This is a manuscript of an article that was accepted 30 March 2018 for publication in the Journal
of Environmental Modelling & Software. The final publication is available at
https://doi.org/10.1016/j.envsoft.2018.03.025.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Integrating Scientific Cyberinfrastructures to Improve Reproducibility in

Computational Hydrology: Example for HydroShare and GeoTrust

Bakinam T. Essawy 2, Jonathan L. Goodall**, Wesley Zell°, Daniel Voce®, Mohamed M. Morsy*¢,
Jeffrey Sadler?, Zhihao Yuan®, and Tanu Malik®

Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick
Road, PO Box 400742, Charlottesville, VA, 22904, USA

b Earth Systems Modeling Branch, US Geological Survey, 12201 Sunrise Valley Dr., Reston, VA,
USA

¢ Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick
Road, PO Box 400743, Charlottesville, VA, 22904, USA

4 Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Cairo University,
P.O. Box 12211, Giza 12613, Egypt

¢ College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA

* To whom correspondence should be addressed (E-mail: goodall@yvirginia.edu; Address:

University of Virginia, Department of Civil and Environmental Engineering, PO Box 400742,

Charlottesville, Virginia 22904; Tel: (434) 243-5019)

Highlights:
e Method for packaging and publishing scientific workflows
e Integration between GeoTrust and HydroShare projects
e GeoTrust is used to easily package environmental models as containers
e HydroShare is used to document and share packaged workflows

e An example application is provided for using a MODFLOW-NWT model

1

mailto:goodall@virginia.edu

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Abstract

The reproducibility of computational environmental models is an important challenge that
calls for open and reusable code and data, well-documented workflows, and controlled
environments that allow others to verify published findings. This requires an ability to document
and share raw datasets, data preprocessing scripts, model inputs, outputs, and the specific model
code with all associated dependencies. HydroShare and GeoTrust, two scientific
cyberinfrastructures under development, can be used to improve reproducibility in computational
hydrology. HydroShare is a web-based system for sharing hydrologic data and models as digital
resources including detailed, hydrologic-specific resource metadata. GeoTrust provides tools for
scientists to efficiently reproduce and share geoscience applications. This paper outlines a use case
example, which focuses on a workflow that uses the MODFLOW model, to demonstrate how the
cyberinfrastructures HydroShare and GeoTrust can be integrated in a way that easily and
efficiently reproduces computational workflows.
Keywords:

Computational reproducibility; hydrologic modeling; MODFLOW; metadata

40

41

42

43

44

45

46

1. Software availability

The software created in this research is free and open source. The software information and
availability are as follows:

Developers: Bakinam T. Essawy, Daniel Voce, and Wesley Zell

Programming language: Python, Bash

GitHub link: https://github.com/uva-hydroinformatics-lab/AWS MODFLOW.

https://github.com/uva-hydroinformatics-lab/AWS_MODFLOW

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

2. Introduction

The challenge of creating more open and reusable code, data, and formal workflows that allow
others to verify published findings is gaining attention in the scientific community (Borgman,
2012; David et al., 2016; Gorgolewski and Poldrack, 2016; Meng et al., 2015; Peng, 2011; Qin et
al., 2016). Reproducibility is important for both verifying previous results as well as building upon
the prior computational research of other scientists. Although we can achieve standard
reproducibility for most computational research, there are certain cases in which reproducibility
remains difficult to achieve. This challenge is not caused only by technical barriers but also by
limited documentation of the research to be replicated and the potentially complex requirements
for how the software is packaged, installed, and executed (Piccolo and Frampton, 2016). Recent
papers have argued the need and have proposed approaches to improve reproducibility, both within
geosciences generally and the hydrologic sciences specifically (David et al., 2016; Essawy et al.,
2016; Gil et al., 2016; Hutton et al., 2016). Reproducibility of research is said to be achieved if the
scientist was able to preserve sufficient computational artifacts in a way that can be replicated in
the future (Meng et al., 2015).

Here we consider reproducibility to be the ability to repeat in the same exact form and then
document and share digital resources previously used to complete an analysis. These digital
resources include (1) initial raw, unprocessed datasets; (2) data preprocessing scripts used to clean
and organize the data; (3) model inputs; (4) model results; and (5) the specific model code along
with all of its dependencies. Figure 1 shows a typical conceptual workflow that needs to be
repeated for computational reproducibility. These data, software, and environments are often
integrated into workflows (as computational experiments) that allow scientists to re-run an analysis

from raw initial datasets and obtain the same model results.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

There are different requirements for reproducibility depending on the nature of the
research. For example, laboratory experiments require capturing descriptive information about
protocols and methods, leading to empirical reproducibility. Computational reproducibility, on the
other hand, requires descriptive information about the software and workflow details of model-
based research (Todden, 2013). Any workflow that is computationally reproducible must be
general and able to address the heterogeneous landscape of tools and approaches used within the
target scientific community. In hydrology, scientists use a large variety of computational models,
many of which have decades of development effort behind them (Singh et al., 2002).
Computational modeling can often require a significant amount of effort and time to prepare model
inputs and to calibrate and validate model parameters. Depending on the complexity of the system
being modeled and the experience of the modeler, these aspects can make reproducing
computational hydrologic experiments particularly challenging.

Addressing the challenges for achieving reproducibility in computational workflow has been
the topic of many studies. Until now, most approaches have either focused on the logical
preservation (i.e., sufficient documentation of a workflow and its components to allow for
reproduction later on) or physical preservation (i.e., workflow conservation by packaging all of its
components allowing identical replication) (Santana-Perez et al., 2017). It is hard to achieve a high
level of reproducibility while using one of these approaches in isolation; rather, the integration of
both physical and logical preservation is required to achieve a high level of reproducibility. Some
efforts have been made to integrate both logical and physical preservation for computational
workflows, such as the Topology and Orchestration Specification for Cloud Applications
(TOSCA). The TOSCA framework supports documentation for both the top-level structure of the

abstract workflow and the execution environment details (logical). TOSCA also provides

93

94

95

96

97
98

99

100

101

102

103

104

105

106

107

108

109

110

packaging functionality for the workflow (physical) (Qasha et al., 2016). In a similar way, our
approach provides both logical and physical preservation. However, the functionality is extended
to allow for automated creation, documentation, publication, and cloud-based execution of

scientific workflow packages.

Raw Pre- Model
initial processing Model input roaram Model results
datasets script Prog :
, b= . |
; S
r——7——1 / Y / Post-
it e Cgtration s |
L T \ prog / \ script J/

— — — —
—_—— — —

Figure 1 A typical conceptual workflow that needs to be repeated for computational
reproducibility. Dashed lines indicate processes for model calibration that are not discussed in
this study.

