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Abstract We consider the sensitivity of real roots of polynomial systems with respect
to perturbations of the coefficients. In particular—for a version of the condition number
defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor—we
establish newprobabilistic estimates that allowamuchbroader family ofmeasures than
considered earlier. We also generalize further by allowing overdetermined systems. In
Part II, we study smoothed complexity and how sparsity (in the sense of restricting
which terms can appear) can help further improve earlier condition number estimates.
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1 Introduction

When designing algorithms for polynomial system solving, it quickly becomes clear
that complexity is governedbymore than simply the number of variables anddegrees of
the equations. Numerical solutions are meaningless without further information on the
spacing of the roots, not to mention their sensitivity to perturbation. A mathematically
elegant means of capturing this sensitivity is the notion of condition number (see,
e.g., [3,6] and our discussion below).

A subtlety behind complexity bounds incorporating the condition number is that
computing the condition number, even within a large multiplicative error, is provably
as hard as computing the numerical solution one seeks in the first place (see, e.g., [17]
for a precise statement in the linear case). However, it is now known that the condition
number admits probabilistic bounds, thus enabling its use in average-case analysis,
high probability analysis, and smoothed analysis of the complexity of numerical algo-
rithms. This probabilistic approach has revealed (see, e.g., [2,5,23]) that, in certain
settings, numerical solving can be done in polynomial-time on average, even though
numerical solving has exponential worst-case complexity. More recently, the condi-
tion number has also proved to be a central quantity in the algorithmic complexity
of deeper geometric problems such as the computation of the homology groups of
semi-algebraic sets (see, e.g., [8,14]).

The numerical approximation of complex roots provides an instructive example of
how one can profit from randomization.

First, there are classical reductions showing that deciding the existence of complex
roots for systems of polynomials in

⋃
m,n∈N(Z[x1, . . . , xn])m is already NP-hard.

However, classical algebraic geometry (e.g., Bertini’s Theorem and Bézout’s Theo-
rem [32]) tells us that, with probability 1, the number of complex roots of a random
system of homogeneous polynomials, P := (p1, . . . , pm) ∈ C[x1, . . . , xn] (with each
pi having fixed positive degree di ), is 0,

∏n
i=1 di , or infinite, according to m > n − 1,

m = n−1, orm < n−1 (Any probability measure on the coefficient space, absolutely
continuous with respect to Lebesgue measure, will do in the preceding statement).

Secondly, examples like P := (x1−x22 , x2−x23 , . . . , xn−1−x2n , (2xn−1)(3xn−1)),

which has affine roots
(
2−2n−1

, . . . , 2−20
)
and

(
3−2n−1

, . . . , 3−20
)
, reveal that the

number of digits of accuracy necessary to distinguish the coordinates of roots of P
may be exponential in n (among other parameters). However, it is now known via
earlier work on discriminants and random polynomial systems (see, e.g., [9, Thm. 5])
that the number of digits needed to separate roots of P is polynomial in n with high
probability, assuming the coefficients are rational, and the polynomial degrees and
coefficient heights are bounded. More simply, a classical observation from the theory
of resultants (see, e.g., [7]) is that, for any positive continuous probability measure on
the coefficients, P having a root with Jacobian matrix possessing small determinant is
a rare event. So, with high probability, small perturbations of a P with no degenerate
roots should still have no degenerate roots. More precisely, we review below a version
of the condition number used in [2,23,33]. Recall that the singular values of a matrix
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T ∈ R
k×(n−1) are the (nonnegative) square roots of the eigenvalues of T �T , where

T � denotes the transpose of T .

Definition 1.1 Given n, d1, . . . , dm ∈ N, and i ∈ {1, . . . , m}, let pi ∈ R[x1, . . . , xn]
be homogenous polynomials with deg pi = di , and let P := (p1, . . . , pm) be the cor-
responding polynomial system. We set xα := xα1

1 · · · xαn
n , where α := (α1, . . . , αn),

and let ci,α denote the coefficient of xα in pi . We define the Weyl–Bombieri norms of
pi and P to be, respectively,

‖pi‖W :=
√
√
√
√

∑

α1+···+αn=di

|ci,α|2
(di
α

) and ‖P‖W :=
√
√
√
√

m∑

i=1

‖pi‖2W .

Let �m ∈ R
m×m be the diagonal matrix with diagonal entries

√
d1, . . . ,

√
dm , and

let D P(x)|Tx Sn−1 : Tx Sn−1 −→ R
m denote the linear map between tangent spaces

induced by the Jacobian matrix of the polynomial system P evaluated at the point
x . Finally, when m = n − 1, we define the (normalized) local condition number

(for solving P = O) to be μ̃norm(P, x) := ‖P‖W σmax

(
D P(x)|−1

Tx Sn−1�n−1

)
or

μ̃norm(P, x) := ∞, as D P(x)|Tx Sn−1 is full rank or not, where σmax(A) is the largest
singular value of a matrix A. �

Clearly, μ̃norm(P, x) → ∞ as P approaches a system possessing a degenerate
root ζ ∈ P

n−1
C

and x approaches ζ . The intermediate normalizations in the defini-
tion are useful for geometric interpretations of μ̃norm: There is in fact a simple and
elegant algebraic relation between ‖P‖W , supx∈Sn−1 μ̃norm(P, x), and the distance of
P to a certain discriminant variety (reviewed in Sect. 2 and Theorem 2.1 below, see
also [12]). But even more importantly, the preceding condition number (in the special
case, m = n − 1) was a central ingredient in the recent positive solution to Smale’s
17th Problem [2,23]: For the problem of numerically approximating a single complex
root of a polynomial system, a particular randomization model (independent com-
plex Gaussian coefficients with specially chosen variances) enables polynomial-time
average-case complexity, in the face of exponential deterministic complexity.1

1.1 From Complex Roots to Real Roots

It is natural to seek similar average-case speedups for the harder problem of numer-
ically approximating real roots of real polynomial systems. However, an important
subtlety one must consider is that the number of real roots of n − 1 homogeneous
polynomials in n variables (of fixed degree) is no longer constant with probability 1,
even if the probability measure for the coefficients is continuous and positive. Also,
small perturbations can make the number of real roots of a polynomial system go
from positive to zero or even infinity. A condition number for real solving that takes

1 Here, “complexity” simply means the total number of field operations over C needed to find a start point
x0 for Newton’s iteration, such that the sequence of Newton iterates (xn)n∈N converges to a true root ζ of

P (see, e.g., [3, Ch. 8]) at the rate of |xn − ζ | ≤ (1/2)2
n−1 |x0 − ζ | or faster.
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all these subtleties into account was developed in [10] and applied in the series of
papers [11–13]. In these papers, the authors performed a probabilistic analysis assum-
ing the coefficients were independent real Gaussians with mean 0 and very specially
chosen variances.

Definition 1.2 [10] Let κ̃(P, x) := ‖P‖W√
‖P‖2W μ̃norm(P,x)−2+‖P(x)‖22

and κ̃(P) :=
sup

x∈Sn−1
κ̃(P, x). We, respectively, call κ̃(P, x) and κ̃(P) the local and global condition

numbers for real solving. �
Note that a large condition number for real solving can be caused not only by a root

with small Jacobian determinant, but also by the existence of a critical point for P
with small corresponding critical value. So a large κ̃ is meant to detect the spontaneous
creation of real roots, as well as the bifurcation of a single degenerate root intomultiple
distinct real roots, arising from small perturbations of the coefficients.

Our main results, Theorems 3.9 and 3.10 in Sect. 3.4 below, show that useful condi-
tion number estimates can be derived for a much broader class of probability measures
than considered earlier: Our theorems allow non-Gaussian distributions, dependence
between certain coefficients, and, unlike the existing literature, our methods do not
use any additional algebraic structure, for example, invariance under the unitary group
acting linearly on the variables (as in [11–13,33]). This aspect also allows us to begin
to address sparse polynomials (in the sequel to this paper), where linear changes of
variables would destroy sparsity. Our framework also allows overdetermined systems
(m > n − 1). We leave the under-determined case (m < n − 1) for future work.

To compare our results with earlier estimates, let us first recall a central estimate
from [13].

Theorem 1.3 [13, Thm. 1.2] Let P := (p1, . . . , pn−1) be a random system of

homogenous n-variate polynomials, where n ≥ 3 and pi (x) := ∑

α1+···+αn=di

√(di
α

)

ci,αxα , where the ci,α are independent real Gaussian random variables having mean
0 and variance 1. Then, letting N := ∑n−1

i=1

(n+di −1
di

)
, d := maxi di , M ′ :=

1 + 8d2
√

(n − 1)5N
∏n−1

i=1 di , and t ≥
√

n−1
4
∏n−1

i=1 di
, we have:

1. Prob(κ̃(P) ≥ t M ′) ≤
√

1+log(t M ′)
t

2. E(log(κ̃(P))) ≤ log(M ′) +√log M ′ + 1√
log M ′ .

The expanded class of distributions we allow for the coefficients of P satisfy the
following more flexible hypotheses:

Notation 1.4 For any d1, . . . , dm ∈ N and i ∈ {1, . . . , m}, let d := maxi di , Ni :=(n+di −1
di

)
, and assume Ci = (ci,α)α1+···+αn=di are independent random vectors in RNi

with probability distributions satisfying:

1. (Centering) For any θ ∈ SNi −1 we have E〈Ci , θ〉 = 0.
2. (Subgaussian) There is a K > 0 such that for every θ ∈ SNi −1, we have

Prob (|〈Ci , θ〉| ≥ t) ≤ 2e−t2/K 2
for all t > 0.
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3. (Small Ball) There is a c0 > 0 such that for every vector a ∈ R
Ni , we have

Prob (|〈a, Ci 〉| ≤ ε‖a‖2) ≤ c0ε for all ε > 0.

