1	High Quality Draft Genomes of the Type Strains Geobacillus
2	thermocatenulatus DSM 730 ^T , G. uzenensis DSM 23175 ^T And
3	Parageobacillus galactosidasius DSM 18751 ^T
4 5 6	Winnie Thabisa Ramaloko ¹ , Nadine Koen ¹ , Shamara Polliack ¹ , HabibuAliyu ¹ , Pedro Humberto Lebre ¹ , Teresa Mohr ² , Florian Oswald ² , Michaela Zwick ² , Daniel Ray Zeigler ³ , Anke Neumann ^{2*} , Christoph Syldatk ² , Don Arthur Cowan ¹ , Pieter De Maayer ^{4*}
7	¹ Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa
8 9	² Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
10	³ Bacillus Genetic Stock Center, The Ohio State University, Columbus, Ohio, USA
11	⁴ School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
12	
13 14 15 16 17	*Corresponding authors: Anke Neumann. Mailing address: Institut für Bio- und Lebensmitteltechnik, Bereich II: Technischie Biologie. Karlsruhe Institut für Technologie (KIT), Kaiserstrasse 12, Karlsruhe 76131, Germany. Email: anke.neumann@kit.edu. Telephone: 49-721-608-42125. Pieter De Maayer. Mailing address: School of Molecular & Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa. Email: Pieter.demaayer@wits.ac.za. Telephone: 27-11-717-6322
18 19 20	
21	
22	
23	
24	
25	
26	
27	
28	

29 Abstract

The thermophilic 'Geobacilli' are important sources of thermostable enzymes and other biotechnologically relevant macromolecules. The present work reports the high quality draft genome sequences of previously unsequenced type strains of *Geobacillus uzenensis* (DSM 23175^T), *G. thermocatenulatus* (DSM 730^T) and *Parageobacillus galactosidasius* (DSM 18751^T). Phylogenomic analyses revealed that DSM 18751^T and DSM 23175^T represent later heterotypic synonyms of *P. toebii* and *G. subterraneus*, respectively, while DSM 730^T represents the type strain for the species *G. thermocatenulatus*. These genome sequences will contribute towards a deeper understanding of the ecological and biological diversity and the biotechnological exploitation of the Geobacilli.

39

40 Keywords

- 41 Geobacillus; Parageobacillus; Firmicutes; thermophile; phylogenomics; Illumina HiSeq
- 42 sequencing

43

44 Introduction

The 'geobacilli' are cosmopolitan thermophilic Firmicutes that are highly adaptable and consequently have been isolated from wide range of environments, including oil wells, deserts, hot springs, compost and soils [1]. The taxonomy of these bacteria has recently been re-examined through phylogenomics, resulting in the genus *Geobacillus* [2] being divided into two genera: *Geobacillus* and *Parageobacillus* [3]. These genera have been the subject of increasing interest because of their ability to produce a wide range of thermostable enzymes, such as amylases, proteases, lipases, hemicellulolytic enzymes and other industrially and biotechnologically relevant macromolecules [4-5]. The increasing availability and accessibility of complete genome sequences, together with the development of tools that allow for accurate functional annotation of genomic data, are enhancing the ways in which microorganisms can be studied and characterized [6]. Furthermore, these genome sequences provide a resource for tapping into the biotechnological potential of microorganisms. Elucidating the genome sequences of type strains is especially important for resolving the taxonomic status of microorganisms [7].

Currently, the genome sequences of sixty-eight Geobacillus and sixteen Parageobacillus strains are publically available. These include the genome sequences of eleven and five validly described type strains of Geobacillus and Parageobacillus, respectively. The genomes of the G. uzenensis DSM 23175^{T} , G. thermocatenulatus DSM 730^{T} [2] and P. galactosidasius DSM 18751^T [8] were paired-end sequenced using the Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA). The reads were assembled using SPAdes [9], and the resulting contigs were further assembled using Multi-Draft based scaffolder (MeDusa3) [10] and Mauve 2.3.1 [11]. Finally, the genomes were annotated using RAST [12] and EggNOG 4.5.1 [13]. The genome sequences were assembled to high quality draft status (between two and ten contigs) and range in size between 3.56 and 3.79 Mb, coding for between 3,783 and 4,067 proteins (Table 1). A substantially lower G+C content was observed for the Parageobacillus genome (41.6%) compared to the Geobacillus spp. (51.8 and 52.2% respectively), which represents a distinguishing feature between the two genera [3]. Classification of proteins into their EggNOG functional categories showed similar proportions of proteins in the different functional groups among the three strains (Figure 1), although a larger proportion of proteins involved in metabolism are present in the two Geobacillus isolates (Figure 1A). In particular, there are a larger proportion of proteins involved in amino acid, carbohydrate and lipid metabolism in the Geobacillus strains (Figure 1B), suggesting that greater metabolic versatility exists in the Geobacillus strains compared to P. galactosidasius DSM 18751^T. By contrast, an elevated number of proteins (334 proteins; 8.21% of total proteins) involved in DNA replication, recombination and repair (Figure 1B) in P. galactosidasius DSM 18751^T compared to the other strains (246 and 244 proteins for DSM 730^T and DSM 23175^T, respectively) may indicate a distinct mobilome exists in the former strain.

