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Abstract— This paper develops a closed-loop approach for
ink-jet 3D printing. The control design is based on a distributed
model predictive control scheme, which can handle constraints
(such as droplet volume) as well as the large-scale nature
of the problem. The high resolution of ink-jet 3D printing
make centralized methods extremely time-consuming, thus a
distributed implementation of the controller is developed. First
a graph-based height evolution model that can capture the
liquid flow dynamics is proposed. Then, a scalable closed-
loop control algorithm is designed based on the model using
Distributed MPC, that reduces computation time significantly.
The performance and efficiency of the algorithm are shown to
outperform open-loop printing and closed-loop printing with
existing Centralized MPC methods through simulation results.

I. INTRODUCTION

Additive Manufacturing (AM) is a class of manufacturing

processes in which material is added layer-upon-layer to

construct 3D objects. Recently, AM has seen a significant

increase in popularity both in commercial applications and

research [1]. AM processes consist of many different tech-

nologies. In this paper, ink-jet 3D printing is considered,

which has been widely applied in commercial printers for

its simplicity and high resolution.

Ink-jet 3D printers build 3D objects by jetting photopoly-

mer layer-upon-layer with UV (ultra-violet) light curing in

between. Currently, this process is typically performed in

an open-loop manner, in which the number of layers to

be deposited and the droplet patterns for each layer are

determined in advance. This open-loop approach is vulnera-

ble to uncertainties in droplet sizes, shapes, and locations

since it does not use any feedback of the height profile

during printing. This can result in undesired part geometry

where the printed shape poorly matches the desired geometry

[2]. Meanwhile, high resolution of ink-jet 3D printing (x-y

resolution is 0.125mm, for the particular printer used in this

study) makes controlling this process a large scale problem.

To account for uncertainties in the printing process and the

large scale of the control problem, a closed-loop control

algorithm that is scalable should be proposed.

Standard ink-jet 2D printing has been well studied in

terms of voltage waveform design for generating consistent

droplets [3], [4] and medium deformation compensation [5].

But for ink-jet 3D printing where height is concerned, these
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techniques are insufficient. Various approaches have been

proposed for the control of ink-jet 3D printing or similar pro-

cesses. A spatial iterative learning control algorithm is pro-

posed and implemented in [6], [7] for electrohydrodynamic

jet printing. In [8], iterative learning control and a feedback

controller are combined to regulate the jetting frequency, thus

to improve printing accuracy. In [9] a Greedy Geometric

Feedback algorithm that iteratively searches for locations

to deposit droplets based on the geometry tracking error

is proposed. Although this approach addresses the whole-

part geometry, it does not account for droplets’ influence

on neighbors. Furthermore, the greedy search algorithm is

typically poorly scalable. In [10], [2], a nonlinear empirical

model that considers material flow and a predictive control

algorithm are proposed. This control algorithm uses brute-

force search to minimize a cost function, and scalability of

the control problem is not considered. In [11], a simplified

linear height evolution model is proposed based on the 2D

model in [6]. A predictive control algorithm is designed

that aims to solve a quadratic program each layer, which

is more efficient than brute-force search. However, it still

suffers from poor scalability of the control problem. Thus,

the aim of this research is to address both uncertainties in the

printing process and the large scale of the control problem

by proposing a control-oriented layer height evolution model

and designing a scalable closed-loop control algorithm.

The main contribution of this paper is the development of

a control-oriented linear model that accounts for material

flow during the printing process, and a scalable closed-

loop control algorithm based on distributed model predictive

control (MPC) techniques [12], that reduces the computation

time for control significantly. We show that the combination

of advanced modeling and Distributed MPC strategies is

valuable, and potentially enables closed-loop high resolution

ink-jet 3D printing. The paper is organized as follows. First,

the general printing control problem is described in Sec.

II. Next, the proposed model is presented in Sec.III. Then

the Distributed MPC based control algorithm is proposed in

Sec. IV. Finally, in Sec. V simulation results are presented

to compare Distributed MPC with open-loop printing and

closed-loop printing using Centralized MPC.

II. PROBLEM DESCRIPTION

The general formulation of the printing control problem is

presented in this section. The printing region is discretized

into a nx×ny size grid based on the printing resolution, the

number of points in the grid is n = nx ·ny . Fig. 1 illustrates

the closed-loop layer-to-layer printing process for a 3×3 grid

example, in which Hd, HL and UL ∈ Rnx×ny are matrices.
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For the partitioned system (10), the cost function becomes
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A partitioned quadratic program is constructed for the MPC

problem:

min
x

l∑

j=1

xT
j Hjxj

subject to

l∑

p=1

Fjpxp = zj , j ∈ {1, · · · , l}

Tjxj ≤ qj , j ∈ {1, · · · , l},

(12)

where the optimization variable consists of both the predicted

tracking error and future inputs:
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(13)

The Hessian Hj consists of the tracking penalty matrices. It

is a diagonal matrix that is described by:

Hj =
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The equality constraint
∑l

p=1 Fjpxp = zj for j ∈ {1, · · · , l}
is the separated form of Fx = z, which captures the layer

height evolution dynamics, Fjp and zj can be constructed

by reformulation of (10) with the new variable x in (13).