�
By the vectors Ci being independent, we simply mean that the probability density
function for the longer vector C1×· · ·×Cm can be expressed as a product of the form∏m

i=1 fi (. . . , ci,α, . . .). This is a much weaker assumption than having all the ci,α be
independent, as is usually done in the literature on random polynomial systems.

The standard Gaussian distribution is a typical example of a collection of random
vectors satisfying our assumptions with universal constants. This easily follows from
the fact that for a standard Gaussian random vector C ∈ R

Ni , and for any θ ∈ SNi −1,
the one-dimensional marginal 〈θ, C〉 is a standard Gaussian random variable.

Another example of a collection of random vectors satisfying the three assumptions
above can be obtained by letting p > 2 and letting Ci have the uniform distribution on

B Ni
p :=

{
x ∈ R

Ni | ∑Ni
j=1 x p

j ≤ 1
}
for all i : In this case, the subgaussian assumption

follows from [1, Sec. 6] and the small ball assumption is a direct consequence of the
fact that B Ni

p satisfies Bourgain’s hyperplane conjecture (see, e.g., [21]). Yet another
important example (easier to verify) is to let the Ci have the uniform distribution on
	2 unit-spheres of varying dimension.

The subgaussian and small ball assumptions are standard assumptions in modern
non-asymptotic theory of random matrices and in general in the applications of high-
dimensional probability toData Sciences (See [30], [31]). One of the reasons that these
assumptions are so popular is that these properties “tensorize nicely”: In particular, a
standard application of Bernstein’s inequality shows that if Xi , i ∈ {1, 2, . . . , Ni } are
independent centered random variables that are all subgaussian with constant K , then
the random vector X = (X1, . . . , X Ni ) is also subgaussian with constant C K , where
C is an absolute universal constant. Also a recent result of Rudelson and Vershynin
([29]) states that if all the Xi have the small ball property with constant c0, then the
random vector X = (X1, · · · , X Ni ) has the small ball property with constant C1c0,
where C1 is a universal constant. The best possible constant in this case is known
(see [24] or [25]). This “tensorization property” also shows that there are numerous
examples of random vectors that satisfy our assumptions. Examples of subgaussian
random variables that satisfy the small ball assumption are the random variables X p,
p ≥ 2 that have densities f (t) := cpe−|t |p

, t ∈ R, where cp is a constant depending
on p such that

∫
f = 1. (In this case, the subgaussian constant and the small ball

constants are universal constants, independent of p).
Other examples of random variables that have the two properties are the random

variables that have a bounded density f with a bounded support. (In these cases, the
subgaussian constant depends on the size of the support of the density and the small
ball constant depends on the “infinity norm” of the density).

A simplified summary of our main results (Theorems 3.9 and 3.10 from Sect. 3.4),
in the special case of square dense systems, is the following:

Corollary 1.5 There is an absolute constant A > 0 with the following property. Let
P := (p1, . . . , pn−1) be a random system of homogenous n-variate polynomials,
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where pi (x) := ∑

α1+···+αn=di

√(di
α

)
ci,αxα and Ci = (ci,α)α1+···+αn=di are independent

random vectors satisfying the centering, subgaussian, and small ball assumptions,
with underlying constants c0 and K . Then, for n ≥ 3, d := maxi di , d ≥ 2, N :=∑n−1

i=1

(n+di −1
di

)
, and M := A

√
N (K c0)2(n−1)(3d2 log(ed))2n−3√n, the following

bounds hold:

1. Prob(κ̃(P) ≥ t M) ≤
⎧
⎨

⎩

3t− 1
2 ; if 1 ≤ t ≤ (ed)2(n−1)

3t− 1
2

(
t

(ed)2(n−1)

) 1
4 log(ed) ; if t ≥ (ed)2(n−1)

2. E(log κ̃(P)) ≤ 1 + log M.

Corollary 1.5 is proved in Sect. 3.4. Theorems 3.9 and 3.10 in Sect. 3.4 below in fact
state much stronger estimates than our simplified summary above.

Note that, for fixed d and n, the bound from Assertion (1) of Corollary 1.5 shows
a somewhat slower rate of decay for the probability of a large condition number than
the older bound from Assertion (1) of Theorem 1.3: O(1/t0.3523) vs. O(

√
log t/t).

However, the older O(
√
log t/t) bound was restricted to a special family of Gaussian

distributions (satisfying invariance with respect to a natural O(n)-action on the root
space Pn−1

R
) and assumes m = n −1. Our techniques come from geometric functional

analysis, work for a broader family of distributions, and we make no group-invariance
assumptions.

Furthermore, our techniques allow condition number bounds in a new setting:
overdetermined systems, i.e., m × n systems with m > n − 1. See the next section for
the definition of a condition number enabling m > n − 1, and the statements of Theo-
rems 3.9 and 3.10 for our most general condition number bounds. The overdetermined
case occurs in many important applications involving large data, where one may make
multiple redundant measurements of some physical phenomenon, for example, image
reconstruction from multiple projections. There appear to have been no probabilistic
condition number estimates for the case m > n −1 until now. In particular, for m pro-
portional to n, we will see at the end of this paper how our condition number estimates
are close to optimal.

To the best of our knowledge, the only other result toward estimating condition
numbers of non-Gaussian random polynomial systems is due to Nguyen [26]. How-
ever, in [26], the degrees of the polynomials are assumed to be bounded by a small
fraction of the number of variables, m = n − 1, and the quantity analyzed in [26] is
not the condition number considered in [33] or [11–13].

The precise asymptotics of the decay rate for the probability of having a large
condition number remain unknown, even in the restricted Gaussian case considered
by Cucker, Krick, Malajovich, and Wschebor. So we also prove lower bounds for the
condition number of a random polynomial system. To establish these bounds, we will
need one more assumption on the randomness.

Notation 1.6 For any d1, . . . , dm ∈ N and i ∈ {1, . . . , m}, let d := maxi di , Ni :=(n+di −1
di

)
, and assume Ci = (ci,α)α1+···+αn=di is an independent random vector inRNi

with probability distribution satisfying:
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4. (Euclidean Small Ball) There is a constant c̃0 > 0 such that for every ε > 0, we
have

Prob
(
‖Ci‖2 ≤ ε

√
Ni

)
≤ (c̃0ε)

Ni .

�
Remark 1.7 If the vectors Ci have independent coordinates satisfying the centering
and small ball assumptions, then Lemma 3.4 from Sect. 3.3 implies that the Euclidean
small ball assumption holds as well. Moreover, if theCi are each uniformly distributed
on a convex body X and satisfy our centering and subgaussian assumptions, then a
result of Jean Bourgain [4] (see also [15] or [20] for alternative proofs) implies that
both the small ball and Euclidean small ball assumptions hold, and with c̃0 depending
only on the subgaussian constant K (not the convex body X ). �
Corollary 1.8 Suppose n, d ≥ 3, m = n − 1, and d j = d for all j ∈ {1, . . . , n − 1}.
Also let P := (p1, . . . , pm) be a random polynomial system satisfying our center-
ing, subgaussian, small ball, and Euclidean small ball assumptions, with respective
underlying constants K and c̃0. Then, there are constants A2 ≥ A1 > 0 depending
only on c0 and K (i.e., independent of n and d), such that

A1(n log(d) + d log(n)) ≤ E(log κ̃(P)) ≤ A2(n log(d) + d log(n)).

�

Corollary 1.8 follows immediately from a more general estimate: Lemma 3.13 from
Sect. 3.3. It would certainly be more desirable to know bounds within a constant
multiple of κ̃(P) instead. We discuss more refined estimates of the latter kind in
Sect. 3.5, after the proof of Lemma 3.13.

As we close our introduction, we point out that one of the tools we developed to
prove our main theorems may be of independent interest: Theorem 2.4 of the next
section extends, to polynomial systems, an earlier estimate of Kellog [19] on the norm
of the derivative of a single multivariate polynomial.

2 Technical Background

We start by defining an inner product structure on spaces of polynomial systems.
For n-variate degree d homogenous polynomials f (x) := ∑

|α|=d bαxα, g(x) :=∑
|α|=d cαxα ∈ R[x1, . . . , xn], their Weyl–Bombieri inner product is defined as

〈 f, g〉W :=
∑

|α|=d

bαcα
(d
α

) .

