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Distributed Model Predictive Control for Ink-Jet 3D Printing

Yijie Guo!, Joost Peters?, Tom Oomen? and Sandipan Mishra!

Abstract— This paper develops a closed-loop approach for
ink-jet 3D printing. The control design is based on a distributed
model predictive control scheme, which can handle constraints
(such as droplet volume) as well as the large-scale nature
of the problem. The high resolution of ink-jet 3D printing
make centralized methods extremely time-consuming, thus a
distributed implementation of the controller is developed. First
a graph-based height evolution model that can capture the
liquid flow dynamics is proposed. Then, a scalable closed-
loop control algorithm is designed based on the model using
Distributed MPC, that reduces computation time significantly.
The performance and efficiency of the algorithm are shown to
outperform open-loop printing and closed-loop printing with
existing Centralized MPC methods through simulation results.

I. INTRODUCTION

Additive Manufacturing (AM) is a class of manufacturing
processes in which material is added layer-upon-layer to
construct 3D objects. Recently, AM has seen a significant
increase in popularity both in commercial applications and
research [1]. AM processes consist of many different tech-
nologies. In this paper, ink-jet 3D printing is considered,
which has been widely applied in commercial printers for
its simplicity and high resolution.

Ink-jet 3D printers build 3D objects by jetting photopoly-
mer layer-upon-layer with UV (ultra-violet) light curing in
between. Currently, this process is typically performed in
an open-loop manner, in which the number of layers to
be deposited and the droplet patterns for each layer are
determined in advance. This open-loop approach is vulnera-
ble to uncertainties in droplet sizes, shapes, and locations
since it does not use any feedback of the height profile
during printing. This can result in undesired part geometry
where the printed shape poorly matches the desired geometry
[2]. Meanwhile, high resolution of ink-jet 3D printing (x-y
resolution is 0.125mm, for the particular printer used in this
study) makes controlling this process a large scale problem.
To account for uncertainties in the printing process and the
large scale of the control problem, a closed-loop control
algorithm that is scalable should be proposed.

Standard ink-jet 2D printing has been well studied in
terms of voltage waveform design for generating consistent
droplets [3], [4] and medium deformation compensation [5].
But for ink-jet 3D printing where height is concerned, these
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techniques are insufficient. Various approaches have been
proposed for the control of ink-jet 3D printing or similar pro-
cesses. A spatial iterative learning control algorithm is pro-
posed and implemented in [6], [7] for electrohydrodynamic
jet printing. In [8], iterative learning control and a feedback
controller are combined to regulate the jetting frequency, thus
to improve printing accuracy. In [9] a Greedy Geometric
Feedback algorithm that iteratively searches for locations
to deposit droplets based on the geometry tracking error
is proposed. Although this approach addresses the whole-
part geometry, it does not account for droplets’ influence
on neighbors. Furthermore, the greedy search algorithm is
typically poorly scalable. In [10], [2], a nonlinear empirical
model that considers material flow and a predictive control
algorithm are proposed. This control algorithm uses brute-
force search to minimize a cost function, and scalability of
the control problem is not considered. In [11], a simplified
linear height evolution model is proposed based on the 2D
model in [6]. A predictive control algorithm is designed
that aims to solve a quadratic program each layer, which
is more efficient than brute-force search. However, it still
suffers from poor scalability of the control problem. Thus,
the aim of this research is to address both uncertainties in the
printing process and the large scale of the control problem
by proposing a control-oriented layer height evolution model
and designing a scalable closed-loop control algorithm.

The main contribution of this paper is the development of
a control-oriented linear model that accounts for material
flow during the printing process, and a scalable closed-
loop control algorithm based on distributed model predictive
control (MPC) techniques [12], that reduces the computation
time for control significantly. We show that the combination
of advanced modeling and Distributed MPC strategies is
valuable, and potentially enables closed-loop high resolution
ink-jet 3D printing. The paper is organized as follows. First,
the general printing control problem is described in Sec.
II. Next, the proposed model is presented in Sec.IIl. Then
the Distributed MPC based control algorithm is proposed in
Sec. IV. Finally, in Sec. V simulation results are presented
to compare Distributed MPC with open-loop printing and
closed-loop printing using Centralized MPC.