This research presents a solution for achieving a higher level of reproducibility by using
GeoTrust’s Sciunit-CLI tool and HydroShare. HydroShare (http://www.hydroshare.org) and
GeoTrust (http://geotrusthub.org) are two new cyberinfrastructures under active development that
aim to improve reproducibility in computational hydrology. The methods described in this paper
can be used to assist scientists to more easily repeat, reproduce, and verify a computational
experiment (Malik, 2017). This method goes beyond open source and simply shared by allowing
portability in different hardware and software environments and reproducible analyses with
different datasets. This level of reproducibility is not easily achieved by using HydroShare or
GeoTrust in isolation. For example, GeoTrust does not provide a community of users who can

verify analyses or the variety of datasets that are required for verification; HydroShare, however,

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

does provide these. Similarly, while HydroShare simplifies the process of sharing code, data, and
descriptive metadata, it does not address the challenge of sharing the computational environment
required for the workflow and then repeating the computational workflow with different datasets.
This paper presents the design and implementation of a workflow that takes advantage of the
complementary strengths of the two systems. HydroShare is used to share key digital resources in
the workflow, while GeoTrust is used to capture, encapsulate, and make portable model execution.
An example application of the approach is presented using MODFLOW-NWT, a version of the
United States Geological Survey’s groundwater model, MODFLOW (Niswonger et al., 2011).

The remainder of the paper is organized as follows. First, additional background on the
HydroShare and GeoTrust projects is provided. This background section is meant to orient readers
on key aspects of these projects. Next, the methodology section shows the system design and the
use case application for the MODFLOW-NWT model. In the results section, the system
implementation of the HydroShare and GeoTrust integration approach is presented and
demonstrated by using the use case results as an example application. Finally, a discussion and
conclusions section summarizes the key aspects of the approach and outlines opportunities for
future research to advance on known limitations of the approach.
3. Background
3.1. HydroShare

HydroShare is an open source web-based system developed for hydrologic scientists to
easily share, collaborate around, and publish all types of scientific data and models including
detailed, hydrologic-specific resource metadata (Tarboton et al., 2014a, 2014b). HydroShare has
been developed with the support of the United States National Science Foundation (NSF).

Following the completion of the original NSF grant, the Consortium of Universities for the

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Advancement of Hydrologic Sciences Incorporated (CUAHSI) (also funded by the NSF) assumed
long-term support for HydroShare’s operation and maintenance. In HydroShare, digital content is
stored and referred to as a "resource." Each resource is a unit used for management and access
control within HydroShare. Every resource has a resource type (Horsburgh et al., 2015).
HydroShare assigns a unique identifier for each newly created resource; this identifier is known as
the Resource ID. The "generic" resource type supports the Dublin Core metadata standard (Weibel
et al., 1998) and more specific resource types expand on this metadata standard for well-defined
data types. For example, "Model Operating System" is one of the extended metadata terms for the
"Model Program" resource type, which is used for sharing a computational model programs in
HydroShare (Morsy et al., 2017).

HydroShare provides a Representational State Transfer (REST) Application Program
Interface (API) that allows third-party applications to interact with HydroShare resources.
(https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API#design-document).
Developers can create web-apps that use HydroShare’s REST API to interact with HydroShare
resources. Web-app developers can catalogue their apps in HydroShare via the "Web-app"
resource type (Swain et al., 2016). When a developer creates a web-app resource in HydroShare,
the developer specifies which resource types are relevant to the web-app and the URL that will be
called when the web-app is executed from the landing page of the resource that the web-app is
acting on. After a developer adds a web-app as a resource in HydroShare, HydroShare users can
execute that app through HydroShare's web interface to act on relevant resources that they have
access to.

Although there are several different resource types supported by HydroShare, two of the main

resource types relevant to this paper deal with computational models. HydroShare divides

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

computational models into two separate but linked resource types: a) the model program and b)
the model instance. The model program includes the software for executing a specific instance of
the model and the model instance are the input files required for executing the model and,
optionally, the output files after a model instance has been executed by a model program
(Horsburgh et al., 2015; Morsy et al., 2017, 2014). Additionally, a Model Instance Resource type
can be linked to a model program resource type using the "ExecutedBy" term, assisting with
reproducibility of the model instance (Morsy et al., 2017). Other HydroShare resource types used
in this paper include the Composite resource type, which allows uploading metadata files at both
file and resource level; the collections resource type, which stores any number of individual
resources within HydroShare as a single, aggregate resource; and the web-app resource type, which

is the Digital content stored in HydroShare and referred to it as a "resource."

3.2. GeoTrust

The GeoTrust project, also funded by the NSF through their EarthCube program, aims to
create cyberinfrastructure that assists scientists to efficiently reproduce and share geoscience
applications used in research (Malik et al., 2017). The project has done this primarily by
developing the concept of a "sciunit" (https://sciunit.run/), an efficient, lightweight, self-contained
digital package of an ad-hoc computational workflow that can be repeated in other environments.
The sciunit advances the concept of a research object, an aggregation of digital artifacts such as
code, data, scripts, and temporary experiment results associated with a research paper. The sciunit
provides an authoritative and far more complete record of a piece of research (Hai et al., 2017).
To create, maintain, and publish sciunits, the GeoTrust project has developed a software tool for
Linux environments called Sciunit-CLI.

One of the main advantages of a sciunit is its portability, which allows it to be easily run on

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

various computing environments. To accomplish this, Sciunit-CLI creates sciunits using Docker,
a widely used containerization software. Docker wraps a piece of software in a complete filesystem
that contains everything needed to run the software, including code, software runtime, system
tools, and system libraries in a Docker container (Owsiak et al., 2017). By leveraging Docker,
sciunits are packaged with all of their dependencies. In this way, any sciunit can be executed in
any environment in which both Docker and the Sciunit-CLI tool are installed regardless of other
computer configurations (Hai et al., 2017). This capability eliminates the burden of configuring a
running environment with all software dependencies, which can be complex, in order to reuse a
scientific workflow and reproduce its results.

In addition to ensuring the portability of sciunits, Sciunit-CLI automates some documentation
of the workflow packaged into a sciunit, including environment dependencies. The automation of
documenting all code, data, and environment dependencies alleviates what is typically a
burdensome task for scientists. Importantly, Sciunit-CLI also records retrospective provenance of
the workflow execution, which can be used for re-running containers (Pham et al., 2014). Because
it contains all of the required dependencies, the sciunit can be rerun, and the outputs reproduced,
using any other deployment configuration that also has Sciunit-CLI installed. When Sciunit-CLI
creates a sciunit, it includes three types of metadata: annotation metadata (populated by the user)
and provenance and version metadata (generated automatically by Sciunit-CLI).