It is known (see, e.g., [22, Thm. 4.1]) that for any U ∈ O(n), we have

〈 f ◦ U, g ◦ U 〉W = 〈 f, g〉W .
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Let D := (d1, . . . , dm) and let HD denote the space of (real) m × n systems of
homogenous n-variate polynomials with respective degrees d1, . . . , dm . Then, for
F := ( f1, . . . , fm) ∈ HD and G := (g1, . . . , gm) ∈ HD , we define the Weyl–
Bombieri inner product for two polynomial systems to be 〈F, G〉W :=∑m

i=1〈 fi , gi 〉W .
We also let ‖F‖W := √〈F, F〉.

A geometric justification for the definition of the condition number κ̃ can then
be derived as follows: First, for x ∈ Sn−1, we abuse notation slightly by also letting
D P(x) denote them×n Jacobianmatrix of P , evaluated at the point x . Form = n−1,
we denote the set of polynomial systems with singularity at x by


R(x) := {P ∈ HD | x is a multiple root of P}

and we then define 
R (the real part of the discriminant variety for HD) to be:


R := {P ∈ HD |P has a multiple root in Sn−1} =
⋃

x∈Sn−1


R(x).

Using the Weyl–Bombieri inner product to define the underlying distance, we point
out the following important geometric characterization of κ̃:

Theorem 2.1 [12, Prop. 3.1] When m = n − 1 we have κ̃(P) = ‖P‖W
Dist(P,
R)

for all
P ∈ HD. �

We call a polynomial system P = (p1, . . . , pm) with m = n − 1 (resp. m ≥ n)
square (resp. overdetermined). Newton’s method for overdetermined systems was
studied in [16]. So now that we have a geometric characterization of the condition
number for square systems; it will be useful to also have one for overdetermined
systems.

Definition 2.2 Let σmin(A) denote the smallest singular value of a matrix A. For any
system of homogeneous polynomials P ∈ (R[x1, . . . , xn])m , set

L(P, x) :=
√

σmin

(
�−1

m D P(x)|Tx Sn−1

)2 + ‖P(x)‖22

For notational convenience, we also set

L(P) = min
x∈Sn−1

L(P, x)

we then define

κ̃(P, x) = ‖P‖W

L(P, x)

and

κ̃(P) = sup
x∈Sn−1

κ(P, x) = ‖P‖W

L(P)
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The quantity min
x∈Sn−1

L(P, x) thus plays the role of Dist(P, 
R) in the more general

setting ofm ≥ n−1.We now recall an important observation from [12, Sec. 2]: Setting
Dx (P) := D P(x)|Tx Sn−1 , we have σmin(�

−1
n−1Dx (P)) = σmax

(
Dx (P)−1�n−1

)−1
,

when m = n − 1 and Dx (P) is invertible. So by the definition of μ̃norm(P, x), we
have

L(P, x) =
√

σmax
(
Dx (P)−1�n−1

)−2 + ‖P(x)‖22
=
√

‖P‖2W μ̃norm(P, x)−2 + ‖P(x)‖22,

and thus our more general definition agrees with the classical definition in the square
case.

Since the Bombeiri–Weyl norm of a random polynomial system has strong con-
centration properties for a broad variety of distributions (see, e.g., [34]), we will be
interested in the behavior of L(P, x). So let us define the related quantity

L(x, y) :=
√

‖�−1
m D(1) P(x)(y)‖22 + ‖P(x)‖22

For m ≥ n − 1, it follows directly that L(P, x) = inf
y⊥x

y∈Sn−1

L(x, y).

We now recall a classical result of O. D. Kellog. The theorem below is a summary
of [19, Thms. 4–6].

Theorem 2.3 [19] Let p ∈ R[x1, . . . , xn] have degree d and set ‖p‖∞ :=
supx∈Sn−1 |p(x)| and ‖D(1) p‖∞ := maxx,u∈Sn−1 |D(1) p(x)(u)|. Then:

(1) We have ‖D(1) p‖∞ ≤ d2‖p‖∞ and, for any mutually orthogonal x, y ∈ Sn−1,
we also have |D(1) p(x)(y)| ≤ d‖p‖∞.

(2) If p is homogenous, then we also have ‖D(1) p‖∞ ≤ d‖p‖∞. �

For any system of homogeneous polynomials P := (p1, . . . , pm) ∈ (R[x1,
. . . , xn])m , define ‖P‖∞ := supx∈Sn−1

√∑m
i=1 pi (x)2. Let D P(x)(u) denote the

image of the vector u under the linear operator D P(x), and set

∥
∥
∥D(1) P

∥
∥
∥∞ := sup

x,u∈Sn−1
‖D P(x)(u)‖2 = sup

x,u∈Sn−1

√
√
√
√

m∑

i=1

〈∇ pi (x), u〉2.

Theorem 2.4 Let P := (p1, . . . , pm) ∈ (R[x1, . . . , xn])m be a polynomial system
with pi homogeneous of degree di for each i , and set d := maxi di . Then:

(1) We have ‖D(1) P‖∞ ≤ d2‖P‖∞ and, for any mutually orthogonal x, y ∈ Sn−1,
we also have ‖D P(x)(y)‖2 ≤ d‖P‖∞.

(2) If deg(pi ) = d for all i ∈ {1, . . . , m}, then we also have ‖D(1) P‖∞ ≤ d‖P‖∞.
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Proof Let (x0, u0) be such that ‖D(1) P‖∞ = ‖D P(x0)(u0)‖2, and let α :=
(α1, . . . , αm), where αi := 〈∇ pi (x0),u0〉

‖D(1) P‖∞
. Note that ‖α‖2 = 1. Now define a poly-

nomial q ∈ R[x1, . . . , xn] of degree d via q(x) := α1 p1(x) + · · · + αm pm(x) and
observe that

∇q(x) =
(

α1
∂p1
∂x1

+ · · · + αm
∂pm

∂x1
, . . . , α1

∂p1
∂xn

+ · · · + αm
∂pm

∂xn

)

,

〈∇q, u〉 = u1

(

α1
∂p1
∂x1

+ · · · + αm
∂pm

∂x1

)

+ · · · + un

(

α1
∂p1
∂xn

+ · · · + αm
∂pm

∂xn

)

,

and 〈∇q(x), u〉 = ∑m
i=1 αi 〈∇ pi (x), u〉. In particular, for our chosen x0 and u0, we

have

〈∇q(x0), u0〉 =
m∑

i=1

αi 〈∇ pi (x0), u0〉 =
m∑

i=1

〈∇ pi (x0), u0〉2
‖D(1) P‖∞

=
∥
∥
∥D(1) P∞

∥
∥
∥ .

Using the first part of Kellog’s Theorem, we have

‖D(1) P‖∞ ≤ sup
x,u∈Sn−1

|〈∇q(x), u〉| ≤ d2‖q‖∞.

Now we observe by the Cauchy–Schwarz Inequality that

‖q‖∞ = sup
x∈Sn−1

∣
∣
∣
∣
∣

m∑

i=1

αi pi (x)

∣
∣
∣
∣
∣
≤ sup

x∈Sn−1

√
√
√
√

m∑

i=1

pi (x)2.

So we conclude that ‖D(1) P‖∞ ≤ d2‖q‖∞ ≤ d2 supx∈Sn−1

√∑m
i=1 pi (x)2 =

d2‖P‖∞. We also note that when deg(pi ) = d for all i , the polynomial q is homoge-
nous of degree d. So for this special case, the second part of Kellog’s Theorem directly
implies ‖D(1) P‖∞ ≤ d‖P‖∞.

For the proof of the first part of Assertion (1), we define αi = 〈∇ pi (x),y〉
‖D P(x)(y)‖2 and

q(x) = α1 p1 +· · ·+αn pn . Then, 〈∇q(x), y〉 =∑i αi 〈∇ pi (x), y〉 = ‖D P(x)(y)‖2.
By applying Kellog’s Theorem on the orthogonal direction y, we then obtain

‖D P(x)(y)‖2 = 〈∇q(x), y〉 ≤ d‖q‖∞ ≤ d‖P‖∞. �

Using our extension of Kellog’s Theorem to polynomial systems, we develop useful
estimates for ‖P‖∞ and ‖D(i) P‖∞. In what follows, we call a subset N of a metric
space X a δ-net on X if and only if the every point of X is within distance δ of some
point ofN . A basic fact we will use repeatedly is that, for any δ > 0 and compact X ,
one can always find a finite δ-net for X .

Lemma 2.5 Let P := (p1, . . . , pm) ∈ (C[x1, . . . , xn])m be a system of homoge-
nous polynomials, N a δ-net on Sn−1, and set d := maxi di . Let maxN (P) :=
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supy∈N ‖P(y)‖2. Similarly, let us define maxN k+1(D(k) P) := supx,u1,...,uk∈N ‖D(k)

P(x)(u1, . . . , uk)‖2, and set
∥
∥D(k) P

∥
∥∞ := supx,u1,...,uk∈Sn−1

∥
∥D(k) P(x)(u1, . . . ,

uk)‖2. Then:

(1) ‖P‖∞ ≤ maxN (P)

1−δd2 and ‖D(k) P‖∞ ≤ maxN k+1 (D(k) P)

1−δd2
√

k+1
.