Maximum likelihood phylogenies were constructed on the basis of the core proteins conserved among 11 *Geobacillus* and 7 *Parageobacillus* genomes, including the 3 genomes sequenced in this study. A total of 1,355 conserved proteins were identified using Orthofinder [14], aligned using T-coffee [15], concatenated and trimmed using GBlocks [16] before the resulting alignment (296,082 amino acids in length) was used to construct a core genome maximum likelihood phylogeny using PhyML-SMS with SH-aLRT branch support method [17]. The core protein phylogeny showed that *G. thermocatenulatus* DSM 730^T clusters with three strains namely, *G. thermocatenulatus* GS-1, *G. thermocatenulatus* BCO2 and *G. thermocatenulatus* T6, in a clade previously shown to represent a distinct *Geobacillus*

- 92 genomospecies [3]. G. uzenensis DSM 23175^{T} clusters with the type strain of G. subterraneus
- 93 (DSM 13552^T). P. galactosidasius DSM 18751^T also clusters with the type strain of P. toebii
- 94 (DSM 14590^{T}) and two other *P. toebii* strains.
- 95 Several phylogenomic methods, including digital DNA-DNA Hybridization (dDDH) and
- 96 Average Nucleotide Identity (ANI) calculations have been developed and have been shown
- 97 to accurately distinguish between strains at the species level [18-19]. Pairwise BLAST-based
- 98 Average Nucleotide Identity values (ANIb) were obtained using JSpecies [20], and dDDH
- 99 values were calculated with the Genome-to-Genome Distance Calculator (GGDC 2.1), using
- 100 formula 2 [18]. G. thermocatenulatus DSM 730^{T} showed the highest similarity with G.
- 101 thermocatenulatus T6 with an ANI value of 99.7% and dDDH of 93.6%, which far exceeds
- the species cut-off thresholds of 96% and 70% for ANI and dDDH, respectively. Comparison
- 103 of the 16S rRNA gene sequences indicated that the gene from G. uzenensis DSM 23175^T
- showed 99.9% sequence identity with that of G. subterraneus DSM 13552^T, while the two
- genomes shared 99.6% ANI and 93.1% dDHH values. Furthermore, the 16S rRNA gene of P.
- 106 galactosidasius DSM 18751^T shared 99.3% sequence identity with that of P. toebii DSM
- 107 14590^T. Phylogenomic analyses indicated that the two strains had ANI and dDDH values of
- 108 98.2% and 87.9%, respectively, both of which exceed the threshold values for species
- 109 circumscription.
- 110 Based on these phylogenomic analyses, we can conclude that P. galactosidasius DSM
- 111 18751^T and G. uzenensis DSM 23175^T most likely represent later heterotypic synonyms of P.
- 112 toebii and G. subterraneus, respectively, rather than type strains of distinct species as
- 113 previously described. Conversely, we can conclusively characterize G. thermocatenulatus
- 114 DSM 730^{T} as the type strain for the species G. thermocatenulatus. Regardless of this, these
- 115 genome sequences will be of addative value towards the exploration of the diversity among
- 116 the geobacilli and to further explore the biotechnological potential of these Geobacillus and
- 117 Parageobacillus species.

118

Nucleotide sequence accession numbers

- 120 The whole genome sequences have been deposited at DDBJ/EMBL/Genbank under the
- accession numbers NEWK00000000 (G. thermocatenulatus DSM 730^T), NEWL00000000
- 122 (G. uzenensis DSM 13551^{T}) and NDYL00000000 (P. galactosidasius DSM 18571^{T}). The

- 123 versions described in this paper are the first versions, NEWK01000000, NEWL01000000 and
- 124 NDYL01000000, respectively.

125

26 Conflict of Interest

- 127 The authors declare that the research was conducted in the absence of any commercial or
- 128 financial relationships that could be construed as a potential conflict of interest.

129

130 Acknowledgments

- 131 WR, NK and SP were supported by the National Research Foundation (NRF) of South
- 132 Africa. HA and PL were supported by postdoctoral fellowships from the University of
- 133 Pretoria, South Africa. We acknowledge support by Deutsche Forschungsgemeinschaft and
- 134 Open Access Publishing Fund of Karlsruhe Institute of Technology.