II. PROBLEM DESCRIPTION

The general formulation of the printing control problem is
presented in this section. The printing region is discretized
into a n, X ny size grid based on the printing resolution, the
number of points in the grid is n = n; - n,. Fig. 1 illustrates
the closed-loop layer-to-layer printing process for a 3 x 3 grid
example, in which Hy, Hy, and Uy € R™*"v are matrices.
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To do matrix multiplication, their vector forms are used in
modeling and control. Thus, the final and current layer height
profiles are denoted by hg € R™ and h; € R”, where L
indicates the layer number. At each layer an input sequence
(droplet pattern) ur, € [Vinin, Vinaz)”™ is applied, which
indicates the droplet volume at each location, where Vi,iy,
and V4, are the minimum and maximum droplet volume
that can be controlled. The control objective is to generate
a droplet pattern ur, € [Vinin, Vinaz)”, that minimizes the
geometric tracking error ||e|| = ||hr —r||, based on feedback
of the height profile. In Sec. IV, this control problem is

described in more mathematical details.
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Fig. 1. A schematic block diagram of the closed-loop layer-to-layer printing
process.

To accurately control the geometric shape of the printed
part, a model that can capture the layer-to-layer height
evolution is required. Thus, in the next section, a graph-based
layer height evolution model is presented.

III. MODEL DESCRIPTION

Fig. 2. Printing process for one layer. Nozzle moves along a predetermined
path and deposits droplets sequentially.

ol XX
N X

Fig. 3. The left shows node i’s height change at time step k is caused
by material flow between neighbors and material deposition at time step k.
The right is an example of a directed graph for a 3 x 3 grid. Incidence
matrix D describes the relationship between links and nodes. For example,
D(1,1) = —1 because link 1 starts at node 1, according to Eq. (2).

In this section, the layer height evolution model in Fig.
1 is proposed, which is a graph-based model that captures
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the flow of the deposited material. This model is inspired
by lumped heat transfer models, similar to those used in
building temperature control [13]. The key idea is that
material flows from higher to lower heights proportional to
the height difference, like heat transfers from higher to lower
temperatures proportional to the temperature difference.

In the printing process, droplets are sequentially deposited
along a predetermined printing path, which usually is a raster
path [14], as shown in Fig. 2. Each time step, the nozzle
moves to a certain location according to the printing path.
As shown in Fig. 3, the height change at node ¢ at time step
k is caused by material flow and material deposition, it is
described by:

Ahjp =— Z Kij(hig — hjk) + Bipuk,
JEN;

(D

where A is the set of neighbors of node i. The first
term — > K ;j(hjr — hj) captures the effect that the
depositeziejl\i/EJuid material will flow from higher location to
lower location, K;; > 0 represents the flowability parameter
that describes how much the liquid will flow based on the
height difference with neighbouring locations. The second
term B; puy captures the material deposition, B;j, is the
height increase at node 7 caused by unit size droplet at time
step k as shown in Fig. 4, uy, is the droplet volume at time
step k.

B; Time Step k Time Step k + 1

——
J outside of droplet=

k=0

ik = 0

Jindroplet

Fig. 4. B, i is the height increase at node ¢ caused by unit size droplet
at time step k, all nodes’ height increase caused by this unit size droplet
constructs a n X 1 vector By. If node j is in the droplet, B; ;. > 0, if node
j is outside of the droplet, Bj = 0. Note that By, is updated with time
step, as the droplet location will change.

The incidence matrix D captures the nodes connectivity
(through links) in a directed graph, as shown in Fig. 3 on
the right. The elements of D are defined by

1, if link ¢ ends at node p
D(p,q) = { —1, if link g starts at node p 2)
0, otherwise.