The inequality constraint Tjxj ≤ qj captures the upper and

lower bounds on the input (9), Tj and qj are described by:

Tj =
[

0 Ej
]
, qj = cj , ∀j ∈ {1, · · · , l}. (15)

This formulation remains separable into l building blocks

such that the problem is naturally decomposable. For a large

optimization problem that is coupled, dual decomposition

allows for separation of the minimization step of the central

problem into subproblems that can be solved in parallel.

This is the key feature of dual decomposition that allows

for distributed optimization. The Distributed MPC algorithm

using dual decomposition is presented in the next section.

C. Distributed MPC

This section provides the algorithm for Distributed MPC

for the height tracking problem. The algorithm uses dual

decomposition to solve the decomposable optimization prob-

lem of section IV B. The Lagrangian dual problem of the

separable optimization problem (12) is given by [12]:

max
λ

min
x
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(16)

This optimization problem can be rewritten to:

max
λ
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[
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︸ ︷︷ ︸

Lj

(17)

It is observed that the resulting minimization of Lj is

again a Quadratic Program, which can be solved for each

subproblem. When the maximum in (17) is obtained, the

constraints are satisfied by definition of Lagrangian duality.

It is observed that the minimization step is completely

decentralized, for given ‘prices’ λ. However, finding these

optimal prices requires coordination which is done by a

‘price update’ through gradient ascent [12]. The price update

during the iterations of dual decomposition is described by:

λs+1 = λs + γs∇gs(λ), (18)

where ∇gs(λ) = Fxs−z, s is iteration number. To converge

to the optimal price λ?, it is necessary to determine the

appropriate step size sequence γs. One traditional approach

proposed for gradient descent is the approach introduced in

1988 by Barzilai and Borwein [18]. For gradient ascent, this

method computates the gradient step size as:

γs =
−(∇gs −∇gs−1)T (λs − λs−1)

(∇gs −∇gs−1)T (∇gs −∇gs−1)
(19)

which is an approximation of the Newtons method, where

the inverse of the Hessian is used [18]. By approximating,

it avoids the expensive computation of the Hessian, but still

achieves good convergence. In [19] it is observed that the

rate of convergence is R-superlinear with an order of
√
2−ε

with ε > 0 any small number.

With the defined local minimization in (17) and price update

method in (18) and (19), an algorithm for Distributed MPC

can be constructed. The algorithm is summarized by the

pseudo code presented in Algorithm 1. In this algorithm the

following steps are recognized:

• In lines 1-4 the input and initialization of the algorithm

is defined. The input includes the current height profile

hL, reference profile rL, (if applicable) the optimal price

of the previous layer λSk

L−1 , the MPC problem matrices

(H,F, T, q), the number of partitions l and the price

convergence criterion Λ.

• In lines 5-7 the local minimization is performed based

on the current price λs.

• In lines 8-10 the price update is performed by a gradient

ascent step. To this end the Barzilai-Borwein method is
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used to determine the step size.

• In lines 11-16 the stopping condition is posed, based

on convergence of the price λ. If the algorithm is con-

verged, the optimal input for the next layer is extracted.

Algorithm 1 Distributed MPC algorithm

1: Input: hL, rL, λSk

L−1, l, (H,F, T, q), smax, Λλ

2: Output: uL,

3: Initialize: γ(0), λ
(0)
L = λSk

L−1

4: for s = 1, 2, · · · , smax do

5: for j = 1, 2, · · · , l do

6: Solve xs+1
j =

argminxj
xT
j Hjxj + xT

j

l∑

p=1

[
Fpjλ

s
p

]
− (λj

s)
T
zj

subject to Tjxj ≤ qj

7: end for

8: Compute ∇gs(λ) = Fxs − z

9:

γs =
−(∇gs −∇gs−1)T (λs − λs−1)

(∇gs −∇gs−1)T (∇gs −∇gs−1)

10: Update λs+1 = λs + γs∇gs(λ)

11: if
(||λs+1−λs||)

||λs|| ≤ Λλ then

12: Sk = s

13: Extract uL from xSk

14: Break;

15: end if

16: end for

V. SIMULATION RESULTS

This section presents simulation results of open-loop (OL),

Centralized MPC (CMPC) and Distributed MPC (DMPC)

printing. These examples indicate the benefit of closing the

loop, in presence of uncertainty. Results are presented that

show the comparison of performance, in terms of layer

height tracking and computation time for OL, CMPC and

DMPC printing. In these comparisons, different grid sizes

and prediction horizons are considered.

