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Abstract We consider the sensitivity of real roots of polynomial systems with respect
to perturbations of the coefficients. In particular—for a version of the condition number
defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor—we
establish new probabilistic estimates that allow a much broader family of measures than
considered earlier. We also generalize further by allowing overdetermined systems. In
Part II, we study smoothed complexity and how sparsity (in the sense of restricting
which terms can appear) can help further improve earlier condition number estimates.
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1 Introduction

When designing algorithms for polynomial system solving, it quickly becomes clear
that complexity is governed by more than simply the number of variables and degrees of
the equations. Numerical solutions are meaningless without further information on the
spacing of the roots, not to mention their sensitivity to perturbation. A mathematically
elegant means of capturing this sensitivity is the notion of condition number (see,
e.g., [3,6] and our discussion below).

A subtlety behind complexity bounds incorporating the condition number is that
computing the condition number, even within a large multiplicative error, is provably
as hard as computing the numerical solution one seeks in the first place (see, e.g., [17]
for a precise statement in the linear case). However, it is now known that the condition
number admits probabilistic bounds, thus enabling its use in average-case analysis,
high probability analysis, and smoothed analysis of the complexity of numerical algo-
rithms. This probabilistic approach has revealed (see, e.g., [2,5,23]) that, in certain
settings, numerical solving can be done in polynomial-time on average, even though
numerical solving has exponential worst-case complexity. More recently, the condi-
tion number has also proved to be a central quantity in the algorithmic complexity
of deeper geometric problems such as the computation of the homology groups of
semi-algebraic sets (see, e.g., [8,14]).

The numerical approximation of complex roots provides an instructive example of
how one can profit from randomization.

First, there are classical reductions showing that deciding the existence of complex
roots for systems of polynomials in Um’neN(Z[m, ..., xp])™ is already NP-hard.
However, classical algebraic geometry (e.g., Bertini’s Theorem and Bézout’s Theo-
rem [32]) tells us that, with probability 1, the number of complex roots of a random
system of homogeneous polynomials, P := (p1, ..., pm) € C[xy, ..., x,] (with each
pi having fixed positive degree d;), is 0, [ [/, d;, or infinite, according tom > n — 1,
m =n—1,orm < n—1 (Any probability measure on the coefficient space, absolutely
continuous with respect to Lebesgue measure, will do in the preceding statement).

Secondly, examples like P := (x| —x%, X2 —x32, e Xn—1 —x,%, 2x,—1D)(Bx,—1)),

. n—1 0 n—1 0
which has affine roots (272" ,...,272 ) and (372", ...,372"), reveal that the

number of digits of accuracy necessary to distinguish the coordinates of roots of P
may be exponential in n (among other parameters). However, it is now known via
earlier work on discriminants and random polynomial systems (see, e.g., [9, Thm. 5])
that the number of digits needed to separate roots of P is polynomial in n with high
probability, assuming the coefficients are rational, and the polynomial degrees and
coefficient heights are bounded. More simply, a classical observation from the theory
of resultants (see, e.g., [7]) is that, for any positive continuous probability measure on
the coefficients, P having a root with Jacobian matrix possessing small determinant is
arare event. So, with high probability, small perturbations of a P with no degenerate
roots should still have no degenerate roots. More precisely, we review below a version
of the condition number used in [2,23,33]. Recall that the singular values of a matrix
Elol:;ﬂ
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T e R**=D are the (nonnegative) square roots of the eigenvalues of 7' T, where
T T denotes the transpose of 7.

Definition 1.1 Givenn,d;,...,d, € N,andi € {1,...,m}, let p; € R[xq, ..., x,]
be homogenous polynomials with deg p; = d;, and let P := (py, ..., p) be the cor-
responding polynomial system. We set x% := x‘l)” - xy", where o = (ay, ..., ap),

and let ¢; o denote the coefficient of x in p;. We define the Weyl-Bombieri norms of
pi and P to be, respectively,

m
> Uil

i=1

X |Ci,01|2 3
Ipillw = > S and [Pl =
o+t =d; (a)

Let A,, € R™ ™ be the diagonal matrix with diagonal entries /dy, ..., \/d,, and
let DP(x)|g gn-1 @ Tx §"=1' — R™ denote the linear map between tangent spaces
induced by the Jacobian matrix of the polynomial system P evaluated at the point
x. Finally, when m = n — 1, we define the (normalized) local condition number

(for solving P = O) to be finorm(P, x) := || P|lwmax (DP(x)l;xlsn,lAnq) or
Mnorm (P, X) := 00, as D P (x)|g, gn-1 is full rank or not, where omax (A) is the largest
singular value of a matrix A. o

Clearly, finorm(P,x) — 00 as P approaches a system possessing a degenerate
root { € Pfé_l and x approaches ¢. The intermediate normalizations in the defini-
tion are useful for geometric interpretations of [inorm: There is in fact a simple and
elegant algebraic relation between || P |lw, Sup, cgn—1 finorm (P, x), and the distance of
P to a certain discriminant variety (reviewed in Sect. 2 and Theorem 2.1 below, see
also [12]). But even more importantly, the preceding condition number (in the special
case, m = n — 1) was a central ingredient in the recent positive solution to Smale’s
17th Problem [2,23]: For the problem of numerically approximating a single complex
root of a polynomial system, a particular randomization model (independent com-
plex Gaussian coefficients with specially chosen variances) enables polynomial-time
average-case complexity, in the face of exponential deterministic complexity. !

1.1 From Complex Roots to Real Roots

It is natural to seek similar average-case speedups for the harder problem of numer-
ically approximating real roots of real polynomial systems. However, an important
subtlety one must consider is that the number of real roots of n — 1 homogeneous
polynomials in n variables (of fixed degree) is no longer constant with probability 1,
even if the probability measure for the coefficients is continuous and positive. Also,
small perturbations can make the number of real roots of a polynomial system go
from positive to zero or even infinity. A condition number for real solving that takes

! Here, “complexity” simply means the total number of field operations over C needed to find a start point
xq for Newton’s iteration, such that the sequence of Newton iterates (x; ), <N converges to a true root ¢ of

P (see, e.g., [3, Ch. 8]) at the rate of |x; — ¢| < (1/2)2%l |xg — ¢| or faster.
FolCT
iy
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all these subtleties into account was developed in [10] and applied in the series of
papers [11-13]. In these papers, the authors performed a probabilistic analysis assum-
ing the coefficients were independent real Gaussians with mean 0 and very specially
chosen variances.
Definition 1.2 [10] Let K(P,x) := 1Pllw and K(P) :=
VIP Ry finom (Px) =2+ P13
sup & (P, x). We, respectively, call (P, x) and k (P) the local and global condition

xesn—1 )
numbers for real solving. o

Note that a large condition number for real solving can be caused not only by a root
with small Jacobian determinant, but also by the existence of a critical point for P
with small corresponding critical value. So a large k is meant to detect the spontaneous
creation of real roots, as well as the bifurcation of a single degenerate root into multiple
distinct real roots, arising from small perturbations of the coefficients.

Our main results, Theorems 3.9 and 3.10 in Sect. 3.4 below, show that useful condi-
tion number estimates can be derived for a much broader class of probability measures
than considered earlier: Our theorems allow non-Gaussian distributions, dependence
between certain coefficients, and, unlike the existing literature, our methods do not
use any additional algebraic structure, for example, invariance under the unitary group
acting linearly on the variables (as in [11-13,33]). This aspect also allows us to begin
to address sparse polynomials (in the sequel to this paper), where linear changes of
variables would destroy sparsity. Our framework also allows overdetermined systems
(m > n — 1). We leave the under-determined case (m < n — 1) for future work.

