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THE ASYMPTOTICALLY SELF-SIMILAR REGIME FOR THE

EINSTEIN VACUUM EQUATIONS

Igor Rodnianski and Yakov Shlapentokh-Rothman

Abstract. We develop a local theory for the construction of singular spacetimes in
all spacetime dimensions which become asymptotically self-similar as the singularity
is approached. The techniques developed also allow us to construct and classify
exact self-similar solutions which correspond to the formal asymptotic expansions
of Fefferman–Graham’s ambient metric.

1 Introduction

As is well-known, understanding the dynamics of even initially regular solutions to
the Einstein vacuum equations

Ric (g) = 0

inevitably leads to the study of various types of singular solutions (Schwarzschild
singularity {r = 0}, naked singularities, etc.). A special class of such singular space-
times are so-called self-similar solutions. These possess a conformally Killing vector
field K satisfying

LKg = 2g,

which also, suitably interpreted, vanishes at the singularity and generates a natural
dilation symmetry:

singularity

Such spacetimes arise in various guises throughout General Relativity. We specif-
ically draw attention to the following:

(1) (Approximate) self-similar solutions have been heuristically connected to
“Type-II critical phenomena” in gravitational collapse [Cho93,GM07,OP88]
and to the endpoint of the Gregory–Laflamme instability [GL93,LP10].
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(2) Christodoulou’s proof of cosmic censorship for the spherically symmetric
Einstein-scalar field system [Chr99] fundamentally relies on a well-posedness
result for the Eisntein equations within the class of (potentially) singular “solu-
tions of bounded variation” [Chr93]. A fundamental property of these solutions
is that successive rescalings converge to a self-similar solution.

(3) Fefferman–Graham’s classification of conformal invariants and corresponding
asymptotic expansions for the ambient metric rely on a self-similar ansatz for
the metric [FG84,FG12]. (We note also that these expansions play an impor-
tant role in the analysis of the AdS-CFT [Mal98,Wit98] and dS-CFT [Str01]
correspondence in high energy physics.)

The primary goal of this paper will to be to develop the local theory under-
yling the dynamical construction in all spacetime dimensions of singular solutions
which are asymptotically self-similar. Here the word “dynamic” is used to emphasize
that we are primarily interested in solutions arising from explicitly given suitable
characteristic Cauchy data.

data

da
ta

singularity

≈ self-similar

It turns out that in the course of studying the above problem we will develop
techniques which in fact allow us to to study exact self-similar solutions. In partic-
ular, we will construct true self-similar solutions corresponding to all of the formal
power series expansions of Fefferman–Graham.

Before we enter into a further discussion of motivation and background, we take
the opportunity to explicitly state our main theorems.

1.1 Basic Definitions and Statement of Results. We start by introducing
some notation and basic definitions. Let S denote an arbitrary closed and oriented
differentiable manifold of dimension n ≥ 2. We will use {θA} to denote coordinates
associated to an arbitrary chart on S. Then we say that an n + 2 dimensional
Lorentzian manifold (M, g) admits an S-double null foliation if there exists U ⊂ R2

such that M is diffeomorphic to
{

(u, v, θA) ∈ U × S
}

, and the metric g takes the
form

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(

dθA − bAdu
)

⊗
(

dθB − bBdu
)

.
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The Latin indices A and B run over directions tangent to S, so that, in particular,
for every (u, v), /g yields a Riemannian metric on Su,v

.
= {u, v} × S.

The null coordinates (u, v) of the solutions we construct will always run over a
region

D(c,d)
.
= {(u, v) : u ∈ [−d, 0) and v ∈ [0, −cu)},

where d ∈ R>0 ∪ {∞} and c ∈ R>0, and one thinks of c as being a small constant.

(−d, 0)

(−d, cd)D(c,d)

(0, 0)

From now on we will always assume that every S-double null foliation has U =
D(c,d) for some choices of c and d. For any λ > 0 (thought of as a small constant) we
define the associated “scaling diffeomorphism” Φλ : D(c,λ−1d) × S → D(c,d) × S by

Φλ

(

u, v, θA, θB
) .

=
(

λu, λv, θA, θB
)

. (1)

Note that Φ−1
λ “blows-up” a small neighborhood of (u, v) = (0, 0).

Since the Einstein vacuum equations are invariant under diffeomorphism and
multiplication by scalars, for any solution

(

D(c,d) × S, g
)

and λ > 0, we obtain a

“rescaled” solution
(

D(c,λ−1d) × S, gλ

)

, where we define

gλ
.
= λ−2Φ∗

λg.

(The division by λ−2 makes the process dimensionless.) We say that a solution
(

D(c,∞), g
)

is self-similar if gλ = g. The reader can easily check that if (M, g) is
self-similar, then the vector field

K
.
= u∂u + v∂v,

satisfies

LKg = 2g,

i.e., K is conformally Killing. In the region under consideration, it will in fact either
be null (when v = 0) or spacelike (when v > 0). We call K the scaling vector field.
Furthermore, we observe that Minkowski space given in standard null coordinates
(u, v, θA) yields a self-similar solution.

For future reference we note that a straightforward calculation yields that g is
self-similar if and only if for all λ > 0:

(1) Ω (u, v, θ) = Ω (λu, λv, θ).
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(2) /gAB
(u, v, θ) = λ−2/gAB

(λu, λv, θ).

(3) bA (u, v, θ) = λbA (λu, λv, θ).

Next, we turn to a discussion of the characteristic initial data we shall impose
for our construction of asymptotically self-similar solutions. In what follows we take
d = 1 so that we are considering a region D(c,1). Then the choice of this initial data
may be broken up into three main parts:

(1) Along the incoming cone {v = 0} we must specify the lapse Ω, the shift b, and
the conformal class of the induced metrics on Su,0, which we denote by /̂g(u).

(2) Along the outgoing cone {u = −1} we must specify the lapse Ω and the confor-
mal class of the induced metrics on S−1,v, which we similarly denote by /̂g(v).
(These choices must also be compatible with the incoming data in that the
lapse Ω and conformal class /̂g must be continuous at (u, v) = (−1, 0).)

(3) On S−1,0 we must specify the induced metric /g, the torsion ζ, trχ, and trχ.
(See Section 3.2 for the definitions of ζ, trχ, and trχ.)

The remaining parts of the initial data are then determined by the null constraint
equations.

Let’s start with the data along {v = 0}. Since the action of the scaling diffeo-
morphism Φλ leaves the hypersurface {v = 0} invariant, one immediately obtains a
definition of a metric g being self-similar along {v = 0}. In particular, it is not hard
to see that such a metric must satisfy

∂uΩ2|v=0 = 0, ∂u

(

u−1bA

)

|v=0 = 0, /̂gAB
|v=0 =

(

/̂g0

)

AB
, (2)

where the AB refer to a Lie-propagated frame and /g0
is some Riemannian metric

on S which is extended to all of {v = 0} by Lie-propagation. All of the self-similar
solutions we will study in this paper will in fact satisfy the following normalization
conditions:

Ω2|v=0 = 1, b|v=0 = 0. (3)

The assumption that Ω = 1 can be relaxed without any essential change to the
arguments. However, the assumption that b vanishes turns out to be necessary in
order to guarantee regularity of the lapse Ω. We note that given these normalizations,
Raychaudhuri’s equation in the u-direction implies that the behavior of /̂g prescribed

in (2) is equivalent to choosing /gAB
(u)|v=0 = u2

(

/g0

)

AB
. We now group these choices

into the following definition:

Definition 1.1. We say that the incoming initial data along {v = 0} is exactly
self-similar if

Ω|v=0 = 1, b|v=0 = 0, /̂g(u) = /̂g0
,

for some Riemannian metric /̂g0
on S.
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We say that the incoming initial data along {v = 0} is asymptotically self-similar
if there exists δ > 0 such that along {v = 0} in the coordinate frame

|Ω(u) − 1| � |u|2δ, |bA(u)| � |u|1+2δ,

lim
u→0

/̂g(u) = /̂g0
,

(

/̂g
)AC (

/̂g
)BC

Lu/̂gAB
Lu/̂gCD

� |u|−2+2δ.

Remark 1.1. The bounds for the asymptotically self-similar data are derived by
requiring that they are consistent with the rest of the solution along {v = 0} (which
is obtained by solving the null constraint equations) eventually satisfying bounds
consistent with self-similarity.

Next, let’s turn to the data we impose along the conjugate null hypersurface {u =
−1}. Since the scaling diffeomorphism does not leave any conjugate null hypersurface
invariant, it is not a priori clear what data corresponds to exact self-similarity and,
even less so, what data corresponds to asymptotic self-similarity. Fortunately, it
turns out that our methods allow us to construct solutions for quite flexible choices
of conjugate data. Furthermore, the blow-ups {gλ}λ>0 of the corresponding solutions
exhibit a strong universality property in that the behavior as λ → 0 turns out to only
depend very weakly on the exact form of the conjugate data. In particular, we will
find that the limit as λ → 0 will be self-similar even without excessive fine-tuning
of the data along {u = −1}.

More concretely, depending on the dimension n, our energy estimate scheme
will require us to work with varying number of ∂v derivatives of the metric. (The
specific number of ∂v derivatives commuted with is as follows: When n = 2, we
use 2 derivatives, when n ≥ 3 and odd, we use n+1

2 derivatives, and when n ≥ 4
and even, we use n

2 derivatives. See Section 2.3.) This immediately leads to the

requirement that for a suitable function F (n), we have that {Li
v /̂g}

F (n)
i=0 (and an

appropriate number of angular derivatives thereof) lie in L2 along {u = −1}. (In
reality, when n > 2 we renormalize out certain of the most singular parts of /̂g.)

Next, as is well-known, once the values of {Li
v /̂g}

F (n)
i=1 along (u, v) = (−1, 0) are

known, the null constraint equations determine {Li
v /̂g}

F (n)
i=1 along all of {v = 0}. We

must require that these satisfy bounds consistent with being asymptotically self-
similar as u → 0. Integration of the null constraint equations immediately shows

that this requirement is equivalent to requiring that {Li
v /̂g}

F (n)
i=1 takes specific values

in terms of /g|S−1,0
. Lastly, when n ≥ 3, an analysis of the constraint equations show

that it is in fact natural to allow the conjugate data to be mildly singular as v → 0
(see the discussion in Section 2.2).

Before we present explicitly the class of conjugate data we consider, it is useful to
introduce the following notation. For any 1-parameter family of tensors Θ(v) defined
on S which have a limit as v → 0, we define

Θ
� .

= Θ(v) − Θ(0).

Now we are ready for the following definition.
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Definition 1.2. For a 1-parameter family of tensors φAB(v) given in a coordinate
frame, we let ∂N

θ φAB denote an arbitrary combination of up to N S-coordinate
derivatives of φAB; then

∣

∣∂N
θ φAB

∣

∣ denotes the supremum of the absolute value of all
such derivatives.

Suppose we are given a metric /g0
which will eventually be the induced metric on

S−1,0. Then we say that a 1-parameter family /̂g(v), for 0 ≤ v ≤ v0 
 1, of conformal
classes of metrics on S is admissible relative to /g0

if one of the following conditions
are satisfied, depending on the dimension.

(1) When n = 2, there exists δ > 0 so that:
(a)

lim
v→0

∂N
θ ∂i

v /̂g exists and is uniformly bounded,

for some finite but sufficiently large N and 0 ≤ i ≤ 2.
(b)

∫ v0

0

∫

S

∣

∣

∣

∣

∂N
θ ∂i

v /̂g
�
∣

∣

∣

∣

2

v−1+2δ < ∞,

for some finite but sufficiently large N and 0 ≤ i ≤ 2.
(2) When n ≥ 3 and odd, there exists δ > 0 and a tensor hAB so that:

(a)

lim
v→0

∂N
θ ∂i

v /̂g exists and is uniformly bounded,

for some finite but sufficiently large N and 0 ≤ i ≤ n−1
2 , and that when

i > 0 the limits have certain prescribed values in terms of /g0
. (These

values are determined in Proposition 4.2 of Section 4.)
(b)

∫ v0

0

∫

S

∣

∣

∣

∣

∂N
θ ∂i

v /̂g
�
∣

∣

∣

∣

2

v−1+2δ < ∞,

for some finite but sufficiently large N and 0 ≤ i ≤ n−1
2 .

(c)

lim
v→0

∂N
θ

(

∂
n+1

2
v /̂g − v−1/2hAB

)

exists and is uniformly bounded,

for some finite but sufficiently large N . Let’s denote this limit by KN .
(d)

∫ v0

0

∫

S

∣

∣

∣
∂N

θ

(

∂
n+1

2
v /̂g − v−1/2hAB

)

− KN

∣

∣

∣

2

v−1+2δ < ∞,

for some finite but sufficiently large N .
(3) When n ≥ 4 and even, there exists δ, ι > 0 so that:
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(a)

lim
v→0

∂N
θ ∂i

v /̂g exists and is uniformly bounded,

for some finite but sufficiently large N and 0 ≤ i ≤ n−2
2 , and that when

i > 0 the limits have certain prescribed values in terms of /g0
. (These

values are determined in Proposition 4.3 of Section 4.)
(b)

sup
0<ṽ≤v0

ṽ−2δ

∫ ṽ

0

∫

S

∣

∣

∣

∣

∂N
θ ∂i

v /̂g
�
∣

∣

∣

∣

2

v−1−2ι+2δ < ∞,

for some finite but sufficiently large N and 0 ≤ i ≤ n−2
2 .

(c) In Proposition 4.3 of Section 4 we will define a certain tensor OAB on S
in terms of /g0

. Then we require that

lim
v→0

∂N
θ

(

∂
n

2
v /̂g − log(v)OAB

)

exists and is uniformly bounded,

for some finite but sufficiently large N . Let’s denote this limit by LN .
(d)

sup
0<ṽ≤v0

ṽ−2δ

∫ ṽ

0

∫

S

∣

∣

∣
∂N

θ

(

∂
n

2
v /̂g − log(v)OAB

)

− LN

∣

∣

∣

2
v−1−2ι+2δ < ∞, (4)

for some finite but sufficiently large N .

Remark 1.2. Informally, when n > 2, the reader can interpret these conditions as
saying that the first �n−1

2 � v-derivatives of /̂g at S−1,0 are determined in terms of /̂g,
but the n

2 v-derivative is free in the sense that there is freedom to add an arbitrary

term of the form /̂g
( n

2
)

AB
v

n

2 to /̂g. Furthermore, Theorem 1.3 shows that derivatives at
a higher order than n

2 do not affect the behavior of the self-similar blow-up of the
solution.

Remark 1.3. We note that from the proofs of our main results it is possible to, in
principle, extract explicitly the formulas relating the ∂i

v /̂g(0) and OAB to /g0
. (These

formulas simply correspond to an appropriate finite part of the Fefferman–Graham
expansion [FG84,FG12] expressed in terms of a double null coordinate system.)

Remark 1.4. The number N , which depends on the dimension n, is determined
by how many times we will need to commute with angular derivatives in the proof
of our argument, and this is, in turn, primarily tied to the number of derivatives
required for applying L∞-Sobolev inequalities on S.

We are now ready to state our main results. The first is a local existence result
for solutions with exactly self-similar incoming data and admissible conjugate data.
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Theorem 1.1 (Local Existence for “Proto-Ambient” Metrics). Let
(

S, /g0

)

be a

closed and oriented Riemannian manifold of dimension n, and /̂g(v) be an admissible
1-parameter family of metrics on S relative to /g0

.

Then, for ε sufficiently small, and M
.
= {(u, v, θA) ∈ D(ε,−1) × S}, there exists a

unique metric g on M which lies in a suitable scale invariant Sobolev space, weakly
solves the Einstein equations,

Ric (g) = 0,

and such that in the corresponding S-double null gauge we have

/g|v=0 = u2
/g0

, ζ|(u,v)=(−1,0) = 0, Ω2|{v=0}∪{u=−1} = 1,

b|{v=0} = 0, trχ|(u,v)=(−1,0) =
/R0

n − 1
,

and there exists a function Φ
(

v, θA
)

with

/g|u=−1 = Φ2
/̂g.

Here /R0 denotes the scalar curvature of the metric /g0
. The torsion ζ and trace

of the second fundamental form trχ are defined in Section 3.2.
The precise regularity result for the metric g is that sup ṽ

|ũ|
≤ε ||g||

Eũ,ṽ
< ∞, where

||·||
Eũ,ṽ

is a certain scale-invariant weighted-energy norm defined in each character-
istic rectangle (u, v) ∈ [−1, ũ] × [0, ṽ]. See Definition 5.13.

Remark 1.5. When n = 2 the prescribed value of trχ is such that the Hawking
mass along the incoming cone {v = 0} is identically 0. We note that the spheri-
cally symmetric self-similar solutions to the Einstein-Scalar-Field system found by
Christodoulou [Chr93] also have a vanishing Hawking mass along the corresponding
incoming cone.

Remark 1.6. The assumption that S is oriented is not necessary; but we make it
for convenience.

Note that (at least when n = 2) existence of a solution in an open set around
{v = 0} and {u = −1} would follow immediately from the local theory for the
characteristic initial value problem [Luk12,Ren90]. The key point of the theorem is
that we have existence in the region M = D(ε,−1) ×S which is large enough to allow
us to apply the rescaling diffeomorphism. In particular, we emphasize that there is
no a priori reason to expect that the implicit singularity “at” S0,0 will propagate
into a region with v

|u| � 1.

We call the metrics produced by Theorem 1.1 “proto-ambient” metrics. Of course,
given the general class of conjugate data we consider, these will generally not be
exactly self-similar. However, the next theorem shows that successive rescalings of
any “proto-ambient” metrics converge to a unique self-similar solution, i.e., in the
nomenclature of [FG12], an “ambient metric”.
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Theorem 1.2 (Self-Similar Extraction). Let (M, g) be a “proto-ambient” metric
produced by Theorem 1.1. Let {λi}

∞
i=1 be any monotonically decreasing sequence

with λi → 0. Then there exists a unique self-similar metric gsim such that gλi
→

gsim|M as i → ∞. The convergence is with respect to the a certain “supercritical”
norm ||·||

E
defined in (129) of Section 8.

Remark 1.7. It follows from the proof that the prescribed values of ζ and trχ in
Theorem 1.1 and the conditions imposed on the conjugate data by Definition 1.2
are necessary for the conclusions of Theorem 1.2 to hold.

Finally, as a corollary of our understanding of the uniqueness of the rescaling
limits in Theorem 1.2, we are able to obtain a full classification of self-similar solu-
tions.

Theorem 1.3 (Existence and Uniqueness of Self-Similar Solutions). Let /g0
be a

Riemannian metric on S and h be a symmetric traceless 2-tensor of S. Then there
exists a unique self-similar solution g such that

/g|S−1,0
= /g0

, tf
(

Ln/2
v /g

)

|S−1,0
= h,

where tf denotes the “trace-free” part and the specification of
(

L
n/2
v /g

)

refers to the

specification of the v
n

2 term in a power series of /g around {v = 0}.
Here the uniqueness is to be understood within the class of self-similar solutions

equipped with an S-double null foliation and satisfying the normalization condi-
tion (3).

The reader should compare this with Theorems 3.7, 3.9, and 3.10 of [FG12] where
the analogue of Theorem 1.3 is proven for self-similar solutions given by formal power
series.

1.2 Singular Nature of the Solutions. We now briefly discuss the senses in
which our metrics are singular. First of all, for geometric reasons it is immediately
clear that for most choices of initial data there is no extension of our proto-ambient
metrics in which {(u, v) = (0, 0)} corresponds to a smooth point.

On a more analytical level, for generic initial data and in an orthonormal frame,
the null curvature components αAB and βAB will blow up like u−2 along {v = 0} as
the “point” {u = 0} is approached. In fact, though we will not prove this statement
here, one expects that generically along any spacelike hypersurface {v = −cu} for
c > 0, all curvature components in an orthonormal frame will blow-up like r−2 as
r → 0, where r is distance to the origin (u, v) = (0, 0). In particular, the Riemann

curvature tensor will have an infinite norm in the scale invariant space L
n+1

2 .
We thus see that Theorems 1.1 and 1.2 produce a large class of singular asymp-

totically scale-invariant solutions to the Einstein vacuum equations. Of course, the
initial data considered along the incoming cone {v = 0} is highly constrained. For
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the Einstein vacuum equations in 3+1 dimensions, the L2-based scale-invariant well-
posedness result for non-constrained data would be for initial metrics lying in the
scale-invariant Sobolev space H

3

2 . Currently, with the resolution of the L2-curvature
conjecture [KRS15,Sze12a,Sze12b,Sze12c,Sze12d,Sze16] the best results available
hold for H2.

Finally, it is instructive to draw a comparison with the power series expansions
from [FG12]. In Section 7 we will show that our proto-ambient metrics are essentially
as regular as the initial data allows. In particular, if we assume the initial data is
suitably regular (but not that the tensors hAB and OAB necessarily vanish!) the
analysis of Section 7 shows that our metrics are “regular” in the sense of the following
definition.

Definition 1.3. We say that a metric g is “regular” if

(1) when n = 2, g ∈ C∞ (M).
(2) when n ≥ 3 and odd, we have g ∈ C∞ (M \ {v = 0}) and there exist smooth

tensors

{g
(i)
αβ

(

u, θA
)

}
n−1

2

i=0 , g̃αβ

(

u, θA
)

,

such that for every fixed (u, θA),

gαβ

(

u, v, θA
)

=

n−1

2
∑

i=0

g
(i)
αβ

(

u, θA
)

vi + v
n

2 g̃αβ

(

u, θA
)

+ O
(

v
n+1

2

)

as v → 0. (5)

(3) when n ≥ 4 and even, we have g ∈ C∞ (M \ {v = 0}) and there exist smooth
tensors

{g
(i)
αβ

(

u, θA
)

}
n

2

i=0, g̃αβ

(

u, θA
)

,

such that for every fixed (u, θA),

gαβ

(

u, v, θA
)

=

n

2
−1
∑

i=0

g
(i)
αβ

(

u, θA
)

vi + g
( n

2
)

αβ

(

u, θA
)

v
n

2 + g̃αβ

(

u, θA
)

v
n

2 log (v)

+ O
(

v
n+2

2 log(v)
)

as v → 0. (6)

We emphasize that this definition does not require g to be self-similar and that
all of the implied constants in the expansions may depend on u.

This regularity is in complete agreement with the formal power series expansions
for self-similar solutions from [FG84,FG12]. Exactly as in [FG84,FG12] the tracefree
part of the coefficients of v

n

2 in these expansions is independent of /g(0) (see Theo-

rem 1.3) while all of the terms earlier in the expansion are determined by /g(0). When
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n ≥ 4 and even, the tensor in front of the log(v)v
n

2 corresponds to the “obstruction
tensor” from [FG84,FG12] (and is also determined by /g(0)). Finally, though we will
not pursue this here, we note that one can establish full asymptotic expansions as
v → 0 which are analogous to those of Theorems 3.7, 3.9, and 3.10 from [FG12].

1.3 Regular Extensions to the Past. It is of significant interest, obvious
in the context of the evolution problem, to determine when our solutions can be
extended to the past of the incoming null hypersurface {v = 0} in such a way that
the resulting spacetime solves the Einstein vacuum equations and is past complete.

One particularly simple case occurs in exact self-similarity and when /g0
is the

round metric on Sn. Then one may glue in a copy of Minkowski space in the region
{v < 0} ∩ {v − u ≥ 0} to any of the solutions produced by Theorem 1.3 and obtain
a solution to the Einstein vacuum equations:

{
v

−
u

=
0
}

{v
=

0}

I
−

flat

One can show that the resulting spacetime solves the Einstein vacuum equations
weakly. When n is even, the solution will lie in C

n

2
−1,j for j < 1, but generically will

not lie C
n

2 , and when n is odd, the solution will lie in C� n

2
	, 1

2 , but generically will
not lie in C� n

2
	,j for j > 1

2 . In both cases, the singularity will be supported along
{v = 0}. When n = 2 the singularities are examples of the impulsive gravitational
wave singularities locally studied near {u = −1} in [LR15,LR13].

More generally and concretely, for any choice of “Dirichlet data” /g0
and “Neu-

mann data” tf
(

L
n

2
v /g0

)

, there exists a formal Fefferman–Graham expansion solving

the Einstein vacuum equations to the past of {v = 0}. However, when /g0
is the

round metric on Sn, under suitable assumptions one can show the requirement of
past completeness uniquely picks out Minkowski space. Furthermore, even though

the left and right hand limits of tf
(

L
n

2
v /g0

)

at {v = 0} will generically not agree, the

spacetime turns out to still be a weak solution of the Einstein vacuum equations.
We take the opportunity to note that when n = 2, even if one only desired

to extend a single conjugate null hypersurface {u = c} to the past of {v = 0}
as a usual {u = c} hypersurface in Minkowski space; then the requirement that
the null constraint equations are satisfied weakly along {u = c} would force the
normalizations for trχ and ζ that we have imposed in Theorem 1.1.

Finally, we note that there are many other situations where one expects such
extensions to exist, for example, the work of Graham and Lee [GL91] shows that
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these extensions exist for exactly self-similar solutions whenever /g0
is a small per-

turbation of the round metric on Sn. In general, for exactly self-similar solutions
one expects that after the imposition of a suitable gauge (and assumed topological
type), the problem of finding a past complete extension such that /g is continuous
yields an elliptic problem which may have no solutions, a unique solution, or many
solutions. See [And05,CG99,GH17,Wit98,WY99].

1.4 Previous Work on Self-Similar Solutions. In this section we will dis-
cuss context for and previous work done on self-similar solutions.