This allows us to combine (1), and (2) into (3), which is
the whole grid height change model at time step k:

hit1 = hy — DK DT hy, + Byuy, 3

where hj;, € R™ is a column vector that defines the height
profile of the layer when the nozzle is at the printing path
time step k, D € R™*!, with [ the number of links, is the
incidence matrix. Diagonal positive definite matrix K € R!*!
contains the flowability parameters. Here, K, is updated with
time step k to set the links that are influenced by the flow
dynamics. The height increase of the full grid caused by a



unit size droplet at time step k, constructs a n X 1 vector By,
as shown in Fig. 4.

A. Layer Evolution Model

The model described above shows the height evolution
from time step to time step. We now present a layer-to-layer
model derived from this model through lifting. First, the time
step height evolution model (3) is rewritten as:

= Aphi + Brug, €]

N1

where Ay = (I — DK}, DT). At the final time step n of
printing one layer, the height profile can be calculated as:
T
(Hz:n A;) By Uy
1 (IT;—, A:)B U
ho = (I Ai)ha + : NG
=n Aan,1 Un—1
B, Unp

Assume we are printing the (L + 1)*" layer, the first time
step height profile h; is actually the final height profile Ay,
of the L*" layer printing, the final time step height profile A,
is actually the final height profile hz 1 of the (L-+1)!" layer
printing. From now on, hj only represents the layer height
profile, the time step height profile notation hy is disused.

Then, we can have our layer-to-layer height evolution
model (with L as the layer number):

hi1 = Ahg + Bug,
where A € R™*™ is H;l:n A;, BeR™™ s

(6)

[(H?:n Al)Bl (H?:n Az)BQ Aanfl Bn] )
the L'" layer control input uy, is
T
[ul U2 Unp—1 un] 3

the k*" element is the k*" time step’s control input when
printing this layer. If the nozzle moves along a certain path,
then A, B are fixed for each layer.

Thus, we now have a layer-to-layer model that accounts
for material flow during the printing process. With this lifted
description of the linear time-invariant layer-to-layer height
evolution model, an MPC design strategy can be developed.

I'V. DISTRIBUTED MODEL PREDICTIVE CONTROL

In this section, the controller in Fig. 1 is designed. A
Distributed MPC algorithm is developed that provides the
ability to solve the large control problem efficiently. First,
the standard Centralized MPC problem is described. Then,
this centralized control problem is partitioned according to
the partitioning of the printing region. Finally, the distributed
algorithm using dual decomposition is presented. In Sec. V
it will be shown that this method reduces the computation
time for layer-to-layer control significantly.

A. Centralized MPC

The control problem introduced in Sec. II is cast into
an MPC framework that solves an optimization problem
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over a finite receding horizon of N layers each layer. The
optimization problem can be defined as:

min J(hL, Ur) @)
Ur
st. UL <e,

where Uy, = [uaL “%71|L]T7 u;)y, indicates the i'" layer

control input in the receding horizon. The cost function is
designed to penalize tracking error:

J(hL,UL) =
+ Z

where h;|7, indicates the it" layer height profile in the reced-
ing horizon. P and @ are (semi)positive-definite matrices, )
is the state cost matrix and P is the terminal cost matrix that
can be designed to guarantee MPC stability. In (7), £ and ¢
are a matrix and column vector that are defined by:

(hN|L — ) P(hnie — Taiz)

®)
(hijp, — riip) T Q(hayr, — mayn)]

Ey 0 bo
E=|: : c= o )
0 En-1 bn-1
where E; = [—] I]T and b, = [—uiow uhigh}T that

defines the upper and lower constraints on the input. The
optimization is performed each layer, and ugl ;, is applied.

