, which handles the HTTP request 263 

and automatically executes a Python script. This script uses the HydroShare user authentication to 264 

download the input data from the resource and downloads the Composite resource that includes 265 

the sciunit container. Once both resources are downloaded, the resources are unzipped and moved 266 

to the working directory for the analysis. The Sciunit-CLI executes the downloaded sciunit 267 

package.  After the sciunit is executed, a new resource is created in HydroShare and the output 268 

from the Sciunit-CLI execution is uploaded into this new resource. A new collection resource is 269 

also created on HydroShare to group all resources that were included during this execution.  In this 270 

paper we used HydroShare API. Our Python script uses the Python Client Library for the REST 271 

API (http://hs-restclient.readthedocs.io/en/latest/). 272 

http://hs-restclient.readthedocs.io/en/latest/
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 273 

Figure 4 The generic implementation for automating the execution of the published sciunit from 274 

the HydroShare web-app 275 

4.2.  Use Case Application 276 

A use case application was designed to demonstrate the integration of GeoTrust Sciunit-CLI 277 

and HydroShare. This integration allows GeoTrust to package and publish a sciunit through 278 

HydroShare, after which HydroShare automates the execution of this sciunit. Execution of the 279 

packaged sciunit through HydroShare was demonstrated using EC2 instances from Amazon Web 280 

Services (AWS). A Linux-based, micro-sized machine (t2) was used for prototyping and 281 

demonstration purposes; this machine had 1 Gb of memory, 1 vCPU, 32 Gb of Solid State Drive 282 

(SSD)-based local instance storage, and a 64-bit platform (“Amazon EC2 Instances,” 2015). This 283 

use case consisted of a workflow used for preprocessing model input data, running a computational 284 
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model, and handling the model outputs. The computational model used for the use case was 285 

MODFLOW-NWT.  286 

4.2.1. MODFLOW-NWT Use Case 287 

MODFLOW-NWT is a standalone version of MODFLOW, a commonly used groundwater 288 

model  (Niswonger et al., 2011). The concept of "packages" is key to the modularity of the different 289 

versions of MODFLOW (including MODFLOW-NWT); packages are input files that define some 290 

individual component of the groundwater-flow conceptual model or specify the solution method 291 

used for the flow equation that is collectively formulated from the individual components.  For 292 

example, the basic (BAS) and discretization (DIS) packages define the spatial and temporal 293 

framework of the model, including the grid dimensions and the location of active and inactive grid 294 

cells, while the recharge (RCH) package defines the spatial-distribution and rate of recharge to the 295 

water-table.  For our use case using MODFLOW-NWT, the Newton-Raphson (NWT) package 296 

defines the variables required to implement the Newton-Raphson solution method.  297 

For this study, MODFLOW-NWT was used to simulate the shallow groundwater flow in the 298 

James River watershed upstream of Richmond, VA, USA. The model includes recharge to the 299 

water table, subsurface flow through the saturated zone, and base-flow discharge to surface water 300 

bodies including the James, Rivanna, and Hardware Rivers and several smaller-order streams.  301 

Depth-integrated effective transmissivity was assumed to be constant throughout the active model 302 

area and spatially-distributed recharge was derived from the national recharge dataset developed 303 

by Reitz et al. (2017). Base-flow discharge was simulated using the MODFLOW drain (DRN) 304 

package with all drain elevations (i.e., the water-table elevation required to discharge base-flow to 305 

a receiving stream) extracted from the National Elevation Dataset. The model runs to completion 306 

and is unconstrained by calibration; as such it is to be only used as an example for the workflow 307 
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processes described in this paper (i.e., no hydrologic or management conclusions were drawn from 308 

the results of the model).  This workflow could be extended to include calibration (Figure 1).  For 309 

example, a HydroShare resource for a parameter estimation program such as PEST (Doherty and 310 

Hunt, 2010) could be created and included in the sciunit container.  Similarly, the pre-processing 311 

script could include data retrieval from web services such as the USGS water services API 312 

(https://waterservices.usgs.gov/) and the automated generation of PEST input files. 313 