1.4.1 Christodoulou’s Scale-Invariant Solutions. In the work [Chr99] Christo-
doulou studied the spherically symmetric Einstein-Scalar-Field system and showed
that cosmic censorship holds. A fundamental role in the analysis is played by a
well-posedness theorem for the spherically symmetric Einstein-Scalar-Field system
within the class of so-called “solutions of bounded variation” [Chr93]. A key property
of this class of solutions is that the corresponding norms are left invariant by the
analogue of the scaling transformations Φλ.

With this in mind, our main results are motivated by the following:

(1) In the work [Chr93] Christodoulou studied exact self-similar solutions to the
spherically symmetric Einstein-Scalar-Field system. (He calls them
“scale-invariant”.) The rigidities of spherical symmetry are sufficiently strong
so that these solutions can be written down explicitly. In particular, they are
completely determined by the v-derivative of the scalar field at (u, v) = (−1, 0),
and this v-derivative can take any value. Furthermore, after gluing a copy of
Minkowski space, these solutions always admit a regular extension to the past.
Keeping the spherical symmetry in mind, we note that this is analogous to
Theorem 1.3 and to the discussion in Section 1.3.

(2) In the same work [Chr93] Christodoulou also established a result in the spirit of
Theorem 1.2. More specifically, he showed that, after passing to a subsequence,
successive rescalings of a solution of bounded variation always converge to a
self-similar solution. However, in contrast to Theorem 1.2, the limit is not guar-
anteed to be unique. (We emphasize, however, that Christodoulou’s solutions
of bounded variation are much more general than the spherically symmetric
Einstein-Scalar-Field analogues of the solutions considered in Theorem 1.2.)

1.4.2 Fefferman–Graham Expansions. In [FG12,FG84] Fefferman and Graham
revolutionized the study of local conformal invariants. A fundamental role in their
work was played by the following theorem.

Theorem 1.4 (Fefferman–Graham [FG12,FG84]). Let n ≥ 2. To every analytic

Riemannian n-dimensional manifold
(

S, /g
)

and symmetric traceless 2-tensor hAB

on S, there is a canonically associated n + 2 dimensional self-similar Lorentzian
manifold (M, g) solving the Einstein vacuum equations such that

(

S, /g
)

embeds
isometrically into (M, g), and such that hAB is equal to the tracefree part of an
appropriately normalized outgoing null n/2-derivative of /g.
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The correspondence is conformally invariant in the sense that for a conformally
related metric /̃g = φ2/g, there exists a explicitly computable choice of h̃AB such that

the solution associated to
(

/̃g, h̃
)

is isometric to the solution associated to
(

/g, h
)

.

Furthermore, there is a privileged null hypersurface {v = 0} covered by coordinates
(u, θA) ∈ (0, ∞) × S where the induced metric is degenerate and takes the form

u2
/gAB

dθAdθB.

(Fefferman–Graham did not phrase their results in terms of double null foliations.
See Appendix C for the coordinates they used.)

In fact, their construction works when the original metric /g has any signature,
not just Riemannian. The Pseudo-Riemannian geometry (M, g) one obtains is called
the “ambient metric”. In the smooth category, they obtained an analogous result
for formal metrics defined by a power series expansion around a fixed light cone,
{v = 0}. The diagram below depicts the formal domain of the expansions they
construct:

{v
=

0}

Keeping the case of Minkowski space in mind where the hypersurface {v = 0} is
an incoming null cone, we refer to the region {v < 0} as the interior of the light cone,
and the region {v > 0} as the exterior of the light cone. For all Fefferman–Graham
formal solutions, the self-similar vector field is null along {v = 0}, is timelike in
the interior of the light cone, and is spacelike in the exterior of the light cone. A
fundamental consequence is that one expects the self-similar Einstein equations to be
elliptic in the interior and hyperbolic in the exterior. In this paper we are interested
in the hyperbolic regime of self-similarity and this is why our results concern the
exterior region.

Using this correspondence as a starting point, Fefferman and Graham were able to
construct conformal invariants of

(

S, [/g]
)

by exploiting the well-known classification
of local Pseudo-Riemannian invariants. In fact, they were even able to carry out their
program in the smooth category even though in this case (M, g) was only shown to
exist as a formal power series.

Despite the progress made in the construction of conformal invariants, it re-
mained an open question to determine whether or not any analogue of Theorem 1.4
holds in the smooth category. Our result Theorem 1.3 provides an affirmative answer
for the region exterior to the light cone. (Of course, since the problem in the interior
of the light cone is elliptic, one does not expect a positive answer there.)
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We now turn to a brief discussion of previous results in this direction. It turns
out that the existing results concern a restricted class of the solutions considered in
Theorem 1.4; we now give a brief explanation.

Fefferman and Graham showed that if the divergence of the tensor hAB takes a
certain value then the resulting metric exhibits various simplifications and is called
“straight.” (For odd-dimensional S one takes h divergence free while in even dimen-
sions one takes the divergence of h to be a certain explicit tensor determined by /g.)
In particular, in terms of a S-double null foliation, to infinite order near {v = 0}
one has a trivial lapse and shift. (In Appendix B we verify that under the same
“straightness” assumption on initial data, the solutions produced by Theorem 1.3
will have a trivial lapse and shift.) In this case it then possible to quotient out by
the dilation invariance of the solutions in a very clean way and, in the interior of the
light cone produce a formal expansion for an n+1 dimensional Riemannian manifold
(N1, g1) which will be an asymptotically hyperbolic Poincaré-Einstein manifold, and
in the exterior of the light cone produce a formal expansion for an n+1 dimensional
Lorentzian manifold (N2, g2) which will solve the Einstein equations with a positive
cosmological constant. See Appendix C for the explicit coordinate calculations. In
both cases, these manifolds are non-compact, but after a suitable conformal com-
pactification, the original manifold (S, /g) lies on the boundary. For the sub-class of
straight ambient metrics, essentially all questions of interest descend to questions
about these n + 1 dimensional geometries. (It is worth noting that when n = 2 then
straight ambient metrics must in fact be flat.)

An important model case occurs when (S, /g) is the round sphere
(

Sn, /g
Sn

)

. Then,

for vanishing hAB, the resulting ambient metric is simply Mikowski space. The asso-
ciated Poincaré-Einstein metric is hyperbolic space (this exactly corresponds to the
well-known hyperboloid model), and the associated cosmological solution is simply
de Sitter space. It is very natural to then ask the corresponding stability question.
(We must take into account the expectations regarding ellipticity and hyperbolic-
ity when phrasing these questions!) Do small (smooth) perturbations of (Sn, [/g

Sn ])
along with small hAB (consistent with a straight ambient metric) have correspond-
ing cosmological solutions which are qualitatively similar to de Sitter space? Do

small (smooth) perturbations of
(

Sn, [/g
Sn ]
)

correspond to complete asymptotically

hyperbolic Poincarè-Einstein metrics which are qualitatively similar to hyperbolic
space?

The first question was answered in the affirmative in the case n = 3 by the
work of Friedrich on the stability of de Sitter space [Fri86] (see the later generaliza-
tion [And05] which extended the analysis to all odd dimensional n) and the second
questions was answered in the affirmative in dimensions n ≥ 3 by the work of Gra-
ham and Lee [GL91]. This latter work eventually played an important role in the
AdS-CFT correspondence of high energy physics (see [Mal98,Wit98]).

1.5 Further Results. Though we will not provide the proof in this paper in
order to simplify the exposition, it is in fact possible to prove a version of Theo-
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rems 1.1 and 1.2 where the incoming data is not required to be exactly self-similar.
We have

Theorem 1.5. The analogues of Theorems 1.1 and 1.2 hold when the incoming
data is assumed to asymptotically self-similar in the sense of Definition 1.1.

Next, we recall that in the work [Chr93] Christodoulou produced explicit formulas
for spherically symmetric self-similar solutions to the Einstein-Scalar-Field system.
In particular, if we let φ denote the scalar field and set

ε−1/2 .
= ∂v (rφ) |(u,v)=(−1,0),

then when 0 < ε 
 1, a trapped surface forms when v
|u| ∼ ε and the solution exists

in the region v
|u| � ε1/2. (All of the implied constants can be made precise, but here

we are only interested in qualitatively tracking the dependence on ε.)

In a forthcoming work we prove a result which can interpreted as showing that,
qualitatively, trapped surface formation for self-similar solutions in vacuum and all
spacetime dimensions works in the same fashion.

Theorem 1.6. Let ε > 0 be a parameter and suppose we have a self-similar solution
produced by Theorem 1.3 with

/g|S−1,0
= /g0

, tf
(

Ln/2
v /g

)

|S−1,0
= ε−1/2h.

Then, for 0 < ε 
 1, the self-similar solution will exist in the region v
|u| ≤ Bε

1

n

for a constant B independent of ε. If we furthermore assume that infS |h| > 0, then

a trapped surface will form when v
|u| ≥ bε

2

n for a constant b independent of ε. An

analogous statement holds for proto-ambient metrics.

{v
=

0}

{u
=

−
1}

v
|u| ∼ ε 2

n

trapped

v
|u| ∼ ε

1
n

The reader should compare this with the work of An–Luk [AL17] which, while not
directly concerning self-similar solutions, does establish a trapped surface formation
result under a “scale-invariant criterion” in 3 + 1 dimensions.
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1.6 Outline of Paper. We close this section with an outline for the rest of the
paper.

In Section 2 we provide an outline of the proofs of Theorems 1.1, 1.2, and 1.3.
In particular, we explain the analysis of the constraint equations, how we carry out
energy estimates for curvature, and how we estimate the Ricci coefficients.

In Section 3 we extend the well-known treatments of the double null gauge from
3 + 1 dimensions to arbitrary spacetime dimensions. Among other things, we ex-
plain how the Bianchi equations can be used to carry out energy estimates, and
systematically derive the correct scaling properties for the double null unknowns
corresponding to a self-similar solution.

In Section 4 we study the constraint equations for the characteristic initial data.
Though it is not necessary for the proofs of our results it will be clear from the
analysis how one can derive infinite order expansions for the metric.

In Section 5 we define the various norms that we will use for our a priori estimates,
define various renormalizations, and present useful schematic forms for commuted
forms of the double null equations. The scale-invariance of the norms we define will
be manifest.

In Section 6 we use a bootstrap argument to establish a priori estimates for the
proto-ambient metrics in the norms defined in Section 5. Combined with the local
theory of Appendix A this establishes Theorem 1.1.

In Section 7 we show that once the a priori estimates from Section 6 have been
closed, and with suitable assumptions on the initial data, a preservation of reg-
ularity argument can be carried out to show that the proto-ambient metrics are
quantitatively regular.

In Section 8 we show how one can establish supercritical estimates for differences
of rescaled proto-ambient metrics. We then use these improved estimates to establish
Theorems 1.2 and 1.3.

Lastly, we have included an appendix which includes a local existence result for
the characteristic initial value problem, some coordinate calculations, and a proof
that if the tensor h from Theorem 1.3 satisfies an appropriate divergence condition,
then the corresponding self-similar solution will have a trivial lapse and shift (see
the discussion of “straight” solutions in Section 1.4.2).

2 Outline of the Proofs of the Main Results

In this section we turn to a more detailed outline of the argument. We will freely
refer to the form of the Einstein equations in a double null foliation. See Section 3
below for the relevant definitions and a detailed treatment of these equations.

We quickly take the opportunity to recall that the main objects of interest in
the double null formalism are the Ricci coefficients ψ and curvature components
Ψ. These satisfy a coupled system of equations, the most important of which are
schematically of the form
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∇4ψ = ψ · ψ + ∇ψ + Ψ, ∇3ψ = ψ · ψ + ∇ψ + Ψ, (7)

∇4Ψ1 = DΨ2 + ψ · Ψ, ∇3Ψ2 = −D∗Ψ1 + ψ · Ψ. (8)

Here the ψ’s and Ψ’s that show up on the right hand side of these equations
denote a possibly arbitrary Ricci coefficient or curvature component respectively.
The ∇4 and ∇3 are “Su,v-projected covariant derivatives” in the e4 and e3 null
directions respectively, the ∇ denotes the S-gradient, D is a differential operator
on S, and D∗ denotes the adjoint of D. The equations (7) are usually treated as
transport equations to estimate ψ and the equations (8) are used to carry out energy
estimates for curvature.

2.1 Self-Similar Bounds. In Section 3.11 we will provide exact formulas for
how the various double null unkowns for a self-similar solution behave. Most impor-
tantly, we find that in a Lie-propagated coordinate frame {eA}, the induced metric

/g on the manifolds S must satisfy

/gAB
(u, v, θ) = u2̊

/gAB

(v

u
, θ
)

,

for some 1-parameter family of metrics /̊gAB
(s, θ) on S.

It also follows from the formulas of Section 3.11 that for any Ricci coefficient ψ
and curvature component Ψ we have

|ψ| ∼ |u|−1, |Ψ| ∼ |u|−2,

where these norms are taken with respect to the induced metrics /g on the manifolds
S. (A schematic way to remember these bounds is to recall that Ricci coefficients
are proportional to one derivative of g, curvature components Ψ are proportional to
two derivatives of g, and that differentiation always adds a |u|−1 to the bound.)

Our arguments will also require us to apply angular and ∇4 derivatives to our
double null unknowns. An application of these derivatives raises the homogeneity
by 1 and thus a self-similar solution will satisfy

∣

∣

∣
∇i∇j

4ψ
∣

∣

∣
∼i,j |u|−1−i−j ,

∣

∣

∣
∇i∇j

4Ψ
∣

∣

∣
∼i,j |u|−2−i−j .

(The notation ∼i,j means that the implied constants may depend on i and j.)

For the lapse and shift we have the following

∣

∣

∣
∇i∇j

4Ω
∣

∣

∣
∼i,j |u|−i−j , |∇i∇j

4b| ∼i,j |u|−i−j .

However, for our main theorems it is not these exact asymptotics which are
important; instead, it is only necessary that we establish upper bounds which are
consistent with self-similar behavior. This leads to the following definition.
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Definition 2.1. We say that a set of double null unknowns obeys “self-similar
bounds” if for every Ricci coefficient ψ and curvature component Ψ we have

∣

∣

∣
∇i∇j

4ψ
∣

∣

∣
�i,j |u|−1−i−j ,

∣

∣

∣
∇i∇j

4Ψ
∣

∣

∣
�i,j |u|−2−i−j ,

for the lapse Ω and shift b we have
∣

∣

∣
∇i∇j

4Ω
∣

∣

∣
�i,j |u|−i−j , |∇i∇j

4b| �i,j |u|−i−j .

2.2 Constraint Equation Analysis Along {v = 0}. Our analysis begins
with a study of the null constraint equations along {v = 0}. Indeed, as is well
known, along any fixed null cone, the Einstein equations essentially reduce to a
system of ordinary differential equations, and thus, given suitable “seed data” along
the cone (on an incoming cone χ, Ω, and b will suffice) the values of the other double
null unknowns and conjugate derivatives thereof are completely determined by their
values on the initial manifold S−1,0.

The first order of business is thus to find seed data and initial values along S−1,0

so that after solving the null constraint equations along {v = 0} the resulting set of
double null unknowns obey self-similar bounds in the sense of Definition 2.1.

We start with the case n = 2 which is simpler due to the lack of singularities
as v → 0. We will inductively determine the value of each ∇i

4ψ and ∇i
4Ψ. More

specifically we induct upwards on the number of ∇4 derivatives and, for each i,
(roughly) induct backwards on the signature of ∇i

4ψ and ∇i
4Ψ (see Section 3.3 for

the definition of signature). The “base case” of our induction corresponds to the
initial assumptions that

Ω2|v=0 = 1, b|v=0 = 0, /g = u2
/g0

, (9)

from which it immediately follows that along {v = 0}

χ̂ = 0, trχ =
2

u
, ω = 0, α = 0. (10)

The specification of these values should be thought of as a choice of seed data
from which the rest of the double null unknowns (and ∇4 derivatives thereof) will
be determined by integrating the null constraint equations and using their initial
values on the manifold S−1,0. (One can already anticipate that these are sufficient
seed data by signature considerations; χ, ω, and α comprise all of the Ricci and null
curvature components of highest signature.)

More specifically, consider any other Ricci coefficient ψs of signature s not deter-
mined already by the above. By inspection we see that these all satisfy ∇3 equations
and thus we will have an equation schematically of the form

∇3ψs + cu−1ψs =
∑

ψ 
=trχ, s1+s2=s+1

ψs1
ψs2

+ ∇ψs+1/2 + Ψs+1, (11)
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where the value of c is determined by the presence of a term trχψ2 in the correspond-
ing null structure equation. Note that since the non-vanishing Ricci coefficients of
the highest signature 1 are only trχ, we actually do not see any Ricci coefficients of
signature 1 on the right hand side. In particular, the quadratic terms on the right
hand side must only contain Ricci coefficients of a strictly higher signature. Similarly,
any curvature component Ψs of signature s will satisfy an equation schematically of
the form

∇3Ψs + cu−1Ψs = ∇Ψs+1/2 +
∑

s1+s2=s+1

ψs1
Ψs2

. (12)

(Though we will suppress the discussion of them in this introductory section, it is
also important to use that certain curvature components satisfy constraint equations
along the manifolds S from Proposition 3.3.)

Now consider the equation (11) in the situation where along {v = 0} the right
hand side happens to already be a known function F which behaves in a self-similar
fashion. (In particular, in an orthonormal frame |F | ∼ u−2.)

∇3ψs + cu−1ψs = F. (13)

One can easily integrate this o.d.e. along {v = 0} and find that the general solution
in an orthonormal frame {eA} is of the form

(ψs)AB = ((ψs)AB|u=−1) |u|−c + |u|−c

∫ u

−1
|ũ|cF dũ.

Depending on the value of c, the analysis proceeds in various ways.

(1) If c > 1 then there is in fact a unique solution which satisfies self-similar
bounds.

(2) If c < 1 then any choice of ψs|u=−1 leads to a solution which satisfies self-similar
bounds.

(3) If c = 1 and F = 0, then any choice of ψs|u=−1 leads to a solution which
satisfies self-similar bounds. In this case there is a “self-similar freedom” in the
specification of ψs.

(4) If c = 1 and F �= 0, then (13) implies that |ψs| ∼ | log(u)||u|−1 and thus there
are no solutions consistent with self-similar bounds.

(It is straightforward to extend this analysis to the case when F is only assumed to
satisfy self-similar bounds.)

A similar set of scenarios occurs for the analysis of the equation (12) in the case
the right hand side is known. (In this case the critical value of c would be 2.) By
treating the Ricci coefficients and null curvature components in the right order, the
above analysis allows one to systematically determine what values for the double null
unknowns at S−1,0 lead to a solution satisfying self-similar bounds along {v = 0}.
(Occasionally, one must also appeal to the constraint equations of Proposition 3.3.)
In particular, when n = 2 the problem of the logarithmic divergence turns out to
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never occur, one finds that χ̂ is the only double null unknown with a “self-similar
freedom”, and one finds that α is free in the sense of case (2) above.

Next, one can determine ∇4ψ|v=0 and ∇4Ψ|v=0 easily for any Ricci coefficient
and null curvature component which have a ∇4 null structure or Bianchi equation.
It follows immediately from the form of the equations that these satisfy self-similar
bounds. The only remaining unknown ∇4 derivatives are ∇4α, ∇4η, and ∇4ω. How-
ever, for these unknowns, one can commute the corresponding ∇3 equation with ∇4

and then argue as above, mutatis mutandis, to determine the freedom in ∇4Ψ or
∇4ψ by integrating the o.d.e. in the u-direction. (Note that Definition 2.1 implies
that in an orthonormal frame we are interested in |∇4Ψ| � |u|−3 and |∇4ψ| � u−2

and thus the critical value of c for ∇4Ψ is 3 and for ∇4ψ is 2.) Continuing in this
fashion allows one to determine the allowed freedom for all the double null unknowns
and their ∇4 derivatives.

Since commutation with ∇4’s raise the homogeneity and preserves the general
structure of the ∇3 equations (see Lemma 3.8 below), it is clear that after a sufficient
number of ∇4 commutations the integration of every ∇3 equation will result in the
analogue of case 2, i.e., all solutions to the constraint equation will satisfy self-similar
bounds. In fact, when n = 2, this already will occur after one ∇4 commutation.

In higher dimensions it is natural to allow for solutions which are singular as
v → 0. To see why, and also how the analysis above can potentially incorporate such
singularities, we consider a Ricci coefficient equation of the form

∇3ψ + cu−1ψ = 0.

If ψ is assumed to continuously extend to {v = 0}, then all solutions to this equation
satisfy |ψ| ∼ |u|−c; hence, if c > 1 we would conclude that ψ must vanish, if c < 1
then all solutions ψ will have bounds which are better than self-similar, and if c = 1,
ψ has a “self-similar freedom”. However, if c < 1, it is also possible to formally
consider the singular self-similar solution u−cv−1+c. The freedom to consider such a
solution will also be considered a “self-similar freedom”.

Let us turn now specifically to the case of n = 3. One proceeds as when n = 2
until we come to α, which is in principle singular as v → 0. The relevant equation
turns out to become

∇3α +
3

2
u−1α = F,

for some F whose behavior along {v = 0} has already been determined. To any
given solution α0 one can add an undetermined part proportional u−3/2v−1/2. This
is the source of the formally undetermined singular self-similar term when n = 3.
Once a choice has been made for this term, the analysis can proceed analogously to
the case when n = 2. There turn out to be no more self-similar freedoms after α.

Next we consider the case of n = 4. In this case the equation for α becomes

∇3α + 2u−1α = F,
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for some regular self-similar function F ∼ |u|−3 which, for generic choices of /g0
,

does not vanish. This time it seems one can always add a formally undetermined
self-similar regular term proportional to u−2. However, we have the problem that if
F does not vanish then there is a logarithmic divergence and it seems no regular
self-similar solutions exist:

α(u) ∼ u−2

∫ u

−1
u2F + u−2data ∼ log(u)u−2 as u → 0.

The resolution of this turns out to be to allow α ∼ log
(

u
v

)

u−2, the point being that

(

∇3 + 2u−2
)

(

log
(u

v

)

u−2
)

= u−3.

Once we allow such logarithmic singularities and the formally undetermined regular
term, the analysis can proceed analogously to the case when n = 2. As with n = 3
there turn out to be no more self-similar freedoms after α.

The case of higher dimensional odd and even n works in an analogous fashion
to the cases of n = 3 and n = 4, the key difference is that the corresponding
undetermined term occurs for ∇i

4α for some i > 0.

We emphasize that, as is manifest from the argument above, this procedure is
very wasteful with regards to angular derivatives. In particular, it is clear that these
formal jet computations on their own cannot be used to establish Theorem 1.3.

At this point it is illuminating to draw a connection with the asymptotic expan-
sions of Fefferman–Graham [FG84,FG12]. Recall that in the works [FG84,FG12]
Fefferman and Graham showed that once one fixed a choice of

/g|v=0, tf
(

∂
n

2
v /g
)

|v=0,

then there was a unique power series expansion formally corresponding to a self-
similar solution. (Though Fefferman and Graham did not work in the context of a
double null foliation, it is easy to convert their coordinates to a double null foliation;
see Appendix C.) We will not require these infinite order expansions for the proof
of our main theorems. However, the constraint equation procedure outlined above

is easily seen to generate such expansions. The freedom of tf
(

∂
n

2
v /g
)

|v=0 exactly

corresponds to the aforementioned self-similar freedoms.

2.3 Energy Estimates for Curvature. In order to prove something which
goes beyond formal power series expansions, we will need to carry out a priori
estimates. In particular, we will need to carry out energy estimates for the curvature
components. (See Proposition 3.7 below.) In this section we will provide a heuristic
discussion of our energy estimates.

The analysis in this section will be done under the assumption that the Ricci
coefficients will ultimately be shown to approximately behave as they do along
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{v = 0}. In the actual argument these assumptions will have to be part of the
bootstrap. In particular, in this section we assume that

sup
(u,v)

u2

v

[∣

∣

∣
trχ −

n

u

∣

∣

∣
+
∣

∣Ω2 − 1
∣

∣+
∣

∣χ̂
∣

∣+ |η| +
∣

∣η
∣

∣+ |ω| + |ω|
]

� 1, |χ̂| + |trχ| � 1,

(14)
and that v

|u| 
 1.

We also introduce the following convention about integration:

Convention 2.1. We introduce the convention that when we do not write a volume
form it is implied that it is with respect to some combination of du, dv, or d /V ol0.
Here d /V ol0 denotes the volume form associated to the metric /g0

.

We first discuss the case when n = 2. Keeping the assumptions (14), Defini-
tion 3.3, and Proposition 3.7 in mind we write the first Bianchi pair as

∇3α +
1

u
α = ∇⊗̂β + · · · , (15)

∇4β + 2trχβ = divα + · · · . (16)

(Later in the section we will discuss how to handle the terms hiding in the “· · · ”.)
The usual method for carrying out an energy estimate is to contract the first equa-
tion by α, the second by β, integrate over a characteristic rectangle {(u, v, θ) ∈
(−1, u0) × (0, v0) × S}, integrate by parts, and add the resulting estimates together
so as to cancel the spacetime terms containing angular derivatives. However this
naive scheme will fail because, among other things, there will be a spacetime term
of the wrong sign (remember that u is negative in the region under consideration)
proportional to

∫ u0

−1

∫ v0

0

∫

S
u−1 |α|2 ,

(keep Convention 2.1 in mind) and if one tries to use Grönwall to control this term
one gets a logarithmic divergence in u.