135

136 References

- 1. Zeigler DR. The *Geobacillus* paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiol. 2014; 160: 1-11.
- 2. Nazina T, Tourova TT, Poltaraus A, Novikova E, Grigoryan A, Ivanova A, et al.
- Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus
- subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum
- reservoirs and transfer of *Bacillus stearothermophilus*, *Bacillus thermocatenulatus*,
- Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to
- Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus,
- 145 G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G.
- thermodenitrificans. Int J Syst Evol Microbiol. 2001; 51: 433-446.
- 3. Aliyu H, Lebre PH, Blom J, Cowan DA, De Maayer P. Phylogenomic re-assessment
- of the thermophilic genus *Geobacillus*. Syst Appl Microbiol. 2016; 39: 527-533.
- 4. Hussein AH, Lisowska BK, Leak DJ. The genus Geobacillus and their
- biotechnological potential. Adv Appl Microbiol. 2015; 92: 1-48.

- 5. De Maayer P, Brumm PJ, Mead DA, Cowan DA. Comparative analysis of the
- 152 Geobacillus hemicellulose utilization locus reveals a highly variable target for
- improved hemicellulolysis. BMC Genomics. 2014; 15: 836.
- 6. Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev
- 155 Microbiol. 2015; 13: 787-794.
- 7. Gao B, Gupta RS. Microbial systematics in the post-genomics era. Antonie Van
- 157 Leeuwenhoek. 2012; 101: 45–54.
- 8. Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B. Geobacillus galactosidasius
- sp. nov., a new thermophilic galactosidase-producing bacterium isolated from
- 160 compost. Syst Appl Microbiol. 2011; 34: 419-423.
- 9. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
- SPAdes: a new genome assembly algorithm and its applications to single-cell
- sequencing. J Comp Biol. 2012; 19: 455-477.
- 10. Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F, Lió P, et al. MeDuSa: a multi-
- draft based scaffolder. Bioinformatics 31 (2015) 2443-2451.
- 11. Darling E, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with
- gene gain, loss and rearrangement. PloS One. 2010; 5: e11147.
- 12. Overbeek R., Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and
- the rapid annotation of microbial genomes using subsystems technology (RAST).
- 170 Nucleic Acid Res. 2014; 42: 206-214.
- 13. Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen JJ, von Mering C, Bork P. Fast
- 172 genome-wide functional annotation through orthology assignment by eggNOG-
- mapper. Mol Biol Evol. 2017; [Epub ahead of print].
- 174 14. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome
- 175 comparisons dramatically improves orthogroup inference accuracy. Genome Biol.
- 176 2015; 16: 157.
- 15. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang J, et al. T-
- 178 Coffee: a web server for the multiple sequence alignment of protein and RNA
- sequences using structural information and homology extension. Nucleic Acids Res.
- 180 2011; 39: W13-W17.
- 181 16. Castresana J. Selection of conserved blocks from multiple alignments for their use in
- phylogenetic analysis. Mol Biol Evol. 2000; 17: 540-552.
- 17. Lefort V, Longueville JE, Gascuel O. SMS: Smart Model Selection in PhyML. Mol
- 184 Biol Evol. 2017; 34: 2422-2424.

- 18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013; 14: 60.
- 19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition, Proc Natl Acad Sci USA. 2009; 106: 19126-19131.
- 20. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2015; 32: 929-931.

193

194 Table

195 Table 1: Genome features of the sequenced Geobacillus/Parageobacillus species

Species	Strain	Genome size (Mb)	# Contigs	G+C (%)	# encoded proteins	# RNAs	Isolation source	Refer- ence
G. thermocatenulatus	DSM 730 ^T 1	3.56	2	51.8	3,783	109	Hot gas well (Russia)	[2]
G. uzenensis	DSM 23175 ^T ¹	3.36	10	52.2	3,589	115	Oil field (Kazakhstan)	[2]
P. galactosidasius	DSM 18751 ^{T 2}	3.79	6	41.6	4,067	127	Compost (Italy)	[8]

196 197

199

200 Figure legends

201 Fig. 1. EggNOG functional classification of proteins encoded on the three sequenced

- 202 **genomes.** (A) Proportions (%) of proteins in each of the EggNOG super-functional categories
- 203 Information processing and storage (orange), Cellular processing and signalling (yellow),
- 204 Metabolism (purple) and Poorly characterized (grey). (B) Relative proportions of proteins
- 205 involved in Energy metabolism (C), Amino acid transport and metabolism (E), Carbohydrate
- 206 transport and metabolism (G), Lipid metabolism (I) and DNA replication, recombination and
- 207 repair (L) for G. thermocatenulatus DSM 730^T (blue bars), G. uzenensis DSM 23175^T
- 208 (maroon bars) and *P. galatctosidasius* DSM 18751^T (green bars).