To compare our results with earlier estimates, let us first recall a central estimate
from [13].

Theorem 1.3 [13, Thm. 1.2] Let P := (p1,..., pn—1) be a random system of

di

homogenous n-variate polynomials, where n > 3 and p;(x) = > a

ay+-toy=
ci.aX®, wWhere the c; o are independent real Gaussian random variables havmg mean

0 and variance 1. Then, letting N := 27__11 ("+gf_l), d = max;d;, M' =

1+ 8d2\/(n — SNTT/Z] di, andt > | ]_[,, ld we have:

1. Prob(i(P) > tM') < YoM
~ A / 1
2. E(log(k(P))) <log(M’") + \/log M’ + NCT
The expanded class of distributions we allow for the coefficients of P satisfy the
following more flexible hypotheses:
Notation 1.4 For any dy,...,d, € Nandi € {1,...,m}, letd := max; d;, N; :
"+Z'_l) and assume C; = (c, @)+ +ay=d; are 1ndependent random vectors in RN
with probability distributions satisfying:
. (Centering) For any 6 € SNi—1 we have E(C;,0) =0.
2. (Subgaussian) There is a K > 0 such that for every 6 € SNi—1 we have

Prob (|(Ci, 0)] = 1) < 2¢"/K* forall 1 > 0.

Fo C 'ﬂ
@ Springer |_|_ :‘0 E|



Found Comput Math

3. (Small Ball) There is a ¢p > 0 such that for every vector a € R we have
Prob (|(a, C;)| < €llall;) < coe foralle > 0.

<&

By the vectors C; being independent, we simply mean that the probability density
function for the longer vector Cq X - - - X Cy, can be expressed as a product of the form
]_[;":1 fi(..., ¢ia» .. .). This is a much weaker assumption than having all the c;  be
independent, as is usually done in the literature on random polynomial systems.

The standard Gaussian distribution is a typical example of a collection of random
vectors satisfying our assumptions with universal constants. This easily follows from
the fact that for a standard Gaussian random vector C € RYi  and for any 6 € sNi—1
the one-dimensional marginal (@, C) is a standard Gaussian random variable.

Another example of a collection of random vectors satisfying the three assumptions
above can be obtained by letting p > 2 and letting C; have the uniform distribution on

J
follows from [1, Sec. 6] and the small ball assumption is a direct consequence of the

fact that B,I,vi satisfies Bourgain’s hyperplane conjecture (see, e.g., [21]). Yet another
important example (easier to verify) is to let the C; have the uniform distribution on
£> unit-spheres of varying dimension.

The subgaussian and small ball assumptions are standard assumptions in modern
non-asymptotic theory of random matrices and in general in the applications of high-
dimensional probability to Data Sciences (See [30], [31]). One of the reasons that these
assumptions are so popular is that these properties “tensorize nicely”: In particular, a
standard application of Bernstein’s inequality shows that if X;,i € {1,2, ..., N;} are
independent centered random variables that are all subgaussian with constant K, then
the random vector X = (X1, ..., Xy;) is also subgaussian with constant C K, where
C is an absolute universal constant. Also a recent result of Rudelson and Vershynin
([29]) states that if all the X; have the small ball property with constant cg, then the
random vector X = (Xy, ---, Xy;) has the small ball property with constant Cjc,
where Cj is a universal constant. The best possible constant in this case is known
(see [24] or [25]). This “tensorization property” also shows that there are numerous
examples of random vectors that satisfy our assumptions. Examples of subgaussian
random variables that satisfy the small ball assumption are the random variables X ,
p > 2 that have densities f(¢) := cl,e""p, t € R, where ¢, is a constant depending
on p such that [ f = 1. (In this case, the subgaussian constant and the small ball
constants are universal constants, independent of p).

Other examples of random variables that have the two properties are the random
variables that have a bounded density f with a bounded support. (In these cases, the
subgaussian constant depends on the size of the support of the density and the small
ball constant depends on the “infinity norm” of the density).

A simplified summary of our main results (Theorems 3.9 and 3.10 from Sect. 3.4),
in the special case of square dense systems, is the following:

B;,v" = {x e RN | Ziv’zl Xl < 1} for all i: In this case, the subgaussian assumption

Corollary 1.5 There is an absolute constant A > 0 with the following property. Let
P = (p1,..., pu—1) be a random system of homogenous n-variate polynomials,

FoC'T
H_h
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where p;(x) 1= > (g)ci,ax"‘ and C; = (Ci o)y +-+an=d; are independent
ay+teto=d;

random vectors satisfying the centering, subgaussian, and small ball assumptions,

with underlying constants co and K. Then, forn > 3, d := max;d;, d > 2, N :=

YI2 (G, and M= AVN(Kco)*® =D (3d? log(ed))*' 3 /n, the following

bounds hold:

D=

372, ifl1 <t < (ed)*V

1
Flog(ed) . _
<(ed)21()171)> g : lft > (ed)Z(n 1)

1. Prob(k(P) > tM) <

=

3t~
2. E(logk(P)) <1+ logM.

Corollary 1.5 is proved in Sect. 3.4. Theorems 3.9 and 3.10 in Sect. 3.4 below in fact
state much stronger estimates than our simplified summary above.

Note that, for fixed d and n, the bound from Assertion (1) of Corollary 1.5 shows
a somewhat slower rate of decay for the probability of a large condition number than
the older bound from Assertion (1) of Theorem 1.3: O (1/1%3323) vs. O(/Tog?/1).
However, the older O (4/log?/t) bound was restricted to a special family of Gaussian
distributions (satisfying invariance with respect to a natural O (n)-action on the root
space ]P’%_l) and assumes m = n — 1. Our techniques come from geometric functional
analysis, work for a broader family of distributions, and we make no group-invariance
assumptions.

Furthermore, our techniques allow condition number bounds in a new setting:
overdetermined systems, i.e., m X n systems with m > n — 1. See the next section for
the definition of a condition number enabling m > n — 1, and the statements of Theo-
rems 3.9 and 3.10 for our most general condition number bounds. The overdetermined
case occurs in many important applications involving large data, where one may make
multiple redundant measurements of some physical phenomenon, for example, image
reconstruction from multiple projections. There appear to have been no probabilistic
condition number estimates for the case m > n — 1 until now. In particular, for m pro-
portional to n, we will see at the end of this paper how our condition number estimates
are close to optimal.

To the best of our knowledge, the only other result toward estimating condition
numbers of non-Gaussian random polynomial systems is due to Nguyen [26]. How-
ever, in [26], the degrees of the polynomials are assumed to be bounded by a small
fraction of the number of variables, m = n — 1, and the quantity analyzed in [26] is
not the condition number considered in [33] or [11-13].

The precise asymptotics of the decay rate for the probability of having a large
condition number remain unknown, even in the restricted Gaussian case considered
by Cucker, Krick, Malajovich, and Wschebor. So we also prove lower bounds for the
condition number of a random polynomial system. To establish these bounds, we will
need one more assumption on the randomness.