We can cure this particular logarithmic divergence by first conjugating (15)
and (16) by |u|k = (−u)k for k > 1:

∇3

(

|u|kα
)

+
1 − k

u

(

|u|kα
)

= ∇⊗̂
(

|u|kβ
)

+ · · · , (17)

∇4

(

|u|kβ
)

+ 2trχ
(

|u|kβ
)

= div
(

|u|kα
)

+ · · · . (18)

Now the spacetime term generated by α will have a good sign. Of course, there is
still the spacetime term coming from β’s equation, and, even more worrisome, the
value of trχ can be a more or less arbitrary function consistent with self-similarity.

(In fact, we will see later in Section 4 that trχ|v=0 = −
/R0

u where /R0 is the Gaussian
curvature of /g0

.) The key point, however, is that we will control an L2-flux of β in
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the u-direction and we do not see a logarithmic divergence when we apply Grönwall
in the v-direction. More concretely, under the assumption that v

|u| 
 1, we have

sup
0≤v≤v0

∫ u0

−1
f2(u, v) du ≤ A1 + A2

∫ v0

0

∫ u0

−1
|u|−1f2(u, v) dudv ⇒

sup
0≤v≤v0

∫ u0

−1
f2(u, v) du ≤ A1 exp

(

A2

∫ v0

0
|u|−1 dv

)

� A1.

Since all null curvature components other than α satisfy a ∇4 equation, we see that
it is only α’s equation which directly constrains the choice of k (at least as far this
particular potential logarithmic divergence goes).

We still need to determine the exact value of k. Note that the estimate we will
eventually obtain for α and β is

sup
v0

|u0|
≤ε

[

sup
−1≤u≤u0

∫ v0

0

∫

S
|α|2 u2k dv + sup

0≤v≤v0

∫ u0

−1

∫

S
|β|2 u2k du

]

. (19)

If we expect to the show that the solutions become “scale-invariant” as u → 0, it is
natural to ask that these norms are invariant under the rescaling diffeormorphism
Φ̂λ (see (59)). A straightforward computation shows that this leads to the choice of
k = 3/2 (which is fortunately greater than 1). Unfortunately, in Section 4 we will
see that |β|v=0| ∼ u−2 with a non-zero implied constant, and thus, the choice of
k = 3/2 leads to the following issue:

∫ u0

−1

∫

S
|β|2 u3 du ∼ |log (u0)| → ∞ as u0 → 0.

There are various ways to deal with this problem. If we were only interested in
the n = 2 case the simplest fix would be to introduce a small constant δ > 0 and
replace (19) with

sup
v0

|u0|
≤ε

[

sup
−1≤u≤u0

∫ v0

0

∫

S
|α|2 u2k dv + sup

0≤v≤v0

|u0|
2δ

∫ u0

−1

∫

S
|β|2 u2k−2δ du

]

. (20)

However, we will take an alternative approach which for various technical reasons
turns out to be more convenient. We introduce the following notation:

Definition 2.2. For any Su,v tensor Θ, we define

Θ
�

|Su,v

.
= Θ|Su,v

− Θ|Su,0
,

where Su,v and Su,0 are identified via their canonical coordinate systems. (More
specifically, starting with any coordinate system (or frame) on S−1,0, we extend the
coordinates by ∂u Lie-propagation to each Su,0. Then the coordinates are extended
to each Su,v by Lie-propagation with ∂v.)
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Then we rewrite (15) and (16) in terms of α̃ and β̃:

∇3α̃ +
1

u
α̃ = ∇⊗̂β̃ + O

(

|u|−3
)

+ · · · , (21)

∇4β̃ + 2trχβ̃ = divα̃ + O
(

|u|−3
)

+ · · · . (22)

The price we pay for working with the tilded quantities is the presence of inhomoge-
neous terms on the right hand side coming from the values of α and β along {v = 0}
(one could try to exploit cancellations between the terms from α and β but this does
not turn out to be necessary). However, the advantage is that in addition to using
positive u-weights, we can now also use negative v-weights. We now let δ > 0 be a
small constant and conjugate by |u|2−δv−1/2+δ (the “total weight” still needs to be
3/2 to maintain scale-invariance). We obtain

∇3

(

|u|2−δv−1/2+δα̃
)

+
δ − 1

u

(

|u|2−δv−1/2+δα̃
)

= ∇⊗̂
(

|u|2−δv−1/2+δβ̃
)

+ O
(

|u|−1−δv−1/2+δ
)

+ · · · , (23)

∇4

(

(|u|2−δv−1/2+δβ̃
)

+
1

2
v−1
(

(|u|2−δv−1/2+δβ̃
)

+ 2trχ
(

(|u|2−δv−1/2+δβ̃
)

= div
(

(|u|2−δv−1/2+δα̃
)

+ O
(

|u|−1−δv−1/2+δ
)

+ · · · . (24)

Now, it is easy to see that the intial data fluxes are finite and the energy estimate

even generates a good spacetime term proportional v−1
∣

∣

∣
|u|2−δv−1/2+δβ̃

∣

∣

∣

2
in the

equation for β̃. The v-weight is sufficiently strong to absorb the errors associated to
the trχβ term. Finally, one checks that the inhomogeneous terms turn out not to be
a problem (the δ > 0 is necessary to avoid a logarithmic divergence).

The next Bianchi pair is (β, (ρ, σ)). We can carry out the analogous estimate;
except this time we are not scared of a bad spacetime term for β because we can
control with the good spacetime term we obtained when we estimated the Bianchi
pair (α, β). Repeating these estimates allows one to work down the whole Bianchi
hierarchy. Note how important the coefficient of u−1 in (15) is, and how the analogous
coefficients in all of the other Bianchi equations are not as relevant.

Let’s now consider the case when n = 3. The first Bianchi pair is then

∇3αAB +
3

2
u−1αAB = −∇CνC(AB) + ∇(AβB) + · · · , (25)

∇4βA = ∇BαBA + · · · , (26)

∇4νABC = −2∇[AαB]C + · · · . (27)

(Given our experience with the case of n = 2 we have put the terms proportional to
trχβ and trχν into the “· · · ”.) There are two fundamental differences with the case
of n = 2. First of all, the coefficient of u−1 is now 3

2 instead of 1. Secondly, the best

we can say about α along {u = −1} is that |α| |u=−1 � v−1/2. In particular, α is not
square-integrable initially.
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The term 3
2u−1 suggests that we need to use a u-weight with a power greater

than or equal 3
2 . It is easiest to use a weight greater than 3

2 and thus, to maintain
scale-invariance, we need to use some negative v-weights; this naturally leads us to
the use of α̃, β̃, and ν̃. However, since α is singular as v → 0, it is not a priori clear
what exactly α̃ means. This leads to the following renormalization scheme:

Definition 2.3. Let n = 3. Along {u = −1} there exists hAB such that (in the
coordinate frame)

αAB|u=−1 = v−1/2hAB + O (1) .

Then we extend hAB to the whole spacetime by Lie-propagation (see the discus-
sion in Definition 2.2) and set

α′
AB

.
= αAB − v−1/2|u|1/2hAB.

The point of this renormalization scheme is that

∇u

(

v−1/2|u|1/2hAB

)

+
3

2
u−1

(

v−1/2|u|1/2hAB

)

= O
(

v1/2|u|−7/2
)

.

(This is, of course, directly related to why in the formal analysis we discussed in
Section 2.2 the v−1/2 term in the Taylor expansion of α is formally undetermined.)

For α′ it makes sense to discuss α′
�

and we eventually obtain

∇3α
′

�

AB +
3

2
u−1α′

�

AB = −∇Cν�C(AB) + ∇(Aβ
�

B) + O
(

|u|−3
)

+ · · · , (28)

∇4β
�

A = ∇Bα′
�

BA + O
(

v−1/2|u|−3/2
)

+ · · · , (29)

∇4ν
�

ABC = −2∇[Aα′
�

B]C + O
(

v−1/2|u|−3/2
)

+ · · · . (30)

Now we can carry out an estimate analogously to the n = 2 case. The singular
inhomogeneous terms on the right hand side of β̃’s and ν̃’s equation turns out not
to be a problem because the negative v-weight will generate a spacetime term with
a v−1 weight for β̃ and ν̃. The rest of the Bianchi pairs may be treated similarly.
(Note, however, that it is strictly easier to treat all other Bianchi pairs since there
are no more analogues of the difficulties associated to α.) As with n = 2 we note the
privileged role of the coefficient of u−1 in (25).

Next, let’s discuss n = 4. This time we have

∇3αAB + 2u−1αAB = −∇CνC(AB) + ∇(AβB) + · · · , (31)

∇4βA = ∇BαBA + · · · , (32)

∇4νABC = −2∇[AαB]C + · · · . (33)

Now the coefficient in front of u−1α is 2. Thus the smallest u-weight that we can
hope to use is 2 and we need a negative v-weight of at least −1

2 to maintain scale-
invariance. This requires special care because we will not get a good spacetime
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term for α and if we naively use the scheme from n = 2 or n = 3 the use of a v−1/2

weight will lead to a logarithmic divergence (recall that previously we used v−1/2+δ).
We also need to keep in mind that along {u = −1} we can have that α blows-up
logarithmically as v → 0.

We start with a renormalization of α analogous to the case of n = 3. The reader
may find it useful to recall, for the specific case of n ≥ 4 and even, both Definition 1.2
and the discussion of the constraints from Section 2.2.

Definition 2.4. Let n = 4. Along {u = −1} there exists OAB such that (in the
coordinate frame)

αAB|u=−1 = log(v)OAB + O (1) .

Then we extend OAB to the whole spacetime by Lie-propagation and set

α′
AB

.
= αAB − log

(v

u

)

OAB.

The key point for avoiding the feared logarithmic divergence is that if one re-
calls from Section 2.2 how the logarithmic term in α is produced, then when we

write (31), (32), and (33) in terms of α′
�

, β
�

, and ν�, then the inhomogeneous term

produced in α′
�

will in fact decay as v → 0:

∇3α
′

�

AB + 2u−1α′
�

AB = −∇Cν ′
�

C(AB) + ∇(Aβ′
�

B) + O
(

log
(v

u

) v

u4

)

+ · · · , (34)

∇4β
′

�

A = ∇Bα′
�

BA + O
(

log
(v

u

)

|u|−3
)

· · · , (35)

∇4ν
′

�

ABC = −2∇[Aα′
�

B]C + O
(

log
(v

u

)

|u|−3
)

+ · · · . (36)

Now we can carry out the energy estimates in (essentially) the same fashion as when
n = 2 and n = 3. (In the actual estimates, analogously to (20), we actually put a
weight v−1/2+δ inside the integral and a v−δ

0 outside the integral.) The rest of the
Bianchi pairs may be estimated similarly. Yet again, just as with n = 2 and n = 3,
we note the privileged role of the coefficient of u−1 in (31).

Finally, we need to discuss how the case of n > 4 is handled. In general, the
equation for α looks like

∇3αAB +
n

2
u−1αAB = −∇CνC(AB) + ∇(AβB) + · · · .

This suggests that we need a u-weight of at least n
2 . Scale-invariance would then re-

quire that we use a negative v-weight of 3− n
2 . However, it is clear that for sufficiently

large n, one cannot hope for the initial fluxes of the tilded quantities to be finite for
such a large negative v-weight. One approach would be to subtract further terms in
the Taylor expansion, but this quickly becomes very awkward. First suppose that n
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is odd. Then we can commute the equation for α by ∇
n−3

2

4 to obtain an equation of
the form

∇3

(

∇
n−3

2

4 α
)

AB
+

n

2
u−1∇

n−3

2

4 αAB = −∇C∇
n−3

2

4 νC(AB) + ∇(A∇
n−3

2

4 βB) + · · · .

(Of course, many additional terms are produced when we commute that have to be
tracked carefully in the actual proof.) The application of the ∇4 derivatives raises the

homogeneity of α and the estimate produced after conjugation with |u|
n

2
+ 1

2
−δv− 1

2
+δ

is now scale-invariant. Thus, after this commutation we can proceed essentially as
we did when n = 3. A similar scheme works for large even n. Note that integrating
from {v = 0} allows us to recover ∇i

4α from ∇i+1
4 α. (For this it is important that

the most singular term in v we ever see is v−1/2 which is integrable.)
Of course, in order to control the nonlinear terms hiding in the “· · · ” we will

need to apply Sobolev inequalities and these in turn require commutations with
angular derivatives ∇. The basic principle is that for any curvature component Ψ,
|u∇Ψ| should satisfy the same estimates as |Ψ| (cf. the discussion in the introduction
of [AL17]). Briefly, the reason we expect this to work is that when we commute a ∇3

Bianchi equations with ∇ the formula from Lemma 3.7 shows that the coefficient
of u−1 will increase by 1. Once a sufficient number of these commutations have
been carried out, almost all of the nonlinear terms may be controlled in a bootstrap
setting in a standard way using Sobolev inequalities on S.

For the nonlinear terms on the right hand side of α’s equation we have to be more
careful. For example, consider a term on the right hand proportional to ψα. When
n = 3 it seems that such a term could, in the worse case scenario, be proportional to
u−5/2v−1/2 and thus will eventually produce a logarithmic divergence. When n = 4
then we must be worried that such a term will produce a spacetime term containing
α of the wrong sign, which cannot be absorbed into anything since we do not produce
a good spacetime term for α. Similar worries occur for general n. However, as it turns
out, by signature considerations the ψ in such a nonlinear term must be one of the
Ricci coefficients from (14) which actually vanish as v → 0. Thus, these worst case
scenarios do not actually happen. However, we do conclude that it is of fundamental
importance that when we estimate the Ricci coefficients we do indeed recover the
good v-weights in (14).

Before we close the section, we draw attention to the close connection between
the importance of α in the above energy estimate scheme and how in the constraint
equation analysis of Section 2.2, α is the source of all of the “self-similar freedom”
in the initial characteristic data. In particular, a heuristic reason for understanding
the need to commute with ∇4 in higher dimensions is that we desire to carry out the
top-order energy estimates with quantities whose initial characteristic data satisfies
self-similar bounds without any fine-tuning.

2.4 Estimates for the Ricci Coefficients. In this section we will briefly dis-
cuss the strategy for estimating the Ricci coefficients. Most importantly, see Sec-
tion 2.3 above, we will need to verify that (14) holds. In particular, if a Ricci
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coeffiicent ψ vanishes along {v = 0}, then this needs to be remembered by the
corresponding estimte, i.e., we expect to show estimates consistent with

|ψ| �
v

u2
. (37)

The most straightforward situation occurs when the Ricci coefficient ψ we desire
to estimate satisfies a ∇4 equation of the form

∇4ψ = ψ · ψ + Ψ + ∇ψ.

One can then simply integrates in the v-direction to show that the bounds from
curvature are inherited by ψ. If ψ vanishes when {v = 0}, then we will obtain an
estimate consistent with (37). (Of course the ∇ψ on the right hand side can produce
a loss of an angular derivative in the estimate. In reality, at the top order, we need
to couple the transport estimates with elliptic estimates.)

When ψ satisfies a ∇3 equation instead, we have to be a bit more careful. These
will be schematically of the form

∇3ψ +
c

u
ψ = ψ · ψ + Ψ, (38)

In contrast to the case of the ∇4 equations, the second term will produce a logarith-
mic divergence if we treat it as an error and put it on the right hand side.

Inspired by the energy estimates from Section 2.3, we conjugate (101) by uc and
obtain an equation schematically like

∇3 (ucψ) = ucψ · ψ + ucΨ + · · · . (39)

Integrating this equation, we can expect an estimate schematically of the form
∫

Sû,v̂

|û|2c |ψ|2 (40)

�

⎛

⎝

∫ û

−1

(

∫

Su,v̂

|u|2c |ψ|2 |ψ|2
)1/2

du

⎞

⎠

2

+

⎛

⎝

∫ û

−1

(

∫

Sû,v̂

|u|2c |Ψ|2
)1/2

du

⎞

⎠

2

+

∫

S−1,v̂

|ψ|2 .

Now there are at least three potential problems which can occur.

(1) If, for example, c = 2 then in order to get a scale invariant estimate, we will
need to divide everything by |û|2. However, if the Ricci coefficients ψ which
shows up in the quadratic term ψ ·ψ only satisfies an estimate like |ψ| � |u|−1,
then, after the division by |û|2, on the right hand side we can at best hope to
see

|û|−2

(∫ û

−1
dh

)2

∼ |û|−2 → ∞ as û → 0.
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Hence, depending on the value of c, it may be necessary that (one or both of)
the Ricci coefficients which show up in the quadratic term are controlled by v

u2

instead of |u|−1. If we expect to in fact show that the left hand side vanishes
as v → 0, then we may need to have even stronger estimates for the quadratic
term.

(2) For the same reason as above, the initial data term
∫

S−1,v̂
|ψ|2 might need to

decay as v → 0.
(3) Finally, the same problems can occur for the curvature component Ψ. There

is even an additional difficulty however; if we expect that the left hand side to
vanish as v → 0, then we will need for Ψ to vanish also. Unfortunately, the
best that our energy estimate scheme is consistent with (see Section 2.3) is

that if Ψ vanishes when {v = 0}, then |Ψ| � v1/2

|u|5/2 . This is not strong enough

to establish an estimate consistent with |ψ| � v
u2 !

It turns out that the first difficulty is resolved by the fact that whenever it
is needed, the quadratic terms which show up do in fact have the desired extra
decay as v → 0. (That this happens can be anticipated by signature considerations.)
Similarly, the initial data term turns out to always decay when it is needed to.
However, the potential problem with Ψ turns out to require a little more work. If
n > 4, and Ψ vanishes on {v = 0} then our energy estimates will in fact control
∇4Ψ. Then we could hope to obtain the desired decay via the fundamental theorem
of calculus. However, this cannot possibly work for n = 2, 3, 4 where we do not
commute the energy estimates with ∇4. Instead, if Ψ �= α (we will not in fact need
to estimate α in this way), we could use that Ψ satisfies a ∇4 Bianchi equation and
use the fundamental theorem of calculus in the v-direction. This gives the desired
extra decay for Ψ as the expense of losing an angular derivative; fortunately, the
derivative may be recovered after a bit of work with elliptic estimates.

Finally, when n > 4 we also need estimates for an appropriate number of ∇4

derivatives applied to the Ricci coefficients. Fortunately, these follow by arguing as
above with the commuted versions of the various equations. It is in fact strictly
easier since we do not need to establish any improved vanishing behavior as v → 0.

2.5 Supercritical Estimates and Self-Similar Extraction. Now we turn
to a sketch of the proof of Theorem 1.2. We start with the case n = 2.

Let’s recall the scaling properties of our norms. Let 0 < λ 
 1 and, for concrete-
ness, let’s consider the component α and it’s associated rescaling αλ associated to gλ.
Let /gλ

denote the analogue of /g for gλ. Using the explicit formulas from Section 3.11,
we see that in the coordinate frame

(αλ)AB (u, v, θ) = αAB (λu, λv, θ) .

The v-energy flux we control for α is

sup
u∈[−1,0)

∫ −εu

0

∫

S
/g

AC
/g

BDα�ABα�CD|u|4−2δv−1+2δ dv. (41)
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The scale-invariance of this estimate is reflected in the fact that a change of variables
and the formulas from Section 3.11 show that this is equal to

sup
u∈[−λ−1,0)

∫ −εu

0

∫

S

(

/gλ

)AC (

/gλ

)BD
(α�λ)AB (α�λ)CD |u|4−2δv−1+2δ dv.

Restricting to u ∈ [−1, 0) we thus see that the scale-invariant bound for α we have
proven for g immediately implies that the same scale-invariant bounds hold for gλ.
More generally, we automatically get scale-invariant bounds for all the double null
unknowns of gλ. At this stage, it would be natural to try to use these uniform bounds
along with a compactness argument to show that there exists a sequence λi → 0
such that gλi

→ gself . However, such a compactness argument cannot yield that the
limit is unique or even exists along a different choice of {λi}.

Instead, we make the following observation. If in the estimate (41) we replaced
|u|4−2δ with |u|4−2δ−2κ for some κ > 0 and still managed to achieve a uniform bound,
then we would obtain the following improved estimate for the rescaled quantity αλ:

sup
u∈[−λ−1,0)

∫ −εu

0

∫

S

(

/gλ

)AC (

/gλ

)BD
(α�λ)AB (α�λ)CD |u|4−2δ−2κv−1+2δ dv (42)

= λ2κ sup
u∈[−1,0)

∫ −εu

0

∫

S
/g

AC
/g

BDα�ABα�CD|u|4−2δ−2κv−1+2δ dv → 0 as λ → 0.

Of course, the conclusion one draws from this is that we should not expect such a
“supercritical” estimate for α to be obtainable. (We call this supercritical because
when we scale towards the origin, where we expect the solution to be most singular,
the estimate becomes better.) It is instructive to observe that the reason the proof of
this improved estimate would break down is that the inhomogeneous terms (which
are produced by the initial data along {v = 0}) on the right side of the Bianchi
equations would produce errors during the energy estimates which would eventually
not be integrable.

The key realization is the following. Suppose we instead try to derive the super-
critical estimate for the differences α − αλ, β − βλ, etc. First of all, after we derive
equations for the differences of the Ricci coefficients and curvature components, the
structure in the nonlinear terms which allowed us to prove our original estimates
turns out to be preserved (cf. the analysis of differences of the double null equations
in [LR15,LR13]). Second of all, because the initial data along {v = 0} is (mostly)
scale invariant, the corresponding initial data (mostly) vanishes for the differences
of double null unknowns. In particular, the problematic inhomogeneous terms do
not appear! This eventually allows us to establish a uniform bound on the analogue
of (42) with α replaced by αλ −α. By the same rescaling argument we thus conclude
that {gλ}λ>0 is Cauchy as λ → 0.

It remains to argue that the limit gsim is self-similar. Let ||·|| schematically denote
the supercritical norm in which we control the differences g − gλ. Let s > 0 and
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consider the rescaled metric (gsim)s. For any λ > 0, rescaling yields the following:

||gsim − (gsim)s|| ≤ ||gsim − gλs|| + ||gλs − (gsim)s||

� (λs)κ + sκ ||gλ − gsim||

� (λs)κ .

Since λ > 0 is arbitrary we conclude that gsim = (gsim)s. This finishes the sketch of
Theorem 1.2. Furthermore, the class of initial data we can allow turns out to also
allow us to establish the existence part of Theorem 1.3.

To prove the uniqueness part of Theorem 1.3, a further analysis indicates that

if two self-similar have the same values for /g|S−1,0
and tf

(

L
n

2
v /g
)

|S−1,0
, then the

difference will satisfy a supercritical estimate. A rescaling argument implies that the
two solutions are in fact equal.

Finally, we note that when n ≥ 3 and odd, essentially the same proof works.
When n ≥ 4 and even there is a twist; if we lower the u-weight then there will be a
problem closing the energy estimates for α (see Section 2.3). Instead it turns to be
possible to lower the v-weight slightly and prove supercritical estimates. The need
to lower the v-weight explains the presence of the ι’s in Definition 1.2.

3 The equations of the double null gauge

In this section we will present the equations of the double null gauge in an arbitrary
dimension. This extends the well-known treatments of the double null gauges in 3+1
dimensions, i.e., when n = 2, carried out in the works [KN03,Chr09]. We emphasize
that the calculations in this section do not rely on any topological assumptions for
S.

3.1 The basic coordinate system. We start with a metric g in the double
null gauge:

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(

dθA − bAdu
)

⊗
(

dθB − bBdu
)

.

We do not assume at this point that g satisfies the Einstein equations.

The {θA} are local coordinates on a closed n-manifold S (not necessarily a
sphere!) for n ≥ 2. We will refer to the specific copy of S sitting at the coordinates
(u, v) = (u0, v0) by Su0,v0

. Unless said otherwise, in this section (and this section
only) the reader should assume that the metric g is smooth. (Of course, later we
will want to consider non-smooth metrics g. We discuss the necessary adjustments
to the equations in Section 3.10.) Finally, we define the null vector fields

e4
.
= Ω−1∂v, e3

.
= Ω−1

(

∂u + bA∂A

)

.

These satisfy

g (e3, e4) = −2.
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3.2 The Ricci coefficients and the null curvature components. Let D
denote the Levi-Civita connection associated to g. The Ricci coefficients are the
following quantities:

χAB
.
= g (DAe4, eB) , χ

AB
= g (DAe3, eB) ,

ηA
.
= −

1

2
g (D3eA, e4) , η

A

.
= −

1

2
g (D4eA, e3) ,

ω
.
= −

1

4
g (D4e3, e4) , ω

.
= −

1

4
g (D3e4, e3) ,

ζA
.
=

1

2
g (DAe4, e3) .

The 1-form ζA is often referred to as “torsion”. Also, many times we will split χ
and χ into their trace and trace-free parts:

χAB
.
= χ̂AB +

1

n
trχ/gAB

, χ
AB

.
= χ̂

AB
+

1

n
trχ/gAB

.

We will often use ψ to stand for a generic Ricci coefficient.
All of these quantities are Su,v tensors (see [KN03,Chr09] for the precise defini-

tions when n = 2; the generalization to higher dimensions is immediate). We will
denote the induced connection on S by ∇A and the projection of D3 and D4 to S
by ∇3 and ∇4. Observe that all of these definitions are exactly the same as the case
of n = 2.

We use the curvature convention

[Di, Dj ] φk = R l
ijk φl.