Centralized MPC methods with quadratic convex problems
are well developed [15][16]. However, for increasing size of
the optimization problem (prediction horizon N, grid size n)
computation time of standard MPC can become tremendous.
Dense (Centralized) formulations (where the cost function
is described solely as function of the (future) inputs), scale
with O(N3n3) using interior-point convex solvers [17]. This
paper proposes to use a distributed approach to the MPC
control problem to reduce computation time.

B. PFartitioning of the optimization problem

L]
L

J
e e

Fig. 5. To decompose the optimization problem, the whole printing region
is separated into [ sub-regions, here is an example of 4 sub-regions.

First, the whole printing region is separated into [ sub-
regions, as shown in Fig. 5. The layer height evolution model
(6) introduced in section III is then partitioned based on the
region separation:

1

h}1+1 Al Ay hi Bi1 Bu ur,
: =1 : 2 M : :
Ry Ly An Au| |, B By [ul
(10)



For the partitioned system (10), the cost function becomes

N-1

J(he,UL) = 22:1 (Zi:o {(hgw - T{\L)TQj(haL - Tf|L)}
Jr(hgv‘L - TgV|L)TPj(h3V\L - T?\/|L> :

(1)
A partitioned quadratic program is constructed for the MPC
problem:

l
. T
min 0 ;L4
y Z xj Hjz;
j=1
l
subject to ZFjpxp =z, je{l,---,1l}
p=1
Tjzj < qj, 3 €{L,--- 1},
where the optimization variable consists of both the predicted
tracking error and future inputs:

(12)

hé\L _Té\L
X1
T2 —
T = ) , T = Jﬂ%_NL Vj€{1,"'7l}.
UL

T

U’?\T—I\L

(13)

The Hessian H; consists of the tracking penalty matrices. It
is a diagonal matrix that is described by:

(@ 0 0 00
0 0 0
Hi=1 0 0 @ o0 vied{l,- 1} (14)
0 0 0 P|:
L 0 (U
The equality constraint Z;Zl Fjpxy, = z; for j € {1,--- |1}

is the separated form of F'z = z, which captures the layer
height evolution dynamics, F}, and z; can be constructed
by reformulation of (10) with the new variable x in (13).

The inequality constraint T;x; < g; captures the upper and
lower bounds on the input (9), T} and gq; are described by:

Ti=[0|& ], ¢g=c Yje{l,---,1}. (15

This formulation remains separable into [ building blocks
such that the problem is naturally decomposable. For a large
optimization problem that is coupled, dual decomposition
allows for separation of the minimization step of the central
problem into subproblems that can be solved in parallel.
This is the key feature of dual decomposition that allows
for distributed optimization. The Distributed MPC algorithm
using dual decomposition is presented in the next section.

C. Distributed MPC

This section provides the algorithm for Distributed MPC
for the height tracking problem. The algorithm uses dual
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decomposition to solve the decomposable optimization prob-
lem of section IV B. The Lagrangian dual problem of the
separable optimization problem (12) is given by [12]:

-

l l

T T
xj Hjxj+ Aj (

max Z Z [Fjpap
j=1 p=1
subject to Tjx; < ¢q;, j € {1,---,1}
(16)
This optimization problem can be rewritten to:
l l
. T T T
max Z [H;in x; Hjxj + x; Z [FpiAp] — A; zj]
Jj=1 p=1
subject to  Tjx; < g;
Lj

a7
It is observed that the resulting minimization of L; is
again a Quadratic Program, which can be solved for each
subproblem. When the maximum in (17) is obtained, the
constraints are satisfied by definition of Lagrangian duality.
It is observed that the minimization step is completely
decentralized, for given ‘prices’ A\. However, finding these
optimal prices requires coordination which is done by a
‘price update’ through gradient ascent [12]. The price update
during the iterations of dual decomposition is described by:

A=\ +4°Vg* (N), (18)

where Vg®(\) = Fz® —z, s is iteration number. To converge
to the optimal price A*, it is necessary to determine the
appropriate step size sequence y°. One traditional approach
proposed for gradient descent is the approach introduced in
1988 by Barzilai and Borwein [18]. For gradient ascent, this
method computates the gradient step size as:

_(vgs _ vgsfl)T(/\s _ )\sfl)
(Vg* = Vgo=1)T(Vg® — Vgo!)

which is an approximation of the Newtons method, where
the inverse of the Hessian is used [18]. By approximating,
it avoids the expensive computation of the Hessian, but still
achieves good convergence. In [19] it is observed that the
rate of convergence is R-superlinear with an order of v/2 — ¢
with € > 0 any small number.