(2) If deg(pi ) = d for each i ∈ {1, . . . , m}, then we have

‖P‖∞ ≤ maxN (P)

1 − δd
and ‖D(k) P‖∞ ≤ maxN k+1(D(k) P)

1 − δd
√

k + 1
.

Proof We first prove Assertion (2). Observe that the Lipschitz constant of P on Sn−1

is bounded from above by ‖D(1) p‖∞: This can be seen by taking x, y ∈ Sn−1 and
considering the integral P(x) − P(y) = ∫ 10 D P(y + t (x − y))(x − y) dt .

Since ‖y + t · (x − y)‖2 ≤ 1 for all t ∈ [0, 1], the homogeneity of the system P
implies

‖D P(y + t (x − y))(x − y)‖2 ≤ ‖D(1) P‖∞‖x − y‖2
Using our earlier integral formula, we conclude that ‖P(x) − P(y)‖2 ≤

‖D(1) P‖∞‖x − y‖2.
Now, when the degrees of the pi are identical, let the Lipschitz constant of P be

M . By Assertion (2) of Theorem 2.4, we have M ≤ ‖D(1) P‖∞ ≤ d‖P‖∞. Let
x0 ∈ Sn−1 be such that ‖P(x0)‖2 = ‖P‖∞, and let y ∈ N satisfy |x0 − y| ≤ δ. Then,
‖P‖∞ = ‖P(x0)‖2 ≤ ‖P(y)‖2 + ‖x0 − y‖2M ≤ maxN (P) + δd‖P‖∞, and thus

‖P‖∞(1−dδ) ≤ max
x∈N

P(x). (
)

To bound the norm of D(k) P(x)(u1, . . . , uk), let us consider the net defined by
N × · · · × N = N k+1 on Sn−1 × · · · × Sn−1. Let x := (x1, . . . , xk+1) ∈ Sn−1 ×
· · · × Sn−1 and y := (y1, . . . , yk+1) ∈ N k+1 be such that ‖xi − yi‖2 ≤ δ for all i .
Clearly, ‖x − y‖2 ≤ δ

√
k + 1. Since x was arbitrary, this argument proves thatN k+1

is a δ
√

k + 1-net. Note also that D(k) P(x)(u1, . . . , uk) is a homogenous polynomial
system with (k + 1)n variables and degree d. The desired bound then follows from
Inequality (
) obtained above.

To prove Assertion (1) of our current lemma, the preceding proof carries
over verbatim, simply employing Assertion (1), instead of Assertion (2), from
Theorem 2.4. �

3 Condition Number of Random Polynomial Systems

3.1 Introducing Randomness

Now let P := (p1, . . . , pm) be a random polynomial system where p j (x) :=
∑

|α|=d j
c j,α

√(d j
α

)
xα . In particular, recall that N j = (n+d j −1

d j

)
, and we let C j =

(
c j,α
)
|α|=d j

be a random vector in R
N j satisfying the centering, subgaussian, and
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small ball assumptions from the introduction. Letting X j :=
(√(d j

α

)
xα

)

|α|=d j

,

we then have p j (x) = 〈C j ,X j 〉. In particular, recall that the subgaussian assump-
tion is that there is a K > 0 such that for each θ ∈ SN j −1 and t > 0, we
have Prob

(|〈C j , θ〉| ≥ t
) ≤ 2e−t2/K 2

. Recall also that the small ball assumption
is that there is a c0 > 0 such that for every vector a ∈ R

Ni and ε > 0, we have
Prob

(|〈a, C j 〉| ≤ ε‖a‖2
) ≤ c0ε. In what follows, several of our bounds will depend

on the parameters K and c0 underlying the random variable being subgaussian and
having the small ball property.

For any random variable ξ on R, we denote its median by Med(ξ). Now, if ξ :=∣
∣〈C j , θ〉∣∣, then setting t := 2K in the subgaussian assumption for C j yields Prob(ξ ≥
2K ) ≤ 1

2 , i.e., Med(ξ) ≤ 2K . On the other hand, setting ε := 1
2c0

in the small

ball assumption for C j yields Prob(ξ ≤ 1
2c0

) ≤ 1
2 , i.e., Med(ξ) ≥ 1

2c0
. Writing

1 = Med(ξ) · 1
Med(ξ)

, we then easily obtain

K c0 ≥ 1

4
. (1)

In what follows, we will use Inequality (1) several times.

3.2 The Subgaussian Assumption and Bounds Related to Operator Norms

We will need the following inequality, reminiscent of Hoeffding’s classical inequal-
ity [18].

Theorem 3.1 [34, Prop. 5.10] There is an absolute constant c > 0 with the follow-
ing property: If X1, . . . , Xn are subgaussian random variables with mean zero and
underlying constant K , and a = (a1, . . . , an) ∈ R

n and t ≥ 0, then

Prob

(∣
∣
∣
∣
∣

∑

i

ai Xi

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(
−ct2

K 2‖a‖22

)

.

�

Lemma 3.2 Let P := (p1, . . . , pm) be a random polynomial system where, as before,

p j (x) =∑|α|=d j
c j,α

√(d j
α

)
xα and the coefficient vectors C j are independent random

vectors satisfying the centering, subgaussian, and small ball assumptions from the
introduction, with underlying constants K and c0, and m ≥ n −1. Then, for N a δ-net
over Sn−1 and t ≥ 2, we have the following inequalities:

(1) If deg(p j ) = d for all j ∈ {1, . . . , m}, then

Prob

(

‖P‖∞ ≤ 2t K
√

m

1 − dδ

)

≥ 1 − 2|N |e−O(t2m)

123

Author's personal copy



Found Comput Math

In particular, there is a constant c1 ≥ 1 such that for δ = 1
3d and t = s log(ed)

with s ≥ 1, we have Prob
(‖P‖∞ ≤ 3sK

√
m log(ed)

) ≥ 1 − e−c1s2m log(ed).
(2) If d := max j deg p j then

Prob

(

‖P‖∞ ≤ 2t K
√

m

1 − d2δ

)

≥ 1 − 2|N |e−O(tm)

In particular, there is a constant c2 ≥ 1 such that for δ = 1
3d2 , t = s log(ed) with

s ≥ 1, we have Prob
(‖P‖∞ ≤ 3sK

√
m log(ed)

) ≥ 1 − e−c2s2m log(ed).

Proof We prove Assertion (2) since the proofs of the two assertions are virtually
identical. First observe that the identity (x21 + · · · + x2n )d = ∑

|α|=d

(d
α

)
x2α implies

‖X j‖2 = 1 for all j ≤ m. Using our subgaussian assumption on the random vectors

C j , and the fact that p j (x) = 〈C j ,X j 〉, we obtain that Prob
{|p j (x)| ≥ t

} ≤ 2e−t2/K 2

for every x ∈ Sn−1.
Now we need to tensorize the preceding inequality. By Theorem 3.1, we have for

all a ∈ Sm−1 that Prob (|〈a, P(x)〉| ≥ t) ≤ 2e−ct2/K 2
. LettingM be a δ-net on Sm−1,

we then have Prob (maxa∈M|〈a, P(x)〉| ≥ t) ≤ 2|M|e−ct2/K 2
, where we have used

the classical union bound for the multiple events defined by the (finite) δ-net M.
Since ‖P(x)‖2 = maxθ∈Sm−1 |〈θ, P(x)〉|, an application of Lemma 2.5 for the linear

polynomial 〈 · , P(x)〉 gives us Prob
(
‖P(x)‖2 ≥ t

√
mK

1−δ

)
≤ 2|M|e−ct2m .

It is known that for any δ > 0, Sm−1 admits a δ-netM such that |M| ≤ ( 3
δ

)m
(see,

e.g, [34, Lemma 5.2]). So for t ≥ 1 and δ = 1
2 , using a union bound over the δ-net,

we have
Prob

(‖P(x)‖2 ≥ 2t
√

mK
) ≤ 2e−c2t2m

for some suitable constant c2 ≤ c. We have thus arrived at a point-wise estimate on
‖P(x)‖2. Doing a union bound on a δ-net N now on Sn−1, we then obtain:

Prob

(

max
x∈N

‖P(x)‖2 ≥ 2t
√

mK

)

≤ 2|N |e−c1t2m .