Notation 1.6 For any d;,...,d, € Nandi € {l,...,m}, letd := max; d;, N; :=
11+th —1), and assume C; = (¢; o) o +--+ay=d; 18 an independent random vector in RN
with probability distribution satisfying:
Elol:;ﬂ
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4. (Euclidean Small Ball) There is a constant ¢o > 0 such that for every ¢ > 0, we
have

Prob (||c,-||2 < s\/ﬁi) < (G
&

Remark 1.7 1f the vectors C; have independent coordinates satisfying the centering
and small ball assumptions, then Lemma 3.4 from Sect. 3.3 implies that the Euclidean
small ball assumption holds as well. Moreover, if the C; are each uniformly distributed
on a convex body X and satisfy our centering and subgaussian assumptions, then a
result of Jean Bourgain [4] (see also [15] or [20] for alternative proofs) implies that
both the small ball and Euclidean small ball assumptions hold, and with ¢ depending
only on the subgaussian constant K (not the convex body X). o

Corollary 1.8 Supposen,d >3, m =n—1,andd; =d forall j €{1,...,n—1}.
Also let P := (p1, ..., pm) be a random polynomial system satisfying our center-
ing, subgaussian, small ball, and Euclidean small ball assumptions, with respective
underlying constants K and ¢y. Then, there are constants A, > A| > 0 depending
only on co and K (i.e., independent of n and d), such that

Aj(nlog(d) + dlog(n)) < E(logik(P)) < Ax(nlog(d) + dlog(n)).

Corollary 1.8 follows immediately from a more general estimate: Lemma 3.13 from
Sect. 3.3. It would certainly be more desirable to know bounds within a constant
multiple of K (P) instead. We discuss more refined estimates of the latter kind in
Sect. 3.5, after the proof of Lemma 3.13.

As we close our introduction, we point out that one of the tools we developed to
prove our main theorems may be of independent interest: Theorem 2.4 of the next
section extends, to polynomial systems, an earlier estimate of Kellog [19] on the norm
of the derivative of a single multivariate polynomial.

2 Technical Background

We start by defining an inner product structure on spaces of polynomial systems.
For n-variate degree d homogenous polynomials f(x) := Z\alzd byx®, g(x) =
Z|a\=d cqx® € Rlx1, ..., x,], their Weyl-Bombieri inner product is defined as

bOl o
(frgw =) o
loe|=d (oz)

It is known (see, e.g., [22, Thm. 4.1]) that for any U € O(n), we have

(foU,goU)w = (f. 8w
EOE';W
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Let D := (di,...,dy) and let Hp denote the space of (real) m x n systems of
homogenous n-variate polynomials with respective degrees di, ..., d,. Then, for
F = (ft,..., fm) € Hp and G := (g1,...,8n) € Hp, we define the Weyl-
Bombieri inner product for two polynomial systemstobe (F, G)w = > /L {fi. g&i)w-
We also let | F|lw := «/(F, F).

A geometric justification for the definition of the condition number ¥ can then
be derived as follows: First, for x € $”~!, we abuse notation slightly by also letting
D P (x) denote the m x n Jacobian matrix of P, evaluated at the point x. Form = n—1,
we denote the set of polynomial systems with singularity at x by

Yr(x) :={P € Hp | x is a multiple root of P}
and we then define X (the real part of the discriminant variety for Hp) to be:

¥R := {P € Hp | P has a multiple root in sy = U ER(x).

xesn—1

Using the Weyl-Bombieri inner product to define the underlying distance, we point
out the following important geometric characterization of «:

Theorem 2.1 [12, Prop. 3.1] When m = n — 1 we have & (P) = % for all
P € Hp.
We call a polynomial system P = (p1,..., pm) Withm = n — 1 (resp. m > n)

square (resp. overdetermined). Newton’s method for overdetermined systems was
studied in [16]. So now that we have a geometric characterization of the condition
number for square systems; it will be useful to also have one for overdetermined
systems.

Definition 2.2 Let o, (A) denote the smallest singular value of a matrix A. For any
system of homogeneous polynomials P € (R[xy, ..., x,])", set

2
L(P, x) = \/amm (A7' DPWI751) +1P@I3
For notational convenience, we also set

L(P) = minl L(P,x)

xeSn—
we then define
P
R L I
L(P,x)
and
P
&(P)= sup k(P,x)= 1Pllw
xesn—l1 L(P)

FolCT
s
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The quantity min1 L(P, x) thus plays the role of Dist(P, Xr) in the more general
xesn-
setting of m > n—1. We now recall an important observation from [12, Sec. 2]: Setting

_ _ —1
Dy (P) = DP(X)lTXS"—l, we have Umin(An_I]Dx(P)) = Omax (DX(P) IAn—l) >

when m = n — 1 and D, (P) is invertible. So by the definition of finorm (P, x), we
have

L(P, ) = \/oma (De(PY 18 1) > + 1P I3

= JIPI finom (P, )2 + | P13,

and thus our more general definition agrees with the classical definition in the square
case.

Since the Bombeiri-Weyl norm of a random polynomial system has strong con-
centration properties for a broad variety of distributions (see, e.g., [34]), we will be
interested in the behavior of L(P, x). So let us define the related quantity

£, y) =165 DO P03+ 1 P13

For m > n — 1, it follows directly that L(P, x) = irif L(x,y).
yLlx

ye Snfl
We now recall a classical result of O. D. Kellog. The theorem below is a summary
of [19, Thms. 4-6].

Theorem 2.3 [19] Let p € R[xy,...,x,] have degree d and set ||pllo =
sup,c gn-1|p(x)| and | DD p|l o, := max, ,cgn-11DD p(x)()|. Then:

(1) We have ||D(1)p||Oo < a’2||p||oo and, for any mutually orthogonal x,y € S"~1,
we also have [ID'D p(x)(»)| = d| plloo-
(2) If p is homogenous, then we also have ||D(l)p||OO <d||pllo- |

For any system of homogeneous polynomials P := (p1,..., pm) € (R[xy,
coo Xg D™, define ||Pllog = SUPyegn-1+/ D iy pi(x)2. Let DP(x)(u) denote the
image of the vector u under the linear operator D P (x), and set

m
[p©P| = s IDP@WI = swp |3 (T2
o0 x,uesn—! x,uesn—1 i=1
Theorem 2.4 Let P := (p1, ..., pm) € R[x1,...,x,])™ be a polynomial system

with p; homogeneous of degree d; for each i, and set d == max; d;. Then:

(1) We have ||D(1)P||oo < dz||P||oo and, for any mutually orthogonal x,y € §"~ 1,
we also have | DP (x)(y)lly < d| Pl -
(2) Ifdeg(pi) =d foralli € {1, ..., m}, then we also have ||D(1)P||OO <d|P|ls-

FoC'T
H_h
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Proof Let (xg,uo) be such that |[DVP|, = [[DP(xo)(uo)l,, and let o :=
W. Note that |||, = 1. Now define a poly-
nomial g € R[xy, ..., x,] of degree d via ¢g(x) := a1 p1(x) + -+ + & pm(x) and

observe that

(a1, ...,0), where o; =

a a d a
Vg(x) = e, PP e, )
0x1 0x] dx, ax,
a a a )
(Vq,u) = u; a1ﬂ+---+amﬂ +odu, (o p1+~-~+am Pm ,
dx1 dx1 dxp 0xy

and (Vg(x),u) = Z;”zl o; (Vpi(x), u). In particular, for our chosen x¢ and ug, we
have
m m
(Vpi(xo), uo
(Vg (x0). uo) = » i (Vpi(xo).ug) = »_ ——
i=1 i