The null curvature components are defined as follows:

αAB
.
= R (eA, e4, eB, e4) , αAB

.
= R (eA, e3, eB, e3) ,

βA
.
=

1

2
R (eA, e4, e3, e4) , β

A

.
=

1

2
R (eA, e3, e3, e4) ,

ρ
.
=

1

4
R (e4, e3, e4, e3) , σAB

.
=

1

2
(R (e3, eA, e4, eB) − R (e3, eB, e4, eA)) ,

τAB
.
=

1

2
(R (e3, eA, e4, eB) + R (e3, eB, e4, eA)) ,

νABC = R (eA, eB, eC , e4) , νABC = R (eA, eB, eC , e3) .

We will often use Ψ to stand for a generic curvature component (a null curvature
component or RABCD).

We also have the induced curvature tensor on S

/RiemABCD.

It will be convenient sometimes to use τ̂AB to denote the trace-free part of τAB:

τ̂AB
.
= τAB −

1

n
/gAB

trτ.
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Similarly, we will use α̂ and α̂ to denote the trace-free parts of α and α respectively.

In contrast to the n = 2 case we have the additional null curvature components
τAB, νABC , and νABC . Furthermore, the curvature component σ from the n = 2 case
must now be considered a 2-form σAB. After we have listed the null structure, con-
straint, and Bianchi equations it will become clear why these additional components
become necessary in higher dimensions.

The Einstein equations imply certain algebraic relations between the curvature
components. We record the most important of these below.

Lemma 3.1. We have

trα = Ric44, trα = Ric33, trτ = Ric34 − 2ρ,

τAB = /g
CDRCADB − RicAB,

ν B
AB = βA − RicA4, ν B

AB = −β
A

− RicA3,

ν(ABC) = 0, νA[BC] =
1

2
νCBA, νABC =

4

3
νA(BC) +

2

3
νC(BA). (43)

ν(ABC) = 0, νA[BC] =
1

2
νCBA, νABC =

4

3
νA(BC) +

2

3
νC(BA).

Proof. The first five identities are immediate consequences of the definition of Ricci
curvature.

The first equality in (43) follows from the first Bianchi identity. The second
equality in (43) follows from the first as follows:

νABC = −νBCA − νCAB = νCBA + νACB.

The final equality in (43) can then easily be derived:

νABC = νA(BC) + νA[BC]

= νA(BC) +
1

2
νCBA

= νA(BC) +
1

2
νC(BA) +

1

2
νC[BA]

= νA(BC) +
1

2
νC(BA) +

1

4
νABC ⇒

νABC =
4

3
νA(BC) +

2

3
νC(BA).

Clearly, the same arguments work for ν. ��

Next, we record the identities which link D to the projected Su,v derivatives ∇3

and ∇4 and to the induced covariant derivative ∇ on S. (Again we refer the reader
to [KN03,Chr09] for precise definitions.)



788 I. RODNIANSKI, Y. SHLAPENTOKH-ROTHMAN GAFA

Lemma 3.2.

D4e4 = −2ωe4, D4e3 = 2ωe3 + 2ηAeA, D4eA = η
A
e4 + ∇4eA,

D3e4 = 2ωe4 + 2ηAeA, D3e3 = −2ωe3, D3eA = ηAe3 + ∇3eA,

DAe4 = −ζAe4 + χ B
A eB, DAe3 = ζAe3 + χ B

A
eB,

DAeB =
1

2
χ

AB
e4 +

1

2
χABe3 + ∇AeB.

Proof. This is a straightforward calculation. ��

3.3 Signature. An important role in our analysis within the double null gauge
will be played by “signature” considerations. For any Ricci coefficient and null cur-
vature component φ we define the signature of φ by

s (φ)
.
= 1 · N3 (φ) +

1

2
· NA (φ) + 0 · N4 (φ) − 1.

Here N3 denotes the number of 3’s used in the definition of φ, NA denotes the
number of angular indices used in the definition, and N4 denotes the number of e4’s
used. For concreteness we list the signature of the various Ricci coefficients:

s (χAB) = 0, s (ω) = 0,

s (ηA) =
1

2
, s

(

η
A

)

=
1

2
, s (ζA) =

1

2
,

s
(

χ
AB

)

= 1, s (ω) = 1,

and then the signatures of the curvature components:

s (αAB) = 0,

s (βA) =
1

2
, s (νABC) =

1

2
,

s (ρ) = 1, s (σAB) = 1, s (τAB) = 1, s (RABCD) = 1,

s
(

β
A

)

=
3

2
, s (νABC) =

3

2
,

s (α) = 2.

We also have the rules that

s (e4) = −1, s (eA) = −
1

2
, s (e3) = 0,

s (∇3φ) = s (D3φ) = 1 + s (φ) , s (DAφ) = s (∇Aφ) = 1/2 + s (φ) ,

s (∇4φ) = s (D4φ)
.
= s (φ) , s (φ1φ2) = s (φ1) + s (φ2) .

This particular notion of signature was originally introduced in [KR12] where it
was used in the study the problem of trapped surface formation.

By direct inspection of Lemma 3.2, we immediately obtain the following simple
but fundamental lemma:

Lemma 3.3. Covariant differentiation preserves signature.



GAFA THE ASYMPTOTICALLY SELF-SIMILAR REGIME 789

3.4 Metric Equations. In this section we will present the equations for the
metric quantities. These equations relate derivatives of the metric components to
Ricci coefficients.

Proposition 3.1. We have

L4/gAB
= 2χAB, L3/gAB

= 2χ
AB

,

ω = −
1

2
∇4 (log Ω) , ω = −

1

2
∇3 (log Ω) ,

ζA =
1

4
g ([e3, e4] , eA) = −

1

4
Ω−1e4

(

bB
)

/gAB
,

ηA = ζA + ∇A (log Ω) , η
A

= −ζA + ∇A (log Ω) .

Proof. These follow exactly as in the case of n = 2. ��

3.5 Null structure equations. In this section we will present the null-structure
equations. These equations relate the ∇3 and ∇4 derivatives of certain Ricci coef-
ficients to a null curvature component plus a sum of angular derivatives of Ricci
coefficients and quadratic combinations of Ricci coefficients, and possibly a compo-
nent of Ricci curvature.

Before presenting the equations we recall the trace-free symmetrized product ⊗̂
of two Su,v 1-forms ψA and φB:

(

ψ⊗̂φ
)

AB

.
= ψAφB + ψBφA −

2

n
/gAB

ψCφC .

Proposition 3.2. We have

∇4trχ +
1

n
(trχ)2 = − Ric44 − |χ̂|2 − 2ωtrχ,

∇4χ̂AB +
2

n
trχχ̂AB = − α̂AB − 2ωχ̂AB +

(

/gAB

n
|χ̂|2 − χ̂ C

(A χ̂B)C

)

∇3trχ +
1

n

(

trχ
)2

= − Ric33 −
∣

∣χ̂
∣

∣

2
− 2ωtrχ,

∇3χ̂AB
+

2

n
trχχ̂

AB
= − α̂AB − 2ωχ̂

AB
+

(

/gAB

n

∣

∣χ̂
∣

∣

2
− χ̂ C

(A
χ̂

B)C

)

,

∇3χ̂AB +
1

n
trχχ̂AB = − τ̂AB + 2ωχ̂AB +

(

∇⊗̂η
)

AB
+
(

η⊗̂η
)

AB
−

1

n
trχχ̂

AB

−

(

χ̂ C
(A

χ̂B)C −
1

n
χ̂ · χ̂/gAB

)

,

∇3trχ +
1

n
trχtrχ = 2ρ − Ric34 + 2ωtrχ + 2divη + 2 |η|2 − χ̂ · χ̂,

∇4χ̂AB
+

1

n
trχχ̂

AB
= − τ̂AB + 2ωχ̂

AB
+
(

∇⊗̂η
)

AB
+
(

η⊗̂η
)

AB
−

1

n
trχχ̂AB

−

(

χ̂ C
(A

χ̂B)C −
1

n
χ̂ · χ̂/gAB

)
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∇4trχ +
1

n
trχtrχ = 2ρ − Ric34 + 2ωtrχ + 2divη + 2

∣

∣η
∣

∣

2
− χ̂ · χ̂,

∇4η = − χ ·
(

η − η
)

− β,

∇3η = − χ ·
(

η − η
)

+ β,

∇4ω =
1

2
ρ +

1

4

∣

∣η
∣

∣

2
−

1

4
|η|2 + 2ωω + 3 |ζ|2 − |∇ log Ω|2 ,

∇3ω =
1

2
ρ +

1

4
|η|2 −

1

4

∣

∣η
∣

∣

2
+ 2ωω + 3 |ζ|2 − |∇ log Ω|2 .

Proof. The derivation of these formulas in all dimensions is completely analogous
to the n = 2 case discussed in [KN03]. The 1/n’s that appear in the equation arise
when a tensor is decomposed into its trace and trace-free part. ��

Remark 3.1. Note that these equations are almost identical to the n = 2 case.
One key difference is that the terms in the parenthesis on the right hand sides of
the ∇4χ̂AB, ∇3χ̂AB

, ∇3χ̂AB, and ∇3χ̂AB equations vanish identically when n = 2.
Furthermore, if we additionally assume that Ric(g) = 0, then, as we will see below,
τ̂ vanishes when n = 2. Thus, when n = 2 and Ric(g) = 0, the equations for ∇3χ̂AB

and ∇4χ̂AB
do not have any curvature components on the right hand side.

3.6 Constraint Equations. The double null gauge induces various equations
intrinsic to the manifolds Su,v. We will derive these equations in this section.

First we have a definition:

Definition 3.1. We will use a slash to denote curvature quantities associated with
the manifolds Su,v, that is, we denote the full curvature tensor, the Ricci tensor, and
scalar curvature of the Su,v’s by

/RiemABCD, /RicAB, /R,

respectively.

The following collection of constraint equations are natural genearalizations from
the n = 2 case.

Proposition 3.3. We have

/RiemABCD = RABCD +
1

2

(

χ
BC

χAD + χBCχ
AD

− χ
AC

χBD − χACχ
BD

)

.

(44)

/RicAB = τAB + RicAB −
1

2
trχχ

AB
−

1

2
trχχAB + χC

(Aχ
B)C

, (45)

/R = −2ρ + R + 2Ric34 +
1 − n

n
trχtrχ + χ̂ · χ̂, (46)

∇AχBC − ∇BχAC = νABC + χACζB − χBCζA, (47)

∇Aχ
BC

− ∇Bχ
AC

= νABC − χ
AC

ζB + χ
BC

ζA, (48)
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∇AχAB − ∇Btrχ = −βB + Ric4B + trχζB − ζAχAB, (49)

∇Aχ
AB

− ∇Btrχ = β
B

+ Ric3B − trχζB + ζAχ
AB

, (50)

∇AηB − ∇BηA = σAB +
1

2

(

χ̂ C
A

χ̂CB − χ̂ C
B

χ̂CA

)

, (51)

∇Aη
B

− ∇Bη
A

= −σAB −
1

2

(

χ̂ C
A

χ̂CB − χ̂ C
B

χ̂CA

)

. (52)

Proof. The Gauss equation reads

/RiemABCD = RABCD +
1

2

(

χ
BC

χAD + χBCχ
AD

− χ
AC

χBD − χACχ
BD

)

.

Tracing this once yields (45) and tracing this twice yields (46).
Equations (47) and (48) are simply the Codazzi equations associated to χ and

χ. Tracing then yields (49) and (50).
A straightforward computation yields (just as in the n = 2 case) that

∇3χAB = −τAB − σAB + 2ωχAB + 2∇AηB + 2ηAηB − χ C
A

χCB. (53)

Taking the anti-symmetric part of (53) yields (51). Similarly, we obtain (52). ��

Remark 3.2. It is now manifest that if we set all of the Ricci curvature terms to
vanish in the null structure and constraint equations, then we have recovered the
entire content of the Einstein equations.

As is well known, despite Remark 3.2, for carrying out a priori estimates of
solutions to the Einstein equations, it is very useful to work with various additional
equations, such as the Bianchi system. With this in mind, from this point on, we
will consider metrics g which satisfy Ric(g) = 0.

First, we take a moment to observe that when n = 2 there are various simplifi-
cations.

Lemma 3.4. Suppose that Ric(g) = 0 and n = 2. Then we have

τ̂AB = 0,

and if we let /εAB denote a (locally defined) volume form on S, we have

νABC = /εAB ν̃C , νABC = /εAB ν̃C ,

for 1-forms ν̃C and ν̃C which must satisfy

βA = ∗ν̃A, β
A

= − ∗ ν̃A,

where ∗ denotes the Hodge star operator.
Furthermore, if σ is defined in the usual way by (1/4) (∗R)3434, then we have

σAB = σεAB.
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Proof. This is straightforward. ��

When n > 2 there are various “extra” constraint equations that may be derived.
The following two are the most important:

Proposition 3.4. Suppose that g satisfies Ric(g) = 0. Then we have

∇BτAB + ∇Aρ −
1

2
νABCχBC −

1

2
νABCχBC

−
1

2
χ C

A
βC +

1

2
trχζCχ C

A
+

1

2
χ C

A β
C

−
1

2
ζCχ C

A trχ

+
1

2
trχβA +

1

2
trχχABζB −

1

2
trχβ

A
−

1

2
trχζBχ

BA
= 0.

Proof. This is a straightforward if tedious consequence of the identity

/∇
B
(

/RicAB −
1

2
/gAB

/R

)

= 0,

and the constraint equations (45)–(50). ��

Proposition 3.5. Suppose that g satisfies Ric(g) = 0. Then we have

∇ARABCD = 2∇[CτD]B + χ · ν + χ · ν + ζ · χ · χ,

where the final three terms are schematics for all possible contractions of the written
terms.

Proof. We have

RABCD = /RiemABCD −
1

2

(

χ
BC

χAD + χBCχ
AD

− χ
AC

χBD − χACχ
BD

)

,

/RicAB = τAB −
1

2
trχχ

AB
−

1

2
trχχAB + χC

(Aχ
B)C

.

Thus,

∇ARABCD =∇A /RiemABCD

−
1

2

(

χAD∇Aχ
BC

+ χ
AD

∇AχBC − χ
AC

∇AχBD − χAC∇Aχ
BD

)

−
1

2

(

χ
BC

∇AχAD + χBC∇Aχ
AD

− ∇Aχ
AC

χBD − ∇AχACχ
BD

)

.

Recall that

∇A /RiemBCDE + ∇B /RiemCADE + ∇C /RiemABDE = 0.

Tracing on B and D yields

∇A /RicCE + ∇B /RiemCABE − ∇C /RicAE = 0 ⇒

∇A /RiemABCD
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= ∇C /RicDB − ∇D /RicCB

= ∇CτDB −
1

2
(∇Ctrχ) χ

DB
−

1

2

(

∇Ctrχ
)

χDB −
1

2
trχ∇Cχ

DB

−
1

2
trχ∇CχDB + ∇C

(

χA
(Dχ

B)A

)

− ∇DτCB +
1

2
(∇Dtrχ)χ

CB
+

1

2

(

∇Dtrχ
)

χCB +
1

2
trχ∇Dχ

CB

+
1

2
trχ∇DχCB − ∇D

(

χA
(Cχ

B)A

)

.

Combining the two identities leads to

∇ARABCD = ∇CτDB − ∇DτCB

−
1

2

(

χ
BC

(

∇AχAD − ∇Dtrχ
)

+ χBC

(

∇Aχ
AD

− ∇Dtrχ
))

+
1

2

(

χBD

(

∇Aχ
AC

− ∇Ctrχ
)

+ χ
BD

(

∇AχAC − ∇Ctrχ
)

)

−
1

2

(

trχ
(

∇Dχ
CB

− ∇Cχ
DB

)

+ trχ (∇DχCD − ∇CχDB)
)

−
1

2

(

χAD

(

∇Aχ
BC

− ∇Cχ
AB

)

+ χ
AD

(

∇AχBC − ∇CχAB

)

)

+
1

2

(

χAC

(

∇Aχ
BD

− ∇Dχ
AB

)

+ χ
AC

(

∇AχBD − ∇DχAB

)

)

−
1

2

(

χ
AB

(

∇DχA
C − ∇CχA

D

)

+ χA
B

(

∇Dχ
AC

− ∇Cχ
DA

))

.

The proof is then finished by appealing to the Codazzi equations. ��

Remark 3.3. One can also derive equations which link either ∇AνA[BC] or ∇CνABC

to ∇[AβB] or ∇AνA[BC] and ∇CνABC to ∇[Aβ
B]

along with lower order terms, but,

we will not directly need these equations for this paper.

3.7 Commutation. The following commutator estimates will play a fundamen-
tal role in our analysis.

Lemma 3.5. Let φA1...Ar
be a (0, r) Su,v tensor. Then, for every m ≥ 0, we have

that

|∇4∇
mφ − ∇m∇4φ| �

∑

i+j+k=m−1

∣

∣∇iψj+1
∣

∣

∣

∣

∣
∇k∇4φ

∣

∣

∣
+

∑

i+j+k=m

∣

∣∇iψj+1
∣

∣

∣

∣

∣
∇kφ

∣

∣

∣
,

where ∇iψj and ∇iψj+1 are schematic notations for all possible ways of distributing
i angular derivatives over a product of j or j + 1 Ricci coeffiients.

Proof. The formula is well known in the case n = 2, e.g., see [Luk12,Tay17]. The
proof in the general case n ≥ 2 is completely analogous. ��
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Next, we have

Lemma 3.6. Let φA1...Ar
be a (0, r) Su,v tensor. Then, for every m ≥ 0, we have

that

|∇m
4 ∇Aφ − ∇A∇m

4 φ| �
∑

i+j+k=m

∣

∣∇i
4ψ

j+1
∣

∣

∣

∣

∣
∇k

4φ
∣

∣

∣
+

∑

i+j+k=m−1

∣

∣∇∇i
4ψ

j+1
∣

∣

∣

∣

∣
∇k

4φ
∣

∣

∣

+
∑

i+j+k=m−1

∣

∣∇i
4ψ

j+1
∣

∣

∣

∣

∣
∇∇k

4φ
∣

∣

∣
.

Proof. This is proven in an analogous fashion to Lemma 3.5. ��

For ∇3 equations it will be useful to track trχ a little more explicitly.

Lemma 3.7. Let φA1...Ar
be a (0, r) Su,v tensor. Then, for every m ≥ 0, we have

that

∇3φ +
c

n
trχφ = F ⇒

∣

∣

∣

∣

∇3∇
mφ +

c + m

n
trχ∇mφ − ∇mF

∣

∣

∣

∣

�
∑

i+j+k=m, k 
=m

∣

∣

∣
∇i
(

η + η
)j
∣

∣

∣

∣

∣

∣
∇kF

∣

∣

∣

+
∑

i+j+(k1,k2)+l=m, (k2,l) 
=(0,m)

∣

∣∇iψj
∣

∣

[∣

∣

∣
∇k1χ̂

∣

∣

∣
+
∣

∣

∣
∇k2trχ

∣

∣

∣

] ∣

∣

∣
∇lφ
∣

∣

∣
.

We are using the same schematic notation as in Lemma 3.5.

Proof. As with Lemma 3.5, it is well-known that such an estimate holds in the n = 2
case and the generalization to n ≥ 2 is straightforward. ��

Finally, we will also need to commute with ∇4.

Lemma 3.8. Let φA1...Ar
be a (0, r) Su,v tensor. Then, for every m ≥ 0, we have

that

∇3φ = F ⇒

|∇3∇
m
4 φ − ∇m

4 F |

�
∑

i+j+k=m, k 
=m

∣

∣∇i
4ψ

j
∣

∣

∣

∣

∣
∇k

4F
∣

∣

∣

+
∑

i+j1+j2+k=m

[∣

∣

∣
∇i

4ψ̊
∣

∣

∣
+
∣

∣

∣
∇∇i−1

4 ψ̊
∣

∣

∣

] [∣

∣

∣
∇∇j1−1

4 ψj2
∣

∣

∣
+
∣

∣

∣
∇j1

4 ψj2
∣

∣

∣

] [∣

∣

∣
∇∇k−1

4 φ
∣

∣

∣

+
∣

∣

∣
∇k

4φ
∣

∣

∣

]

,

where we are employing the same schematic notation as before and ψ̊ denotes a
Ricci coefficient which is one of ω, η, η, or χ̂.
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Proof. A standard calculation yields

∇3φ = F ⇒

|∇3∇
m
4 φ − ∇m

4 F |

�
∑

i+j+k+l=m−1

∣

∣∇i
4ω

j
∣

∣

[∣

∣

∣
∇k

4η
∣

∣

∣
+
∣

∣

∣
∇k

4η
∣

∣

∣

] [∣

∣

∣
∇l

4∇φ
∣

∣

∣
+
∣

∣

∣

[

∇l
4, ∇
]

φ
∣

∣

∣

]

+
∑

i+j+k=m−1

[

∣

∣∇i
4ω

j+1
∣

∣

∣

∣

∣
∇k

4F
∣

∣

∣
+
∣

∣∇i
4ω

j+1
∣

∣

∣

∣

∣
∇k+1

4 φ
∣

∣

∣

]

+
∑

i+j+k+l=m−1

∣

∣∇i
4ω

j
∣

∣

[∣

∣

∣
∇j

4

(

η + η
)2
∣

∣

∣
+
∣

∣

∣
∇j

4σ
∣

∣

∣

] ∣

∣

∣
∇l

4φ
∣

∣

∣
.

��

3.8 Schematic Notation for Error Terms. The analysis of various nonlinear
error terms will be achieved almost entirely based on signature considerations.

The following notation will be used to refer to nonlinear terms on the right hand
side of the Bianchi equations which will always be handled perturbatively.

Definition 3.2. Let s ∈
{

0, 1
2 , 1, 3

2 , 2, 5
2

}

. Then we introduce the schematic notation

E
(3)
s

.
=

∑

s1+s2=s, s1 
=1

ψs1
Ψs2

+ ζ
∑

s1+s2=s−1/2

ψs1
ψs2

,

E
(4)
s

.
=

∑

s1+s2=s

ψs1
Ψs2

+ ζ
∑

s1+s2=s−1/2

ψs1
ψs2

.

Here ψs refers to a Ricci coefficient of signature s and Ψs refers to a curvature
component of signature s.

3.9 Bianchi Equations. In this section we turn to the Bianchi equations which
we will eventually use to carry out energy estimates. It turns out that our energy
estimate scheme will only require us to calculate the equations up to error terms
which can be controlled by Es. This will simplify the relevant calculations.

Proposition 3.6. Suppose that g satisfies Ric(g) = 0. Then we have

∇3αAB = − ∇CνC(AB) + ∇(AβB) −
1

2
trχαAB + 4ωαAB + E

(3)
1 ,

∇4βA = ∇BαBA + E
(4)
1/2,

∇4νABC = − 2∇[AαB]C + E
(4)
1/2,

∇3νABC = ∇BτAC − ∇AτBC − ∇AσBC + ∇BσAC −
2

n
trχνABC

+ χ̂ D
A

νDBC − χ̂ D
B

νDAC + 2ωνABC + E
(3)
3/2,

∇4RABCD = ∇BνCDA − ∇AνCDB + E
(4)
1 ,
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∇4σAB = ∇CνABC + E
(4)
1 ,

∇3RABCD = − ∇AνCDB + ∇BνCDA −
1

2
χ

AC
(τBD + σBD) +

1

2
χ

AD
(τBC + σBC)

+
1

2
χ

BC
(τAD + σAD) −

1

2
χ

BD
(τAC + σAC)

−
2

n
trχRABCD + χ̂ E

A
RBECD + χ̂ E

B
REACD + E

(3)
2 ,

∇3τAB = ∇(Aβ
B)

−∇CνC(AB)+χ
AB

ρ−

(

1

n
+

1

2

)

trχτAB + χ̂CDRC(AB)D + E
(3)
2 ,

∇3ρ = − ∇Aβ
A

−

(

1 +
1

n

)

trχρ −
1

2
χ̂ABτAB + E

(3)
2 ,

∇3σAB = − ∇CνABC −

(

1 +
1

n

)

trχσAB −
1

2
χ̂C

[A
RB]4C3 + E

(3)
2 ,

∇4νABC = − 2∇[AτB]C + 2∇[AσB]C + E
(4)
3/2,

∇3νABC = − 2ωνABC − 2∇[AαB]C − 2χ
C[A

β
B]

−
3

n
trχνABC

+ 2χ̂D
[A

νB]DC + χ̂ D
A

νCDB − χ̂ D
B

νCDA + E
(3)
5/2,

∇3βA
= − ∇BαBA − 2ωβ

A
+

(

1 +
2

n

)

trχβ
A

+ χ̂BCνABC − χ̂ B
A

β
B

+ E
(3)
5/2,

∇4αAB = − ∇CνC(AB) − ∇(Aβ
B)

+ E
(4)
2 .

Remark 3.4. We have mostly grouped the equations in the way that corresponds
to the “Bianchi-pair” notion introduced in Definition 3.3 (see also Proposition 3.7).
The exception is that there are extra ∇3 equations for τAB and ρ which are useful
to have written explicitly. (They are just suitable traces of the RABCD equation.)

Proof. Let’s have a few general remarks before we dive into the calculations. There
are two ways we generate equations for the ∇3 or ∇4 derivatives of curvature com-
ponents. The first is the second Bianchi identity:

DiRjklm + DjRklmi + DkRlmil = 0. (54)

This is effective if the curvature component we are interested in has S indices in the
first two slots. Otherwise we will use the well-known fact that Ricci flatness and the
second Bianchi identity imply that the curvature tensor is divergence free:

DiRijkl = 0. (55)

In either case, having written down the equation in terms of the connection D
of g, we use the formulas for the connection coefficients from Lemma 3.2 to re-write
everything in terms of ∇3, ∇4, and ∇A. This turns out to not be as complicated as
one might fear because, first of all, this procedure only requires us to consider the
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component of D which is normal to S, and second of all, due to Lemma 3.3 and
the fact that we allow terms proportional to the appropriate error term E , for lower
order terms we only need to track the trχ. Thus we can effectively work with the
following table

D4e4 = E , D4e3 = E , (D4eA)⊥ = E ,

D3e4 = 2ωe4 + E , D3e3 = −2ωe3, (D3eA)⊥ = E ,

DAe4 = E , DAe3 = χ B
A

eB + E , (DAeB)⊥ =
1

2
χ

AB
e4 + E .