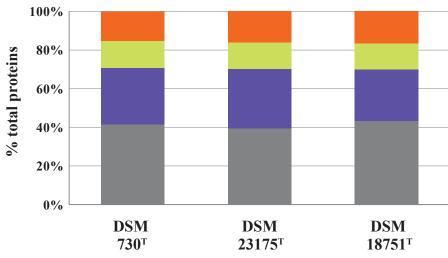
209

210 Fig. 2. Core genome phylogeny of the three sequenced strains. A Maximum Likelihood

211 phylogeny was constructed on the basis of 1,355 core proteins of G. uzenensis DSM 23175^T,

¹ Obtained from the *Bacillus* Genetic Stock Centre (BGSC) at Ohio State University, USA.

^{198 &}lt;sup>2</sup> Obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Leibniz, Braunschweig, Germany.


212 G. thermocatenulatus DSM 730^T, G. uzenensis DSM 23175^T and P. galatctosidasius DSM

213 18751^T as well as 9 and 6 additional *Geobacillus* and *Parageobacillus* type strains,

214 respectively. *Anoxybacillus flavithermus* DSM 2641^T was used as outgroup to root the tree.

215

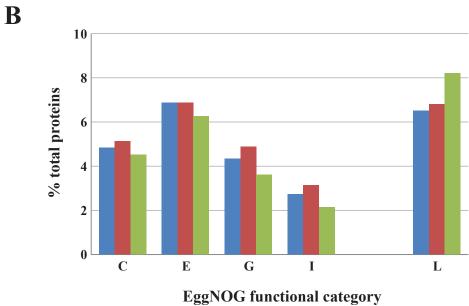


Fig. 1. EggNOG functional classification of proteins encoded on the three sequenced genomes

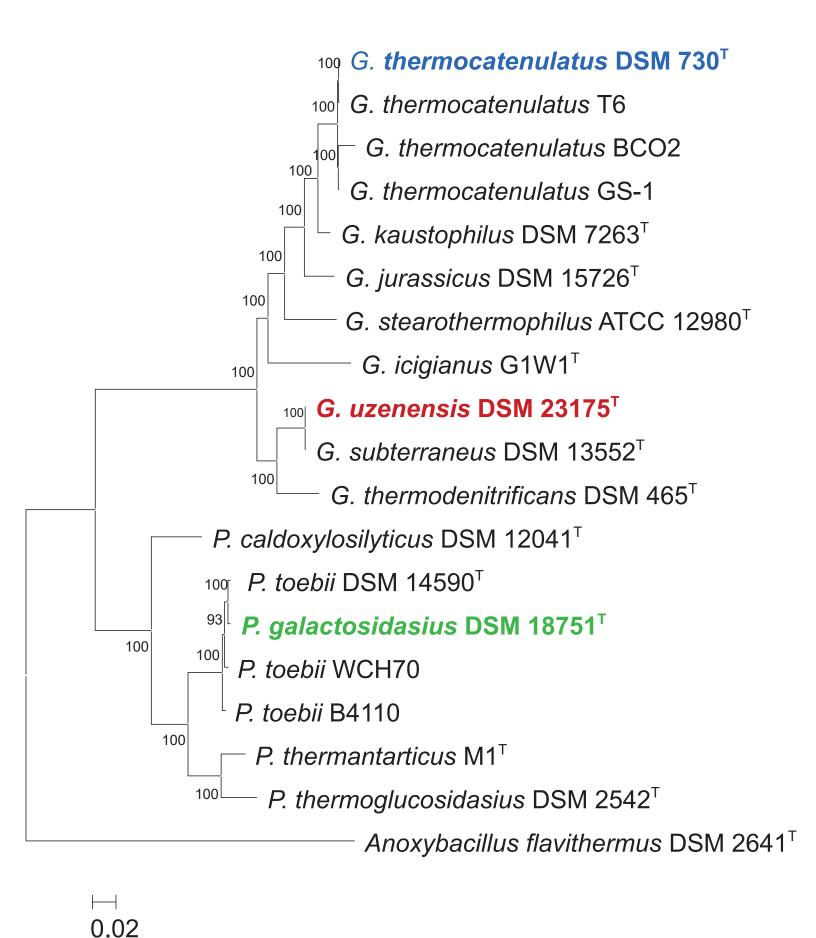


Fig. 2. Core genome phylogeny of the three sequenced strains.