> M
T mn ooy b
~ IDDP| LS

Using the first part of Kellog’s Theorem, we have

IDDP < sup [(Vg(x), u] < d*[1gllse.

x,ueSn—1

Now we observe by the Cauchy—Schwarz Inequality that

> aipix)

i=1

< sup
xesn—1

lgllc = sup

xesn—1

D P2
i=1

So we conclude that [DW P < d?llqllee < d*supyegnt /D> ey pi(x)? =

d?|| P ||« We also note that when deg(p;) = d for all i, the polynomial ¢ is homoge-
nous of degree d. So for this special case, the second part of Kellog’s Theorem directly
implies | DV Pllog < d|| Plloo-

For the proof of the first part of Assertion (1), we define o; = % and

q(x) = arpr+---+anpp. Then, (Vg (x), y) =3 ai(Vpi(x), y) = IDPx)(»)ll>-
By applying Kellog’s Theorem on the orthogonal direction y, we then obtain

IDPx)(WM 2 = (Vq(x),y) =dllglloc < dlIPlloo- u

Using our extension of Kellog’s Theorem to polynomial systems, we develop useful
estimates for || P ||, and ||D(i)P||OO. In what follows, we call a subset N of a metric
space X a §-net on X if and only if the every point of X is within distance § of some
point of NV. A basic fact we will use repeatedly is that, for any § > 0 and compact X,
one can always find a finite §-net for X.

Lemma 2.5 Let P := (p1,..., pm) € (Clxy,...,x,])" be a system of homoge-
nous polynomials, N' a §-net on S"1 and set d := max; d;. Let maxy(P) =
FolCTM
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supy e a1 P (W)lp. Similarly, let us define max yes1 (DK P) = SUPy ).
P(x)(uy, ..., ux)lln, and set ||D(]‘)P||Oo = SUPy . ugesn] ||D(k)P(x)(u1, cees
ug)llp. Then:

P max (D(k)P)
(D) 1Pllog < P4 and | DO Pllog < A7
(2) Ifdeg(p;) =d foreachi € {1, ..., m}, then we have

P p®Pp
1Pl < X)L p® py < M3 (DTP)
1—od 1 —8dJk+1

Proof We first prove Assertion (2). Observe that the Lipschitz constant of P on §"~!
is bounded from above by ||D(1)p||oo: This can be seen by taking x, y € §"~! and
considering the integral P(x) — P(y) = fol DP(y+t(x —y)(x —y)dz.
Since |y + 1 - (x — )|, < 1 forall ¢ € [0, 1], the homogeneity of the system P
implies
IDP(y +1(x = y)(x = Mla < 1DV Pl llx =yl

Using our earlier integral formula, we conclude that ||[P(x) — P(y)|l, <
IDD Pl llx =yl

Now, when the degrees of the p; are identical, let the Lipschitz constant of P be
M. By Assertion (2) of Theorem 2.4, we have M < [[DWP| < d|P|. Let
xo € S"~! be such that || P (xo) ||, = | Plloo» and let y € N satisfy |xo — y| < 8. Then,
1Pl = IPG0) 2 < 1Pl + X0 — yllaM < maxpr(P) + 8d|| Pl . and thus

| Plloo(1—d8) < max P(x). (*)

xeN
To bound the norm of D® P(x)(uy, ..., ux), let us consider the net defined by
N x oo x N=Ntlon 871 x oo x 771 Let x := (xq,...,xk41) € S x

cox 8" land y i= (y1, ..., yy1) € N**1 be such that ||x; — vill, < 6 for all i.
Clearly, |x — y|l, < 8+/k + 1. Since x was arbitrary, this argument proves that N**+1
is a 8+/k + 1-net. Note also that D® P(x)(uy, ..., ux) is a homogenous polynomial
system with (k + 1)n variables and degree d. The desired bound then follows from
Inequality (x) obtained above.

To prove Assertion (1) of our current lemma, the preceding proof carries
over verbatim, simply employing Assertion (1), instead of Assertion (2), from
Theorem 2.4. |

3 Condition Number of Random Polynomial Systems

3.1 Introducing Randomness

Now let P := (pi1,..., pm) be a random polynomial system where p;(x) :=
d; : n+d;j—1
Dlal=d; ¢/ (§)x%. In particular, recall that N; = ( i ), and we let C; =

(c j"")la|= 4, be a random vector in RNj satisfying the centering, subgaussian, and
FolCTM
iy
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small ball assumptions from the introduction. Letting & := < (?)x“) ,
lee|=d

we then have p;(x) = (C;, &;). In particular, recall that the subgaussian assump-
tion is that there is a K > 0 such that for each 8 € SVi=! and r > 0, we
have Prob (|(C;,0)| > 1) < 2¢~/K* Recall also that the small ball assumption
is that there is a co > 0 such that for every vector a € RV and ¢ > 0, we have
Prob (| {a,Cj)| < 5||a||2) < cpé&. In what follows, several of our bounds will depend
on the parameters K and cg underlying the random variable being subgaussian and
having the small ball property.

For any random variable £ on R, we denote its median by Med(£). Now, if £ :=

‘(Cj, 0)|, then setting ¢ := 2K in the subgaussian assumption for C; yields Prob(§ >
2K) < %, i.e., Med(§) < 2K. On the other hand, setting ¢ := %0 in the small
ball assumption for C; yields Prob(é < 2170 < 1, ie, Med() > 2170 Writing

1 =Med(§) - W@), we then easily obtain

ey

Bl

Kco >

In what follows, we will use Inequality (1) several times.

3.2 The Subgaussian Assumption and Bounds Related to Operator Norms

We will need the following inequality, reminiscent of Hoeffding’s classical inequal-
ity [18].

Theorem 3.1 [34, Prop. 5.10] There is an absolute constant ¢ > 0 with the follow-
ing property: If X1, ..., X, are subgaussian random variables with mean zero and
underlying constant K, and a = (ay, ..., a,) € R" andt > 0, then

Prob >t <2 —ct?
TO > < 2exp .
K2||all3

Lemma 3.2 Let P := (p1, ..., pm) be a random polynomial system where, as before,

ZaiX,-
i

pj(x) = Z\a|=dj Cja (‘if)x“ and the coefficient vectors Cj are independent random
vectors satisfying the centering, subgaussian, and small ball assumptions from the
introduction, with underlying constants K and co, and m > n — 1. Then, for N a §-net
over "V and t > 2, we have the following inequalities:

(1) Ifdeg(p;) =d forall j € {1,...,m}, then

2tK
Prob (nPnoo = *g) > 1 — 2|\ e~ 0™

FolCT
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In particular, there is a constant ¢y > 1 such that for § = % and t = slog(ed)

with s > 1, we have Prob (|| Pl o < 35K /mlog(ed)) > 1 — ¢=c15"mlog(ed),
(2) Ifd :=max; deg p; then

2tK
Prob (||P||Oo <To */_> > 1 —2|N|e 0m

In particular, there is a constant ¢y > 1 such that for § = 3d2’ t = slog(ed) with

s > 1, we have Prob (|| Py < 3sK/mlog(ed)) > 1 — e™* *mlog(ed),

Proof We prove Assertion (2) since the proofs of the two assertions are virtually
identical. First observe that the identity (x + -+ - + x2)? = > lal=d ( )x%* implies
|Xjll, = 1forall j < m. Using our subgaussian assumption on the random vectors
C;, and the fact that p; (x) = (C;, X}, we obtain that Prob { | p; (x)| > 1} < 2¢~*"/K?
for every x € §"~ 1.