With the defined local minimization in (17) and price update
method in (18) and (19), an algorithm for Distributed MPC
can be constructed. The algorithm is summarized by the
pseudo code presented in Algorithm 1. In this algorithm the
following steps are recognized:

« In lines 1-4 the input and initialization of the algorithm
is defined. The input includes the current height profile
hr,, reference profile rp,, (if applicable) the optimal price
of the previous layer A7* | , the MPC problem matrices
(H,F,T,q), the number of partitions ! and the price
convergence criterion A.

In lines 5-7 the local minimization is performed based
on the current price \°.

In lines 8-10 the price update is performed by a gradient
ascent step. To this end the Barzilai-Borwein method is

S
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used to determine the step size.

e In lines 11-16 the stopping condition is posed, based
on convergence of the price \. If the algorithm is con-
verged, the optimal input for the next layer is extracted.

Algorithm 1 Distributed MPC algorithm
1: Input: hy, v, \;* 1, 1 (H, F,T,q), Smazs A
2: Output: uy,
3 Initialize: (0, A!®) = A%t |
4: for s=1,2,--- , Synaz do

5: for j=1,2,--- .1l do
6: Solve xj-“ =
!
argminmjmerjxj +x Z [Fpihs] — ATz
p=1
subject to  Tjx; < g
end for
Compute Vg°(\) = Fz® — 2
o (Vg = Vg )T - )
(Vg* = Vgo=)T(Vg® = Vgo!)
10: Updati AL = \$ + 45V g5 (N)
. se (IXT1-N"])
11: if Tl < A, then
12: L=3S
13: Extract u;, from x5+
14: Break;
15: end if
16: end for

V. SIMULATION RESULTS

This section presents simulation results of open-loop (OL),
Centralized MPC (CMPC) and Distributed MPC (DMPC)
printing. These examples indicate the benefit of closing the
loop, in presence of uncertainty. Results are presented that
show the comparison of performance, in terms of layer
height tracking and computation time for OL, CMPC and
DMPC printing. In these comparisons, different grid sizes
and prediction horizons are considered.

It is observed that during the printing process the droplet
shape and volume vary based on operating environmen-
tal conditions, which introduces uncertainty to the droplet
model. To capture this uncertainty, we constructed a droplet
samples set that contains 167 droplet shapes, measured by
a LJ-G030 2D height sensor on an experimental setup.
In the simulation of the printing process, for each droplet
deposition, first a droplet sample is randomly selected from
the samples set, then the corresponding By is constructed
based on this droplet shape. In the prediction of the control
algorithm, the average shape of the samples set is used as
the droplet shape.

First, open-loop is compared with CMPC and DMPC in
terms of layer height tracking. Figure 6 shows results for
open-loop printing and closed-loop MPC printing. For this
example, the grid size is 60 x 60, and the prediction horizon
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of the MPC algorithm N = 5. The desired layer height hg =
L -0.03mm, where L = 5 is the layer number.

Reference geometry r

X [mm]

X [mm]

Centralized MPC printing

X [mm]

y [mm]

Fig. 6. Comparison of open-loop and closed-loop MPC printing of a 5
layer T-shaped geometry. It is observed that tracking of the height profile
is improved for closed-loop printing. Furthermore it can be concluded that
the Distributed MPC performs similar to Centralized MPC.

Table I summarizes the results in terms of layer height
tracking for different grid sizes and prediction horizons. In
bold the example of Figure 6 is presented.