Here E denotes a product of a Ricci coefficient not of signature 1 and an element of
the null frame (e3, e4, {eA}) which is consistent with signature.

We start with τAB, using Lemma 3.1 we write

τAB = /g
CDRCADB. (56)

Note that the signature of RCADB is 1. Applying ∇4 yields

∇4τAB = /g
CD∇4RCADB.

Then we can express ∇4RCADB in terms of D4RCADB and use the second Bianchi
identity (54) to obtain

D4RCABD + DCRA4DB + DAR4CDB = 0.

Converting the covariant derivatives D into Su,v derivatives leads to

∇4RCADB + ∇CRA4DB + ∇AR4CDB −
1

2
χ

CD
RA44B

−
1

2
χ

CB
RA4D4 −

1

2
χ

AD
R4C4B −

1

2
χ

AB
R4CD4 + E

(3)
1 = 0.

Tracing over C and D and symmetrizing in A and B then leads to

∇4τAB + ∇CνC(AB) + ∇(AβB) +
1

2
trχαAB − χ C

(A
αB)C + E

(3)
1 = 0.

This establishes the desired ∇4 equation for τ . We have kept the more precise error

term E
(3)
1 since it will be important for establishing the equation for ∇3αAB.

Next we compute the equation for ∇3αAB. For this we use (55):

−
1

2
D3R4A4B −

1

2
D4R3A4B + /g

CDDCRDA4B = 0.

After symmetrizing in A and B and using that we already have computed the ∇4

equation for τ , we eventually obtain

∇3αAB + ∇CνC(AB) − ∇(AβB) +
1

2
trχαAB − 4ωαAB + E

(3)
1 = 0.
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Next we compute the equation for ∇3νABC . Working in the usual fashion with (54)
yields

∇3νABC = −∇AτBC + ∇BτAC − ∇AσBC + ∇BσAC

−
2

n
trχνABC + χ̂ D

A
νDBC − χ̂ D

B
νDAC + 2ωνABC + E

(3)
3/2. (57)

Next, we compute the equation for ∇4RABCD. We start with

D4RABCD + DARB4CD + DBR4ACD = 0,

and then obtain

∇4RABCD = ∇BνCDA − ∇AνCDB + E
(4)
1 .

For ∇4σAB we recall that the first Bianchi identity implies

σAB =
1

2
R34AB.

Using also that

−
1

2
D4R34AB + /g

CDDCRD4AB = 0,

we obtain

∇4σAB = ∇CνABC + E
(4)
1 .

Next, we compute the equation for ∇3RABCD. We start with

D3RABCD + DARB3CD + DBR3ACD = 0.

Eventually we obtain

∇3RABCD + ∇AνCDB − ∇BνCDA +
1

2
χ

AC
(τBD + σBD) −

1

2
χ

AD
(τBC + σBC)

−
1

2
χ

BC
(τAD + σAD) +

1

2
χ

BD
(τAC + σAC) +

2

n
trχRABCD

+ χ̂ E
A

RBECD − χ̂ E
B

REACD + E
(3)
2 = 0.

Tracing once and symmetrizing leads to

∇3τAB − ∇(Aβ
B)

+ ∇CνC(AB) − χ
AB

ρ +

(

1

n
+

1

2

)

trχτAB

− χ̂CDRC(AB)D + E
(3)
2 = 0.

Tracing one final time leads to

∇3ρ + ∇Aβ
A

+

(

1 +
1

n

)

trχρ +
1

2
χ̂ABτAB + E

(3)
2 = 0.
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Now we come to ∇3σAB. As when we computed ∇4σAB, we start with

σAB = −
1

2
R43AB.

Then we appeal to

−
1

2
D3R43AB + /g

CDDCRD3AB = 0.

We eventually obtain

∇3σAB + ∇CνABC +

(

1 +
1

n

)

trχσAB +
1

2
χ̂C

[A
RB]4C3 + E

(3)
2 .

Next we compute the equation for ∇4νABC . We proceed analogously to how we
computed the equation for ∇4νABC . We eventually obtain

∇4νABC = −2∇[AτB]C + 2∇[AσB]C + E
(4)
3/2.

Similarly, we may compute ∇3νABC . We eventually obtain

∇3νABC + 2ωνABC + 2∇[AαB]C + 2χ
C[A

β
B]

+
3

n
trχνABC

−2χ̂D
[A

νB]DC − χ̂ D
A

νCDB + χ̂ D
B

νCDA + E
(3)
5/2 = 0.

Tracing this yields

∇3βA
+ 2ωβA + ∇BαAB +

(

1 +
2

n

)

trχβ
A

− χ̂BCνABC + χ̂ B
A

β
B

+ E
(3)
5/2 = 0.

Finally we compute the equation for ∇4αAB. We use (55) with jkl = A3B and
use that we already have an equation for ∇3τAB. We obtain

∇4αAB = −∇CνC(AB) + ∇(AβB) + E
(4)
2 . ��

In order to use these equations to carry out energy estimates it will be useful to
group various subsets into so-called Bianchi pairs.

Definition 3.3. We say that the two tuples ((Ψi1 , . . . ,Ψil
) , (Ψj1 , . . . ,Ψjm

)) of cur-
vature components form a “Bianchi pair” if, first of all, they satisfy a system of
equations of the form

∇3Ψi1 = D(i1) (Ψj1 , . . . ,Ψjm
) + l.o.t.,

...

∇3Ψil
= D(il) (Ψj1 , . . . ,Ψjm

) + l.o.t.,

∇4Ψj1 = D(j1) (Ψi1 , . . . ,Ψil
) + l.o.t.,

...

∇4Ψjm
= D(jm) (Ψi1 , . . . ,Ψil

) + l.o.t.,
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where the l.o.t. denotes lower order terms and the D’s are linear first order differential
operators on S, and, secondly, there exists positive constants

ci1 , . . . , cil
, cj1 , . . . , cjm

,

such that

l
∑

k=1

cik

∫

S
D(ik) (Ψj1 , . . . ,Ψjm

) Ψik
+

m
∑

p=1

cjp

∫

S
D(jp) (Ψi1 , . . . ,Ψil

) Ψjp
= l.o.t.

Remark 3.5. If ((Ψi1 , . . . ,Ψil
) , (Ψj1 , . . . ,Ψjm

)) form a Bianchi pair, then we will
have

l
∑

k=1

cik

∫

S
∇3 |Ψi1 |

2 +

m
∑

p=1

cjp

∫

S
∇4

∣

∣Ψjp

∣

∣

2
= l.o.t.

Integrating in the 3 and 4 directions then yields an energy estimate.

We have

Proposition 3.7. The following tuples of curvature components form Bianchi pairs:

(αAB, (βA, νABC)) , (νABC , (RABCD, σAB)) , ((RABCD, σAB) , νABC) ,
((

β
A
, νABC

)

, αAB

)

.

The grouping here corresponds exactly to how we grouped the equations in Propo-
sition 3.6 into the corresponding groups.

The relevant constants ci (see Definition 3.3) may be taken to be

(2, (2, 1)) , (2, (1, 1)) , ((1, 1) , 2) , ((2, 1) , 2) .

Proof. This follows easily from Propositions 3.6 and 3.5 and a straightforward series
of integration by parts on S. ��

3.10 Regular Solutions. We will want to consider solutions to the Einstein
equations which are not necessarily smooth. In this section we will discuss in what
sense these are solutions.

We assume that our background differentiable manifold is given by

M = (̊u, 0) × [0, v̊) × S (58)

where S is a closed n-dimensional manifold and we use the u-coordinate to
parametrize (̊u, 0) and the v-coordinate to parametrize [0, v̊).

Definition 3.4. We call any collection of Su,v tensors on M:

/gAB
, bA, Ω, χAB, χ

AB
, ω, ω, ζA,

ηA, η
A
, αAB, αAB, βA, β

A
,

νABC , νABC , ρ, τAB, σAB, RABCD

a set of “double null unknowns.”
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The next proposition is the statement that the equations of the double null gauge
imply Ricci flatness of the metric, at least when the metric is C2.

Proposition 3.8. Suppose we have a set of “double null unknowns” such that

/gAB
, bA, and log Ω are twice continuously differentiable on M, and we have classical

solutions of all of the equations listed in Propositions 3.1, 3.2, and 3.3 where all of
the Ricci curvature terms are set to 0.

Then the C2-metric gαβ defined by

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(

dθA − bAdu
)

⊗
(

dθB − bBdu
)

,

is a classical solution to the Einstein vacuum equations

Ric (g) = 0.

Proof. This the content of Remark 3.2. ��

We first consider the case when our solution g is an regular solution.

Definition 3.5. We say that a metric g is a regular solution to the Einstein
vacuum equations if g is regular (see Definition 1.3) and if

(1) When n = 2 or n > 4 the metric defined by

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(

dθA − bAdu
)

⊗
(

dθB − bBdu
)

,

is a classical solution to the Einstein vacuum equations.
(2) When n = 3 or n = 4, g is a classical solution to the Einstein vacuum equations

when v > 0, the correspondingly defined double null unknowns are classical so-
lutions everywhere to the constraint equations of Proposition 3.3, and the dou-
ble null unknows are weak solutions to the equations of Propositions 3.1, 3.2,
and 3.6, where, letting D denote an arbitrary 1-order skew-adjoint differential
operator on S, we say the equation

∇3ψ1 + Dψ2 = F,

is satisfied weakly in M if for almost every v1 ∈ [0, v̊), smooth ϕ
(

u, θA
)

, and
ů < u1 < u2 < 0 we have

∫ u2

u1

∫

S

[

−ψ1 · ∇∗
3

(

ϕ
√

/g
)

− ψ2D
∗
(

ϕ
√

/g
)

+ F · ϕ
√

/g
]

|v=v1
du dθA

+

∫

Su2,v1

ψ1 · ϕ
√

/g dθA −

∫

Su1,v1

ψ1 · ϕ
√

/g dθA = 0.

We have an analogous definition for ∇4 equations.



802 I. RODNIANSKI, Y. SHLAPENTOKH-ROTHMAN GAFA

Remark 3.6. Note that the only double null unknown which does not necessarily
extend continuously to {v = 0} is α when n = 3 or n = 4; to see this, first consider
the case when n is odd. Then we recall that the first possibly non-smooth term in
the Taylor expansion of g near {v = 0} is a term proportional to v

n

2 . If n ≥ 5,
then it is clear that all second derivatives of g (and hence all curvature components)
will extend continuously to {v = 0}. When n = 3, the only problematic component
is one that involves two v-derivatives of g, and this is exactly the α component of
curvature. When n is even, the first possibly non-smooth component is the term
proportional to v

n

2 log(v). Now one can argue as in the odd case. Hence, once one
observes that Proposition 3.6 does not have a ∇4 equation for α, it is straightforward
to see that Definition 3.5 makes sense.

Remark 3.7. By revisiting the proof of Proposition 3.8, it is straightforward to
check that this definition implies that in the (u, v, θA) coordinates, the Einstein
equations Rμν = 0 are satisfied weakly in L2.

Finally, the metrics produced by Theorem 1.1 are potentially more singular than
the above. However, they will be constructed as uniform limits in the E norm (see
Definition 5.13) of regular solutions. This allows in a straightforward manner for the
interpretation of them as solutions to the Einstein equations.

3.11 Scaling numerology. In this section we record the behavior of the metric
components, Ricci coefficients, and curvature components under the action of

Φ̂λ
.
= λ−2Φλ, (59)

(see (1)). In the following formulas it is understood that tensors are always evaluated
in the coordinate frame. We also suppress the dependence on the θA coordinates.

Φ̂λΩ (u, v) = Ω (λu, λv) ,
(

Φ̂λ/gAB

)

(u, v) = λ−2
/gAB

(λu, λv) ,

Φ̂λbA (u, v) = λbA (λu, λv) ,

Φ̂λχAB (u, v) = λ−1χAB (λu, λv) , Φ̂λtrχ (u, v) = λtrχ (λu, λv) ,

Φ̂λχ̂AB (u, v) = λ−1χ̂AB (λu, λv) , Φ̂λw (u, v) = λω (λu, λv) ,

Φ̂λαAB (u, v) = αAB (λu, λv) , Φ̂λζA (u, v) = ζA (λu, λv) ,

Φ̂ληA (u, v) = ηA (λu, λv) , Φ̂λη
A

(u, v) = η
A

(λu, λv) ,

Φ̂λβA (u, v) = λβA (λu, λv) , Φ̂λχ
AB

(u, v) = λ−1χ
AB

(λu, λv) ,

Φ̂λtrχ (u, v) = λtrχ (λu, λv) , Φ̂λχ̂
AB

(u, v) = λ−1χ̂
AB

(λu, λv) ,

Φ̂λαAB (u, v) = αAB (λu, λv) , Φ̂λβ
A

(u, v) = λβ
A

(λu, λv) ,

Φ̂λRABCD (u, v) = λ−2RABCD (λu, λv) ,

Φ̂λω (u, v) = λω (λu, λv) , Φ̂λσAB (u, v) = σ (λu, λv) ,

Φ̂λρ (u, v) = λ2ρ (λu, λv) .
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Remark 3.8. In particular, this calculation shows that for a self-similar solution we
expect Ricci coefficients ψ to satisfy

|ψ|
/g

= f
(v

u
, θA
)

|u|−1,

for some non-negative function f .
For a curvature component Ψ, we expect

|Ψ|
/g

= F
(v

u
, θA
)

u−2,

for some non-negative function F .
To make this more concrete, let’s do the calculation explicitly for χ̂. Using the

relations above, we see that in the coordinate frame

χ̂AB (u, v) = −uχ̂AB

(

−1,
v

−u

)

, /g
AB (v, u) = u−2

/g
AB

(

−1,
v

−u

)

.

Thus

|χ̂| |(u,v) =
√

/gAC/gBDχ̂ABχ̂CD|(u,v)

= |u|−1
√

/gAC/gBDχ̂ABχ̂CD|(−1, v

−u
).

4 Analysis of the Initial Characteristic Data

We will be interested in solving a characterstic initial value problem, and thus we
must prescribe data along the two null hypersurfaces {v = 0} and {u = −1}. As
we have already recalled in Section 2.2, the Einstein equations are over-determined
and the solution cannot be prescribed arbitrarily along these null hypersurfaces;
instead the various null constraint equations must be satisfied. In order to prove
Theorem 1.1 we face the additional necessity that the characterstic data satisfy
“self-similar bounds” (see the dicussion in Section 2.2.)

By a standard density argument (see Appendix A), in order to prove Theorem 1.1
we can work with data which is qualitatively more regular than Definition 1.2, as long
as the quantitative estimates respect the regularity of Definition 1.2. In particular,
it will suffice to work with initial data of the following type.

Definition 4.1. Let
(

S, /g0

)

be a closed orientable n-dimensional Riemannian man-

ifold. Then we say a 1-parameter family /̂g(v), v ∈ [0, ε), of Riemannian metrics on
S is “regular conjugate data” if

(1) (a) When n = 2, /̂g(v) is smooth in v.

(b) When n ≥ 3 and odd, /̂g(v) = /̂g
(1)

(v) + v
n

2 /̂g
(2)

(v) for smooth /̂g
(1)

and /̂g
(2)

.

(c) When n ≥ 4 and even, /̂g(v) = /̂g
(1)

(v) + log(v)v
n

2 /̂g
(2)

(v) for smooth /̂g
(1)

and /̂g
(2)

.



804 I. RODNIANSKI, Y. SHLAPENTOKH-ROTHMAN GAFA

(2) /̂g (0) = /g0
.

As is well-known, at least when n = 2, the Einstein equations are locally well-
posed when data are posed on two regular tranversally intersecting null hypersurfaces
(see [Luk12,Ren90]). For every u0 < 0, we can appeal to these results to get a local
solution associated to the characterstic data on {v = 0} ∩ {|u| ≥ u0} and {u = −1}:

{v
=

0}

{u
=

−
1}

|u| >
|u

0 |

Here the width of the rectangle will depend on a lower bound for |u0|; in particular
it does not follow from this result that the width is uniformly bounded from below
as u0 → 0.

As is dicussed in Appendix A, we can then take the union over u0 < 0 to establish
the following local existence theorem for regular solutions to the Einstein equations
(which in fact holds in all dimensions).

Theorem 4.1. Let
(

S, /g0

)

be a closed orientable n-dimensional Riemannian mani-

fold and /̂g(v) be regular conjugate data. Then, after possibly taking ε smaller, there

exists a function 0 < f(u) 
 ε with limu→0 f(u) = 0, an open set M0
.
= {(u, v, θA) ∈

M : v ≤ f(u)}, and a unique regular metric g on M0 solving the Einstein equations
such that in the corresponding double null gauge we have

(1)

/g|v=0 = u2
/g0

.

(2)

ζ|(u,v)=(−1,0) = 0.

(3)

Ω2|{v=0}∪{u=−1} = 1.

(4)

b|{v=0} = 0.

(5)

trχ|(u,v)=(−1,0) =
/R0

n − 1
. (60)
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(6) There exists a function Φ
(

v, θA
)

with

/g|u=−1 = Φ2
/̂g.

Remark 4.1. One can easily establish that

χ̂|{u=−1} =
1

2
Φ2Lv /̂g, trχ = n∂v log (Φ) .

Remark 4.2. Using Remark 4.1 and the formula (see the first two equations of
Proposition 3.2)

LvχAB = /g
CDχACχBD − αAB,

which holds in a Lie-propagated frame along {u = −1}, one can easily verify that
the specification of {Lk

v /̂g|v=0}M
k=1 is equivalent to the specification of {∇k

4α|v=0}M
k=1,

and that in this fashion one can arrange for {∇k
4α|v=0}

M
k=1 to take any set of values.

Similarly, a logarithmic divergence of α as v → 0 can be specified by an appropriate
logarithmic divergence of /̂g as v → 0.

Below we depict the region of existence given by this theorem:

{v
=

0}

{u
=

−
1}

v =
f(u)

We emphasize once again that the theorem does not provide an estimate for the
size of M0; in particular, there are no estimates for f(u) from below and hence the
region covered is certainly not sufficient to prove Theorem 1.1.

Next, we give a definition of “compatible regular conjugate data”. These will
be choices of regular conjugate data whose corresponding metrics g induced by
Theorem 4.1 have an asymptotic behavior along {v = 0} which is consistent with
being asymptotically self-similar.

Definition 4.2. We say that regular conjugate data /̂g(v) is “compatible” if the
metric g induced by Theorem 4.1 satisfies the following.

(1) If n = 2, every Ricci coefficient ψ and curvature component Ψ obey the estimate
∣

∣∇iψ
∣

∣ |v=0 �i |u|−1−i,
∣

∣∇iΨ
∣

∣ |v=0 �i |u|−2−i, ∀i ≥ 0. (61)

(2) When n ≥ 3 and odd:
(a) Every Ricci coefficient ψ and curvature component Ψ not equal to α sat-

isfy (61).
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(b) For all 0 ≤ j < n−3
2 we have
∣

∣

∣
∇i∇j

4α
∣

∣

∣
|v=0 �i |u|−2−j−i, ∀i ≥ 0.

(c) There exists a tracefree and symmetric Su,v two-tensor hAB which is in-
dependent of u and v and such that

lim
v→0

∣

∣

∣
∇i
(

∇
n−3

2

4 α − hv−1/2u1/2
)∣

∣

∣
�i |u|−2−i− n−3

2 , ∀i ≥ 0.

(3) When n ≥ 4 and even:
(a) Every Ricci coefficient ψ and curvature component Ψ not equal to α sat-

isfy (61).
(b) For all 0 ≤ j < n−4

2 we have
∣

∣

∣
∇i∇j

4α
∣

∣

∣
|v=0 �i |u|−2−i−j , ∀i ≥ 0.

(c) There exists a tracefree and symmetric Su,v two-tensor OAB which is
independent of u and v and such that

lim
v→0

∣

∣

∣

∣

∇i

(

∇
n−4

2

4 α − OAB log

(

v

|u|

))∣

∣

∣

∣

�i |u|−2−i− n−4

2 , ∀i ≥ 0.

The goal of the remainder of this section will be to classify compatible regular
conjugate data and provide some estimates along {v = 0} of the corresponding
metrics.

We start with the simplest case, n = 2.

Proposition 4.1. When n = 2 any choice of conjugate data is compatible.
Furthermore, if we define a symmetric traceless Su,v tensor hAB to be independent

of u and v and to satisfy

hAB|{(u,v)=(−1,0)} = χ̂AB|{(u,v)=(−1,0)},

then we will have the following behavior along {v = 0} for any metric g induced by
Theorem 4.1:

ω = 0, ω = 0, trχ = −
2k0

u
, χ̂AB = −uhAB,

trχ =
2

u
, η = 0, η = 0, χ̂ = 0, ζ = 0,

αAB = −
(

∇⊗̂ [div0 (h) − ∇k]
)

AB
+ ufAB, βA = u−1 [div0 (h)A − ∇Ak] ,

ρ = 0, σ = 0, β = 0, α = 0.

Here fAB is a smooth tensor independent on u, k0 denotes the Gaussian curvature
of /g0

, the div0 refers to the divergence operator of /g0
. Finally, we note that since

n = 2, ν and ν may be easily recovered from β and β and that τ̂ vanishes identically.
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Proof. Throughout this proof, unless noted otherwise, all quantities are considered
to be evaluated along the cone {v = 0}.

First of all, since Ω is identically 1 along {v = 0}, we in particular obtain

ω = 0.

Next, since we have by assumption

/g (u, θ) = u2
/g0

(θ) .

A straightforward calculation then yields

χ = u/g0
(θ) ⇒

trχ =
2

u
, χ̂ = 0.

Then the ∇3 equation for χ̂ immediately implies that

α = 0.

Next, we turn to ζ. Using that along {v = 0} we have η = ζ and η = −ζ, the ∇3

equation for η becomes

∇3ζA +
2

u
ζA = −β

A
. (62)

Next, we can use the constraint equation (50) to obtain

β
A

=
1

u
ζA.

Combining the two equations yields

∇3ζA +
3

u
ζA = 0.

Since ζ vanishes when u = −1 we conclude that

ζ = η = η = 0.

In turn, (62) yields

β = 0.

The constraint equation (51) immediately implies

σ = 0.

Next we turn to trχ. We have

∇3trχ +
1

u
trχ = 2ρ.
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From (46) we have

ρ = −
k0

u2
−

1

2u
trχ,

where k0 is the Gaussian curvature of /g0
.

Combining the two equations yields

∇3trχ +
2

u
trχ = −

2k0

u2
.

Recall that we already have specified that

trχ|(u,v)=(−1,0) = 2k0.

Solving the o.d.e. along {v = 0} then yields

trχ = −
2k0

u
.

In turn, we then obtain

ρ = 0.

Next, the ∇3 equation for ω now implies that ω is constant. Since ω vanishes
when u = −1, we obtain

ω = 0.

Keeping in mind that Lemma 3.4 implies that

τ̂ = 0,

we obtain for χ̂ that

∇3χ̂ +
1

u
χ̂ = 0.

We immediately obtain

χ̂ = −uh.

Next, the traced Codazzi equation (49) implies

βA = u−1 [div0 (h)A − ∇Ak] , (63)

where the divergence is with respect to /g0
.

This formula for β also determines ν via Lemma 3.4:

νABC = −/εAB (∗β)C .

Lastly, we come to α. This satisfies the following equation:

∇3α +
1

u
α = ∇⊗̂β + E1.
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Direct consideration of the possible terms in E1 easily implies

E1 = 0,

hence,

∇3α +
1

u
α = ∇⊗̂β.

Writing this out in a Lie-propagated frame yields the equation

∂u (αAB) −
1

u
αAB = u−1

(

∇⊗̂ [div0 (h) − ∇k]
)

AB
⇔

∂u

(

u−1αAB

)

= Ω0u
−2
(

∇⊗̂ [div0 (h) − ∇k]
)

AB
.

The unique solution to this o.d.e. is

α = −
(

∇⊗̂ [div0 (h) − ∇k]
)

+ ufAB,

for some symmetric traceless 2-tensor fAB depending on h, ∇k, and α|(u,v)=(−1,0).

Note that the estimates needed to conclude that /̂g(v) is compatible, i.e. (61),
follow immediately form these specific formulas. ��

We now turn to the analogous proposition for n ≥ 3 and odd. Here we will not
provide exact formulas (since the full set of prescribed values gets more and more
complicated as the dimension increases) but, in addition to determining when /̂g(v) is
compatible, we are also interested in finding which double null unknowns will always
vanish on {v = 0}.

Proposition 4.2. Let n ≥ 3 and odd. Then there exists symmetric 2-tensors on S,
{

/̂g
(i)
}

n−1

2

i=1
, such that /̂g(v) is compatible if and only if

Li
v /̂g|v=0 = /̂g

(i)
, ∀i = 1, . . . ,

n − 1

2
.

We furthermore have that the following Ricci coefficients and null curvature
components vanish along {v = 0}:

ω, ω, η, η, χ̂, ζ, ρ, σ, τ, β, ν, α.