Now we need to tensorize the preceding inequality. By Theorem 3.1, we have for
alla € §™~ that Prob (|{a, P(x))| > ) < 2¢=<""/K? Letting M be a 8-net on $"~!,
we then have Prob (max,c aq|{a, P(x))| > 1) < 2|./\/l|e_”2/K2, where we have used
the classical union bound for the multiple events defined by the (finite) -net M.
Since || P (x)]l, = maxgcgn-1](f, P(x))|, an application of Lemma 2.5 for the linear
polynomial ( -, P(x)) gives us Prob <||P(x)||2 th) < 2|M|e"‘ m,

It is known that for any § > 0, $™=1 admits a 8-net M such that | M| < (g)m (see,

e.g, [34, Lemma 5.2]). Sofor¢t > 1 and § = %, using a union bound over the §-net,
we have

Prob (| P(x)[l, > 2t/mK) < 2~

for some suitable constant ¢ < c¢. We have thus arrived at a point-wise estimate on
| P(x)|l,. Doing a union bound on a §-net A" now on $” !, we then obtain:

Prob (m%”P(X)Hz > ZIﬂK) < 2N Jec10m,
XE

Using Lemma 2.5 once again completes our proof. |

Theorem 2.4 and Lemma 3.2 then directly imply the following:

Corollary 3.3 Let P be a random polynomial system as in Lemma 3.2. Then, there
are constants c1, ca > 1 such that the following inequalities hold for s > 1:

(1) Ifdeg(p;) =d forall j € {1,...,m}, then both Prob (|[DV P||, < 3sK/md
log(ed)) and Prob (||D(2)P||oo < 3sK\/ﬁd2 log(ed)) are bounded from below
by 1 — ze—clszmlog(ed)'

(2) If d := max;deg pj, then both Prob (|| DV P||, < 3sK/md>log(ed)) and
Prob(||D(2)P||OO < 3sK\/ﬁd4log(ed)) are bounded from below by 1 — 2
e—czszmlog(ed)' B

EOE';W
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3.3 The Small Ball Assumption and Bounds for L(P)

We will need the following standard lemma (see, e.g., [27, Lemma 2.2] or [35]).

Lemma 3.4 Let &1, ..., &, be independent random variables such that, for every
& > 0, we have Prob (|&;| < €) < coe. Then, there is a universal constant ¢ > 0 such

that for every & > 0, we have Prob (,/él2 +. 4 E2 < eﬂ) < (Gcoe)™. [ |

We can then derive the following result:

Lemma 3.5 Let P = (p1, ..., pm) be a random polynomial system, satisfying the
small ball assumption with underlying constant co. Then, there is a universal constant
¢ > 0 such that for every ¢ > 0 and x € S"~!, we have Prob(|| P(x)|l, < e/m) <
(ccoe)™.

Proof By the small ball assumption on the random vectors C;, and observing that
pi(x) =(C;, X;) and | &;||, = 1 forall x € 7~ we have Prob(|pi(x)] < &) < coe.
By Lemma 3.4, we are done. |

The next lemma is a variant of [26, Claim 2.4]. The motivation for the technical
statement below, which introduces new parameters «, 8, y, is that it is the crucial
covering estimate needed to prove a central probability bound we will need later:
Theorem 3.7.

Lemma 3.6 Letn > 2, let P := (pi, ..., pm) be a system of n-variate homogenous
polynomials, and assume | P, < y.Letx,y € S"~! be mutually orthogonal vectors
with L(x,y) < «, and letr € [—1, 1]. Then for every w with w = x + Bry + p>z for
some z € By , we have the following inequalities:

(1) Ifd := max; d; and 0 < B < d~%, then | P(w)|? < 8(a? + (2 + ) g*d*y?).
(2) Ifdeg(p;) = d foralli € [m), and0 < B < d~? then | P(w)|3 < 8(e® + 2+
64),34d4)/2).

Proof We will prove just Assertion (1) since the proof of Assertion (2) is almost the
same. We start with some auxiliary observations on || P || o, : First note that Theorem 2.4
tells us that || P ||, < y implies | DV P|| o, < d?y and, similarly, | D® P ||, < d*y
foreveryk > 1. Also, forany w and u; € S withi € {1,...,k},|Pllc <y andthe
homogeneity of the p; implies sup,,, ID® Pw)uy, ... up)lly < llwl§ *d?*y.
These observations then yield the following inequality for w = x + Bry + Bz with
zeByrl<1,p<d ' k=3anduj,us,u3 € "1

..... |

ID®Pw)(ur, uz, u3)ll, < Jwlld3d% < (1 +28)73a%

Now, by Taylor expansion, we have the following equality:

_ 2 1 2 \T n(2) 2
pj(w) =p;jx)+(Vp;x), Bry+p7z) + E(ﬁry +B8°2) D p;i(x)(Bry + B°2)

+(1+8)° B 4;(0),
FoCT
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()= (L D3, — Brytp’
where A (x) := [y DY p;(x +t]|v]l,v) (v, v, v)dt and v = (B e

Breaking the second- and third-order terms of the expansion of p;(w) into pieces,
we then have the following inequality:

1
Ipj )l < 1p; )]+ BV p;(x), VI + BV p;(x), 2)] + 5ﬂ2|D<2>p,,~(x)(y, )|
1
+§ﬂ3|D(2)pj(X)(y,z)|

1 1
+ 5ﬁ3|D<2>pj<x)<z, I+ Eﬂ“ID(z)pj(x)(z, DI+ A+ A0

1
Applying the Cauchy-Schwarz inequality to the vectors (1, ,ijz, 1,1,1,1,1,1)

_1
and (|p;j(x)l, dj VP, ) (L + B)38° |A.,'(x)|) then implies the follow-
ing inequality:

piw)* < T+ B2d))(p;j(x)* +d; (Vp;(x), y)* + BH(Vp,(x), 2)?
1
+ 184D (0 (. 1))
1 1
+ 281D i), DI + 21D p () (2, I

1
+ Zﬂ8|D(2)Pj )z, D+ B0+ BPA; (1))

We sum all these inequalities for j € {l1,...,m}. On the left-hand side, we
have ||P(w)||%. On the right-hand side, the summation of the terms p; x)? +
d;l (Vpix), WWis[[P(xX)|3+ M~ DD P(x)(y)|3, and its magnitude is controlled
by the assumption L£(x, y) < «. The summations of the other terms are controlled
by the assumption ||P||o, < ¥ and Theorem 2.4. Summing all the inequalities for
je{l,...,m}, we have

1
IP@)I3 < 7+ BDUPOIZ+ 1M DV PO + gty + o ptdy?

1662 1662 1882 6 6 2
+ B0+ B0+ B+ B+ B) ;A,(x))

The assumption 8 < d~* implies that f3d® < p*d* and B°d° < p*d*. Therefore,
IPw)II3 < (7+ B2d) (nP(x)n% + M7 DV P53 + Braty? + prdty?
+AU+ Y Aj(x)?
j

FoC'T
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Clearly, Y";,, Aj(x)* < maxyev, , | D® P(w)(u1, uz, u3)||5 < (1428)*°a'?
y2. Hence, we have [[P(w)|3 < (7 + 2d)(@® + pd*y? + p*d*y* + (1 +
2B)24B%d'2y?). Since B < d~*, we finally get |[P(w)|3 < (7 + B2d)(@* + 2 +
ehptdty?) < 8(a? + 2+ M pldty?). u

Lemma 3.6 controls the growth of the norm of the polynomial system P =
(P1s ..., pm) over theregion {w e R" : w =x+pry+p2z,Irl<1,ye s,y L
x,z € By}. Note in particular that we are using cylindrical neighborhoods instead
of ball neighborhoods. This is because we have found that (a) our approach truly
requires us to go to order 3 in the underlying Taylor expansion and (b) cylindrical
neighborhoods allow us to properly take contributions from tangential directions, and
thus higher derivatives, into account.