The FloPy library was used to create the MODFLOW-NWT model from raw input datasets 314 

(Bakker et al., 2016).  FloPy is a library of Python modules that allows scripting of the various 315 

steps in MODFLOW model development, execution, and analysis. By combining FloPy with 316 

GeoTrust and HydroShare, the workflow used to create and execute MODFLOW model (e.g., the 317 

steps shown in Figure 1) can be stored within a reproducible container with descriptive metadata 318 

in HydroShare. 319 

5. Results 320 

5.1. System Implementation 321 

The system was implemented using the following steps. First, the script downloads raw input 322 

data and the sciunit resources from HydroShare. Second, the script will unzip both the data and 323 

sciunit, pass the data to the sciunit as an argument (this is how the sciunit accepts the input data), 324 

and then run the sciunit with the downloaded data. Last, after the execution is completed, the 325 

Python script will upload the results to HydroShare by using a POST request to create two new 326 

resources: one for the sciunit output, which has the MODFLOW-NWT Model Instance Resource 327 

type, and the other the collection resource that will include all the resources used within the study. 328 

The script then returns the command status (including any errors) to the user.  329 

https://waterservices.usgs.gov/


 

18 
 

5.2. Use Case Results 330 

A digital workflow (bash script) was packaged into a sciunit using the Sciunit-CLI tool. 331 

The digital workflow runs a Python script to prepare the MODFLOW-NWT input data files and 332 

then executes a single run of the model. Figure 5 shows the component of the packaged digital 333 

workflow. 334 

 335 

Figure 5 component of the packaged digital workflow.  336 

Figure 6 outlines the first steps taken in the process to start and create a new sciunit through 337 

the GeoTrust Sciunit-CLI tool for the example workflow while Figure 7 shows the execution and 338 

packaging of the digital workflow into a sciunit package. This package command traces all 339 

dependencies for the workflow and includes them in a single Docker file. Figure 8 shows how the 340 

publish command is used to publish a sciunit package on HydroShare. If this is the user's first time 341 

connecting to HydroShare, Sciunit-CLI will ask for HydroShare user credentials, otherwise the 342 

credentials stored will be used. Once the package is published, metadata can be provided by the 343 

user via the HydroShare Graphical User Interface (GUI). Future implementations of the Sciunit-344 

CLI may expand this functionality by automatically populating more detailed metadata for 345 

describing resources.  346 

 347 

Figure 6 The creation of a new sciunit through the GeoTrust Sciunit-CLI tool for the use case 348 
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 349 

Figure 7 Execution of the use case workflow through sciunit to create a package 350 

 351 

Figure 8 Publishing the use case sciunit to HydroShare 352 

The newly created resource on HydroShare is a Composite Resource Type. This resource 353 

type allows the resource to include multiple files without file format limitations and with metadata 354 

associated at a file level within the resource. The Composite resource contains two files. The first 355 

is the provenance metadata file created while packaging the workflow; this metadata file contains 356 

information concerning the creation and version history of the managed data. The second file is 357 

the zipped package for the sciunit itself. 358 

Once the sciunit is available as a HydroShare resource, HydroShare’s integration with 359 

third-party web apps is used to execute the sciunit.  In order to store data and make it accessible to 360 

be used as the input required by the sciunit, we made a new model instance-type resource titled 361 

"ModflowNwtRawData" (Essawy, 2018b). We also created a web-app resource titled "GeoTrust" 362 

(Essawy, 2018a). This web-app pointed to the AWS-EC2 instance where the Sciunit-CLI tool and 363 

our Python script were installed. The connection between the HydroShare resource and the web 364 

server was made by providing the web server’s URL as the "App-launching URL Pattern" 365 

metadata term in the resource. The GeoTrust web-app resource is linked to the 366 

ModflowNwtRawData resource by the SupportedResourceType metadata property. This metadata 367 
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property was set to include the Composite Resource Type, which allowed the web-app to appear 368 

in a drop-down list in the "Open with" menu on the ModflowNwtRawData resource landing page. 369 