Proof. We proceed in an analogous fashion to the case when n = 2. First of all, we
must have

ω = 0, /g (u, θ) = u2
/g0

(u, θ) ,

which in turn implies

χ̂ = 0, trχ = Ω−1 n

u
.
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Next, arguing just as in the n = 2 case we easily obtain that

α = β = η = η = ζ = 0.

The constraint equation (48) then immediately implies that

ν = 0.

Arguing just as in n = 2 we also find that

σ = 0, ρ = 0, trχ = −
/R0

n − 1
u−1.

Now we turn to τ . We have

∇3τ̂ +
(n

2
+ 1
)

u−1τ̂ = E
(3)
2 .

Signature considerations allow one to deduce that E
(3)
2 = 0. Thus

∇3τ̂ +
(n

2
+ 1
)

u−1τ̂ = 0.

Since n > 2 the only way we hope to have that |τ | � u−2 is for τ to vanish
identically. Of course, this happens if and only if τ̂ vanishes when u = −1. The
constraint equation (45) yields

τ̂ = /̂Ric0 +
(n

2
− 1
)

χ̂,

where /̂Ric denotes the trace-free part of the Ricci tensor of /g0
.

Thus, we see that in order for /̂g(v) to be compatible, it must be the case that

/̂Ric +
(n

2
− 1
)

χ̂ = 0. (64)

Remark 4.1 implies that is equivalent to Lv /̂g|v=0 being prescribed. Finally, the Gauss
equation determines RABCD and we see that it satisfies the desired self-similar
bound.

Now we proceed under the assumption that Lv /̂g has the correct value so that (64)
is true.

Just as for n = 2, we easily obtain that

ω = 0.

Next, (47) and (49) determine β and ν. (One can show that β in fact vanishes,
but this won’t matter for us.)

Finally, we come to α. First we specialize to n = 3. In this case, our definition
of regular allows for α in principle to not extend continuously to {v = 0} and
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instead have a term which blows up like v−1/2 in its Taylor expansion. Signature
considerations and the previous estimates yield that

E
(3)
1 = O

(

v1/2
)

as v → 0,

on any compact set of u ∈ [−1, 0). In particular, for each v > 0 we can write α’s
Bianchi equation as

∇3αAB +
3

2
u−1αAB = fABu−1 + O

(

v1/2
)

, (65)

where the O holds for u in any compact set [−1, 0).
Next, along {u = −1}, the regularity assumption implies that we can Taylor

expand α as follows:

αAB|u=−1 = hABv−1/2 + dAB + O
(

v1/2
)

.

After extending h to be independent of u, we may integrate (65) from −1 to u and
obtain

lim
v→0

(

α − hv−1/2u1/2
)

= f̃ (1) + f̃ (2)u1/2,

for tensors f̃ (1) and f̃ (2) independent of u. This concludes the proof for n = 3.
Now, if n is odd and n > 3, then, since our metric is regular α will continuously

extend to {v = 0}. Along {v = 0} we will have

∇3αAB +
n

2
u−1αAB = lABu−1,

for some tensor lAB independent of u and v and which is given explicitly in terms
of /g0

. Integrating this o.d.e. yields

αAB(u) = l̃
(1)
AB + l̃

(2)
ABu

4−n

2 ,

for tensors l̃(1) and l̃(2) both independent of u and v. Furthermore, there is a unique
choice of αAB|u=−1 which will make l̃(2) vanish. Of course, we must make this choice
if the conjugate data is to be compatible. Using Remark 4.2 this forces the L2

v /̂g|v=0

to take a specific value.
The next step in the analysis requires us to examine ∇4α. (Of course, we expect to

have to argue in a special way for n = 5.) We may derive an equation for ∇3 (∇4α) by
commuting the Bianchi equation for α with ∇4 and using the commutation formula
from Lemma 3.8. However, in order to use this equation, we need to already have
expressions for all of the terms on the right hand side. (We also need to produce
estimates for all of the other ∇4Ψ’s and ∇4ψ’s.) Fortunately, the Bianchi equations
immediately give expressions for ∇4Ψ for any curvature component Ψ which is not
equal to α. It immediately follows from the form of these equations that ∇4Ψ satisfies
self-similar bounds. Similarly, the null structure equations determine ∇4ψ for all
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Ricci coefficients except for η and ω and we see that all such ∇4ψ satisfy self-similar
bounds. Next, for η and ω we first note that it suffices to estimate ζ and ω and then
observe that ∇4ζ can be computed by differentiation of the constraint equation for
β. For ω, one commutes its ∇3 equation with ∇4 to derive and an equation of the
form ∇3 (∇4ω) = F where we will have an explicit expression for F . In particular,
F will not contain ∇4α or ∇4ω ·ψ and all terms in F will satisfy self-similar bounds.
Then we can integrate from u = −1 where we know that ∇4ω vanishes to determine
∇4ω everywhere and see that ∇4ω satisfies the self-similar bounds. Note that one
consequence of this analysis is that for every curvature component Ψ not equal to
α and Ricci coefficient ψ we have

∣

∣∇j∇4Ψ
∣

∣ |v=0 � |u|−2−j−i,
∣

∣∇j∇4ψ
∣

∣ |v=0 � |u|−1−j−i,

where j is arbitrary.
Finally, we will have an equation for ∇4α of the form

∇3 (∇4α) +
n

2
u−1∇4α = known,

where we furthermore have that |known| � |u|−4.
At this point, if n = 5 we can argue exactly as we did before for n = 3, or if

n > 5 we can argue as we did before for n > 3. Continuing to commute with ∇4

and repeating the analysis above mutatis mutandis eventually concludes the proof
for all n. ��

Finally, we consider the case when n ≥ 4 and even.

Proposition 4.3. Let n ≥ 4 and even. Then there exists symmetric 2-tensors on

S,
{

/̂g
(i)
}n

2
−1

i=1
and O, such that /̂g(v) is compatible if and only if in a Lie-propagated

from

/̂g(v) = /̂g
(0)

+ v/̂g
(1)

+ · · · +
v

n

2
−1

(

n
2 − 1

)

!
/̂g
(n

2
−1)

+ v
n

2 log (v)O + O
(

v
n

2

)

.

We furthermore have that the following Ricci coefficients and null curvature
components vanish along {v = 0}:

ω, ω, η, η, χ̂, ζ, ρ, σ, τ, β, ν, α.

Proof. We start just as in the proof of Proposition 4.2. It is easy to see that ev-
erything goes through until the analysis of α. First we specialize to the case when
n = 4. In this case α may blow-up logarithmically as v → 0. The equation for α may
be written as

∇3αAB +
2

u
αAB = fABu−1 + O (v log(v)) , (66)

where the big O error estimate holds over any compact region of u and fAB is as in
Proposition 4.2. Let α̊AB be the tensor defined by extending α|u=−1 all u and v by
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making it independent of u. For v > 0, integrating this equation (66) from u = −1
yields

αAB = f̃AB log(u) + α̊AB + O (v log(v)) .

It is now clear that our conjugate data will be compatible if and only if α̊AB has
a specific logarithmic singularity as v → 0 determined by the tensor f̃AB. Using
Remark 4.2 this concludes the proof when n = 4.

For n > 4 one argues as in Proposition 4.2 with further commutations of ∇4. We
omit the details. ��

5 Norms, Renormalizations, and the Commuted Equations

In this section we will introduce the various scale-invariant norms we will use for our
a priori estimates. Before we jump into the definitions, we introduce two important
small parameters ε, δ > 0. Our a priori estimates will all cover the region where
v
|u| ≤ ε. The parameter δ will show up in various norms below; its presence is used

to avoid various logarithmic divergences.

5.1 Renormalizations. We start with some notation which we will use for
various renormalizations.

It is often useful to subtract off the values of various tensors along {v = 0}:

Definition 5.1. For any Su,v tensor Θ, we define

Θ
�

|Su,v

.
= Θ|Su,v

− Θ|Su,0
,

where Su,v and Su,0 are identified via their canonical coordinate systems.

When n ≥ 3 and odd, then the most singular term we will be confronted with is
α. It turns out to be useful to work with a quantity α′ where the most singular part
of α has been subtracted off.

Definition 5.2. Let n ≥ 3 and odd. Given a solution arising from compatible
regular conjugate data, we define

α′
AB

.
= αAB −

1
(

n−3
2

)

!
v

n−4

2 u
4−n

2 hAB.

See Definition 4.2.

Next we have the analogous normalizations for n ≥ 4 and even.

Definition 5.3. Let n ≥ 4 and even. Given a solution arising from compatible
regular conjugate data, we define

α′
AB

.
= αAB −

1
(

n−4
2

)

!
v

n−4

2 u
4−n

2 log

(

v

−u

)

OAB.

See Definition 4.2.
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Remark 5.1. When n = 2 we will not see any singular behavior as v → 0 and hence
we do not need to renormalize α.

Finally, it will be useful to explicitly introduce some notation for a curvature
component which, if equal to α, has been renormalized.

Definition 5.4. We will use the notation Ψ′ to refer to a generic curvature com-
ponent which, if equal to α, has been renormalized.

5.2 Top Level Energy Norms for Curvature. We start with the energy
norms for curvature. Choosing this norm correctly is the most subtle part of the
entire set-up and is different for the case of n odd, n ≥ 4 and even, and n = 2. See
the discussion in the introduction.

Before we give the full definition of the energy norms, we introduce the number
N = N(n) which can be taken to only depend on the dimension n of S and will
denote the total number of angular derivatives that we will apply to our curvature
components in the top energy norm. The main requirement for N is that it is large
enough so that the corresponding Sobolev space HN (S) forms an algebra, but we
will make no effort to optimize the choice of N . From this point we take N to be
fixed and sufficiently large.

Next, we introduce the notation Rũ,ṽ to refer to the characteristic rectangle
[−1, ũ] × [0, ṽ]. One peculiar feature of our norms is that they will be stated with
respect to an arbitrary characterstic rectangle which fits in the region {v ≤ ε|u|}:

(ũ, ṽ)

Rũ,ṽ

Finally, we emphasize the Convention 2.1 that all integration over any Su,v is
with respect to the volume form of /g0

.

Definition 5.5 (Odd Dimensions). Suppose that n is odd. Let Ψ be a curvature
component not equal to α or α, and (ũ, ṽ) satisfy ṽ

|ũ| ≤ ε. We define the top order

energy norm by

||Ψ||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−1+2δ

+

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−1+2δ
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+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−2+2δ

]

.

For α′, we drop the u-flux:

∣

∣

∣

∣α′
∣

∣

∣

∣

2

Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α′
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α′
�

∣

∣

∣

∣

∣

∣

2

un−2δ+2jv−1+2δ

]

.

For α, we drop the v-flux:

||α||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2jv−2+2δ

]

.

For large even dimensions we have similar definition.

Definition 5.6 (Large Even Dimensions). Suppose that n is even and n ≥ 4. Let Ψ
be a curvature component not equal to α′ or α, and (ũ, ṽ) satisfy ṽ

|ũ| ≤ ε. We define

the top order energy norm by

||Ψ||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1

+ v−2δ
0

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1+2δ

+ v−2δ
0

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−2+2δ

]

.

For α′, we drop the u-flux and the spacetime term:

∣

∣

∣

∣α′
∣

∣

∣

∣

2

Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

v−2δ
0

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 α′
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1+2δ.
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For α, we drop the v-flux:

||α||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 α
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1

+ v−2δ
0

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 α
�

∣

∣

∣

∣

∣

∣

2

un+2jv−2+2δ

]

.

Finally we have the case of n = 2.

Definition 5.7 (n = 2). Suppose that n = 2. Let Ψ be a curvature component not
equal to α or α, and (ũ, ṽ) satisfy ṽ

|ũ| ≤ ε. We define the top order energy norm by

||Ψ||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∇jΨ
�

∣

∣

∣

∣

2

u4−2δ+2jv−1+2δ

+

∫ v0

0

∫

S

∣

∣

∣

∣

∇jΨ
�

∣

∣

∣

∣

2

u4−2δ+2jv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∇jΨ
�

∣

∣

∣

∣

2

u4−2δ+2jv−2+2δ

]

.

For α, we drop the u-flux:

∣

∣

∣

∣α′
∣

∣

∣

∣

2

Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ v0

0

∫

S

∣

∣

∣

∣

∇j∇jα′
�

∣

∣

∣

∣

2

u4−2δ+2jv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α′
�

∣

∣

∣

∣

∣

∣

2

u3−2δ+2jv−1+2δ

]

.

For α, we drop the v-flux:

||α||2
Tũ,ṽ

.
= sup

0≤j≤N
sup

(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∇jα
�

∣

∣

∣

∣

2

u4−2δ+2jv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∇jα
�

∣

∣

∣

∣

2

u4−2δ+2jv−2+2δ

]

.

5.3 Lower Energy Norms for Curvature. This next set of norms are L2

norms for curvature components which involve less that the highest possible number
of ∇4 derivatives. The basic rule is that if one takes i less ∇4 derivatives then one
is allowed to take i more angular derivatives.
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Definition 5.8 (Odd Dimensions). Suppose that n ≥ 5 is odd. Let Ψ be a curvature
component not equal to α or α, and (ũ, ṽ) satisfy ṽ

|ũ| ≤ ε. We define the lower order

energy norm by

||Ψ||2
Lũ,ṽ

.
= sup

1≤i≤ n−3

2

sup
0≤k≤N+i

sup
(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2(k−i)v−1+2δ

+

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2(k−i)v−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2(k−i)v−2+2δ

]

.

For ||α′||2
Lũ,ṽ

, the spacetime weight improves:

∣

∣

∣

∣α′
∣

∣

∣

∣

2

Tũ,ṽ

.
= sup

1≤i≤ n−3

2

sup
0≤k≤N+i

sup
(u0,v0)∈Rũ,ṽ

[

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 α′
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2(k−i)v−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 α′
�

∣

∣

∣

∣

∣

∣

2

un+2(k−i)v−1

]

.

||α′||2
Lũ,ṽ

and ||α||2
Lũ,ṽ

are defined analogously.

For large even dimensions the definition is completely analogous except that α′

gains the spacetime term

v−2δ
0

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2
−i

4 α′
�

∣

∣

∣

∣

∣

∣

2

un+2(k−i)−2δv−2+4δ

For n = 2, 3, 4 one does not take any ∇4 derivatives of curvature in the top order
energy norm and thus there is no lower order energy norm.

Definition 5.9. We will use Ñ to denote the maximum number of angular deriva-
tives that ever are applied in the above norms.

(1) For n = 2 we have Ñ = N .
(2) For n ≥ 3 and odd, we have Ñ = N + n−3

2 .

(3) For n ≥ 4 and even we have Ñ = N + n−4
2 .
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5.4 L∞

u,v-Vanishing Norms for Curvature. The following norms will quan-
tify the fact that certain curvature components and their angular derivatives vanish
as v

|u| → 0. It will be necessary to allow for the loss of 1 angular derivative.

Definition 5.10. Let n ≥ 2. Let Ψ̊ denote one of

ρ, σ, τ, β, ν, α.

Let (ũ, ṽ) satisfy ṽ
|ũ| ≤ ε. Then we define

∣

∣

∣

∣

∣

∣
Ψ̊
∣

∣

∣

∣

∣

∣

2

Uũ,ṽ

.
= sup

(u,v)∈Rũ,ṽ

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jΨ
∣

∣

2
u2j+6−4δv−2+4δ.

5.5 L∞

u,v-Vanishing Norms for Ricci Coefficients. Lastly, it will also be
important to quantify the vanishing of the following Ricci coefficients as v

|u| → 0: ω,

χ̂, trχ′, η, and η.

Definition 5.11. Let n ≥ 2 and (ũ, ṽ) satisfy ṽ
|ũ| ≤ ε. Then, for ψ̊ denoting any of

χ̂, trχ
�

, η, η, or ω we set

||ω||2
Vũ,ṽ

.
= sup

{(u,v)∈Rũ,ṽ}
sup

0≤j≤Ñ

∫

Su,v

∣

∣∇jω
∣

∣

2
u2j+6−8δv−4+8δ,

||∇4ω||2
Vũ,ṽ

.
= sup

{(u,v)∈Rũ,ṽ}
sup

0≤j≤Ñ−1

∫

Su,v

∣

∣∇j∇4ω
∣

∣

2
u2j+4−4δv−2+4δ,

∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

Vũ,ṽ

.
= sup

{(u,v)∈Rũ,ṽ}
sup

0≤j≤Ñ

∫

Su,v

∣

∣

∣
∇jψ̊

∣

∣

∣

2
u2j+4−4δv−2+4δ.

5.6 L∞

u,v-Norms for Ricci Coefficients. Next we have L∞
u,v norms for the

Ricci coefficients and for /RiemABCD, the Riemann tensor of /g.

Definition 5.12. Let n ≥ 2 and let ψ denote any Ricci coefficient. Let (ũ, ṽ) satisfy
ṽ
|ũ| ≤ ε. Then we set

||ψ||2
Sũ,ṽ

.
= sup

(u,v)∈Rũ,ṽ

sup
0≤i≤max(� n−3

2
	,0)

sup
0≤j+i≤Ñ

∫

Su,v

∣

∣

∣

∣

∇j∇i
4ψ

�
∣

∣

∣

∣

2

u2(i+j)+3−4δv−1+4δ,

∣

∣

∣

∣ /Riem
∣

∣

∣

∣

2

Sũ,ṽ

.
= sup

(u,v)∈Rũ,ṽ

sup
0≤i≤max(� n−3

2
	,0)

sup
0≤j+i≤Ñ−1

∫

Su,v

∣

∣

∣

∣

∇j∇i
4 /Riem
�

∣

∣

∣

∣

2

u2(i+j)+3−4δv−1+4δ,
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5.7 Total Norm. It is convenient to bundle all of the norms into the following
definition.

Definition 5.13. Let (M, g) be produced by Theorem 4.1. Let (ũ, ṽ) be given and
suppose that the solution exists in the characteristic rectangle defined by (u, v) ∈
[−1, ũ] × [0, ṽ], then we define the norm ||·||

Eũ,ṽ
by

||g||
Eũ,ṽ

.
= ||g||

Tũ,ṽ
+ ||g||

Lũ,ṽ
+ ||g||

Uũ,ṽ
+ ||g||

Sũ,ṽ
+ ||g||

Vũ,ṽ
,

where the norms on the right hand side are defined in terms of the corresponding
double null knowns and the definitions of the previous sections.

5.8 Renormalized and Commuted Equations for n ≥ 3 and odd. In this
section we will present schematic forms for the commuted and renormalized Bianchi
equations odd n.

First we introduce some useful notation.

Definition 5.14. For i, j ≥ 0 we let Rij denote the schematic expression

Rij
.
= ∇i∇j

4

[(

ψ̊ + φ̊
)

|u|−
n−4

2 v
n−4

2 h
]

,

where ψ̊ is as in Definition 5.12 and φ̊ denotes either u−1b or u−1
(

Ω−1 − 1
)

.

Definition 5.15. For m, l ≥ 0 we let Fml denote the schematic expression

Fml
.
=

∑

i+j+k=m+l,i≤l

∇k∇i
4

(

ψj+1Ψ′
)

+
∑

i+j=m+l,i≤l

∇j∇i
4 (ζψψ)

+
∑

i+j=m−1

∇i
(

/Riem
j+1

∇l
4Ψ

′
)

.

We define F ′
ml by the definition except that when Ψ′ = α′ then one of the Ricci

coefficients multiplying Ψ′ is a ψ̊ as in Definition 5.12.

The following proposition is the key result of the section.

Proposition 5.1. The Bianchi equation for α can be re-written as

∇3∇
i∇j

4α
′
AB +

n + i

2
u−1∇i∇j

4α
′
AB = −∇C∇i∇j

4νC(AB) + ∇(A∇i∇j
4βB) + Rij + F

′
ij ,

In every other Bianchi equation except for the ∇4 equations for β and ν, we
can replace each curvature component Ψ with ∇i∇j

4Ψ
′ at the expense of replacing

the error terms E with Rij + Fij . In the ∇4 equation for β and ν we must add an
additional error term proportional to

|u|−
n+2+2i

2 v
n−4−2j

2 .
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Proof. We start with α. The equation for α may be written as

∇3αAB +
n

2
u−1αAB = −∇CνC(AB) + ∇(AβB) + E1.

Computing in a Lie-propagated frame, we find

∇3

(

u
4−n

2 v
n−4

2 h
)

AB
= −

n

2
u

2−n

2 v
n−4

2 hAB +
(

Ω−1 − 1
)

(

4 − n

2

)

u
2−n

2 v
n−4

2 hAB

+ Ω−1u
4−n

2 v
n−4

2 bC∂C (hAB)

− 2u
4−n

2 v
n−4

2 trχ
�

hAB − 2u
4−n

2 v
n−4

2 χ̂C
(A

hB)C

.
= −

n

2
u

2−n

2 v
n−4

2 hAB + R00.

In particular, we obtain

∇3α
′
AB +

n

2
u−1α′

AB = −∇CνC(AB) + ∇(AβB) + R00 + E1. (67)

Next, it follows easily from signature considerations that E1 = R00 + F00. Thus
we obtain:

∇3α
′
AB +

n

2
u−1α′

AB = −∇CνC(AB) + ∇(AβB) + R00 + F00. (68)

The desired commuted equations for α follow from first commuting with ∇j
4 and

then with ∇i and using the formulas of Lemma 3.5 and 3.8.
The rest of the Bianchi equations are handled in an analogous fashion. (The extra

term in the ∇4 equation of β and ν come from the present of ∇α on the right hand
side of those equations.) ��

5.9 Renormalized and Commuted Equations for n ≥ 4 and even. In
this section we will present schematic forms for the commuted and renormalized
Bianchi equations even n ≥ 4. Our notation will mirror that of the case of odd n.

Definition 5.16. For i, j ≥ 0 we let Rij denote the schematic expression

Rij
.
= ∇i∇j

4

[

(

ψ̊ + φ̊
)

|u|−
n−4

2 v
n−4

2 log

(

v

|u|

)

OAB

]

,

where ψ̊ is as in Definition 5.12 and φ̊ denotes either u−1b or u−1
(

Ω−1 − 1
)

.

Definition 5.17. For m, l ≥ 0 we let Fml denote the schematic expression

Fml
.
=

∑

i+j+k=m+l,i≤l

∇k∇i
4

(

ψj+1Ψ′
)

+
∑

i+j=m+l,i≤l

∇j∇i
4 (ζψψ)

+
∑

i+j=m−1

∇i
(

/Riem
j+1

∇l
4Ψ

′
)

.

We define F ′
ml by the same definition except that when Ψ′ = α′ then one of the

Ricci coefficients multiplying Ψ′ is a ψ̊ as in Definition 5.12.
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The following proposition is the key result of the section.

Proposition 5.2. In every Bianchi equation except for the ∇4 equations for β and
ν, we can replace each curvature component Ψ with ∇i∇j

4Ψ
′ at the expense of

replacing the error terms E with Rij + Fij .
In the ∇4 equation for β and ν we must add an additional error term proportional

to

|u|−
n+2+2i

2 v
n−4−2j

2 log

(

v

|u|

)

.

The Bianchi equation for α can be re-written as

∇3∇
i∇j

4α
′
AB +

n + i

2
u−1∇i∇j

4α
′
AB = −∇C∇i∇j

4νC(AB) + ∇(A∇i∇j
4βB) + Rij + F

′
ij .

Furthermore, when we consider ∇i∇
n−4

2

4 α′ we can assume that the right hand
side vanishes and thus we can write

∇3∇
i∇

n−4

2

4 α′ +
n + i

2
u−1∇i∇

n−4

2

4 α′ = −∇C∇i∇
n−4

2

4 νC(AB)

�

+ ∇(A∇i∇
n−4

2

4 βB)

�

+ R
�

i n−4

2
+ F

′
�

i n−4

2
,

where we recall the tilde notation from Definition 5.1.

Proof. Everything is done in the same fashion as n odd except for the claim that the

right hand side of the equation for ∇i∇
n−4

2

4 α′ can be assumed to vanish. However,
when i = 0, the desired assertion follows immediately from the part of the proof of
Proposition 4.3 that shows how the logarithmic component of α is determined. For
i ≥ 1 one commutes and uses Lemma 3.7. ��

6 A Priori Estimates for Proto-Ambient Metrics: The Main

Bootstrap

The key result of the section is the following.

Theorem 6.1. Assume that we have a proto-ambient metric (M, g) which arises
from compatible regular conjugate data and exists in a characteristic rectangle Rũ,ṽ

with ṽ
|ũ| ≤ ε for ε > 0 sufficiently small.

Suppose we have the bootstrap assumption

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ A. (69)

Then, for ε > 0 sufficient small there exists a constant C ≥ 1 depending only on
the size of the initial data such that

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ C. (70)
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The constant C can be taken to depend on

T−1,ṽ + L−1,ṽ + U−1,ṽ + S−1,ṽ + V−1,ṽ, sup
j≤Ñ

sup
i≤F (n)

∣

∣

∣
∂j

θL
i
v/g|S−1,0

∣

∣

∣
, hAB,

(71)
where F (2) = 2, when n ≥ 3 and odd, F (n) = n+1

2 , and when n ≥ 4 and even,
F (n) = n

2 .

In the sections that follow we will allow the constant C to grow from line to line
as needed. Also, when there is no risk of confusion we will drop the (ũ, ṽ) from the
subscripts of T, . . . ,V or R.

As we explain in Appendix A, Theorem 1.1 follows from Theorem 6.1.

6.1 Estimates for Initial Data. We start with a basic estimate at the level
of the initial data along {v = 0} which quantifies the estimates carried out in
Propositions 4.1, 4.2, and 4.3.