We already had a probabilistic estimate in Lemma 3.5 that said that for any w with
lwll, > 1, the probability of || P(w)]||, being smaller than e/m is less than ™ up
to some universal constants. The controlled growth provided by Lemma 3.6 holds
for a region with a certain volume, which will ultimately contradict the probabilistic
estimates provided by Lemma 3.5. This will be the main trick behind the proof of the
following theorem.

Theorem 3.7 Letm >n — 1 > 1 and let P := (p1, ..., pm) be a system of random
. . d;

homogenous n-variate polynomials such that p;(x) = Z|a|=d_,~ Cjay/ (a)x“, where

Ci=(cja) la|=d; are random vectors satisfying the small ball assumption with under-

lying constant co. Let o, y > 0, d := max; d;, and assume o < y min {d’6, dz/n}.
Then,

3

3 (C "
Prob(L(P) < @) < Prob (| Plle > y) + a2 ™" " /n(yd®)"~ [ 2
A/ m

where C is a universal constant.

Proof We assume the hypotheses of Assertion (1): Let o,y > 0 and 8 < d~*. Let
B:={P||Plloc =y} and let

L:={P|L(P)<a}={P | Thereexistx,y € "1 withx L yand L(x,y) < a}.

LetI" := 8(a?+ (2+¢*) B*d*y?), and let BY denote the unit £,-ball in R”. Lemma 3.6
implies that if the event B N L occurs, then there exists a non-empty set

Viyi={weR :w=x+pry+p%z,x Ly |r|<1,zLy,zeBi\B}

such that ||P(w)||% < T for every w in this set. Let V := Vol (Vx’y). Note that for
w € Vyy, we have [w|3 = [lx + B%zl5 + IByll3 < 1 + 4B2. Hence, we have

lwll, < 1+ 282 Since Vy , C (1 +28%)B5\BY, we have showed that

BOLC{P Vol (lx e (1+267B5\B | IPWI3=T)) = v].
FolCTM
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Using Markov’s Inequality, Fubini’s Theorem, and Lemma 3.5, we can estimate the
probability of this event. Indeed,

Prob (Vol <{x e (1+281BI\BY : P2 < F}) > V)

IA

1
71EV01 ({x € (1+28%)BI\BY 1 |P(0)|3 < F})

IA

1
—/ Prob (||P(x)||§ < F) dx
V' Ja+2p2) B2\B:

Vol ((1 +28%) B\ BY)

max  Prob (||P(x)||§ < F) .

- Vv xe(1426%)BI\B}
P Vol(BY)  _
Now recall that Vol(B;) = NGk Then, Vs h = Vr for some constant

¢’ > 0. If we assume that 82 < %

have that

, then we obtain (1 4+ 282)" < 1 4 4np?, and we

Vol((1 + Zﬂz)Bg\Bg’) - Vol(B3) ((1 +28%)" — 1)

2—2n
v = ey SV

for some absolute constant ¢ > 0. Note that here, for a lower bound on V, we used
the fact that V, , contains more than half of a cylinder with base having radius B2 and
height 2.

Writing X := m for any x # 0, we then obtain, for z ¢ By, that

1P@I3 =Y 1pi@F =Y 1@zl = Y 1p,@F = IPGI3.

j=1 j=1 j=1

This implies, via Lemma 3.5, that for every w € (1 + 2,32)B§\B", we have

Prob (I1P(w)l13 = T) = Prob (IP@)I3 = T) = <cco 5) .

m

So we conclude that

Prob(L(P) < ) =< Prob (|| Plloc = y) + Prob (BN L) < Prob (|| Pllcc = ¥)
+c/nppr (cco\/f> )
m

Recall that I' = 8(a® + (5 + e*)B*d*y?). Setting g% := #, our assumption o <

y min {d —6.d?%/ n} and our choice of 8 then imply that I' = Ca? for some constant
C. So we obtain

FoC'T
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3_, m
Prob(L(P) < &) = Prob (| Pllxc = ) + /i (%) (Cjoma)

and our proof is complete. ]

3.4 The Condition Number Theorem and Its Consequences

We will now need bounds for the Weyl-Bombieri norms of polynomial systems. Note

that, with
dj o
pj(x) = Z o )Ciexs
al+"'+‘xn:dj
we have [|pjllw := (¢} a)all2 for j € {1,..., m}. The following lemma, providing

large deviation estimates for the Euclidean norm, is standard and follows, for instance,
from Theorem 3.1.

Lemma 3.8 There is a universal constant ¢’ > 0 such that for any random n-variate

polynomial system P = (pi,..., pm) satisfying the centering and subgaussian

assumptions, with underlying constant K, j € {1,...,m}, N; = ('1+Zf_1), N =
J

" Ni,m>n—1,andt > 1, we have
Zj—l J

(1) Prob (lpjllw > c'tK/N;) < e Ni
(2) Prob (||P||W > c%KW) <N,

We are now ready to prove our main theorem on the condition number of random
polynomial systems.

Theorem 3.9 There are universal constants A, C > 0 such that the following hold:
Assumem > n —1>1,let P = (p1, ..., pm) be a system of homogenous random

polynomials with p;(x) = Zlal:d,- Cjan/ (‘g)x“, where C; = (Cj»“)|a|—d~ e RYi are
—J

independent random vectors satisfying the subgaussian and small ball assumptions,

with respective underlying constants K and co. Let d := max; deg(p;). Then, setting

3
n—3

N m 5
M = | ~(KcoC)" "3 (3d> log(ed)) "3 n =25 max {d6, ;—2} ,
m

we have two cases:
(1) If N = mlog(ed), then Prob(k (P) > t M) is bounded from above by

m log(ed)
. a3
3 fl<t<e" "2
lm—n+§
3
( 3 "2 mlog(e(g) N .
3 m_n+§ og!t . m—n+x m—n+35
2 <r< 2
] ( mTog(ed) ife =h=e
3
m n—sx N
3 2 —2
3 (m—n+3)logt N 2 e m—nt 3
2 <
tm—lH—% ( N MIOg(Ed) l‘fe =t
FolCT
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(2) If N < mlog(ed), then Prob(k (P) > t M) is bounded from above by

N
. 43
3 : lf‘l S t S em ntx
lm—n+§
3 7 y
3 (m_”""j)lOgl if'em7n+% <t
tm—n+% N -

Proof Recall that k (P) = %. Note that if # > 0, and the inequalities ||P|w <

ucK+/N and L(P) > %ﬁ hold, then we clearly have ¥ (P) < tM. In particular,
u > 0 implies that

Prob (i (P) > tM) < Prob <||P||W > uckdﬁ) + Prob (L(P) < #) .