Figure 9 shows the Model Instance Resource type that includes the raw data, and the web apps 370 

linked to this resource type to automate the sciunit execution. When the GeoTrust web-app on this 371 

page is selected, the HTTP request is sent to server and the workflow is executed. The output is 372 

written back to HydroShare as a new resource with the MODFLOW Model Instance Resource 373 

type. This resource type is used because the resource can be executed by a MODFLOW model 374 

program and it allows for adding extended metadata specific to MODFLOW (Morsy et al., 2017). 375 

 376 

Figure 9 The raw data within the Model Instance Resource type, and the web apps linked to this 377 

resource type to automate the sciunit execution. 378 

Figure 10 presents the activity diagram for the steps that occur when the "Open with" button 379 

is clicked and the "GeoTrust" app is selected on the ModflowNwtRawData resource landing page.  380 

The "GeoTrust" app will perform an HTTP GET request to the AWS-EC2 machine, which has 381 

already been configured with the Sciunit-CLI. The webserver running on the AWS-EC2 machine 382 

handles the HTTP request and automatically executes a Python script. The script uses the 383 
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HydroShare user authentication to download both the raw data of the ModflowNwtRawData 384 

resource and the sciunit container included within the ModflowNwtSciunit resource (Essawy, 385 

2018c). Once the ModflowNwtSciunit and the ModflowNwtRawData resources are downloaded, 386 

the script unzips the resources and moves them to the working directory for the analysis. The 387 

Sciunit-CLI tool executes the downloaded sciunit package, which pre-processes the raw input data 388 

for the model and executes the MODFLOW-NWT model. After the model is executed, a new 389 

resource is created in HydroShare with the MODFLOW Model Instance Resource type named 390 

ModflowNwtSciunitOutput (Essawy, 2018d) and the output from the Sciunit-CLI execution is 391 

uploaded into this new resource. A new collection resource is also created on HydroShare to group 392 

all the resources: the ModflowNwtRawData generic Model Instance Resource (the resource type 393 

is a generic model instance because the data uploaded have no specific metadata or format that 394 

could be tied to a specific resource type), the web-app GeoTrust resource, the ModflowNwtSciunit, 395 

MODFLOW Model Instance Resource, the ModflowNwtSciunit Composite resource, and the 396 

ModflowNwtSciunitOutput resource that includes the output resulting from executing the sciunit 397 

package.  398 

 399 
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 400 

Figure 10 Activity diagram showing the steps for the online execution of the sciunit through 401 

HydroShare. 402 

Figure 11 shows HydroShare user "My Resources page" after using the "Open with" action 403 

button on the GeoTrust web-app on the ModflowNwtRawData resource for the online execution. 404 

Two new resources are created. The first resource in the workflow is the 405 

ModflowNwtSciunitOutput resource, which includes the input files for the MODFLOW-NWT 406 

model program that are prepared through the preprocessing script and the output from the model 407 

run. This resource is given the MODFLOW Model Instance Resource type, because the resource 408 

has the inputs that are required by the MODFLOW-NWT model. This resource type allows for 409 

extended metadata specific to a MODFLOW model instance. The second resource created is the 410 
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ModflowNwtCollection resource (Essawy, 2018e), which includes all the resources used in the 411 

online execution for the MODFLOW-NWT. This provides a grouping of resources used for an 412 

analysis and allows the user to share or download this collection of resources more easily.   413 

 414 

Figure 11 HydroShare user My Resources page after using the GeoTrust web app for the online 415 

execution.   416 
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Figure 12 shows the output files within ModflowNwtSciunitOutput resource as viewed on 417 

this resource’s HydroShare landing page. The resource contains the output generated from running 418 

the sciunit that prepares the model input for MODFLOW-NWT and the output from running the 419 

MODFLOW-NWT model program itself. The MODFLOW Model Instance Resource type 420 

includes extended metadata terms specific for MODFLOW.  In this use case the model has eight 421 

packages.  In addition to the packages already described, this model instance includes: the output 422 

control (OC) package, which specifies how the model output is written; the upstream-weighting 423 