Lemma 6.1. For every curvature component Ψ not equal to α and Ricci coefficient
ψ we have

∣

∣∇j∇i
4Ψ
∣

∣ |v=0 ≤ C|u|−2−j−i,
∣

∣∇j∇i
4ψ
∣

∣ |v=0 ≤ C|u|−1−j−i,

where j is arbitrary, i ≤ max
(

�n−3
2 �, 0

)

, and the constant C only depends on (71).

Proof. Without the quantification of the constant C, this estimate is already con-
tained in Propositions 4.1, 4.2, and 4.3 (recall Definition 4.2). However, re-running
through the proofs of those propositions easily shows that C can be taken to depend
on (71). ��

6.2 Estimates for the metric and the curvature of S. In this section we
will establish estimates for the metric coefficients and use this to establish Sobolev
inequalities and elliptic estimates.

The following Sobolev inequality will play a fundamental role in the analysis.

Proposition 6.1. Let a > 0 be sufficiently small, M(n) be sufficiently large de-
pending on n, and assume that in each coordinate patch we have

sup
1≤j≤M(n)

∑

AB

uj
∣

∣

∣
Lj

θ

(

u−2
/gAB

|Su,v
−
(

/g0

)

AB
|Su,0

)∣

∣

∣
≤ a. (72)

Then, for any (0, s) tensor-field φ and (u, v) ∈ Rũ,ṽ, we have

sup
Su,v

|φ| ≤ Cs

� n

2
�+1
∑

i=0

(

∫

Su,v

|u|2i
∣

∣∇iφ
∣

∣

2

)1/2

, (73)

for a constant Cs which only depends on s.
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Proof. This is standard; one simply shows that the control of the /g covariant deriva-
tives implies control of the corresponding /g0

covariant derivatives and then applies
a Sobolev inequality relative to /g0

. ��

Remark 6.1. Remember that our convention is that, unless said otherwise, all in-
tegrals over Su,v are with respect to the volume form /dV ol0 associated to /g0

. The
reason we must assume (72) is because for tensorial quantities, the norm |·| and
covariant derivative ∇ depends on /g. Finally, we assume that N is chosen so that
M(n) 
 N .

We have

Proposition 6.2. We have

sup
(u,v)∈R

[

∣

∣Ω−1 − 1
∣

∣

|u|2−3δ

v2−3δ
+
∑

AB

∣

∣

∣/gAB
− u2

(

/g0

)

AB
|Su,0

∣

∣

∣

1

|u|v
+ |b|

|u|2−3δ

v2−3δ

]

≤ C.

(74)
Here, /g is expressed in the canonical coordinate frame (and we sum over a family of
coordinate patches that covers all of S).

Also, we have

sup
1≤j≤M(n)

∑

AB

uj
∣

∣

∣
Lj

θ

(

u−2
/gAB

|Su,v
−
(

/g0

)

AB
|Su,0

)∣

∣

∣
≤

a

2
, (75)

where a and M(n) are from Proposition 6.1, and

sup
1≤j≤Ñ

sup
(u,v)∈R

∫

Su,v

[

∣

∣∇jΩ−1
∣

∣

2
v4−6δu−4+6δ +

∣

∣∇jb
∣

∣ v4−6δu−4+6δ

]

u2j ≤ C. (76)

Proof. We start with the proof of (75). Using a standard bootstrap argument, we
can assume that (75) holds with 3a

4 replacing a
2 on the right hand side. In particu-

lar, we can arrange for (72) to hold and thus we can freely appeal to the Sobolev
inequality (73).

We have the following equation for /g:

Lv/gAB
= 2ΩχAB. (77)

Integrating in v along coordinate patches yields the estimate

∑

AB

sup
Su,v

∣

∣

∣

(

/gAB
− u2

(

/g0

)

AB
|Su,0

)∣

∣

∣
≤ 2

∫ v

0

∑

AB

sup
Su,v

|Ω| |χAB| .

The bootstrap assumption that (75) holds with 3a
4 is easily seen to imply that

∑

AB

sup
Su,v

|Ω| |χAB| � sup
Su,v

[

|u|2 |χ| |Ω|
]

.
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In particular, using the bootstrap assumption (69) and a Sobolev inequality
yields:

∑

AB

∣

∣

∣

(

/gAB
− u2

(

/g0

)

AB
|Su,0

)∣

∣

∣
� A2v |u| .

Similarly, keeping in mind that M(n) 
 N , we can commute (77) with Lie
derivatives along S and argue analogously to find that

sup
1≤j≤M(n)

∑

AB

uj
∣

∣

∣
Lj

θ

(

u−2
/gAB

|Su,v
−
(

/g0

)

AB
|Su,0

)∣

∣

∣
� A2 v

|u|
.

Now we can just take ε sufficiently small to obtain (75).

Next we turn to the lapse Ω. From Proposition 3.1 we easily deduce

∂v

(

Ω−1
)

= 2ω.

Integrating in v and using that Ω−1 is identically 1 on {v = 0} yields

sup
Su,v

∣

∣

(

Ω−1 − 1
)∣

∣ ≤ Cv2−2δu−2+2δ
S

≤ Cv2−3δu−2+3δ.

In the last line we used the bootstrap assumption (69) and took ε sufficiently small.
This yields the estimate for Ω−1 in (74).

Similarly, we can inductively commute with ∇j
A, integrating in v, and use again

that Ω−1 is identically 1 on {v = 0} to obtain for each 1 ≤ j ≤ N that

∫

Su,v

∣

∣∇j
(

Ω−1 − 1
)∣

∣

2
≤ Cv4−4δu−4+4δ−2j

S

≤ Cv4−6δu−4+6δ−2j .

In the last line we used the bootstrap assumption (69) and took ε sufficiently small.
This establishes the estimate for Ω−1 in (76).

The estimates for b work in an analogous fashion using the equations:

Lvb
A = −4Ω2ζA. ��

The next lemma is useful when we integrate ∇3 equations.

Lemma 6.2. For every point p = (u0, v0, θ0) ∈ R×S there is an integral curve of e3

which connects p to {u = −1} ∩ {v ≤ ε}.

Proof. This follows easily from the bounds on the shift b given by Proposition 6.2.

��
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Finally, our estimates of the metric allow us to carry out elliptic estimates
along S:

Lemma 6.3. Suppose φA1...Ak
is an Su,v tensor such that

∇BφBA2...Ak
= FA2...Ak

, ∇[A0
φA1]A2...Ak

= GA0...Ak
.

Then, for every 1 ≤ j ≤ Ñ we have

∫

Su,v

∣

∣∇jφ
∣

∣

2
≤ C

(

∫

Su,v

|φ|2 |u|−2j +

∫

Su,v

[

∣

∣∇j−1F
∣

∣

2
+
∣

∣∇j−1G
∣

∣

2
]

)

.

Proof. We first discuss the case when j = 1. One integrates the identity

∇BφBA2...Ak
∇CφCA2...Ak = |F |2

over Su,v and integrates by parts. Eventually we obtain
∫

Su,v

|∇φ|2 /dV ol ≤ C

∫

Su,v

(

∣

∣ /Riem
∣

∣ |φ|2 + |G| |∇φ| + |F |2
)

/dV ol,

from which the desired estimate follows easily after controlling the curvature term
in L∞ with Lemma 6.1, the bootstrap assumption (69), and a Sobolev inequality.

For the higher order estimate, we induct in j and commute the equation with
∇j−1 to obtain

∣

∣∇B∇j−1φBA2...Ak

∣

∣ �
∣

∣∇j−1FA2...Ak

∣

∣+
∑

i+k+l=j−2

∣

∣

∣
∇i /Riem

k+1
∣

∣

∣

∣

∣

∣
∇lφ
∣

∣

∣
,

∣

∣∇[A0
∇j−1φA1]A2...Ak

∣

∣ �
∣

∣∇j−1GA0...Ak

∣

∣+
∑

i+k+l=j−2

∣

∣

∣
∇i /Riem

k+1
∣

∣

∣

∣

∣

∣
∇lφ
∣

∣

∣
,

where the /Riem
k+1

refers to the usual schematic notation for any possible product
of k + 1 components of /Riem.

Since the product
∣

∣

∣
∇i /Riem

k+1
∣

∣

∣

∣

∣∇lφ
∣

∣ can easily be controlled in L2 by taking the

term with the most derivatives in L2 and applying a Sobolev inequality to handle
the remaining terms, we can simply apply the same integration by parts argument
to obtain the desired estimate. ��

We will also need elliptic estimates for the Laplacian /∆ on S.

Lemma 6.4. Let f be a scalar function on Su,v. Then, for every 2 ≤ j ≤ N we have
∫

Su,v

∣

∣∇jf
∣

∣

2
≤ C

∫

Su,v

[

∣

∣∇j−2
(

/∆f
)∣

∣

2
+ |u|−2jf2

]

.

Proof. When j = 0 this is a standard elliptic estimate. The error terms from the
curvature of S and commutating are handled as in the proof of Lemma 6.3. ��
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6.3 Estimates for T. In this section we will carry out the top order energy
estimates. The argument is a bit different for n ≥ 3 and odd, n ≥ 4 and even, and
n = 2.

6.3.1 n ≥ 3 and Odd. We start with the case of odd n.

Proposition 6.3. Let n ≥ 3 and odd. Then we have

T ≤ C.

Proof. We will carry estimates for each Bianchi pair (see Definition 3.3 and Propo-
sition 3.7) . We start with (α, (β, ν)). For every 0 ≤ i ≤ N we have

∇3∇
i∇

n−3

2

4 α′
AB +

n + i

2
u−1∇i∇

n−3

2

4 α′
AB (78)

= −∇C∇i∇
n−3

2

4 νC(AB) + ∇(A∇i∇
n−3

2

4 βB) + Ri n−3

2
+ F

′
i n−3

2

,

∇4∇
i∇

n−3

2

4 βA = ∇B∇i∇
n−3

2

4 α′
BA + Ri n−3

2
+ Fi n−3

2
+ O

(

|u|−
n+2i

2 v−1/2
)

,

∇4∇
i∇

n−3

2

4 νABC = −2∇[A∇i∇
n−3

2

4 α′
B]C + Ri n−3

2
+ Fi n−3

2
+ O

(

|u|−
n+2i

2 v−1/2
)

.

In order to make the notation more compact let’s introduce the notation

D
.
= ∇i∇

n−3

2

4 .

Writing the equations in terms of Dα′
�

, Dβ
�

, and Dν
�

, using Lemma 6.1 yields,
and conjugating the equations by the weight

w
.
= |u|

n+1+2i

2
−δv−1/2+δ,

eventually yields

Ω−1∇u+bA∂A

(

wDα′
�
)

AB

+
1 − 2δ

2
|u|−1wDα′

�

AB (79)

= −w∇C
Dν
�

C(AB) + w∇(ADβ
�

B) + wRi n−3

2
+ wF

′
i n−3

2

+ wO
(

u− n+3+2i

2

)

,

Ω−1∇v

(

wDβ
�
)

A
+

1 − 2δ

2
v−1wDβ

�

A

= w∇B
Dα′
�

BA + wRi n−3

2
+ Fi n−3

2
+ wO

(

|u|−
n+2+2i

2 v−1/2
)

,

Ω−1∇v

(

wDν
�
)

ABC
+

1 − 2δ

2
v−1wDν

�

= −2w∇[ADα′
�

B]C + wRi n−3

2
+ wFi n−3

2
+ wO

(

|u|−
n+2+2i

2 v−1/2
)

.

Now we multiply the first equation by 2wDα′
�

AB, the second by 2wDβ
�A, and

the third by wDν
�ABC . Adding the three identities together and integrating by parts
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over Rũ,ṽ (see Proposition 3.7), using Proposition 6.2, and applying Cauchy Schwarz
yields the following basic energy estimate:

sup
−1≤u≤ũ

∫ ṽ

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

+

∫ ũ

−1

∫ ṽ

0

∫

S
|u|−1w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

(80)

+ sup
0≤v≤ṽ

∫ ũ

−1

∫

S
w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
]

+

∫ ũ

−1

∫ ṽ

0

∫

S
v−1w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
]

�

∫ ũ

−1

∫ ṽ

0

∫

S

[

|u|w2

(

∣

∣

∣
Ri n−3

2

∣

∣

∣

2
+
∣

∣

∣
F

′
i n−3

2

∣

∣

∣

2
+ |u|−n−3−2i

)]

+

∫ ũ

−1

∫ ṽ

0

∫

S

[

vw2

(

∣

∣

∣
Ri n−3

2

∣

∣

∣

2
+
∣

∣

∣
Fi n−3

2

∣

∣

∣

2
+ |u|−n−2−2iv−1

)]

+

∫ ṽ

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

|u=−1.

Observe that the left hand side of (80) is exactly the top-order energy norms of
α′, β, and ν that we wish to control (except for a v-flux of β and ν that will come
from the next Bianchi pair). We now turn to an analysis of the error terms on the
right hand side of (80). First of all

∫ ũ

−1

∫ ṽ

0

∫

S
w2|u|−n−2−2i �

∫ ũ

−1

∫ ṽ

0

∫

S
|u|−1−2δv−1+2δ �

(

v

|u|

)2δ

� ε2δ.

Next, let’s consider the term with Ri n−3

2
. Recall that this stands for the schematic

error term

∇i∇
n−3

2

4

[(

ψ̊ + φ̊
)

|u|−
n−4

2 v
n−4

2 h
]

. (81)

The most singular situation that can arise is when all of the ∇4 derivatives fall
on the v

n−4

2 , so let’s consider that situation first. In this case the error term will look
like

Ri n−3

2
∼

i
∑

j=0

|u|−j− n

2

[∣

∣

∣
∇i−jψ̊

∣

∣

∣
+
∣

∣

∣
∇i−jφ̊

∣

∣

∣

]

v−1/2.

Thus, in this case,
∫ ũ

−1

∫ ṽ

0

∫

S

|u|w2
∣

∣

∣
Ri n−3

2

∣

∣

∣

2

�

i
∑

j=0

∫ ũ

−1

∫ ṽ

0

∫

S

|u|2(1+i−j−δ)

[

∣

∣

∣
∇i−j

ψ̊
∣

∣

∣

2

+
∣

∣

∣
∇i−j

φ̊
∣

∣

∣

2
]

v
−2+2δ (82)

�

[

∣

∣

∣

∣

∣

∣ψ̊
∣

∣

∣

∣

∣

∣

2

V

+ sup
k≤N

sup
u,v

∫

S

∣

∣

∣∇
k
φ̊
∣

∣

∣

2

|u|2k−4−4δ
v

−2+4δ

]

×

∫ ũ

−1

∫ ṽ

0

|u|2δ−2
v

−2δ

�Aε
1−2δ

�1,
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where we used the bootstrap assumption and Proposition 6.2.
Next, we consider error terms in (81) where we don’t have that all of the ∇4

derivatives fall on the v
n−4

2 , i.e.,

∇i∇
n−3

2
−1

4

[(

∇4ψ̊ + ∇4φ̊
)

|u|−
n−4

2 v
n−4

2 h
]

. (83)

In this case we have

∫ ũ

−1

∫ ṽ

0

∫

S
|u|w2

∣

∣

∣
Ri n−3

2

∣

∣

∣

2
�

n−3

2
−1

∑

k=0

i
∑

j=0

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2(1+i−j−δ)

[

∣

∣

∣
∇i−j∇k+1

4 ψ̊
∣

∣

∣

2

+
∣

∣

∣
∇i−j∇k+1

4 φ̊
∣

∣

∣

2
]

v2δ+2k

�
[

1 + ||ψ||2
S

]

∫ ũ

−1

∫ ṽ

0
|u|−2−2δv2δ

� (1 + A) ε1−2δ

�1, (84)

where we used the bootstrap assumption, Proposition 6.2, Lemma 6.1, and the fact
that ∇4φ̊ can be expressed in terms of combinations of metric coefficients and Ricci
coefficients.

Next we turn to the error term proportional to F ′
i n−3

2

. Recall that

F
′
ml

.
=

∑

i+j+k=m+l,i≤l

∇k∇i
4

(

ψj+1Ψ′
)

+
∑

i+j=m+l,i≤l

∇j∇i
4 (ζψψ)

+
∑

i+j=m−1

∇i
(

/Riem
j+1

∇l
4Ψ

′
)

. (85)

with the rule that if Ψ′ is equal to α′ then one of the Ricci coefficients is given
by a ψ̊.

We start with the first term on the right hand side of (85) in the case when
Ψ′ = α′ and where the maximum number of ∇4 derivatives fall on α′. In this case
we will have
∫ ũ

−1

∫ ṽ

0

∫

S
|u|w2

∣

∣

∣
F

′
i n−3

2

∣

∣

∣

2

�
∑

j+k=i

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2j

∣

∣

∣
∇jψ̊

∣

∣

∣

2
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 α′
∣

∣

∣

2

|u|n+2−2δv−1+2δ

� sup
j,k≤N

∫ ũ

−1

∫ ṽ

0

(∫

S
|u|2j

∣

∣

∣
∇jψ̊

∣

∣

∣

2
)(∫

S
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 α′
∣

∣

∣

2
)

|u|n+2−2δv−1+2δ

� sup
k≤N

∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

V

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 α′
∣

∣

∣

2

|u|n−2δv−1+2δ|u|−2+4δv2−4δ
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� A2ε2−4δ

� 1. (86)

Here we used a Sobolev inequality on S, the bootstrap assumption, and Lemma 6.1.

Next we consider the first term on the right hand side of (85) in the case when
Ψ′ �= α′ and where the maximum number of ∇4 derivatives fall on Ψ′. In this case
we will have

∫ ũ

−1

∫ ṽ

0

∫

S
|u|w2

∣

∣

∣
F

′
i n−3

2

∣

∣

∣

2

�
∑

j+k=i

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2j

∣

∣∇jψ
∣

∣

2
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 Ψ′
∣

∣

∣

2

|u|n+2−2δv−1+2δ

� sup
j,k≤N

∫ ũ

−1

∫ ṽ

0

(∫

S
|u|2j

∣

∣∇jψ
∣

∣

2
)(∫

S
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 Ψ′
∣

∣

∣

2
)

|u|n+2−2δv−1+2δ

� sup
k≤N

(

1 + ε1−4δ ||ψ||2
S

)

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2k

∣

∣

∣
∇k∇

n−3

2

4 Ψ′
∣

∣

∣

2

|u|n−2δv−1+2δ

�
(

1 + ε1−4δA
)

ε2δ

+
(

1 + ε1−4δA
)

sup
k≤N

∫ ũ

−1

∫ ṽ

0

∫

S
|u|2k

∣

∣

∣

∣

∣

∣

∇k∇
n−3

2

4 Ψ′
�

∣

∣

∣

∣

∣

∣

2

|u|n+1−2δv−2+2δ v

|u|

� 1 +
(

1 + ε1−4δA
)

∣

∣

∣

∣Ψ′
∣

∣

∣

∣

2

T
ε

� 1 +
(

1 + ε1−4δA
)

Aε

� 1. (87)

Here we used a Sobolev inequality, the bootstrap assumption, and Lemma 6.1. Next,
it is easy to see that essentially the same argument also covers the case when not
all of the ∇4 derivatives fall on the curvature term Ψ′; the point being that once
we are not in the case when all of the ∇4 derivatives fall potentially on α′, then the
L norm for every curvature component except α′ controls a spacetime term with a
weight v−2+4δ and for α′ we control v−1 (as opposed to just v−1+2δ). This allows for
the above argument to go through. It is easy to check that similar arguments suffice
for the other terms in F ′

i n−3

2

.

Next, we have the error terms proportional to vw2

(

∣

∣

∣
Ri n−3

2

∣

∣

∣

2
+
∣

∣

∣
Fi n−3

2

∣

∣

∣

2
)

. The R

term is, of course, strictly easier to control than the previous R terms we discussed.
The only difference between F and F ′ is for the curvature terms α′; however, the
fact that F is multiplied by vw2 instead of |u|w2 allows for the same argument that
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worked for the F ′ term to work for F . Finally, the initial data term satisfies

∫ ṽ

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

|u=−1 � 1.

The up-shot is that we have

sup
−1≤u≤ũ

∫ ṽ

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

+

∫ ũ

−1

∫ ṽ

0

∫

S
|u|−1w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

+ sup
0≤v≤ṽ

∫ ũ

−1

∫

S
w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
]

+

∫ ũ

−1

∫ ṽ

0

∫

S
v−1w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
]

� 1.

(88)

The next Bianchi pair is (νABC , (RABCD, σAB)). Similarly to our treatment of
(α, (β, ν)), we obtain:

∇3

(

wDν
�
)

ABC
+ O

(

|u|−1
)

wDν
�

ABC

= w2∇[ADτ
�

A]C − 2w∇[ADσ
�

B]C + wRi n−3

2
+ wFi n−3

2
+ wO

(

u− n+3+2i

2

)

,

∇4

(

wDR
�
)

ABCD
+

1 − 2δ

2
v−1wDR

�

ABCD

= w∇BDν
�

CDA − w∇ADν
�

CDB + wRi n−3

2
+ Fi n−3

2
+ wO

(

u− n+3+2i

2

)

,

∇4

(

wDσ
�
)

AB
+

1 − 2δ

2
v−1wDσ

�

AB

= 2w∇C
Dν
�

ABC + wRi n−3

2
+ wFi n−3

2
+ wO

(

u− n+3+2i

2

)

.

Now we will be able to mostly proceed analogously to the estimates we carried
out for (α, (β, ν)), but there are two important differences. Most noticeably, the

second term on the right hand side of Dν
�

’s equation does not necessarily have a
good sign and hence we will generate a spacetime term with an unfavorable sign
proportional to

∫ ũ

−1

∫ ṽ

0

∫

S
|u|−1w2

∣

∣

∣
Dν
�
∣

∣

∣

2
.

However, the key point is that

∫ ũ

−1

∫ ṽ

0

∫

S
|u|−1w2

∣

∣

∣
Dν
�
∣

∣

∣

2
� ε

∫ ũ

−1

∫ ṽ

0

∫

S
v−1w2

∣

∣

∣
Dν
�
∣

∣

∣

2
,

and thus we can control this potentially dangerous spacetime term with the already
established estimate (88). The second difference is that when we apply Cauchy-
Schwarz after integrating by parts we should use the spacetime term from (88) to

absorb the Dν
�

term. Other than these two caveats, everything proceeds as before.
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It is now clear that one can systematically work down the entire Bianchi hi-
erarchy, and eventually we will establish the desired estimates for each curvature
component. ��

6.3.2 n ≥ 4 and Even. We now turn to the case of n ≥ 4 and even.

Proposition 6.4. Let n ≥ 4 and even. Then we have

T ≤ C.

Proof. Just as when n was odd, we conjugate the equations for the Bianchi pari
(α, (β, ν)) by the weight w. However, in this case we set

D
.
= ∇i∇

n−4

2

4 , w
.
= |u|

n+2i

2 v−1/2+δ.

We obtain (keeping Proposition 5.2 in mind)

∇3

(

wDα′
�
)

AB

= −w∇C
Dν
�

C(AB) + w∇(ADβ
�

B) + wR
�

i n−4

2
+ wF

′
�

i n−4

2
,

∇4

(

wDβ
�
)

A
+

1 − 2δ

2
v−1wDβ

�

A

= w∇B
Dα′
�

BA + wRi n−4

2
+ Fi n−4

2
+ wO

(

|u|−
n+2+2i

2 log

(

v

|u|

))

,

∇4

(

wDν
�
)

ABC
+

1 − 2δ

2
v−1wDν

�

= −2w∇[ADα′
�

B]C + wRi n−4

2
+ wFi n−4

2
+ wO

(

|u|−
n+2+2i

2 log

(

v

|u|

))

.

There are two key differences with the case of n odd. First of all, in α′’s equation,
the conjugation by the weight w completely cancels the lower order term instead of
leaving a positive multiple as in the case of n odd. This will prevent us from getting
a good spacetime estimate for α′. Second of all, instead of seeing singularities like
v−1/2, the worst singular terms when n is even blow-up like log (v) as v → 0.

Carrying out the energy estimate as we did when n was odd yields

sup
R

(

v̂−2δ

∫ v̂

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

+ v̂−2δ

∫ û

−1

∫

S
w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
]

+ v̂−2δ

∫ û

−1

∫ v̂

0

∫

S
v−1w2

[

∣

∣

∣
Dβ
�
∣

∣

∣

2
+
∣

∣

∣
Dν
�
∣

∣

∣

2
])

� sup
R

(

v̂−2δ

∫ û

−1

∫ v̂

0

∫

S

[

w2

(

∣

∣

∣
R̃i n−4

2

∣

∣

∣
+

∣

∣

∣

∣

F
′

�

i n−4

2

∣

∣

∣

∣

) ∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

]
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+ v̂−2δ

∫ û

−1

∫ v̂

0

∫

S

[

vw2

(

∣

∣

∣
Ri n−4

2

∣

∣

∣

2
+
∣

∣

∣
Fi n−4

2

∣

∣

∣

2
+ |u|−n−2−2i log2

(

v

|u|

))]

+ v̂−2δ

∫ v̂

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

|u=−1

)

. (89)

Note the fundamental difference with the case of n odd in that we put a weight
v̂−2δ outside in order to get the a scale-invariant norm; this creates some extra
annoyance in estimating the nonlinear error terms.

We now need to discuss how we will control the various terms on the right hand
side. For any a > 0, we have

v̂−2δ

∫ û

−1

∫ v̂

0

∫

S
w2
∣

∣

∣
R
�

i n−4

2

∣

∣

∣

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

� av̂−2δ sup
û

∫ v̂

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

+ a−1v̂−2δ

(

∫ û

−1

(∫ v̂

0

∫

S
w2
∣

∣

∣
R
�

i n−4

2

∣

∣

∣

2
)1/2

)2

.