Using Lemma 2.5 once again completes our proof. �

Theorem 2.4 and Lemma 3.2 then directly imply the following:

Corollary 3.3 Let P be a random polynomial system as in Lemma 3.2. Then, there
are constants c1, c2 ≥ 1 such that the following inequalities hold for s ≥ 1:

(1) If deg(p j ) = d for all j ∈ {1, . . . , m}, then both Prob
(‖D(1) P‖∞ ≤ 3sK

√
md

log(ed)) and Prob
(‖D(2) P‖∞ ≤ 3sK

√
md2 log(ed)

)
are bounded from below

by 1 − 2e−c1s2m log(ed).
(2) If d := max j deg p j , then both Prob

(‖D(1) P‖∞ ≤ 3sK
√

md2 log(ed)
)

and
Prob

(‖D(2) P‖∞ ≤ 3sK
√

md4 log(ed)
)

are bounded from below by 1 − 2

e−c2s2m log(ed). �
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3.3 The Small Ball Assumption and Bounds for L(P)

We will need the following standard lemma (see, e.g., [27, Lemma 2.2] or [35]).

Lemma 3.4 Let ξ1, . . . , ξm be independent random variables such that, for every
ε > 0, we have Prob (|ξi | ≤ ε) ≤ c0ε. Then, there is a universal constant c̃ > 0 such

that for every ε > 0, we have Prob

(√
ξ21 + · · · + ξ2m ≤ ε

√
m

)

≤ (c̃c0ε)
m. �

We can then derive the following result:

Lemma 3.5 Let P = (p1, . . . , pm) be a random polynomial system, satisfying the
small ball assumption with underlying constant c0. Then, there is a universal constant
c̃ > 0 such that for every ε > 0 and x ∈ Sn−1, we have Prob(‖P(x)‖2 ≤ ε

√
m) ≤

(c̃c0ε)m.

Proof By the small ball assumption on the random vectors Ci , and observing that
pi (x) = 〈Ci ,Xi 〉 and ‖Xi‖2 = 1 for all x ∈ Sn−1, we have Prob(|pi (x)| ≤ ε) ≤ c0ε.
By Lemma 3.4, we are done. �

The next lemma is a variant of [26, Claim 2.4]. The motivation for the technical
statement below, which introduces new parameters α, β, γ , is that it is the crucial
covering estimate needed to prove a central probability bound we will need later:
Theorem 3.7.

Lemma 3.6 Let n ≥ 2, let P := (p1, . . . , pm) be a system of n-variate homogenous
polynomials, and assume ‖P‖∞ ≤ γ . Let x, y ∈ Sn−1 be mutually orthogonal vectors
with L(x, y) ≤ α, and let r ∈ [−1, 1]. Then for every w with w = x + βr y + β2z for
some z ∈ Bn

2 , we have the following inequalities:

(1) If d := maxi di and 0 < β ≤ d−4, then ‖P(w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ 2).
(2) If deg(pi ) = d for all i ∈ [m], and 0 < β ≤ d−2 then ‖P(w)‖22 ≤ 8(α2 + (2 +

e4)β4d4γ 2).

Proof We will prove just Assertion (1) since the proof of Assertion (2) is almost the
same.We start with some auxiliary observations on ‖P‖∞: First note that Theorem 2.4
tells us that ‖P‖∞ ≤ γ implies ‖D(1) P‖∞ ≤ d2γ and, similarly, ‖D(k) P‖∞ ≤ d2kγ

for every k ≥ 1.Also, for anyw and ui ∈ Sn−1 with i ∈ {1, . . . , k}, ‖P‖∞ ≤ γ and the
homogeneity of the pi implies supu1,...,uk

‖D(k) P(w)(u1, . . . , uk)‖2 ≤ ‖w‖d−k
2 d2kγ .

These observations then yield the following inequality for w = x + βr y + β2z with
z ∈ Bn

2 , |r | ≤ 1, β ≤ d−1, k = 3, and u1, u2, u3 ∈ Sn−1:

‖D(3) P(w)(u1, u2, u3)‖2 ≤ ‖w‖d−3
2 d6γ ≤ (1 + 2β)d−3d6γ

Now, by Taylor expansion, we have the following equality:

p j (w) = p j (x) + 〈∇ p j (x), βr y + β2z〉 + 1

2
(βr y + β2z)T D(2) p j (x)(βr y + β2z)

+ (1 + β)3 β3A j (x),
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where A j (x) := ∫ 10 D(3) p j (x + t‖v‖2v)(v, v, v)dt and v = βr y+β2z
‖βr y+β2z‖ .

Breaking the second- and third-order terms of the expansion of p j (w) into pieces,
we then have the following inequality:

|p j (w)| ≤ |p j (x)| + β|〈∇ p j (x), y〉| + β2|〈∇ p j (x), z〉| + 1

2
β2|D(2) p j (x)(y, y)|

+ 1

2
β3|D(2) p j (x)(y, z)|

+ 1

2
β3|D(2) p j (x)(z, y)| + 1

2
β4|D(2) p j (x)(z, z)| + (1 + β)3β3

∣
∣A j (x)

∣
∣ .

Applying the Cauchy–Schwarz inequality to the vectors (1, βd
1
2
j , 1, 1, 1, 1, 1, 1)

and (|p j (x)|, d
− 1

2
j |〈∇ p j (x), y〉|, . . . , (1 + β)3β3

∣
∣A j (x)

∣
∣) then implies the follow-

ing inequality:

p j (w)2 ≤ (7 + β2d j )(p j (x)2 + d−1
j 〈∇ p j (x), y〉2 + β4〈∇ p j (x), z〉2

+ 1

4
β4(D(2)

j p j (x)(y, y))2

+ 1

4
β6|D(2) p j (x)(y, z)|2 + 1

4
β6|D(2) p j (x)(z, y)|2

+ 1

4
β8|D(2) p j (x)(z, z)|2 + β6(1 + β)6A j (x)2)

We sum all these inequalities for j ∈ {1, . . . , m}. On the left-hand side, we
have ‖P(w)‖22. On the right-hand side, the summation of the terms p j (x)2 +
d−1

j 〈∇ p j (x), y〉2 is ‖P(x)‖22 +‖M−1D(1) P(x)(y)‖22, and its magnitude is controlled
by the assumption L(x, y) ≤ α. The summations of the other terms are controlled
by the assumption ‖P‖∞ ≤ γ and Theorem 2.4. Summing all the inequalities for
j ∈ {1, . . . , m}, we have

‖P(w)‖22 ≤ (7 + β2d)(‖P(x)‖22 + ‖M−1D(1) P(x)(y)‖22 + β4d4γ 2 + 1

4
β4d4γ 2

+ 1

4
β6d6γ 2 + 1

4
β6d6γ 2 + 1

4
β8d8γ 2 + β6(1 + β)6

∑

j

A j (x)2)

The assumption β ≤ d−4 implies that β8d8 ≤ β4d4 and β6d6 ≤ β4d4. Therefore,

‖P(w)‖22 ≤ (7 + β2d)

(

‖P(x)‖22 + ‖M−1D(1) P(x)(y)‖22 + β4d4γ 2 + β4d4γ 2

+β6(1 + β)6
∑

j

A j (x)2

⎞

⎠ .
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Clearly,
∑

j≤m A j (x)2 ≤ maxw∈Vx,y ‖D(3) P(w)(u1, u2, u3)‖22 ≤ (1+2β)2d−6d12

γ 2. Hence, we have ‖P(w)‖22 ≤ (7 + β2d)(α2 + β4d4γ 2 + β4d4γ 2 + (1 +
2β)2dβ6d12γ 2). Since β ≤ d−4, we finally get ‖P(w)‖22 ≤ (7 + β2d)(α2 + (2 +
e4)β4d4γ 2) ≤ 8(α2 + (2 + e4)β4d4γ 2). �

Lemma 3.6 controls the growth of the norm of the polynomial system P =
(p1, . . . , pm) over the region {w ∈ R

n : w = x +βr y +β2z, |r | ≤ 1, y ∈ Sn−1, y ⊥
x, z ∈ Bn

2 }. Note in particular that we are using cylindrical neighborhoods instead
of ball neighborhoods. This is because we have found that (a) our approach truly
requires us to go to order 3 in the underlying Taylor expansion and (b) cylindrical
neighborhoods allow us to properly take contributions from tangential directions, and
thus higher derivatives, into account.

We already had a probabilistic estimate in Lemma 3.5 that said that for any w with
‖w‖2 ≥ 1, the probability of ‖P(w)‖2 being smaller than ε

√
m is less than εm up

to some universal constants. The controlled growth provided by Lemma 3.6 holds
for a region with a certain volume, which will ultimately contradict the probabilistic
estimates provided by Lemma 3.5. This will be the main trick behind the proof of the
following theorem.

Theorem 3.7 Let m ≥ n − 1 ≥ 1 and let P := (p1, . . . , pm) be a system of random

homogenous n-variate polynomials such that p j (x) = ∑
|a|=d j

c j,a

√(di
a

)
xa, where

C j = (c j,a)|a|=d j are random vectors satisfying the small ball assumption with under-
lying constant c0. Let α, γ > 0, d := maxi di , and assume α ≤ γ min

{
d−6, d2/n

}
.

Then,

Prob(L(P) ≤ α) ≤ Prob (‖P‖∞ ≥ γ ) + α
3
2+m−n√

n(γ d2)n− 3
2

(
Cc0√

m

)m

where C is a universal constant.