It is observed that during the printing process the droplet

shape and volume vary based on operating environmen-

tal conditions, which introduces uncertainty to the droplet

model. To capture this uncertainty, we constructed a droplet

samples set that contains 167 droplet shapes, measured by

a LJ-G030 2D height sensor on an experimental setup.

In the simulation of the printing process, for each droplet

deposition, first a droplet sample is randomly selected from

the samples set, then the corresponding Bk is constructed

based on this droplet shape. In the prediction of the control

algorithm, the average shape of the samples set is used as

the droplet shape.

First, open-loop is compared with CMPC and DMPC in

terms of layer height tracking. Figure 6 shows results for

open-loop printing and closed-loop MPC printing. For this

example, the grid size is 60×60, and the prediction horizon

of the MPC algorithm N = 5. The desired layer height hd =
L · 0.03mm, where L = 5 is the layer number.
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Fig. 6. Comparison of open-loop and closed-loop MPC printing of a 5
layer T-shaped geometry. It is observed that tracking of the height profile
is improved for closed-loop printing. Furthermore it can be concluded that
the Distributed MPC performs similar to Centralized MPC.

Table I summarizes the results in terms of layer height

tracking for different grid sizes and prediction horizons. In

bold the example of Figure 6 is presented.

TABLE I

2-NORM OF THE LAYER HEIGHT TRACKING ||e||2 FOR OPEN-LOOP,

CENTRALIZED MPC AND DISTRIBUTED MPC

OL CMPC DMPC

n ||e||2 ||e||2
(N=1)

||e||2
(N=3)

||e||2
(N=5)

||e||2
(N=1)

||e||2
(N=3)

||e||2
(N=5)

40 1.23 1.09 1.05 1.04 1.07 1.05 1.05

50 1.40 1.25 1.20 1.19 1.25 1.20 1.19

60 1.57 1.43 1.40 1.39 1.43 1.39 1.39

80 1.95 1.80 1.75 1.75 1.79 1.75 1.75

100 2.38 2.18 2.12 2.13 2.18 2.11 2.13

It is observed that CMPC and DMPC improve the layer

height tracking compared to open-loop printing. From Table

I it is concluded that the DMPC controller provides similar

reference tracking as the CMPC controller, since deviations

in terms of layer height tracking error are small for all

simulations conducted. This implies that the solution to the

distributed problem is close to the centralized solution. The
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drawback of the CMPC method is as mentioned before:

the computational burden. Therefore, the computation time

for the Centralized and Distributed MPC algorithms are

compared for different grid sizes and prediction horizons.

Figure 7 shows the comparison of the computation time for

the two methods.

Fig. 7. Computation time comparison for Centralized MPC and Distributed
MPC. It can be observed that for Distributed MPC, the computation time
is significantly reduced.

The results of the computation time comparison are sum-

marized in Table II. For comparison, the typical time of print-

ing a 100× 100 grid size square for one layer is 5 minutes.

It is observed that a significant reduction in computation

time is achieved by introducing the distributed algorithm.

The distributed approach achieves lower computation times

and better scaling in terms of grid size; it is observed that

computation time only scales linear with the grid size in case

of DMPC, which indicates the desired scalability.

TABLE II

AVERAGE COMPUTATION TIME FOR ONE LAYER FOR CENTRALIZED

MPC AND DISTRIBUTED MPC.

CMPC in [s] DMPC in [s]

n N=1 N=3 N=5 N=1 N=3 N=5

40 0.43 12.89 29.13 0.72 2.48 6.20

50 0.73 20.68 51.88 1.15 4.14 9.36

60 1.20 36.68 82.16 1.61 5.58 14.81

80 3.89 95.24 230.31 2.91 10.84 24.02

100 11.58 249.63 616.57 4.30 16.78 35.29

VI. CONCLUSION

The results in this paper provide methods for closed-

loop control of ink-jet 3D printing, enabling high-resolution

3D printing of complex geometries. More specifically, in

this paper, a closed-loop control algorithm using Distributed

MPC is proposed based on a graph-based layer height

evolution model. The performance and efficiency of the

algorithm is compared with open-loop printing and closed-

loop printing using Centralized MPC, through simulation

results. It is shown that the proposed algorithm has similar

tracking performance as Centralized MPC, and achieves

better performance than open-loop printing by addressing

uncertainties in the printing process through feedback. In

terms of the efficiency, the proposed algorithm reduces the

calculation time significantly compared to Centralized MPC.

The computation time only scales linearly with grid size,

indicating the good scalability of the algorithm. Future work

will be the experimental validation on a 3D printer setup.
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