Figure 2 shows an example user interaction with the Sciunit-CLI tool. The user runs the
create command and provides a name, "Model" in the example. To create a container or a package
within the sciunit, the user runs the package command and provides the workflow name (e.g.,
"workflow.sh") along with any inputs for the workflow (e.g., "data"). The user application can be

written in any combination of programming languages, and many containers can be created within

10

203

204

205

206

207

208

209

210

211

212

213

214

215

216
217

218

219

220

221

the same sciunit.

Sciunit-CLI works in a distributed fashion, similar to the Git version control philosophy,
such that the sciunits are stored only locally until explicitly shared with a remote repository. This
method of operation allows distributed collaborators to work offline on the same sciunit. When a
user is ready to share, they can publish the sciunit container to any remote web-repository using
the publish command. To use the publish command, the remote repository must be configured
within the Sciunit-CLI tool. This command line prompts first-time users to provide their remote
web-repository credentials. The remote repository reads the container’s contents, stores the
container’s digital artifacts in the appropriate remote sciunit, and associates the container with an
appropriate cloud execution server on which it can potentially re-execute. In our case, we used
HydroShare as the remote repository to publish our packaged sciunit in order to use HydroShare’s
support for rich metadata and its ability to integrate third-party applications. The latter allowed us

to automate the cloud-based execution of this packaged sciunit.

. > create Mode/
. > annotate Model author: Bakinam Essawy
. > exec workflow.sh 1 /data
. > show
id: el
sciunit: Model
command: ./workflow.sh Data
size: 1.18 GB
started: 2017-11-30 21:23
5. > push my_new_article --setup hs
6. > repeat el
7. > stop

AWM

Figure 2 A example user interaction with sciunit client.
4. Methodology
4.1. System Design
The combined GeoTrust and Hydroshare system is designed to connect a repeatable

computational workflow with its input data in a reproducible way. As such, both the computational

11

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

workflow and the data must be stored in a public repository that has extensive metadata support.
In addition to public accessibility of the data and the computational workflow, the execution of the
workflow must also be made publicly available to ensure reproducibility and transparency. The
technology for producing a repeatable computational workflow is provided by the GeoTrust
Sciunit-CLI, while the technology for public storage and metadata support is provided by
CUAHSI’s HydroShare. Therefore, the main design aspect of this work consisted of designing a
publicly accessible method of execution in which sciunits built with the Sciunit-CLI and stored in
HydroShare could be executed using input data also stored in HydroShare. This was done in two
parts. The first was to build in functionality for publishing a sciunit through HydroShare. The
second part was to automate the execution of a sciunit from HydroShare using HydroShare web-
apps.
4.1.1. Integrating Sciunit-CLI with HydroShare

Figure 3 shows an activity diagram of the system design for integrating GeoTrust Sciunit-CLI
and HydroShare. To achieve this integration, Sciunit-CLI was extended to support sharing of
sciunits through HydroShare. This functionality was implemented using HydroShare’s REST API.
To publish their sciunit on HydroShare, the user must provide valid HydroShare credentials. In
the current implementation, the sciunit resource is published on HydroShare as a Composite
Resource Type. Once the resource for the sciunit is created within HydroShare, the user can log

into HydroShare and edit the metadata fields to more fully describe the sciunit resource.

12

User Server HydroShare

install Sciunit Start Sciunit-CLI
.— onCloud — tool
Environment J
~Workflow is initiated
. using sciunit tool

Sciunit Packages
workflow

Sciunit Publish HTTPRequest | Composite
package Use Hydroshare | ModflowNwtSciunit
credentials
Key

Resource Type
Resource Title

241

242 Figure 3 Activity diagram showing creating a sciunit using GeoTrust and publishing that sciunit on
243 HydroShare.

244 4.1.2. Automating sciunit execution through HydroShare

245 Integrating the cloud-based sciunit execution from the HydroShare user interface was done
246 using a HydroShare web-app. This web-app directs Hyper Text Transfer Protocol (HTTP) request
247 to a web server where sciunits can be executed. The web-app configured to run a particular sciunit
248 can be accessed through the "Open with" button on the landing page for the resource that stores
249 the raw input data. When the scientist clicks on the web-app button from the "Open with" menu,
250 an HTTP request containing the raw input data's resource ID will be sent to the server. With the
251 resource ID, the HydroShare REST API can be used to download the raw input data and the sciunit
252 to the server. The server can then execute the sciunit using the raw data, and return the output to
253 the scientist as a new HydroShare resource.

254 Figure 4 shows the steps done in a generic form for the integration between the two

255 cyberinfrastructures, GeoTrust and HydroShare, to improve reproducibility by automating the

13

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

execution of the published sciunit. The figure shows how the "Open with" app will perform a
HTTP GET request to a remote server, which has already been configured with the Sciunit-CLI.
This automation process is done using a Python script created on the web server machine. This
Python script uses the flask library to act as a web server with NGINX (https://www.nginx.com/)
used as a proxy to forward all HTTP requests from the user browser to the Python script, which
can handle multiple users simultaneously. The Python script is using the POST request to create a
new resource and upload the output generated from running the sciunit on this resource.
Simultaneously, a webserver is running on the remote machine, which handles the HTTP request
and automatically executes a Python script. This script uses the HydroShare user authentication to
download the input data from the resource and downloads the Composite resource that includes
the sciunit container. Once both resources are downloaded, the resources are unzipped and moved
to the working directory for the analysis. The Sciunit-CLI executes the downloaded sciunit
package. After the sciunit is executed, a new resource is created in HydroShare and the output
from the Sciunit-CLI execution is uploaded into this new resource. A new collection resource is
also created on HydroShare to group all resources that were included during this execution. In this
paper we used HydroShare API. Our Python script uses the Python Client Library for the REST

API (http://hs-restclient.readthedocs.io/en/latest/).