Proof We assume the hypotheses of Assertion (1): Let α, γ > 0 and β ≤ d−4. Let
B : = {P | ‖P‖∞ ≤ γ }, and let

L := {P | L(P) ≤ α} = {P | There exist x, y ∈ Sn−1 with x ⊥ y and L(x, y) ≤ α}.

Let� := 8(α2+(2+e4)β4d4γ 2), and let Bn
2 denote the unit 	2-ball inR

n . Lemma 3.6
implies that if the event B ∩ L occurs, then there exists a non-empty set

Vx,y := {w ∈ R
n : w = x + βr y + β2z, x ⊥ y, |r | ≤ 1, z ⊥ y, z ∈ Bn

2 }\Bn
2

such that ‖P(w)‖22 ≤ � for every w in this set. Let V := Vol
(
Vx,y

)
. Note that for

w ∈ Vx,y , we have ‖w‖22 = ‖x + β2z‖22 + ‖βy‖22 ≤ 1 + 4β2. Hence, we have
‖w‖2 ≤ 1 + 2β2. Since Vx,y ⊆ (1 + 2β2)Bn

2 \Bn
2 , we have showed that

B ∩ L ⊆
{

P | Vol
(
{x ∈ (1 + 2β2)Bn

2 \Bn
2 | ‖P(x)‖22 ≤ �}

)
≥ V

}
.
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Using Markov’s Inequality, Fubini’s Theorem, and Lemma 3.5, we can estimate the
probability of this event. Indeed,

Prob
(
Vol
(
{x ∈ (1 + 2β2)Bn

2 \Bn
2 : ‖P(x)‖22 ≤ �}

)
≥ V

)

≤ 1

V
EVol

(
{x ∈ (1 + 2β2)Bn

2 \Bn
2 : ‖P(x)‖22 ≤ �}

)

≤ 1

V

∫

(1+2β2)Bn
2 \Bn

2

Prob
(
‖P(x)‖22 ≤ �

)
dx

≤ Vol
(
(1 + 2β2)Bn

2 \Bn
2

)

V
max

x∈(1+2β2)Bn
2 \Bn

2

Prob
(
‖P(x)‖22 ≤ �

)
.

Now recall that Vol(Bn
2 ) = πn/2

�( n
2+1)

. Then,
Vol(Bn

2 )

Vol(Bn−1
2 )

≤ c′√
n
for some constant

c′ > 0. If we assume that β2 ≤ 1
n , then we obtain (1 + 2β2)n ≤ 1 + 4nβ2, and we

have that

Vol((1 + 2β2)Bn
2 \Bn

2 )

V
≤ Vol(Bn

2 )
(
(1 + 2β2)n − 1

)

β(β2)n−1Vol(Bn−1
2 )

≤ c
√

nββ2−2n,

for some absolute constant c > 0. Note that here, for a lower bound on V , we used
the fact that Vx,y contains more than half of a cylinder with base having radius β2 and
height 2β.

Writing x̃ := x
‖x‖2 for any x �= 0, we then obtain, for z /∈ Bn

2 , that

‖P(z)‖22 =
m∑

j=1

|p j (z)|2 =
m∑

j=1

|p j (z̃)|2‖z‖2d j
2 ≥

m∑

j=1

|p j (z̃)|2 = ‖P(z̃)‖22.

This implies, via Lemma 3.5, that for every w ∈ (1 + 2β2)Bn
2 \Bn

2 , we have

Prob
(
‖P(w)‖22 ≤ �

)
≤ Prob

(
‖P(w̃)‖22 ≤ �

)
≤
(

cc0

√
�

m

)m

.

So we conclude that

Prob(L(P) ≤ α) ≤ Prob (‖P‖∞ ≥ γ ) + Prob (B ∩ L) ≤ Prob (‖P‖∞ ≥ γ )

+ c
√

nββ2−2n

(

cc0

√
�

m

)m

.

Recall that � = 8(α2 + (5 + e4)β4d4γ 2). Setting β2 := α
γ d2 , our assumption α ≤

γ min
{
d−6, d2/n

}
and our choice of β then imply that � = Cα2 for some constant

C . So we obtain
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Prob(L(P) ≤ α) ≤ Prob (‖P‖∞ ≥ γ ) + c
√

n

(
α

γ d2

) 3
2−n (Cc0α√

m

)m

and our proof is complete. �

3.4 The Condition Number Theorem and Its Consequences

Wewill now need bounds for the Weyl–Bombieri norms of polynomial systems. Note
that, with

p j (x) =
∑

α1+···+αn=d j

√(
d j

α

)

c j,αxα,

we have ‖p j‖W := ‖(c j,α)α‖2 for j ∈ {1, . . . , m}. The following lemma, providing
large deviation estimates for the Euclidean norm, is standard and follows, for instance,
from Theorem 3.1.

Lemma 3.8 There is a universal constant c′ > 0 such that for any random n-variate
polynomial system P = (p1, . . . , pm) satisfying the centering and subgaussian
assumptions, with underlying constant K , j ∈ {1, . . . , m}, N j := (n+d j −1

d j

)
, N :=

∑m
j=1 N j , m ≥ n − 1, and t ≥ 1, we have

(1) Prob
(‖p j‖W ≥ c′t K

√
N j
) ≤ e−t2N j

(2) Prob
(
‖P‖W ≥ c′t K

√
N
)

≤ e−t2N .

We are now ready to prove our main theorem on the condition number of random
polynomial systems.

Theorem 3.9 There are universal constants A, C > 0 such that the following hold:
Assume m ≥ n − 1 ≥ 1, let P = (p1, . . . , pm) be a system of homogenous random

polynomials with p j (x) =∑|α|=d j
c j,α

√(d j
α

)
xα , where C j = (c j,α

)
|α|=d j

∈ R
Ni are

independent random vectors satisfying the subgaussian and small ball assumptions,
with respective underlying constants K and c0. Let d := maxi deg(pi ). Then, setting

M :=
√

N

m
(K c0C)

m
m−n+ 3

2 (3d2 log(ed))

n− 3
2

m−n+ 3
2 n

1
2m−2n+3 max

{
d6,

n

d2

}
,

we have two cases:

(1) If N ≥ m log(ed), then Prob(κ̃(P) ≥ t M) is bounded from above by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

tm−n+ 3
2

if 1 ≤ t ≤ e
m log(ed)

m−n+ 3
2

3

tm−n+ 3
2

(
(m−n+ 3

2 ) log t
m log(ed)

) n− 3
2

2

if e
m log(ed)

m−n+ 3
2 ≤ t ≤ e

N
m−n+ 3

2

3

tm−n+ 3
2

(
(m−n+ 3

2 ) log t
N

)m
2 (

N
m log(ed)

) n− 3
2

2
if e

N
m−n+ 3

2 ≤ t
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(2) If N ≤ m log(ed), then Prob(κ̃(P) ≥ t M) is bounded from above by

⎧
⎪⎪⎨

⎪⎪⎩

3

tm−n+ 3
2

if 1 ≤ t ≤ e
N

m−n+ 3
2

3

tm−n+ 3
2

(
(m−n+ 3

2 ) log t
N

)m
2

if e
N

m−n+ 3
2 ≤ t

Proof Recall that κ̃(P) = ‖P‖W
L(P)

. Note that if u > 0, and the inequalities ‖P‖W ≤
ucK

√
N and L(P) ≥ ucK

√
N

t M hold, then we clearly have κ̃(P) ≤ t M . In particular,
u > 0 implies that

Prob (κ̃(P) ≥ t M) ≤ Prob
(
‖P‖W ≥ ucK

√
N
)

+ Prob

(

L(P) ≤ ucK
√

N

t M

)

.

Our proof will then reduce to optimizing u over the various domains of t .
Toward this end, note that Lemma 3.8 provides a large deviation estimate for the

Weyl norm of our polynomial system. So, to bound Prob
(
‖P‖W ≥ ucK

√
N
)
from

above, we need to use Lemma 3.8 with the parameter u. As for the other summand
in the upper bound for Prob (κ̃(P) ≥ t M), Theorem 3.7 provides an upper bound for

Prob
(

L(P) ≤ ucK
√

N
t M

)
.

However, the upper bound provided by Theorem 3.7 involves the quantity

Prob (‖P‖∞ ≥ γ ). Therefore, in order to boundProb
(

L(P) ≤ ucK
√

N
t M

)
, wewill need

to use Theorem 3.7 together with Lemma 3.2. In particular, we will set α := ucK
√

N
t M

and γ := 3sK
√

m log(ed) in Theorem 3.7 and Lemma 3.2, and then optimize the
parameters u, s, and t at the final step of the proof.

Now let us check whether the assumptions of Theorem 3.7 are satisfied: We have

that s ≥ 1, u ≥ 1, and (since α ≤ min
{

d−6, d2

n

}
γ ) we have

ucK
√

N

t M
≤ 3sK

√
m log(ed)min

{

d−6,
d2

n

}

.