(UPW) groundwater flow package, which describes the system properties (e.g., 424 

transmissivity/conductivity); and the one output listing file (LIST), which contains all the 425 

information about the current run (e.g., stress period, time step and the number of active and 426 

inactive cells, the recharge, drains, and any errors). The name file (NAM) specifies the name of 427 

the input and output files for the model instance. 428 

 429 

 430 

Figure 12 The output files within the ModflowNwtSciunitOutput resource landing page in 431 

HydroShare. 432 
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Additional metadata associated with the MODFLOW output resource is divided into four 433 

categories:  1) Authorship, 2) Related resources, 3) Resource Specific, and 4) Web Apps. Figure 434 

13 shows the "Related Resources" metadata. Here all resources linked to the MODFLOW output 435 

resource through formal relationships are listed. In this case, the MODFLOW output resource is 436 

linked to the ModflowNwtRawData resource through the "Derived From" relationship and to the 437 

MODFLOW-NWT resource through the "isExecutedBy" relationship. Figure 14 shows the 438 

"Resource Specific" metadata. These are non-null metadata terms that apply only to the 439 

MODFLOW Model Instances' such as grid attributes, solver, and boundary condition package 440 

choices. Additional metadata terms not previously populated by the user can be populated later 441 

within the edit mode and will appear in this section once populated.   442 

 443 

Figure 13 The ModflowNwtSciunitOutput Related Resources metadata tracking the resource's 444 

provenance within HydroShare. 445 
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 446 

Figure 14 ModflowNwtSciunitOutput specific metadata capturing key MODFLOW model 447 

properties. 448 

Figure 15 shows details for the resulting ModflowNwtCollection resource as viewed on 449 

this resource’s landing page. The collection resource contains four sub-resources: 1) the 450 

ModflowNwtRawData resource with the raw input data ready to be prepared for the MODFLOW-451 

NWT model engine; 2) the ModflowNwtSciunit resource with the sciunit pre-processing 452 

workflow, which also includes running the MODFLOW-NWT model; 3) the 453 

ModflowNwtSciunitOutput resource, which stores the output generated from running the sciunit 454 

workflow; and 4) the GeoTrust web app used to perform the online model execution using AWS-455 

EC2. By organizing all these resources into a single collection, it is possible to have one landing 456 

page where users can, referring back to the stated goals in the introduction of this paper, view, 457 

obtain, and execute (1) raw initial datasets, (2) data preprocessing scripts used to clean and 458 
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organize the data, (3) model inputs, (4) model results, and (5) the specific model code along with 459 

of all its dependencies used for a computational analysis.  460 
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 461 

Figure 15 The collection resource that includes all resources used within the study. 462 
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6. Discussion and Conclusions 463 

In this paper, we demonstrated how HydroShare and GeoTrust can be integrated to easily and 464 

efficiently package, share, and publish model workflows. MODLFOW-NWT was used as an 465 

example application to demonstrate the functionality provided by these cyberinfrastructures for 466 

creating open, reusable data analysis and cloud-based model execution services. The approach 467 

showed how containers built using GeoTrust tools can be shared as HydroShare resources. A 468 

cloud-based service was created to automatically retrieve raw input data from HydroShare, execute 469 

a sciunit container that both prepares and runs a MODFLOW-NWT model, and share the results 470 

on HydroShare using a MODFLOW Model Instance Resource type. All the resources are 471 

aggregated in HydroShare into one collection resource with domain-specific metadata.  472 

The integration of scientific cyberinfrastructures such as the HydroShare and GeoTrust 473 

projects can improve reproducibility in computational hydrology. New MODFLOW models can 474 

be directly built from unprocessed input data (e.g., land-surface DEMs or stream-network 475 

shapefiles) by running a sciunit container that includes automated data preparation steps 476 

implemented using the FloPy Python package. The container is run online using AWS resources 477 

initiated directly through the HydroShare user interface. A particular advantage of this approach 478 

is that the GeoTrust Sciunit-CLI tool provides scientists a method for efficiently creating containers 479 

for script-driven modeling workflows. Thus, the general approach demonstrated here for the 480 