14

http://hs-restclient.readthedocs.io/en/latest/

273

274

275

276

277

278

279

280

281

282

283

284

User HydroShare Remote Server

Sciunit-CLI
? Cick “Open padtarls Workfiow is
With "GeoTrust" ¥ GeoTrust -;:-,' initiated
button on input lnPUf Data HTTP Request
data resource < (request input data)

HTTP Response—|input data set

Compaosite HTTP Request
Sciunit ¢ (request Package)
Yy v
|—HTTP Response—— | run sciunit
Qutput data
resource |
1\ TP Reauest sciunit
eques
(create resource) Out.put

Collection Resource HTTP Request
Collection “*(create collectionresource)

Download Key
collection
resource Resource Type

Resource Title

Figure 4 The generic implementation for automating the execution of the published sciunit from
the HydroShare web-app

4.2. Use Case Application

A use case application was designed to demonstrate the integration of GeoTrust Sciunit-CLI
and HydroShare. This integration allows GeoTrust to package and publish a sciunit through
HydroShare, after which HydroShare automates the execution of this sciunit. Execution of the
packaged sciunit through HydroShare was demonstrated using EC2 instances from Amazon Web
Services (AWS). A Linux-based, micro-sized machine (t2) was used for prototyping and
demonstration purposes; this machine had 1 Gb of memory, 1 vCPU, 32 Gb of Solid State Drive
(SSD)-based local instance storage, and a 64-bit platform (“Amazon EC2 Instances,” 2015). This

use case consisted of a workflow used for preprocessing model input data, running a computational

15

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

model, and handling the model outputs. The computational model used for the use case was
MODFLOW-NWT.
4.2.1. MODFLOW-NWT Use Case

MODFLOW-NWT is a standalone version of MODFLOW, a commonly used groundwater
model (Niswonger etal.,2011). The concept of "packages" is key to the modularity of the different
versions of MODFLOW (including MODFLOW-NWT); packages are input files that define some
individual component of the groundwater-flow conceptual model or specify the solution method
used for the flow equation that is collectively formulated from the individual components. For
example, the basic (BAS) and discretization (DIS) packages define the spatial and temporal
framework of the model, including the grid dimensions and the location of active and inactive grid
cells, while the recharge (RCH) package defines the spatial-distribution and rate of recharge to the
water-table. For our use case using MODFLOW-NWT, the Newton-Raphson (NWT) package
defines the variables required to implement the Newton-Raphson solution method.

For this study, MODFLOW-NWT was used to simulate the shallow groundwater flow in the
James River watershed upstream of Richmond, VA, USA. The model includes recharge to the
water table, subsurface flow through the saturated zone, and base-flow discharge to surface water
bodies including the James, Rivanna, and Hardware Rivers and several smaller-order streams.
Depth-integrated effective transmissivity was assumed to be constant throughout the active model
area and spatially-distributed recharge was derived from the national recharge dataset developed
by Reitz et al. (2017). Base-flow discharge was simulated using the MODFLOW drain (DRN)
package with all drain elevations (i.e., the water-table elevation required to discharge base-flow to
a receiving stream) extracted from the National Elevation Dataset. The model runs to completion

and is unconstrained by calibration; as such it is to be only used as an example for the workflow

16

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

processes described in this paper (i.e., no hydrologic or management conclusions were drawn from
the results of the model). This workflow could be extended to include calibration (Figure 1). For
example, a HydroShare resource for a parameter estimation program such as PEST (Doherty and
Hunt, 2010) could be created and included in the sciunit container. Similarly, the pre-processing
script could include data retrieval from web services such as the USGS water services API

(https://waterservices.usgs.gov/) and the automated generation of PEST input files.

The FloPy library was used to create the MODFLOW-NWT model from raw input datasets
(Bakker et al., 2016). FloPy is a library of Python modules that allows scripting of the various
steps in MODFLOW model development, execution, and analysis. By combining FloPy with
GeoTrust and HydroShare, the workflow used to create and execute MODFLOW model (e.g., the
steps shown in Figure 1) can be stored within a reproducible container with descriptive metadata
in HydroShare.

5. Results
5.1. System Implementation

The system was implemented using the following steps. First, the script downloads raw input
data and the sciunit resources from HydroShare. Second, the script will unzip both the data and
sciunit, pass the data to the sciunit as an argument (this is how the sciunit accepts the input data),
and then run the sciunit with the downloaded data. Last, after the execution is completed, the
Python script will upload the results to HydroShare by using a POST request to create two new
resources: one for the sciunit output, which has the MODFLOW-NWT Model Instance Resource
type, and the other the collection resource that will include all the resources used within the study.

The script then returns the command status (including any errors) to the user.

17

https://waterservices.usgs.gov/

330

331

332

333

334

335
336

337

338

339

340

341

342

343

344

345

346

347

348

5.2. Use Case Results

A digital workflow (bash script) was packaged into a sciunit using the Sciunit-CLI tool.
The digital workflow runs a Python script to prepare the MODFLOW-NWT input data files and
then executes a single run of the model. Figure 5 shows the component of the packaged digital

workflow.

#l/bin/bash

cp -a /home/$1/$1/data/contents/. /home/Data/
(cd /home/; python build_modflow.py)

(cd /home/MODFLOW; ./mfnwt *.nam)

Figure 5 component of the packaged digital workflow.

Figure 6 outlines the first steps taken in the process to start and create a new sciunit through
the GeoTrust Sciunit-CLI tool for the example workflow while Figure 7 shows the execution and
packaging of the digital workflow into a sciunit package. This package command traces all
dependencies for the workflow and includes them in a single Docker file. Figure 8 shows how the
publish command is used to publish a sciunit package on HydroShare. If this is the user's first time
connecting to HydroShare, Sciunit-CLI will ask for HydroShare user credentials, otherwise the
credentials stored will be used. Once the package is published, metadata can be provided by the
user via the HydroShare Graphical User Interface (GUI). Future implementations of the Sciunit-
CLI may expand this functionality by automatically populating more detailed metadata for

describing resources.

ubuntu@ip-172-31-25-113:~/test$sciunit create Model
Opened empty sciunit at /lhome/ubuntu/sciunit/Model

Figure 6 The creation of a new sciunit through the GeoTrust Sciunit-CLI tool for the use case

18

349
350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

ubuntu@ip-172-31-25-113:~/test$sciunit exec ./workflow.sh Data
Rasterizing shapefile: Data/James_Rivanna_5070.shp

Writing output raster to: Framework/James_Rivanna_IBOUND.tif
0...10...20...30...40...50...60...70...80...90...100 - done.
Executinggdalwarppath:gdalwarp

Clipping the raster to the model domain.