So uc
√

N√
m log(ed)

≤ 3st M min
{

d−6, d2

n

}
, and we thus obtain

uc

log(ed)

√
N

m
≤ 3st

√
N

m
(K c0C)

m
m−n+ 3

2 (3d2 log(ed))

n− 3
2

m−n+ 3
2 n

1
2m−2n+3 . (∗)

Since K co ≥ 1
4 , the inequality (∗) holds if u ≤ s, t ≥ 1, and we take the constant C

from Theorem 3.7 to be at least 4. Under the preceding restrictions, we then have that
Q := Prob(κ̃(p) ≥ t M) implies

Q ≤
(

ucK
√

N

t M

) 3
2+m−n √

n(3sK
√

m log(ed)d2)n− 3
2

(
Cc0√

m

)m

+ e−c2s2m log(ed) + e−u2N
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Note thatwe set M :=
√

N
m (K c0C)

m
m−n+ 3

2 (3d2 log(ed))

n− 3
2

m−n+ 3
2 n

1
2m−2n+3 max

{
d6, n

d2

}
,

therefore we have

Q ≤ um−n+ 3
2 sn− 3

2

tm−n+ 3
2

+ e−c2s2m log(ed) + e−u2N

for some suitable c2 > 0.

We now consider the case where N ≥ m log(ed). If 1 ≤ t ≤ e
c1m log(ed)

m−n+ 3
2 , then we

set u = s = 1, noting that (∗) is satisfied. We then obtain

Q ≤ 1

tm−n+ 3
2

+ e−c2m log(ed) + e−N ≤ 3

tm−n+ 3
2

provided c2 ≥ 1.

In the case where e
m log(ed)

m−n+ 3
2 ≤ t ≤ e

N
m−n+ 3

2 , we choose u = 1 and s :=√
(m−n+ 3

2 ) log t
m log(ed)

≥ 1. (Note that u ≤ s). These choices then yield

Q ≤ 1

tm−n+ 3
2

(
(m − n + 3

2 ) log t

m log(ed)

)n− 3
2

+ 1

tc2(m−n+ 3
2 )

+ e−N

≤ 3

tm−n+ 3
2

(
(m − n + 3

2 ) log t

m log(ed)

) n− 3
2

2

.

In the case where e
N

m−n+ 3
2 ≤ t , we choose s :=

√
(log t)(m−n+ 3

2 )

m log(ed)
and u :=

√
(m−n+ 3

2 ) log t
N . (Note that u ≤ s also in this case). So we get

Q ≤ 1

tm−n+ 3
2

(
(m − n + 3

2 ) log t

N

)m
2 ( N

m log(ed)

) n− 3
2

2 + 1

tc2(m−n+ 3
2 )

+ 1

tm−n+ 3
2

≤ 3

tm−n+ 3
2

(
(m − n + 3

2 ) log t

N

)m
2 ( N

m log(ed)

) n− 3
2

2

.

We consider now the case where N ≤ m log(ed). When 1 ≤ t ≤ e
N

m−n+ 3
2 , we

choose s = 1 and u = 1 to obtain Q ≤ 1

tm−n+ 3
2

+ e−c2m log(ed) + e−N ≤ 3

tm−n+ 3
2
as

before. In the case t ≥ e
N

m−n+ 3
2 , we choose s = u :=

√
(m−n+ 3

2 ) log t
N . Note that again

(∗) is satisfied and, with these choices, we get
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Q ≤ 1

tm−n+ 3
2

(
(m − n + 3

2 ) log t

N

)m
2

+ 1

tc2(m−n+ 3
2 )m log(ed)/N

+ 1

tm−n+ 3
2

≤ 3

tm−n+ 3
2

(
(log t)(m − n + 3

2 )

N

)m
2

.

�

Theorem 3.10 Let P be a random polynomial system as in Theorem 3.9, let d :=
max j deg p j , and let M be as defined in Theorem 3.9. Set

δ1 := q
√

πn

m − n + 3
2

(
n − 3

2

2em log(ed)

) n− 3
2

2 1
(

1 − q
m−n+ 3

2

) n
2

and

δ2 :=
(m

N

)m−n+ 3
2

2 q
√

πme− m
2

(
m − n + 3

2 − q
)
(

1 − q
m−n+ 3

2

)m
2

(log(ed))
n
2−1

.

We then have the following estimates:

(1) If N ≥ m log(ed) and q ∈ (0, m − n + 3
2 ), then

(
E(κ̃(P)q)

) 1
q ≤ M

(

1 + q

m − n − q + 2
+ δ1 + δ2

) 1
q

.

In particular, q ∈
(
0, (m−n+ 3

2 )
(
1− 1

2 log(ed)

)]
�⇒ (

E(κ̃(P)q)
) 1

q ≤
M
(
3m log(ed)

n

) 1
q

, and q ∈
(

0,
m−n+ 3

2
2

]

�⇒ (
E(κ̃(P)q)

) 1
q ≤ 41/q M.

Furthermore, E(log κ̃(P)) ≤ 1 + log M.

(2) If N ≤ m log(ed), then
(
E(κ̃(P)q)

) 1
q ≤ M

(

1 + q
m−n−q+ 3

2
+ δ2

) 1
q

.

In particular, q ∈ (
0, (m − n + 3

2 )
(
1 − m

eN

)] �⇒ (
E(κ̃(P)q)

) 1
q ≤ M

(
3m log(ed)

n

) 1
q

and q ∈
(

0,
m−n+ 3

2
2

]

�⇒ (
E(κ̃(P)q)

) 1
q ≤ 41/q M.

Furthermore, E(log κ̃(P)) ≤ 1 + log M.

Proof Set �1 :=
(

m−n+ 3
2

m log ed

) n− 3
2

2

, �2 :=
(

m−n+ 3
2

N

)m
2 (

N
m log ed

) n− 3
2

2
,

r := m − n − q + 5

2
, a1 := m log ed

m − n + 3
2

, and a2 := N

m − n + 3
2

.
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Note that we have r ≥ 1 by construction. Using Theorem 3.9 and the formula

E((κ̃(P))q) = q
∫ ∞

0
tq−1Prob (κ̃(p) ≥ t) dt

(which follows from the definition of expectation), we have that

E((κ̃(P))q) ≤ Mq
(

1 + q
∫ ∞

1
tq−1Prob (κ̃(p) ≥ t M) dt

)

,

or
E((κ̃(P))q)

Mq
≤1+q

∫ ea1

1

1

tr
dt+q�1

∫ ea2

ea1

(log t)
n− 3

2
2

tr
dt+q�2

∫ ∞

ea2

(log t)
m
2

tr
dt .

We will give upper bounds for the last three integrals. First note that

q
∫ ea1

1

1

tr
dt = q

r − 1

(
1 − e(r−1)a1

)
≤ q

r − 1
.

Also, we have that

q�1

∫ ea2

ea1

(log t)
n− 3

2
2

tr
dt = q�1

∫ a2

a1
t

n− 3
2

2 e(r−1)tdt = q�1

(r − 1)
n
2

∫ a2(r−1)

a1(r−1)
t

n− 3
2

2 e−tdt

≤ q�1

(r − 1)
n
2− 1

4

�

(
n

2
− 1

4

)

≤ q
√

πn

m − n + 3
2

(
n − 3

2

2em log(ed)

) n
2− 3

4 1
(

1 − q
m−n+ 3

2

) n
2− 1

4

.

Finally, we check that

q�2

∫ ∞

ea2

(log t)
m
2

tr
dt = q�2

∫ ∞

a2
t

m
2 e(r−1)tdt = q�2

(r − 1)
m
2 +1

∫ ∞

a2(r−1)
t

m
2 e−tdt

≤ q�2

(r − 1)
m
2 +1

�
(m

2
+ 1
)

≤ q
√

πm

(m − n − q + 3
2 )

m
2 +1

(
m(m − n + 3

2 )

eN

)m
2 ( N

m log ed

) n
2− 3

4

=
(m

N

)m
2 − n

2+ 3
4 1
(

1 − q
m−n+ 3

2

)m
2

· qe−m/2√πm

m − n + 3
2 − q

· 1

(log(ed))
n
2− 3

4

.

123

Author's personal copy



Found Comput Math

Note that if q ≤ (m − n + 3
2 )
(
1 − 1

2 log(ed)

)
, then δ1, δ2 ≤ 1.

For the case N ≤ m log(ed), working as before, we get that

E((κ̃(P))q)

Mq
≤ 1 + q

∫ ea2

1

1

tr
dt + q�2

∫ ∞

ea2

(log t)
m
2

tr
dt ≤ 1 + q

r − 1
+ δ2.