Our proof will then reduce to optimizing u over the various domains of 7.
Toward this end, note that Lemma 3.8 provides a large deviation estimate for the

Weyl norm of our polynomial system. So, to bound Prob <|| Pllw > uck VN ) from
above, we need to use Lemma 3.8 with the parameter u. As for the other summand
in the upper bound for Prob (k (P) > t M), Theorem 3.7 provides an upper bound for
Prob (L(P) < “‘IK—MW)

However, the upper bound provided by Theorem 3.7 involves the quantity
Prob (|| Pl > ). Therefore, in order to bound Prob (L(P) < uck f) we will need

to use Theorem 3.7 together with Lemma 3.2. In particular, we will set o := %ﬁ
and y := 3sK./mlog(ed) in Theorem 3.7 and Lemma 3.2, and then optimize the
parameters u, s, and ¢ at the final step of the proof.

Now let us check whether the assumptions of Theorem 3.7 are satisfied: We have

thats > 1,u > 1, and(s1ncea<m1n{d —6 —} ) we have

K~/N d?
MCIT < 3sK+/mlog(ed) min {d6, —} .
n

_uc/N__ 6 d*
\/»log( o= < 3stM min {d } and we thus obtain

,/ < 3st / (KC()C)m "+z (3d? log(gd))m "+z ==y (%)
log(ed)

Since K¢, > Z’ the inequality () holds if u < s, ¢ > 1, and we take the constant C
from Theorem 3.7 to be at least 4. Under the preceding restrictions, we then have that
Q := Prob(k(p) > tM) implies

0 < <ucK«/ﬁ

%—&-m n
2 n—— Cco
" ) Vn(3sK /mlog(ed)d”) (\/ﬁ)

+ e—czszmlog(ed) +e—u2N

FoE'ﬂ
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ne3

— : i
Note that weset M := /¥ (K cgC) "3 (3d2 log(ed)) " "3 nn5%3 max {dﬁ, s }
therefore we have

3 3
ym—ntzgn—3z

0=

2 2
— 1 —uN
+3 e C2sTm og(ed) P
fm—n+3

for some suitable ¢, > 0.
cymlog(ed)

. 3
We now consider the case where N > mlog(ed). If 1 <t < e "2 | then we
set u = s = 1, noting that (x) is satisfied. We then obtain

1
Q < — +e—czmlog(ed) +6_N < %
mnts Fmonts
provided ¢ > 1.
mlog(e(g) N .
In the case where e” "2 < t < e"™ "2, we choose u = 1 and s :=
[ (m—n+3)1 . .
% > 1. (Note that u < s). These choices then yield
3 n—3
0 1 (m —n+ 35)logt 1 4N
= ment3 mlog(ed) fe2(m—n+3)
3
)1—7
<

3 ((m—n+§)1ogt>2

tm7n+% mlog(ed)

N
3 1 _n+3
In the case where e” "2 < 1, we choose s = ,/ %—(eg)w and u =
3
[ (m—n+3)1 L.
w. (Note that u < s also in this case). So we get

m n—3
0< 1 (m—n+%)1ogt 2 N Tj—i— 1 N 1
T ments3 N m log(ed) (e2(m=n+3)  m—n+3

" po
3 (m—n+3)logt\? N =
m=n+3 N mlog(ed) ’

We consider now the case where N < mlog(ed). When 1 < ¢

choose s = 1 and u = 1 to obtain Q < 1 - + e—camlogled) 4 o=
tm—n+7 tmfnJrj

N
-3 [ (m—n+3)logt .
before. In the case t > ¢” "2, we choose s = u := (m"#. Note that again

() is satisfied and, with these choices, we get

IA
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0- 1 ((m—n+%)10gt)2+ 1 1

tm—n+% N tcg(m—n—&-%)mlog(ed)/N + tm—n+%
3 (logt)(m —n +3)\ *
< g 2
- tm—n+% N '

Theorem 3.10 Let P be a random polynomial system as in Theorem 3.9, let d :=
max ; deg p;, and let M be as defined in Theorem 3.9. Set

3

n—3
= 3
81 = avrn - 2 ; and
" m—n+3 \2emlog(ed) %
( N m—(rll-i-%)
m7n+% _m
m 7 g/ Tme 2
82 = (N) m

7 . '
(m —n+ % — q) <1 — m—Z+§) (log(ed))2 1
We then have the following estimates:
(1) If N > mlog(ed) andgq € (0,m —n + %), then
1

(IE(IZ(P)[’))‘fl =M (1 TR SE— . 52)q )

m—n—q-+2

In particul 0, m—n+3) (1- 5t E®@(P))T <
particular, q € (,(m n+2)( 210g(ed))] = (EG(@P)D)" <

1 | 1
M <3mlo’:g(ed)>q’ and g € <0’ m ;+2} — (E®(P)1)7 < 4/aM.
Furthermore, E(logk (P)) < 1 + log M.
1
q

) IfN < mlog(ed), then (E(E(P)Q))é <M (1 ot 32) .
m—n—q+3

1
In particular, q € (O, (m—n+ %) (1 — %)] == (]E(/Z(P)q)ﬁ < M
1 py3 1
(—3'"l°ng(ed)>q and q € <0, z ;+21| = (E(k(P)"))7 <4lim.
Furthermore, E(logk(P)) <1+ logM.

3

n—x m nfl
3 m 2
_m-nt3\ ? [t N 2
Proof Set A1 := (Wged) , Ao = ( N mloged ’
mlog ed N
ri=m-—n—q+ =, a1;=—3,anda2:=—3.
2 m-—n+j3 m-—n-+3
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Note that we have r > 1 by construction. Using Theorem 3.9 and the formula
o0
E((&(P))?) = q / 197 1Prob (& (p) = 1) dt
0
(which follows from the definition of expectation), we have that

E(&(P))1) < M4 (1 +q foo 197 'Prob (& (p) > tM) dt),
1

n—5

- T )
]E((K(P))q)_ +q/ ldt—i— Al / (lo gtlr) = dr +qA2f (10§rt)2
o)

M4
We will give upper bounds for the last three mtegrals First note that

a
[ e 4 ()2 o
1 tr r—1 “r—1

Also, we have that

3

“2 (log 1) 2 a n-3 A ar=1) ,-3
qA1/ (ogn) > dt = qu-/ 1 Drgy = 421 / e dr
el tr ap 2 Ja

(r—=D2 Jayr—1
fq_m”lr(z_l)
r—13-3 \2 4

W ( )'ﬁ

m—n+ % 2em log(ed)

Finally, we check that

logt 2 ® w A e m
qu/ ( g ) dr —qAZ/ tje(r—l)tdtszl/ tje—l‘dt
e®2 " a) (r— 1)7+ ay(r—1)
A
<2 (2 +1)
(r—1Dztl \2

z n_3
- gN/Tm m(m—n+3)\’ N \2%
- (m_n_q+%)%+1 eN mloged
B (m)%—%v% 1 ge M2 /Tm

N —n-+ % —q

1

(log(ed)) 3
Fol:'ﬂ
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Note thatifg < (m —n + %) (1 — m), then 61, 62 < 1.
For the case N < mlog(ed), working as before, we get that

E((&(P))?) / I /‘” (logt)?
— <1 —dt A dt<1l+——+4396
Ma - +q 1 + 2 92 tr + 1 +o.
Jrmg 2 1 .
In the case N < mlog(ed), we have §, < m (%) 2 W In particu-
_»zfrH»%)

lar, for this case, it easily follows thatg < (m —n + %) (1 — %) impliesé, < 1. W