Figure 7 Execution of the use case workflow through sciunit to create a package

ubuntu@ip-172-31-25-113:~/test$ sciunit push my new_article --setup hs
Logged in as "Essawy, bakinam <btaessawy@gmail.com>"

Title for the new article: Model

my_new_article: 596MB [00:31, 18.8MB/s]
ubuntu@ip-172-31-25-113:~/test$

Figure 8 Publishing the use case sciunit to HydroShare

The newly created resource on HydroShare is a Composite Resource Type. This resource
type allows the resource to include multiple files without file format limitations and with metadata
associated at a file level within the resource. The Composite resource contains two files. The first
is the provenance metadata file created while packaging the workflow; this metadata file contains
information concerning the creation and version history of the managed data. The second file is
the zipped package for the sciunit itself.

Once the sciunit is available as a HydroShare resource, HydroShare’s integration with
third-party web apps is used to execute the sciunit. In order to store data and make it accessible to
be used as the input required by the sciunit, we made a new model instance-type resource titled
"ModflowNwtRawData" (Essawy, 2018b). We also created a web-app resource titled "GeoTrust"
(Essawy, 2018a). This web-app pointed to the AWS-EC2 instance where the Sciunit-CLI tool and
our Python script were installed. The connection between the HydroShare resource and the web
server was made by providing the web server’s URL as the "App-launching URL Pattern"
metadata term in the resource. The GeoTrust web-app resource is linked to the

ModflowNwtRawData resource by the SupportedResourceType metadata property. This metadata

19

368

369

370

371

372

373

374

375

376
377

378

379

380

381

382

383

property was set to include the Composite Resource Type, which allowed the web-app to appear
in a drop-down list in the "Open with" menu on the ModflowNwtRawData resource landing page.
Figure 9 shows the Model Instance Resource type that includes the raw data, and the web apps
linked to this resource type to automate the sciunit execution. When the GeoTrust web-app on this
page is selected, the HTTP request is sent to server and the workflow is executed. The output is
written back to HydroShare as a new resource with the MODFLOW Model Instance Resource
type. This resource type is used because the resource can be executed by a MODFLOW model

program and it allows for adding extended metadata specific to MODFLOW (Morsy et al., 2017).

@ HYDROSHARE - ' 2
| ModflowNwtRawData «———— Resource Title
Web App —»-[=
&+ QL

Authors: JupyterHub
Owners:

Resource type: Mod
Created: p
Last updated: Ma

e -

Resource Type

Abstract

Figure 9 The raw data within the Model Instance Resource type, and the web apps linked to this
resource type to automate the sciunit execution.

Figure 10 presents the activity diagram for the steps that occur when the "Open with" button
is clicked and the "GeoTrust" app is selected on the ModflowNwtRawData resource landing page.
The "GeoTrust" app will perform an HTTP GET request to the AWS-EC2 machine, which has
already been configured with the Sciunit-CLI. The webserver running on the AWS-EC2 machine

handles the HTTP request and automatically executes a Python script. The script uses the

20

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

HydroShare user authentication to download both the raw data of the ModflowNwtRawData
resource and the sciunit container included within the ModflowNwtSciunit resource (Essawy,
2018c). Once the ModflowNwtSciunit and the ModflowNwtRawData resources are downloaded,
the script unzips the resources and moves them to the working directory for the analysis. The
Sciunit-CLI tool executes the downloaded sciunit package, which pre-processes the raw input data
for the model and executes the MODFLOW-NWT model. After the model is executed, a new
resource is created in HydroShare with the MODFLOW Model Instance Resource type named
ModflowNwtSciunitOutput (Essawy, 2018d) and the output from the Sciunit-CLI execution is
uploaded into this new resource. A new collection resource is also created on HydroShare to group
all the resources: the ModflowNwtRawData generic Model Instance Resource (the resource type
is a generic model instance because the data uploaded have no specific metadata or format that
could be tied to a specific resource type), the web-app GeoTrust resource, the ModflowNwtSciunit,
MODFLOW Model Instance Resource, the ModflowNwtSciunit Composite resource, and the
ModflowNwtSciunitOutput resource that includes the output resulting from executing the sciunit

package.

21

400
401

402

403

404

405

406

407

408

409

410

User HydroShare AWS Server

GeoTrust
ScClient tool

Click “Open Web App _“Workflow is ™.
With "GeoTrust" > GeoTrust T i initiated -
button on raw Model Instance HTTP Request =~y i

data resource ModflowNwtRawData (request raw data)

|—HTTP Response—p~| raw data set

Composite HTTP Request o
ModflowNwtSciunit (request Package) 4 |
Pre-processing and
HTTP Response———— Engine run through
Sciunit-CLI
Modflow Model Instance
ModflowNwtSciunitOutput Y
MODFLOW-NWT
HTTP Request processed data and
(create resource) Model Output
Download Collection Resource HTTP Reguest

<4— collection
resource

ModflowNwtCollection *(create collectionresource)_:

Key

Resource Type
Resource Title

Figure 10 Activity diagram showing the steps for the online execution of the sciunit through
HydroShare.

Figure 11 shows HydroShare user "My Resources page" after using the "Open with" action
button on the GeoTrust web-app on the ModflowNwtRawData resource for the online execution.
Two mnew resources are created. The first resource in the workflow is the
ModflowNwtSciunitOutput resource, which includes the input files for the MODFLOW-NWT
model program that are prepared through the preprocessing script and the output from the model
run. This resource is given the MODFLOW Model Instance Resource type, because the resource
has the inputs that are required by the MODFLOW-NWT model. This resource type allows for

extended metadata specific to a MODFLOW model instance. The second resource created is the

22

411

ModflowNwtCollection resource (Essawy, 2018e), which includes all the resources used in the

412 online execution for the MODFLOW-NWT. This provides a grouping of resources used for an
413 analysis and allows the user to share or download this collection of resources more easily.
GHYDRUSHAHE MY RESOURCES DISCOVER COLLABORATE ~ APPS HELP ABOUT 1
My Resources
Creati ‘> Eﬁﬁ M
Q Filter Type Title First Author Date Created Last modified
Owned by me 0 o2 L 06/15/2017,2:15 06/27/2017,6:17
6 P ModflowNwtSciunitOutput bakinam Essawy
Editable by me 0 ?“:ﬂ" p-m. p.m.
Viewsbleby € 06/14/2017, 2:18 06/20/2017,2:59
me a8 ModflowNwtCollection bakinam Essawy pn: ! - o ' o
¥ Favorites 0
a o ModflowNwtRawData bakinam Essawy 04/25/2017, 5:15 06/27/2017,6:14
W Labels p.m. p-m.
No labels found.
414 © Legend
415 Figure 11 HydroShare user My Resources page after using the GeoTrust web app for the online
416 execution.