In the case N ≤ m log(ed), we have δ2 ≤
√

πmq
m−n+ 3

2

( m
eN

)m
2 1
(

1− q

m−n+ 3
2

)m
2 +1 . In particu-

lar, for this case, it easily follows that q ≤ (m − n + 3
2 )
(
1 − m

N

)
implies δ2 ≤ 1. �

Note that if m = n − 1, n ≥ 3, and d ≥ 2, then N ≥ m log(ed) and, in this
case, it is easy to check that (∗) still holds even if we reduce M by deleting its factor

of max
{

d6, n
d2

}
. So then, for the important case m = n − 1, our main theorems

immediately admit the following refined form:

Corollary 3.11 There are universal constants A, c > 0 such that if P is any random
polynomial system as in Theorem 3.9, but with m = n − 1, n ≥ 3, d := max j deg p j ,
d ≥ 2, and M := √

N (K c0C)2(n−1)(3d2 log(ed))2n−3√n instead, then we have:

Prob(κ̃(P) ≥ t M)

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3t− 1
2 if 1 ≤ t ≤ e2(n−1) log (ed)

3t− 1
2

(
log t

2(n−1) log (ed)

) n− 3
2

2
if e2(n−1) log (ed) ≤ t ≤ e2N

3t− 1
2

(
log t
2N

) 1
4
(

log t
2(n−1) log (ed)

) n− 3
2

2
if e2N ≤ t

,

and, for all q ∈
(
0, 1

2 − 1
4 log (ed)

]
, we have

(
E(κ̃(P)q)

) 1
q ≤ Me

1
q .

Furthermore, E(log κ̃(P)) ≤ 1 + log M. �

We are now ready to prove Corollary 1.5 from the introduction.

Proof of Corollary 1.5 From Corollary 3.11, Bound (2) follows immediately, and
Bound (1) is clearly true for the smaller domain of t . So let us now consider t =
xe2(n−1) log(ed) with x ≥ 1. Clearly,

(
log t

2(n−1) log(ed)

) n
2− 3

4 =
(
1 + log x

2(n−1) log(ed)

) n
2− 3

4
,

and thus
(

log t
2(n−1) log(ed)

) n
2− 3

4
< e

log x
4 log(ed) = x

1
4 log(ed) . Since x = t

e2(n−1) log(ed) , we thus

obtain 3t− 1
2

(
log t

2(n−1) log(ed)

) n− 3
2

2 ≤ 3t− 1
2

(
t

e2(n−1) log(ed)

) 1
4 log(ed)

. Renormalizing the pair

(M, t) (since the M from Corollary 3.11 is larger than the M from Corollary 1.5 by a
factor of A), we are done. �

123

Author's personal copy



Found Comput Math

3.5 On the Optimality of Condition Number Estimates

As mentioned in the introduction, to establish a lower bound, we need one more
assumption on the randomness. For the convenience of the reader, we recall our earlier
Euclidean small ball assumption.

(Euclidean Small Ball) There is a constant c̃0 > 0 such that for each j ∈
{1, . . . , m} and ε > 0 we have Prob

(‖C j‖2 ≤ ε
√

N j
) ≤ (c̃0ε)N j .

We will need an extension of Lemma 3.4: Lemma 3.12 below (see also [29, Thm.
1.5 & Cor. 8.6]). Toward this end, for any matrix T := (ti, j )1≤i, j≤m , write ‖T ‖H S for
the Hilbert–Schmidt norm of T and ‖T ‖op for the operator norm of T , i.e.,

‖T ‖H S :=
⎛

⎝
m∑

i, j=1

t2i, j

⎞

⎠

1
2

and ‖T ‖op := max
θ∈Sn−1

‖T θ‖2.

Lemma 3.12 Let ξ1, . . . , ξm be independent random variables satisfyingProb (ξi ≤ε)

≤ c0ε for all i ∈ {1, . . . , m} and ε > 0. Let ξ := (ξ1, . . . , ξm). Then, there
is a constant c > 0 such that for any m × m matrix T and ε > 0, we have

Prob (‖T ξ‖2 ≤ ε‖T ‖H S) ≤ (cc0ε)
c

‖T ‖2H S
‖T ‖2op . �

Our main lower bound for the condition number is then the following:

Lemma 3.13 Let P = (p1, . . . , pm) be a homogeneous n-variate polynomial system
with d j = deg p j for all j . Then, κ̃(P) ≥ ‖P‖W

‖P‖∞
√

m+1
. Moreover, if P := (p1, . . . , pm)

is a random polynomial system satisfying our subgaussian and Euclidean small ball
assumptions, with respective underlying constants K and c̃0, then we have

Prob

(

κ̃(P) ≤ ε

√
N

K md log(ed)

)

≤ (cc̃0ε)
c′ min

{

N
min j N j
max j N j

,md log(ed)

}

and

Prob

(

κ̃(P) ≤ ε

√
N

K m log(ed)

)

≤ (cc̃0ε)
c′m log(ed), if d j = d for all j ∈ {1, . . . , m},

where c, c′ > 0 are absolute constants. In particular, when d = d j for all j ∈
{1, . . . , m}, we have E(κ̃(P)) ≥ c

√
N

m log(ed)
.

Proof First note that Theorem 2.3 implies that for every x, y ∈ Sn−1, we have

‖d−1
j D(1) p j (x)y‖22 ≤ ‖p j‖2∞.

So we have ‖M−1D(1) P(x)(y)‖22 ≤∑m
j=1 ‖p j‖2∞ ≤ m‖P‖2∞. Now recall that

L2(x, y) := ‖M−1D(1) P(x)(y)‖22 + ‖p(x)‖22.
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So we get L2(P) := min
x⊥y

L2(x, y) ≤ (m + 1)‖P‖2∞, which in turn implies that

κ̃(P) ≥ ‖P‖W

L(P)
≥ ‖P‖W

‖P‖∞
√

m + 1
.

The proof for the case where d j = d for all j ∈ {1, . . . , m} is identical.
We now show that, under our Euclidean small ball Assumption, we have that

Prob
(
‖P‖W ≤ ε

√
N
)

≤ (cc̃0ε)
cN

min j N j
max j N j for every ε ∈ (0, 1). Indeed, recall that

‖p j‖W = ‖C j‖
	

N j
2

. Then, Prob
(‖p j‖W ≤ ε

√
N j
) ≤ (c̃0ε)

N j ≤ (c̃0ε)
N j0 for any

fixed ε ∈ (0, 1), where j0 ∈ {1, . . . , m} satisfies N j0 := min j N j . Let ξ j := ‖p j ‖W√
N j

for any j ∈ {1, . . . , m}. Set ξ := (ξ1, . . . , ξm) and T := diag(
√

N1, . . . ,
√

Nm). Note

that ‖P‖W = ‖T ξ‖2, ‖T ‖H S =
√∑m

j=1 N j = √
N , and ‖T ‖op := max1≤ j≤m

√
N j .

Then, Lemma 3.12 implies Prob
(
‖P‖W ≤ ε

√
N
)

≤ (cc̃0ε)
cN

min j N j
max j N j . Recall that

Lemma 3.2 implies that for every t ≥ 1, we have

Prob
(‖p‖∞ ≥ ct K

√
m log(ed)

) ≤ e−t2m log(ed).

So using our lower bound estimate for the condition number, we get

Prob

(
‖P‖W

‖P‖∞
≥ c′ε

√
N

t K
√

m log(ed)

)

≤ Prob

(

κ̃(P) ≥ cε
√

N

t K md log(ed)

)

,

Prob
(
{‖P‖W ≥ c′ε

√
N } ∩ {‖P‖∞ ≤ ct K

√
m log(ed)}

)

≤ Prob

(

κ̃(P) ≥ cε
√

N

t K md log(ed)

)

,

and

Prob
(
{‖P‖W ≥ c′ε

√
N } ∩ {‖P‖∞ ≤ ct K

√
m log(ed)}

)

≥ 1 − (cc̃0ε)
cN

min j N j
max j N j − e−t2m log(ed)

We may choose t :=
√
log 1

ε
, and by adjusting constants, we get our result. The case

where d j = d for all j ∈ {1, . . . , m} is similar. The bounds for the expectation follow
by integration. �

Observe that the dominant factor in the very last estimate of Lemma 3.13 is
√

N ,
which is the normalization coming from the Weyl–Bombieri norm of the polynomial
system. So it makes sense to seek the asymptotic behavior of κ̃(P)√

N
. When m = n − 1,

the upper bounds we get are exponential with respect to n, while the lower bounds are
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not. But when m = 2n − 3 and d = d j for all j ∈ {1, . . . , m}, we have the following
upper bound (by Theorem 3.10) and lower bound (by Theorem 3.13):

A1

nd log(ed)
≤ E(κ̃(P))√

N
≤ A2 log ed max{d8, n}√

n
,

where A1, A2 are constants depending on (K , c0). This suggests that our estimates
are closer to optimality when m is a constant multiple of n.

Remark 3.14 There are similarities between our probability tail estimates and the
older estimates in the linear case studied in [28]. In particular, our estimates in the
quadratic case d = 2, when m is a constant multiple of n, are quite similar to the
optimal result (for the linear case) appearing in [28]. �
Acknowledgements The Authors would like to thank the anonymous referees for detailed remarks that
greatly helped clarify our paper.
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