TABLE I
2-NORM OF THE LAYER HEIGHT TRACKING [|e||2 FOR OPEN-LOOP,
CENTRALIZED MPC AND DISTRIBUTED MPC

OL CMPC DMPC

o ilels | Tl [Telle [ Telle [ Telle [Tl [ Tk

(N=1) | (N=3) | (N=5) | (N=1) | (N=3) | (N=5)
40 | 123 | 1.09 1.05 1.04 1.07 1.05 1.05
50 | 1.40 1.25 1.20 1.19 1.25 1.20 1.19
60 | 1.57 | 143 1.40 1.39 1.43 1.39 1.39
80 | 1.95 | 1.80 L.75 L.75 1.79 1.75 1.75
100 | 2.38 | 2.18 2.12 2.13 2.18 2.11 2.13

It is observed that CMPC and DMPC improve the layer
height tracking compared to open-loop printing. From Table
I it is concluded that the DMPC controller provides similar
reference tracking as the CMPC controller, since deviations
in terms of layer height tracking error are small for all
simulations conducted. This implies that the solution to the
distributed problem is close to the centralized solution. The



drawback of the CMPC method is as mentioned before:
the computational burden. Therefore, the computation time
for the Centralized and Distributed MPC algorithms are
compared for different grid sizes and prediction horizons.
Figure 7 shows the comparison of the computation time for
the two methods.

: Computation time CMPC i Computation time DMPC

70

— ‘ O N=t1 = X N=1
ﬂ.em[ & N-3 -, + N-=3
N =5 N=5|
B ol L8 N=E ool ® Nes
= 400 c
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© 3007 o g
2 .l $a
E 200 qu +
] \ S
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40 80 80 100 40 60 80 100

Grid dimension n Grid dimension n

Fig. 7. Computation time comparison for Centralized MPC and Distributed
MPC. It can be observed that for Distributed MPC, the computation time
is significantly reduced.

The results of the computation time comparison are sum-
marized in Table II. For comparison, the typical time of print-
ing a 100 x 100 grid size square for one layer is 5 minutes.
It is observed that a significant reduction in computation
time is achieved by introducing the distributed algorithm.
The distributed approach achieves lower computation times
and better scaling in terms of grid size; it is observed that
computation time only scales linear with the grid size in case
of DMPC, which indicates the desired scalability.

TABLE II
AVERAGE COMPUTATION TIME FOR ONE LAYER FOR CENTRALIZED
MPC AND DISTRIBUTED MPC.

CMPC in [s] DMPC in [s]
n | N=1 | N=3 | N=5 | N=I | N=3 | N=5
40 | 043 | 12.89 | 29.13 | 0.72 | 248 | 620
50 | 073 | 2068 | 51.88 | 1.15 | 4.14 | 9.36
60 | 1.20 | 36.68 | 82.16 | 1.61 | 5.58 | 14.81
80 | 3.89 | 9524 | 23031 | 2.91 | 10.84 | 24.02
100 | 11.58 | 249.63 | 616.57 | 430 | 16.78 | 35.29

VI. CONCLUSION

The results in this paper provide methods for closed-
loop control of ink-jet 3D printing, enabling high-resolution
3D printing of complex geometries. More specifically, in
this paper, a closed-loop control algorithm using Distributed
MPC is proposed based on a graph-based layer height
evolution model. The performance and efficiency of the
algorithm is compared with open-loop printing and closed-
loop printing using Centralized MPC, through simulation
results. It is shown that the proposed algorithm has similar
tracking performance as Centralized MPC, and achieves
better performance than open-loop printing by addressing
uncertainties in the printing process through feedback. In
terms of the efficiency, the proposed algorithm reduces the
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calculation time significantly compared to Centralized MPC.
The computation time only scales linearly with grid size,
indicating the good scalability of the algorithm. Future work
will be the experimental validation on a 3D printer setup.
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