23

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

Figure 12 shows the output files within ModflowNwtSciunitOutput resource as viewed on
this resource’s HydroShare landing page. The resource contains the output generated from running
the sciunit that prepares the model input for MODFLOW-NWT and the output from running the
MODFLOW-NWT model program itself. The MODFLOW Model Instance Resource type
includes extended metadata terms specific for MODFLOW. In this use case the model has eight
packages. In addition to the packages already described, this model instance includes: the output
control (OC) package, which specifies how the model output is written; the upstream-weighting
(UPW) groundwater flow package, which describes the system properties (e.g.,
transmissivity/conductivity); and the one output listing file (LIST), which contains all the
information about the current run (e.g., stress period, time step and the number of active and
inactive cells, the recharge, drains, and any errors). The name file (NAM) specifies the name of

the input and output files for the model instance.

Content

I sortBy~

Files within the resource will
appear under contents

Figure 12 The output files within the ModflowNwtSciunitOutput resource landing page in

HydroShare.

24

433

434

435

436

437

438

439

440

441

442

443
444

445

Additional metadata associated with the MODFLOW output resource is divided into four
categories: 1) Authorship, 2) Related resources, 3) Resource Specific, and 4) Web Apps. Figure
13 shows the "Related Resources" metadata. Here all resources linked to the MODFLOW output
resource through formal relationships are listed. In this case, the MODFLOW output resource is
linked to the ModflowNwtRawData resource through the "Derived From" relationship and to the
MODFLOW-NWT resource through the "isExecutedBy" relationship. Figure 14 shows the
"Resource Specific" metadata. These are non-null metadata terms that apply only to the
MODFLOW Model Instances' such as grid attributes, solver, and boundary condition package

choices. Additional metadata terms not previously populated by the user can be populated later

within the edit mode and will appear in this section once populated.

2 Authorship i| Related Resources [l Resources Specific /& Web Apps

Sources

Derived From: Essawy, b., D. Voce (2017). ModflowNwtRawData, HydroShare, http://www.hydroshare.org/resource/4c9i9daa09e745a5b285481c7903c759
Relations

isExecutedBy: Essawy, b. (2017). ModflowNwtSciunit, HydroShare, http-//www_hydroshare.org/resource/995479b35b62486783e0dat3e937cad9

isPartOf: Essawy, b. (2017). ModflowNwtCollection, HydroShare, http-//www.hydroshare.org/resource/bf598099ed384540aaaf9284b7343a717

This resource belongs to the following collections:

Title Owners Sharing Status My Permission

ModflowNwtCollection bakinam Essawy Private & Owner

Figure 13 The ModflowNwtSciunitOutput Related Resources metadata tracking the resource's

provenance within HydroShare.

25

446

447

448

449

450

451

452

453

454

455

456

457

458

L Authorship B RelatedResources il Resources Specific / WebApps

Model Output
1 I Yes
Executed By
MODFLOW-NWT
v112
https /iwww hydroshare org/resource/ace3231be6b64ee6a02dddSetdia3dSd
Study Area
ta gt 300
ta th in mete 300
Grid Dimensions
Regular
439
Regular
lumber of colun 506
Stress Period

Steady
1

Groundwater Flow
Flow package UPW
Flow paramete Hydraulic Conductivity
Boundary Condition

Specified flux boundary package(s rch, dis, bas

Head-de ent flux bou] dm
Model Calibration

Observat € obs
General

Mode met Hydraulic Conductivity
NWT

oc

Figure 14 ModflowNwtSciunitOutput specific metadata capturing key MODFLOW model
properties.

Figure 15 shows details for the resulting ModflowNwtCollection resource as viewed on
this resource’s landing page. The collection resource contains four sub-resources: 1) the
ModflowNwtRawData resource with the raw input data ready to be prepared for the MODFLOW-
NWT model engine; 2) the ModflowNwtSciunit resource with the sciunit pre-processing
workflow, which also includes running the MODFLOW-NWT model; 3) the
ModflowNwtSciunitOutput resource, which stores the output generated from running the sciunit
workflow; and 4) the GeoTrust web app used to perform the online model execution using AWS-
EC2. By organizing all these resources into a single collection, it is possible to have one landing
page where users can, referring back to the stated goals in the introduction of this paper, view,

obtain, and execute (1) raw initial datasets, (2) data preprocessing scripts used to clean and

26

459 organize the data, (3) model inputs, (4) model results, and (5) the specific model code along with

460 of all its dependencies used for a computational analysis.

27

& HYDROSHARE

MY RESOURCES DISCOVER COLLABORATE APPS HELP ABOUT 1

ModflowNwtCollection

Authors: bakinam Essawy
Owners: bakinam Essawy
Resource type: @
Created: June 14,2017, 2:18 p.m.

Lastupdated: June 20,2017, 2:59 p.m. by bakinam Essawy

Abstract

This resource includes all the resources that were used in the online execution for the Modflow-NWT. This
provides a local grouping of resources used for an analysis and allows the user to share or download this collection
of resources more easily.

Subject

modflow sciunit Modflow-NWT

) @ HYDROSHARE
How to cite R
Collection Resource
Essawy, b. (2017). ModflowNwtCollection, HydroShare, - ModflowNwtCollection
0
http://www.hydroshare.org/resource/bf598099ed384540a2a9284b7343a717 2
This resource is shared under the Creative Commons Attribution CC BY License.
http://creativecommons.org/licenses/by/4.0/
(CMOM
Sharing status:
Public ~ Discoverable m
Model Instance -
@ | Shareable ModflowNwtRawData
& You are the owner of this resource. Composﬂe_ M
ModflowNwtSciunit
Key
Collection Contents Resource Type
Resource Title

Sharing My

Titl T “ 0
¢ bl wners Status Permission
ModflowNwtSciunit CompositeResource CL A= Owner
Essawy Shareable
ModflowNwtRawData ModellnstanceResource bakinam Private & Owner L‘-
Essawy Shareable |
bakil Public &
ModflowNwtSciunitOutput MODFLOWModellnstanceResource axinam ublie QOwner -
Essawy Shareable [
GeoTrust ToolResource bakinam Private & Owner L
Essawy Shareable |
& Download All Content as Zipped Baglt Archive
. . . v q .
462 Figure 15 The collection resource that includes all resources used within the study.