Note that if m = n — 1, n > 3, and d > 2, then N > mlog(ed) and, in this
case, it is easy to check that (x) still holds even if we reduce M by deleting its factor
¥
immediately admit the following refined form:

of max {d® } So then, for the important case m = n — 1, our main theorems

Corollary 3.11 There are universal constants A, ¢ > 0 such that if P is any random
polynomial system as in Theorem 3.9, but withm =n —1,n > 3, d := max; deg pj,
d > 2, and M := /N (K coC)*"= D (3d? log(ed))* 3 /n instead, then we have:

Prob( (P) > tM)

31‘_% ifl<t< e2(n—l)log(ed)
3
"2
_ logt 2 e 2(n—1)log (ed) 2N
=13 <_2(n l)log(ed)) ffen IR st < e
1 i logt ? 2N
1 (log og .
32 (W) (2(n—l)10g(ed)> ife”™ <t

1 1
and, for all g € (O, % — m], we have (E(E(P)‘l))q < Meqd.
Furthermore, E(logk (P)) < 1 +log M. [ |

We are now ready to prove Corollary 1.5 from the introduction.

Proof of Corollary 1.5 From Corollary 3.11, Bound (2) follows immediately, and
Bound (1) is clearly true for the smaller domain of 7. So let us now consider t =

n_3 n_3

2(n—1)log(ed) 3 ogt 2 4 log x 274

xe with x > 1. Clearly, <—2(n l)log(ed)) 1+ —2(n T Togted) ,
_é 10

and thus (ﬁ]ég(w)) Y < e410g(ed> = x“log(ed) Since x = W’ we thus

SR

n— 3

. _1 2 _1 Tlog(ed .. .
obtain 3¢~ 2 (#ﬁ(ﬁg%) <3t 2 <m e ).Renormahzlng the pair

(M, t) (since the M from Corollary 3.11 is larger than the M from Corollary 1.5 by a

factor of A), we are done. |
FoC'T
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3.5 On the Optimality of Condition Number Estimates

As mentioned in the introduction, to establish a lower bound, we need one more
assumption on the randomness. For the convenience of the reader, we recall our earlier
Euclidean small ball assumption.

(Euclidean Small Ball) There is a constant ¢o > 0 such that for each j €
{1,...,m}and & > 0 we have Prob (|C;ll2 < &,/N;) < (coe)™i.

We will need an extension of Lemma 3.4: Lemma 3.12 below (see also [29, Thm.
1.5 & Cor. 8.6]). Toward this end, for any matrix 1" := (#; j)1<i, j<m, write || T'|| g s for
the Hilbert—Schmidt norm of T and ||T ||, for the operator norm of T, i.e.,

2

m
ITlas = Y ;| and [Tllop := max [T6]].
ha fesn—1
i,j=1
Lemma 3.12 Let&y, ..., &, beindependent random variables satisfying Prob (&; <¢)

< coe foralli € {l,...,m} and ¢ > 0. Let &€ = (&,...,&y). Then, there
is a constant ¢ > 0 such that for any m x m matrix T and ¢ > 0, we have
1T
c

Prob (| T€ 12 < el Tllms) < (ccoe) "o . .

Our main lower bound for the condition number is then the following:

Lemma 3.13 Let P = (p1, ..., pm) be a homogeneous n-variate polynomial system
withd; = deg p;forall j. Then, k (P) > %.MOF&‘OV@E ifP:=(pt1y---y Pm)

is a random polynomial system satisfying our subgaussian and Euclidean small ball
assumptions, with respective underlying constants K and ¢y, then we have

min; N;
v N ¢ miny N L= md log(ed)}
Prob (/Z(P) <eg ) < (ccpe) iNi and

Kmdlog(ed)
VN

Prob | k(P) <e————
Kmlog(ed)

) < (cGoe) ™MD ird; = d forall j €{1,...,m},

where c, ¢’ > 0 are absolute constants. In particular, when d = d; for all j €

{1,...,m}, we have E(k (P)) > CW%.

Proof First note that Theorem 2.3 implies that for every x, y € S n=1 we have
ld; ' DDV p;)yl3 < pjli.
So we have [|M~'DWP)(»)5 < X 1pjliZ < mll P13, Now recall that

L2(x,y) == MDD PRYD) I3+ I p(o) 3.
Elol:;ﬂ
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So we get L2(P) := mLin L2(x, y) < (m+ 1)||P||go, which in turn implies that
xly

“(P) > IPllw IIPIIW
T L(P) T ||Plloovm

The proof for the case where d; = d forall j € {1, ..., m} is identical.

We now show that, under our Euclidean small ball Assumption, we have that

 inj Nj
Pr0b<||P||W < 8\/_> < (CC~08)L maxj Vi for every ¢ € (0, 1). Indeed, recall that
lpillw = ”C]” v;. Then, Prob (|l pjllw < &y/N;) < (&))" < (coe)o for any
el

fixed e € (0, 1), Where Jo € {1,...,m} satisfies Nj, := min; N;. Let §; := \/’N_W

forany j € {1,...,m}.Set& := (&1,...,&,) and T := diag(/Ny, ..., ~/Ny). Note
that [ Pllw = IT& 2, I Tllas = /21y Nj = V/N,and | T |lop := maxi<j<m /N

o iy N min/- N
Then, Lemma 3.12 implies Prob <||P||W < a/ﬁ) < (cépe) ™ 5% Recall that
Lemma 3.2 implies that for every # > 1, we have

Prob ([ plles = ct K /mlog(ed)) < o tPmlogled)

So using our lower bound estimate for the condition number, we get

Prob (”P”W > il ) < Prob (E(P) > ﬂ) ,

[Plloc ~ 1K /mlog(ed) tKmd log(ed)
Prob ({I1Pllw = ¢'ex/N} N {I[Plloc < ctK /mlog(ed)) )

< Prob (;Z(P) > ﬂ)
tKmd log(ed)

and

Prob ({IIPlw = ¢'ev/N} N (I1Plloc < ctK Vi log(ed)))

minj Nj )

>1— (C508)C max;N; _ p—t*mlog(ed)
We may choose r := ,/log é, and by adjusting constants, we get our result. The case
where d; = d forall j € {1, ..., m} is similar. The bounds for the expectation follow

by integration. |

Observe that the dominant factor in the very last estimate of Lemma 3.13 is VN s
which is the normalization coming from the Weyl-Bombieri norm of the polynomial

system. So it makes sense to seek the asymptotic behavior of '2(—1;). Whenm =n—1,
the upper bounds we get are exponential with respect to n, while the lower bounds are
Fo C 'ﬂ
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not. But whenm = 2n —3andd = d; forall j € {1, ..., m}, we have the following
upper bound (by Theorem 3.10) and lower bound (by Theorem 3.13):

Al _E®RP) _ A log ed max{d®, n}
ndlogled) = N ~ Jn ’

where A, A, are constants depending on (K, cp). This suggests that our estimates
are closer to optimality when m is a constant multiple of 7.

Remark 3.14 There are similarities between our probability tail estimates and the
older estimates in the linear case studied in [28]. In particular, our estimates in the
quadratic case d = 2, when m is a constant multiple of »n, are quite similar to the
optimal result (for the linear case) appearing in [28]. 3
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