MODFLOW-NWT use case could be applied for any workflow that can be automated and that is 481 

compatible with Docker requirements. For example, in prior work we have constructed pre- and 482 

post-processing workflows for the Variable Infiltration Capacity (VIC) hydrologic model (Liang 483 

et al., 1996) that could directly benefit from this method for packaging, sharing, and publishing 484 

resources (Billah et al., 2016; Essawy et al., 2016). These containers are efficient, lightweight, 485 
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self-contained packages of computational experiments that can be repeated or reproduced 486 

regardless of deployment configurations.  487 

In addition to integration with HydroShare for storing and publishing a sciunit, cloud resources 488 

were used to execute sciunits directly through the HydroShare user interface. While only AWS 489 

was presented, we evaluated as part of this work three different cloud computing services: 490 

EarthCube Integration and Testing Environment (ECITE), CyVerse, and Amazon Web Services 491 

(AWS). ECITE and CyVerse are funded by NSF and both are under active development. One main 492 

advantage for using ECITE or CyVerse is that they are free of charge for scientific studies. AWS, 493 

though not free, does offer a competitive grant program for researchers. From our experience, the 494 

AWS platform made the process of obtaining computer resources the simplest when compared to 495 

ECITE and CyVerse. The AWS user simply logs in to the console, selects the type of the machine 496 

needed, and launches it. When using ECITE, we had to contact the developer and ask for an 497 

instance with the required specifications and a short paragraph summarizing the project we are 498 

working on to justify the allocation of compute resources. We also needed to contact the developer 499 

each time we wanted to open a port (e.g., port 22 to SSH or port 80 for HTTP). The service did 500 

not support Elastic IPs like AWS, so each time we restarted an instance and wanted to use SSH to 501 

access to the machine, we needed to report the IP address used to access the machine to the 502 

developer to add this address to the security rules. CyVerse is a more mature service, but allows 503 

each user only a certain allocation of computational time. Once the user exceeds this allocation the 504 

instance is suspended and the user needs to request more time from the administrators. This feature 505 

was problematic for our use case of a continually available cloud-based resource for online model 506 

execution. For these reasons, we used AWS-EC2 for much of the testing work described in this 507 
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paper, but ECITE and CyVerse are in active development and will likely be good options for this 508 

use case in the future.  509 

While this approach shows great promise, it is not without limitations: (1) the Sciunit-CLI tool 510 

must be installed in order to re-execute a sciunit container and (2) HydroShare lacks methods for 511 

uniquely identifying and managing web-app resources that will be needed as the number of these 512 

resources continues to increase. Regarding the latter limitation, without a more organized structure, 513 

naming conflicts could cause confusion when using the "Open with" button over which app is to 514 

be requested. Also, this work does not fully explore computational challenges associated with the 515 

proposed methodology. Using cloud services like AWS provides the opportunity for scalability as 516 

more users are added. For example, this solution used small EC2 instances for prototyping. Future 517 

work could explore AWS EC2 Container Service (ECS) as an alternative for a more scalable 518 

solution to support multiple concurrent users. Data movement between HydroShare and AWS is 519 

another potential issue as data volumes increase, which is not uncommon for hydrologic modeling. 520 

HydroShare is built on iRODS (Integrated Rule-Oriented Data System), which includes the ability 521 

to interface with AWS S3 storage resources. Future work could explore using this functionality to 522 

automate the movement of large files between HydroShare and AWS to support computation 523 

within AWS and still maintain access through the HydroShare user interface. iRODS is 524 

specifically designed to handle such data federation needs and should provide a robust solution for 525 

managing the large data flows common in hydrologic modeling.  Lastly, future work should 526 

explore scaling of the general approach presented here to use cases in which multiple sciunits are 527 

available for execution within a remote, cloud-based resource. In this case, a user could select from 528 

available sciunits to process input data stored with HydroShare, making for a potentially very 529 



 

32 
 

powerful general approach applicable to many different modeling and analysis use cases that 530 

require remote data processing. 531 
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