28

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

6. Discussion and Conclusions

In this paper, we demonstrated how HydroShare and GeoTrust can be integrated to easily and
efficiently package, share, and publish model workflows. MODLFOW-NWT was used as an
example application to demonstrate the functionality provided by these cyberinfrastructures for
creating open, reusable data analysis and cloud-based model execution services. The approach
showed how containers built using GeoTrust tools can be shared as HydroShare resources. A
cloud-based service was created to automatically retrieve raw input data from HydroShare, execute
a sciunit container that both prepares and runs a MODFLOW-NWT model, and share the results
on HydroShare using a MODFLOW Model Instance Resource type. All the resources are
aggregated in HydroShare into one collection resource with domain-specific metadata.

The integration of scientific cyberinfrastructures such as the HydroShare and GeoTrust
projects can improve reproducibility in computational hydrology. New MODFLOW models can
be directly built from unprocessed input data (e.g., land-surface DEMs or stream-network
shapefiles) by running a sciunit container that includes automated data preparation steps
implemented using the FloPy Python package. The container is run online using AWS resources
initiated directly through the HydroShare user interface. A particular advantage of this approach
is that the GeoTrust Sciunit-CLI tool provides scientists a method for efficiently creating containers
for script-driven modeling workflows. Thus, the general approach demonstrated here for the
MODFLOW-NWT use case could be applied for any workflow that can be automated and that is
compatible with Docker requirements. For example, in prior work we have constructed pre- and
post-processing workflows for the Variable Infiltration Capacity (VIC) hydrologic model (Liang
et al., 1996) that could directly benefit from this method for packaging, sharing, and publishing

resources (Billah et al., 2016; Essawy et al., 2016). These containers are efficient, lightweight,

29

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

self-contained packages of computational experiments that can be repeated or reproduced
regardless of deployment configurations.

In addition to integration with HydroShare for storing and publishing a sciunit, cloud resources
were used to execute sciunits directly through the HydroShare user interface. While only AWS
was presented, we evaluated as part of this work three different cloud computing services:
EarthCube Integration and Testing Environment (ECITE), CyVerse, and Amazon Web Services
(AWS). ECITE and CyVerse are funded by NSF and both are under active development. One main
advantage for using ECITE or CyVerse is that they are free of charge for scientific studies. AWS,
though not free, does offer a competitive grant program for researchers. From our experience, the
AWS platform made the process of obtaining computer resources the simplest when compared to
ECITE and CyVerse. The AWS user simply logs in to the console, selects the type of the machine
needed, and launches it. When using ECITE, we had to contact the developer and ask for an
instance with the required specifications and a short paragraph summarizing the project we are
working on to justify the allocation of compute resources. We also needed to contact the developer
each time we wanted to open a port (e.g., port 22 to SSH or port 80 for HTTP). The service did
not support Elastic IPs like AWS, so each time we restarted an instance and wanted to use SSH to
access to the machine, we needed to report the IP address used to access the machine to the
developer to add this address to the security rules. CyVerse is a more mature service, but allows
each user only a certain allocation of computational time. Once the user exceeds this allocation the
instance is suspended and the user needs to request more time from the administrators. This feature
was problematic for our use case of a continually available cloud-based resource for online model

execution. For these reasons, we used AWS-EC2 for much of the testing work described in this

30

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

paper, but ECITE and CyVerse are in active development and will likely be good options for this
use case in the future.

While this approach shows great promise, it is not without limitations: (1) the Sciunit-CLI tool
must be installed in order to re-execute a sciunit container and (2) HydroShare lacks methods for
uniquely identifying and managing web-app resources that will be needed as the number of these
resources continues to increase. Regarding the latter limitation, without a more organized structure,
naming conflicts could cause confusion when using the "Open with" button over which app is to
be requested. Also, this work does not fully explore computational challenges associated with the
proposed methodology. Using cloud services like AWS provides the opportunity for scalability as
more users are added. For example, this solution used small EC2 instances for prototyping. Future
work could explore AWS EC2 Container Service (ECS) as an alternative for a more scalable
solution to support multiple concurrent users. Data movement between HydroShare and AWS is
another potential issue as data volumes increase, which is not uncommon for hydrologic modeling.
HydroShare is built on iRODS (Integrated Rule-Oriented Data System), which includes the ability
to interface with AWS S3 storage resources. Future work could explore using this functionality to
automate the movement of large files between HydroShare and AWS to support computation
within AWS and still maintain access through the HydroShare user interface. iRODS is
specifically designed to handle such data federation needs and should provide a robust solution for
managing the large data flows common in hydrologic modeling. Lastly, future work should
explore scaling of the general approach presented here to use cases in which multiple sciunits are
available for execution within a remote, cloud-based resource. In this case, a user could select from

available sciunits to process input data stored with HydroShare, making for a potentially very

31

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

powerful general approach applicable to many different modeling and analysis use cases that

require remote data processing.

7. Acknowledgements and Disclaimer

We gratefully acknowledge the National Science Foundation for support of this work under awards

ACI-0940841, ICER-1343800, and ICER-1440323. Any use of trade, firm, or product names is

for descriptive purposes only and does not imply endorsement by the U.S. Government.

8. References

Amazon EC2 Instances [WWW Document], 2015. URL http://aws.amazon.com/ec2/instance-
types/ (accessed 6.7.15).

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N., 2016.
Scripting MODFLOW Model Development Using Python and FloPy. Groundwater 54, 733—
739. https://doi.org/10.1111/gwat.12413

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. Softw. 78, 31-39.
https://doi.org/10.1016/j.envsoft.2015.12.010

Borgman, C.L., 2012. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 63,
1059-1078.

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of
RAPID—Reflections on the development of an open source geoscience code. Earth Sp. Sci.
226-244. https://doi.org/10.1002/2014EA000014.Received

Dobherty, J.E., Hunt, R.J., 2010. Approaches to highly parameterized inversion-A guide to using

PEST for groundwater-model calibration. US Geol. Surv. Sci. Investig. Rep.

32

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

Essawy, B., 2018a. GeoTrust,.

http://www.hydroshare.org/resource/126701df868e4da9872d9b533db34ae6.

Essawy, B., 2018b. ModflowNwtRawData,
http://www.hydroshare.org/resource/4c9t9daa09¢745a5b285481¢7903¢759.

Essawy, B., 2018c. ModflowNwtSciunit.

http://www.hydroshare.org/resource/995479b35b62486783e0da63e937ca89.

Essawy, B., 2018d. ModflowNwtSciunitOutput,
http://www.hydroshare.org/resource/19605cf6e91e415tb98b7a28cad263d6.

Essawy, B., 2018e. ModflowNwtCollection,

http://www.hydroshare.org/resource/bf598099ed384540aaa9284b7343a717.

HydroShare,

HydroShare,

HydroShare,

HydroShare,

HydroShare,

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,

Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid

technology for reproducible analyses of data-intensive hydrologic systems. Earth Sp. Sci. 3,

163—175. https://doi.org/10.1002/2015EA000139

Gil, Y., David, C.H., Demir, 1., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,

H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X.,

2016. Towards the Geoscience Paper of the Future : Best Practices for Documenting and

Sharing Research from Data to Software to Provenance. Earth Sp. Sci. 1-75.

https://doi.org/10.1002/2015EA000136

Gorgolewski, K.J., Poldrack, R.A., 2016. A Practical Guide for Improving Transparency and

Reproducibility in ~ Neuroimaging Research. PLoS Biol.

https://doi.org/10.1371/journal.pbio.1002506

14, 1-13.

Hai, D., That, T., Fils, G., Yuan, Z., Malik, T., 2017. Sciunits : Reusable Research Objects. Tech.

33

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Report, DBGroup, Sch. Comput. DePaul Univ.

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Y1, H., Stealey, M.J.,
Tarboton, D.G., 2015. Hydroshare: Sharing diverse environmental data types and models as
social objects with application to the hydrology domain. JAWRA J. Am. Water Resour.
Assoc. 52. https://doi.org/10.1111/1752-1688.12363

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational
hydrology is not reproducible, so is it really science? Water Resour. Res. 50.
https://doi.org/10.1002/ 2016 WR019285

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996. One-dimensional statistical dynamic
representation of subgrid spatial variability of precipitation in the two-layer variable
infiltration capacity model. J. Geophys. Res. Atmos. 101(D16), 21403-21422.

Malik, T., 2017. GeoTrust: Improving Sharing and Reproducibility of Geoscience Applications
[WWW Document]. EOL Semin. Ser. URL https://www2.ucar.edu/for-
staff/daily/announcement-calendar-event/eol-seminar-series-dr-tanu-malik (accessed
6.6.17).

Malik, T., Valescu, C., Pham, Q., 2017. Sciunit, a system for creating, sharing, and running light-
weight containers. [WWW Document]. URL http://www.geotrusthub.org/ (accessed 1.1.17).

Meng, H., Kommineni, R., Pham, Q., Gardner, R., Malik, T., Thain, D., 2015. An invariant
framework for conducting reproducible computational science. J. Comput. Sci. 9, 137-142.
https://doi.org/10.1016/j.jocs.2015.04.012

Morsy, M.M., Goodall, J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata
for Describing Water Models, in: In Proceedings of the 7th International Congress on

Environmental Modelling and Software, DP Ames, NWT QuinnMorsy, M.M., Goodall, J.L.,

34

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata for Describing Water
Models, in: In Proceedings of the. pp. 978-988.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A.,
Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for environmental
models with an example hydrologic application in HydroShare. Environ. Model. Softw. 93,
13-28. https://doi.org/10.1016/j.envsoft.2017.02.028

Niswonger, R.G., Panday, S., Motomu, I., 2011. MODFLOW-NWT , A Newton Formulation for
MODFLOW-2005. U.S. Geol. Surv. Tech. Methods 6, 44.

Peng, R.D., 2011. Reproducible research in computational science. Science. 334, 1226—-1227.

Pham, Q., Malik, T., Foster, 1., 2014. Auditing and maintaining provenance in software packages.
Int. Proven. Annot. Work. 97-109.

Piccolo, S.R., Frampton, M.B., 2016. Tools and techniques for computational reproducibility.
Gigascience 5, 1-13. https://doi.org/10.1186/s13742-016-0135-4

Qasha, R., Cala, Jacek, Watson, P., 2016. A Framework for Scientific Workflow Reproducibility
in the Cloud. IEEE 12th Int. Conf. e-Science 81-90.

Qin, J., Dobreski, B., Brown, D., 2016. Metadata and Reproducibility: A Case Study of
Gravitational ~Wave Research Data. J. Digit. Curation 11, 218-231.
https://doi.org/10.2218/ijdc.v1111.399

Reitz, M., Sanford, W.E., Senay, Gabriel B., and Cazenas, J., 2017. Annual estimates of recharge,
quick-flow runoff, and ET for the contiguous US using empirical regression equations, 2000-
2013. U.S. Geol. Surv. data release. https://doi.org/https://doi.org/10.5066/F7PN93PO.

Reproducibility Guide - The rOpenSci Project [WWW Document], n.d. . 2017. URL

http://ropensci.github.io/reproducibility-guide/sections/introduction/ (accessed 6.16.17).

35

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Santana-Perez, 1., Ferreira da Silva, R., Rynge, M., Deelman, E., Pérez-Hernandez, M.S., Corcho,
0., 2017. Reproducibility of execution environments in computational science using
Semantics and Clouds. Futur. Gener. Comput. Syst. 67, 354-367.
https://doi.org/10.1016/j.future.2015.12.017

Singh, V.P., Asce, F., Woolhiser, D.A., Asce, M., 2002. Mathematical Modeling of Watershed
Hydrology. J. Hydrol. Eng. 7, 270-292.

Stodden, V., 2013. Resolving Irreproducibility in Empirical and Computational Research. IMS
Bull. Online.

Swain, N.R., Christensen, S.D., Snow, A.D., Dolder, H., Espinoza-Davalos, G., Goharian, E.,
Jones, N.L., Nelson, E.J., Ames, D.P., Burian, S.J., 2016. A new open source platform for
lowering the barrier for environmental web app development. Environ. Model. Softw. 85,
11-26. https://doi.org/10.1016/j.envsoft.2016.08.003

Tarboton, D.G., Horsburgh, J.S., Idaszak, R., Heard, J., Valentine, D., Couch, A., Ames, D.,
Goodall, J.L., Band, L., Merwade, V., Arrigo, J., Hooper, R., Maidment, D., 2014a. a
Resource Centric Approach for Advancing Collaboration Through Hydrologic Data and
Model Sharing. 11th Int. Conf. Hydroinformatics, HIC 2014, New York City, USA.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L.,
Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D., 2014b.
HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. Int.
Environ. Model. Softw. Soc. 7th Int. Congr. Environ. Model. Software, San Diego,
California, = USA. www. iemss. org/society/index/php/iemss-2014-proceedings.
https://doi.org/10.13140/2.1.4431.6801

Weibel, S., Kunze, J., Carl Lagoze, A., Wolf, M., 1998. Dublin core metadata for resource

36

645

646

discovery. No. RFC 2413.

37