The first term on the right hand side here can be absorbed into the left hand
side of (89). As for the second term, we first recall the schematic form:

Rij
.
= ∇i∇j

4

[

(

ψ̊ + φ̊
)

|u|−
n−4

2 v
n−4

2 log

(

v

|u|

)

OAB

]

.

As we did with n odd, we first consider the maximally singular situation when
all of the ∇4 derivatives fall on the v

n−4

2 . In this case

v̂−2δ

(

∫ û

−1

(∫ v̂

0

∫

S
w2
∣

∣

∣
R
�

i n−4

2

∣

∣

∣

2
)1/2

)2

� v̂−2δ sup
j≤N

(

∫ û

−1

(∫ v̂

0

∫

S
|u|2j

[

∣

∣

∣
∇jψ̊

∣

∣

∣

2
+
∣

∣

∣
∇jφ̊

∣

∣

∣

2
]

v−1+2δ log2

(

v

|u|

))1/2
)2

� v̂−2δ

[

∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

V

+ sup
j≤N

sup
u,v

∫

S

∣

∣

∣
∇jφ̊

∣

∣

∣

2
|u|2j+4−4δv−2+4δ

]

×

(

∫ û

−1

(∫ v̂

0
|u|−4+4δv1−2δ log2

(

v

|u|

))1/2
)2

� Av̂−2δ

(

∫ û

−1

(∫ v̂

0
|u|−4+6δv1−4δ

)1/2
)2

� A
v̂2−6δ

|û|2−6δ

� 1.
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Next, like in the case of n odd, we consider the situation where not all of the
derivatives fall on the v. In this case

Rij
.
= ∇i∇j−1

4

[

(

∇4ψ̊ + ∇4φ̊
)

|u|−
n−4

2 v
n−4

2 log

(

v

|u|

)

OAB

]

.

Thus we will have

v̂−2δ

(

∫ û

−1

(∫ v̂

0

∫

S
w2
∣

∣

∣
R
�

i n−4

2

∣

∣

∣

2
)1/2

)2

�

n−4

2
−1

∑

k=0

i
∑

j=0

v̂−2δ sup
j≤N

(∫ û

−1

(∫ v̂

0

∫

S
|u|2(i−j)

[

∣

∣

∣
∇i−j∇k+1

4 ψ̊
∣

∣

∣

2

+
∣

∣

∣
∇i−j∇k+1

4 φ̊
∣

∣

∣

2
]

v2k+1+2δ log2

(

v

|u|

))1/2
)2

�
[

1 + ||ψ||2
S

]

v̂−2δ

(

∫ û

−1

(∫ v̂

0
|u|−4v1+2δ log2

(

v

|u|

))1/2
)2

� (1 + A) v̂−2δ

(

∫ û

−1

(∫ v̂

0
|u|−4+δv1+δ

)1/2
)2

� (1 + A)
v̂2−δ

|û|2−δ

� 1.

Next we turn to the error terms from the F ′
�

. Recall that

F
′
ml

.
=

∑

i+j+k=m+l,i≤l

∇k∇i
4

(

ψj+1Ψ′
)

+
∑

i+j=m+l,i≤l

∇j∇i
4 (ζψψ)

+
∑

i+j=m−1

∇i
(

/Riem
j+1

∇l
4Ψ

′
)

, (90)

with the rule that if Ψ′ is equal to α′ then one of the Ricci coefficients is given by a
ψ̊.

We start with the first term on the right hand side of (90) in the case when
Ψ′ = α′ and where the maximum number of ∇4 derivatives fall on α′. In this case
we will have

v̂−2δ

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S

w2

∣

∣

∣

∣

F
′

�

i n−4
2

∣

∣

∣

∣

2
)1/2

⎞

⎠

2

� v̂−2δ
∑

j+k=i

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S

|u|2j
∣

∣

∣
∇j ψ̊

∣

∣

∣

2
|u|2k

∣

∣

∣

∣

∇k∇
n−4

2
4 α′

∣

∣

∣

∣

2

|u|nv−1+2δ

)1/2
⎞

⎠

2
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� v̂−2δ sup
j,k≤N

⎛

⎝

∫ û

−1

(

∫ v̂

0

(∫

S

|u|2j
∣

∣

∣
∇j ψ̊

∣

∣

∣

2
)

(

∫

S

|u|2k

∣

∣

∣

∣

∇k∇
n−4

2
4 α′

∣

∣

∣

∣

2
)

|u|nv−1+2δ

)1/2
⎞

⎠

2

�
∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

V

v̂−2δ sup
k≤N

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S

|u|2k

∣

∣

∣

∣

∇k∇
n−4

2
4 α′

∣

∣

∣

∣

2

|u|n−4+4δv1−2δ

)1/2
⎞

⎠

2

�
∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

V

ε2−2δ +
∣

∣

∣

∣

∣

∣
ψ̊
∣

∣

∣

∣

∣

∣

2

V

sup
k≤N

⎛

⎜

⎜

⎝

∫ û

−1

⎛

⎜

⎝

∫ v̂

0

∫

S

|u|2k

∣

∣

∣

∣

∣

∣

∇k∇
n−4

2
4 α′

�
∣

∣

∣

∣

∣

∣

2

|u|n−4+4δv1−2δ

⎞

⎟

⎠

1/2
⎞

⎟

⎟

⎠

2

� ε2−2δ
(

A + A2
)

� 1,

where we used a Sobolev inequality, Lemma 6.1, and the bootstrap assumption.

Next we consider the first term on the right hand side of (85) in the case when
Ψ′ �= α′ and where the maximum number of ∇4 derivatives fall on Ψ′. In this case
we will have

v̂−2δ

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S
w2

∣

∣

∣

∣

F
′

�

i n−4

2

∣

∣

∣

∣

2
)1/2

⎞

⎠

2

� v̂−2δ
∑

j+k=i

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S
|u|2j

∣

∣

∣

∣

∇jψ
�

∣

∣

∣

∣

2

|u|2k
∣

∣

∣
∇k∇

n−4

2

4 Ψ′
∣

∣

∣

2

|u|nv−1+2δ

)1/2
⎞

⎠

2

+ v̂−2δ
∑

j+k=i

⎛

⎜

⎝

∫ û

−1

⎛

⎝

∫ v̂

0

∫

S
|u|2j

∣

∣∇jψ
∣

∣

2
|u|2k

∣

∣

∣

∣

∣

∣

∇k∇
n−4

2

4 Ψ′
�

∣

∣

∣

∣

∣

∣

2

|u|nv−1+2δ

⎞

⎠

1/2
⎞

⎟

⎠

2

.
= I + II.

We have

|I| � ||ψ||
S

v̂−2δ sup
k≤N

⎛

⎝

∫ û

−1

(

∫ v̂

0

∫

S

|u|2k

∣

∣

∣

∣

∇k∇
n−4

2
4 Ψ′

∣

∣

∣

∣

2

|u|n−3+4δv−2δ

)1/2
⎞

⎠

2
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S

⎛

⎜

⎜

⎝

v̂1−4δ

|û|1−4δ
+ v̂−2δ sup

k≤N

⎛

⎜

⎜

⎝

∫ û

−1

⎛

⎜

⎝

∫ v̂

0

∫

S

|u|2k

∣

∣

∣

∣

∣

∣

∇k∇
n−4

2
4 Ψ′
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∣

∣

∣

∣

∣

∣

2

|u|n−3+4δv−2δ

⎞

⎟

⎠

1/2
⎞

⎟

⎟

⎠
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⎟

⎟

⎠

� A

⎛

⎜

⎝
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∣

∣

∣

∣

∣

∣
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⎞

⎟

⎠
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(

ε1−4δ + Aε2−4δ
)

� 1.
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Similarly,

|II| � v̂−2δ
∑

j+k=i

⎛

⎜

⎜

⎝

∫ û

−1

⎛

⎜

⎝
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∫

S

|u|2j
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∣∇jψ
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2
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�
∣

∣

∣

∣
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∣

2
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⎞

⎟

⎠
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⎞

⎟

⎟

⎠

2

�
(

1 + ε1−4δ ||ψ||
S
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v̂−2δ sup
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⎛

⎜

⎜

⎝

∫ û
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⎛

⎜

⎝
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∫

S
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∣
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∣

∣

∣

∣
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2
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∣

∣
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⎟

⎠
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⎞

⎟

⎟

⎠

2

�
(

1 + ε1−4δ ||ψ||
S

)

v̂−2δ|û|−1 sup
k≤N

∫ û

−1

∫ v̂

0

∫

S

|u|2k

∣

∣

∣

∣

∣

∣

∇k∇
n−4

2
4 Ψ′

�
∣

∣

∣

∣

∣

∣

2

|u|nv−2+2δv

�
(

1 + ε1−4δA
)

Aε

� 1.

As usual, we have used a Sobolev inequality, Lemma 6.1, and the bootstrap assump-
tion.

Next, just as in the case of n odd, it is easy to see that essentially the same
argument also covers the case when not all of the ∇4 derivatives fall on the curvature
term Ψ′; the point being that once we are not in the case when all of the ∇4

derivatives fall potentially on α′, then the L norm for every curvature components
controls a spacetime term with a weight v−2+4δ. This allows for the above argument
to go through. It is easy to check that similar arguments suffice for the other terms

in F ′
�

i n−4

2
.

This concludes the treatment of the nonlinear error terms produced by the
right hand side of α′’s Bianchi equation. Next, we have the terms proportional to

vw2

(

∣

∣

∣
Ri n−4

2

∣

∣

∣

2
+
∣

∣

∣
Fi n−4

2

∣

∣

∣

2
+ |u|−n−2−2i log2

(

v
|u|

)

)

. However, this may be deal with

by adapting the estimates above in a straightforward fashion; the point is simply

that the presence of the v-weight compensates for the replacement of F
�

by F .
Finally, it is immediate that

sup
v̂

v̂−2δ

∫ v̂

0

∫

S
w2

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

|u=−1 � sup
v̂

v̂−2δ

∫ v̂

0

∫

S
v−1+2δ

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

|u=−1 � 1. ��

6.3.3 n = 2. Finally, we also have n = 2.

Proposition 6.5. Let n = 2.

T ≤ C.

Proof. We omit the proof of this as it is analogous to and strictly easier than the
case of n ≥ 3 odd; the point is that following the same procedure as with n odd
yields a spacetime for α, but one does not even have to deal with any singular terms
as v → 0. ��
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6.4 Estimates for L. In this section we will establish the desired estimates for
L. Note that this estimate is only necessary if n ≥ 5.

6.4.1 The case of odd n. We first consider the case of odd n.

Proposition 6.6. Let n ≥ 5 and odd. Then we have

L ≤ C.

Proof. For i = 1, . . . , n−3
2 and 0 ≤ j ≤ N + i. We need to prove estimates for

∇j∇
n−3

2
−i

4 Ψ′. The proof will be by induction on i.

Let’s consider the base case i = 1 and 0 ≤ j ≤ N . In this case we can just

integrate in v and use that we already control T. Let D = ∇j∇
n−3

2
−1

4 . We first
consider the case of α′.

Using Lemma 3.5 we find that

∣

∣

∣

∣

∇4Dα′
�

∣

∣

∣

∣

�
∣

∣

∣
∇j∇

n−3

2

4 α′
∣

∣

∣
+

∑

i+m+k=j−1

∣

∣∇iψm+1
∣

∣

∣

∣

∣
∇k∇

n−3

2

4 α′
∣

∣

∣

+
∑

i+m+k=j

∣

∣∇iψm+1
∣

∣

∣

∣

∣
∇k∇

n−3

2
−1

4 α′
∣

∣

∣
.

Integrating in the v-direction and applying Lemma 6.1 we obtain

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

�vu− 2j+n+1

2

+

∫ v

0

⎡

⎣

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 α′
�

∣

∣

∣

∣

∣

∣

+
∑

i+m+k=j−1

∣

∣∇iψm+1
∣

∣

∣

∣

∣
∇k∇

n−3

2

4 α′
∣

∣

∣

�

+
∑

i+m+k=j

∣

∣∇iψm+1
∣

∣

∣

∣

∣
∇k∇

n−3

2
−1

4 α′
∣

∣

∣

�
⎤

⎦ .

From this we easily obtain, using the bootstrap assumption,

∫

S

∣

∣

∣

∣

Dα′
�

∣

∣

∣

∣

2

un−2+2jv−1 � v|u|−3 + (1 + A) v1−2δu−3+2δ � |u|−2. (91)

After integrating in v or in u and v this is easily seen to establish the desired es-
timate. A completely analogous argument works for the other curvature components
Ψ.

The more difficult case is when j = N + 1 and thus D = ∇N+1∇
n−3

2
−1

4 . Now,
integrating in the v-direction would lose too many angular derivatives. Instead we
proceed as follows:
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We start by establishing a spacetime estimate for α′. By a slight variation of the
steps in the proof of Proposition 5.1, we have the following

D∇4βA
�

= ∇B

(

Dα′
�
)

BA

+ R
�

j n−3

2
−1 + F

�

j n−3

2
−1 + O

(

|u|−
n+2+2j

2 v1/2
)

,

D∇4νABC
�

= −2∇[A

(

Dα′
�
)

B]C

+ R
�

j n−3

2
−1 + F

�

j n−3

2
−1 + O

(

|u|−
n+2+2j

2 v1/2
)

.

Now, the elliptic estimate of Lemma 6.3 and the estimate (91) yields

∫

S

∣

∣

∣

∣

∇Dα′
�

∣

∣

∣

∣

2

|u|n+2jv−1 (92)

�

∫

S

[

∣

∣

∣
D∇4β
�

∣

∣

∣

2
+
∣

∣

∣
D∇4ν
�

∣

∣

∣

2
+
∣

∣

∣
R
�

j n−3

2
−1

∣

∣

∣

2
+
∣

∣

∣
F
�

j n−3

2
−1

∣

∣

∣

2
]

|u|n+2jv−1 + |u|−2.

By Proposition 6.3 we also have

∫ û

−1

∫ v̂

0

∫

S

[

∣

∣

∣
D∇4β
�

∣

∣

∣

2
+
∣

∣

∣
D∇4ν
�

∣

∣

∣

2
]

|u|n+1−2δ+2jv−2+2δ � T � 1.

Combining these estimates with (92) yields

∫ û

−1

∫ v̂

0

∫

S

∣

∣

∣

∣

∇Dα′
�

∣

∣

∣

∣

2

|u|n+2jv−1 �

∫ û

−1

∫ v̂

0

∫

S

[

∣

∣

∣
R
�

j n−3

2
−1

∣

∣

∣

2
+
∣

∣

∣
F
�

j n−3

2
−1

∣

∣

∣

2
]

|u|n+2jv−1

+ 1.

Finally, the nonlinear terms in R
�

j n−3

2
−1 and F

�

j n−3

2
−1 can be estimated, mutatis

mutandis, as we did in the equations for α′ in Propositions 6.3 and 6.4. We finally
obtain

∫ û

−1

∫ v̂

0

∫

S

∣

∣

∣

∣

∇Dα′
�

∣

∣

∣

∣

2

|u|n+2jv−1 � 1. (93)

Now we observe the following: The only difference in Proposition 6.3 that oc-

curs if we commute the Bianchi equations with ∇N+1∇
n−3

2
−1

4 instead of ∇N+1∇
n−3

2

4

and conjugate by |u|
n−1+2(N+1)

2
−δv−1/2+δ instead of |u|

n+1+2(N+1)

2
−δv−1/2+δ is that the

second term on the right hand side of the equation (79) for α′ will no longer neces-
sarily have a good sign. However, since we have already established the estimate (93)
this is clearly not a problem. Hence, we may re-run the proof of Proposition 6.3 to
establish the desired estimates for all of the other curvature components.

We thus have thus finished the base case i = 1. However, it is immediately clear
that the induction procedure can be successfully carried by arguing in the same
fashion. ��
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6.4.2 The case of even n. The case of even n is essentially the same as odd n.

Proposition 6.7. Let n ≥ 6 and even. Then we have

L ≤ C.

Proof. One can use the same proof as in the case of n odd. ��

6.5 Estimates for U. In this section we will show that U is bounded.

Proposition 6.8. Let n ≥ 2. Then we have

U ≤ C.

Proof. Let Ψ̊ be any of ρ, σ, τ , β, ν, or α. First of all, we know from Proposi-

tions 4.1, 4.2, and 4.3 that Ψ̊|v=0 = 0. Next, for every 0 ≤ j ≤ Ñ − 1, the ∇4

equation for each Ψ̊ implies the following estimate:

∣

∣

∣
∇4∇

jΨ̊
∣

∣

∣
� |u|−3−j +

∣

∣

∣

∣

∇j+1Ψ′
�

∣

∣

∣

∣

+ Rj0 + Fj0,

where Ψ′ �= α. Furthermore, it follows easily from signature considerations and
Proposition 3.6 that α does not appear in Rj0 or Fj0.

Now, the desired estimate follows in a straightforward fashion after integrating
over S and applying the fundamental theorem of calculus in the v-direction. It is
straightforward to control the nonlinear error terms Rj0 or Fj0 using the previously
established estimates for curvature and the bootstrap assumption for the Ricci co-
efficients. ��

6.6 Estimates for V. The goal of this section will be to establish the desired
bounds to V.

We proceed in two steps. First we follow naive strategy of estimating the rele-
vant Ricci coefficients by a straightforward integrating of the null structure equa-
tions. This will yield the correct estimates, but only at the cost of losing an angular
derivative (except for η and trχ′).

Proposition 6.9. We have

sup
0≤j≤Ñ

∫

Su,v

∣

∣∇jη
∣

∣

2
u4−4δ+2jv−2+4δ �1, (94)

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jη
∣

∣

2
u4−4δ+2jv−2+4δ �1, (95)

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jω
∣

∣

2
u6−8δ+2jv−4+8δ �1, (96)

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇j∇4ω
∣

∣

2
u4−4δ+2jv−2+4δ �1, (97)
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sup
0≤j≤Ñ

∫

Su,v

∣

∣

∣

∣

∇jtrχ
�

∣

∣

∣

∣

2

u4−4δ+2jv−2+4δ �1, (98)

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jχ̂
∣

∣

2
u4−4δ+2jv−2+4δ �1. (99)

Proof. We first give the proof for n odd.

Let’s start with η. Let m ≤ N . Commuting η’s ∇4 equation with ∇m and using
Lemma 3.5 yields

|∇4∇
mη| �

∑

i+j+k=m−1

∣

∣∇iψj+1
∣

∣

∣

∣

∣
∇k
(

χ
(

η − η
)

− β
)

∣

∣

∣
+

∑

i+j+k=m−1

∣

∣∇iψj+1
∣

∣

∣

∣

∣
∇kη

∣

∣

∣
.

Integrating the v-direction, using that η vanishes when v = 0, and using the boot-
strap assumptions immediately yields

∫

S
|∇mη|2 � v2−4δu−4+4δ−2m,

which establishes (94).

For η we will need to use the ∇3 equation. Before entering into the details we give
some general remarks about estimates for the Ricci coefficients via ∇3 equations.
Consider an equation for a Ricci coefficient ψ̊ of the form

∇3ψ̊ +
c

u
ψ̊ = ψ̊1 · ψ2 + Ψ̊, (100)

where c ∈ {0, 1, 2}, ψ̊1 · ψ2 denotes a general quadratic term involving Ricci coef-
ficients, at least one of which is a ψ̊, and Ψ̊ denotes a curvature component which
vanishes at {v = 0}. The first observation is that, as opposed to the case when we
integrate ∇4 equations, we cannot put the second term on the left hand side onto
the right hand side and treat it like an error term; if we did so it is easy to see that
we would obtain a logarithmic divergence.

In order to avoid the difficulty of the logarithmic divergence, we conjugate (100)
by uc and obtain

∇3

(

ucψ̊
)

=

(

Ω−1 − 1
)

u
ucψ̊ + ucψ̊1 ·

(

ψ2|v=0 + ψ
�

2

)

+ ucΨ̊. (101)

Now we multiply by 2ucψ̊ and obtain

∇3

∣

∣

∣
ucψ̊
∣

∣

∣

2
=

(

Ω−1 − 1
)

u

∣

∣

∣
ucψ̊
∣

∣

∣

2
+ u2cψ̊1 ·

(

ψ2|v=0 + ψ
�

2

)

· ψ̊ + u2cΨ̊ · ψ̊. (102)

Let κ > 0. Using our previous estimates for Ω−1 − 1 and b from Proposition 6.2,
we may then integrate in the u -direction, apply a Gronwall and Sobolev inequality,
apply Cauchy-Schwarz, and obtain
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∫

Sû,v̂

|û|2c
∣

∣

∣
ψ̊
∣

∣

∣

2

�

⎛

⎝

∫ û

−1

(

∫

Su,v̂

|u|2c
∣

∣

∣
ψ̊1

∣

∣

∣

2
|ψ2|

2

)1/2

du

⎞

⎠

2

+

⎛

⎝

∫ û

−1

(

∫

Sû,v̂

|u|2c
∣

∣

∣
Ψ̊
∣

∣

∣

2
)1/2

du

⎞

⎠

2

+

∫

S−1,v̂

∣

∣

∣
ψ̊
∣

∣

∣

2
.

�κ |û|−2κ

∫ û

−1

∫

Su,v̂

[

∣

∣

∣
ψ̊1

∣

∣

∣

2
[

|ψ2|v=0|
2 +
∣

∣

∣
ψ
�

2

∣

∣

∣

2
]

+
∣

∣

∣
Ψ̊
∣

∣

∣

2
]

|u|2c+1+2κ +

∫

S−1,v̂

∣

∣

∣
ψ̊
∣

∣

∣

2
.

(103)

Let’s now turn specifically to η with no angular derivatives. We write the equation
for η as

∇3η +
1

u
η = −

1

n
trχ
�

η + χη + β.

This corresponds to (100) with c = 1.

In this context (101) becomes

∇3

(

uη
)

+
1 − Ω−1

u

(

uη
)

= −
u

n
trχ
�

η + uχ̂η + η +
u

n
trχ
�

η + uβ.

Now we estimate as in (103). Let’s the examine the various terms on the right
hand side starting with the curvature term:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣β
∣

∣

2
|u|3+2κ = |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣β
∣

∣

2
|u|6−4δv̂−2+4δu−3+4δ−2κv̂2−4δ

� Uv̂2−4δ|û|−2κ

∫ û

−1
u−3+4δ+2κ du

�
v2−4δ

|û|2−4δ
.

Next, using the previously established estimate for η, we consider the η term:

|û|−2κ

∫ û

−1

∫

Su,v̂

|η|2 |u|1+2κ = |û|−2κ

∫ û

−1

∫

Su,v̂

|η|2|u|4−4δ v̂−2+4δ|u|−3+2κ+4δ v̂2−4δ

� |û|−2κv̂2−4δ

∫ û

−1
|u|−3+2κ+4δ du

�
v2−4δ

|û|2−4δ
.
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Lastly, using a Sobolev inequality and the bootstrap assumption we treat the
quadratic terms ψ̊ · ψ̊:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
ψ̊1

∣

∣

∣

2 ∣
∣

∣
ψ̊2

∣

∣

∣

2
|u|3+2κ du

� sup
j,k≤Ñ

|û|−2κ

∫ û

−1

(

∫

Su,v̂

|u|2j
∣

∣

∣
∇jψ̊1

∣

∣

∣

2
)(

∫

Su,v̂

|u|2k
∣

∣

∣
∇kψ̊2

∣

∣

∣

2
)

|u|3+2κ du

� Av̂4−8δ|û|−2κ

∫ û

−1
|u|−5+4δ+2κ du

� A
v̂4−8δ

|û|4−8δ

�
v2−4δ

|û|2−4δ
.

The above estimate along with Proposition 4.2 imply

∫

S

∣

∣η
∣

∣

2
�

v2−4δ

|u|5−4δ
. (104)

Note that the use of U involves the “loss” of an angular derivative; this is what
ultimately restricts us to establishing the estimate for up Ñ − 1 derivatives of η.

Arguing in a similar fashion after commuting with ∇m and using Lemma 3.7
allows one to conclude that

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jη
∣

∣

2
u4−4δ+2jv−2+4δ � 1.

For ω we have

∇4ω =
1

2
ρ +

1

4

∣

∣η
∣

∣

2
−

1

4
|η|2 + 2ωω + 3 |ζ|2 − |∇ log Ω|2 ,

which can be written schematically as

∇4ω = Ψ̊ + ψ̊ · ψ̊.

In particular, arguing as above easily leads to the estimate

sup
0≤j≤Ñ−1

∫

Su,v

∣

∣∇jω
∣

∣

2
u6−8δ+2jv−4+8δ � 1. (105)

Similarly, we obtain (97).
Next we turn to trχ

�

. From the ∇3 equation for trχ, we may derive

∇3trχ
� +

2

u
trχ
�

=
(Ω−1 − 1)n

u2
−

1

n

(

trχ
�

)2
−
∣

∣χ̂
∣

∣

2
− 2ω

(n

u
+ trχ
�

)

.
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Multiplying through by u2 then yields

∇3

(

u2trχ
�

)

= −
2 (1 − Ω−1)

u

(

u2trχ
�

)

+ (Ω−1 − 1)n − u2
(

trχ
�

)2
− u2

∣

∣χ̂
∣

∣

2

− 2ω
(

un + u2trχ�
)

.

Now we proceed exactly like we did for η. The only difference is that when bound
the term coming from ω we need to use the improved decay in v. We eventually
obtain

∫

Su,v

∣

∣

∣
trχ
�

∣

∣

∣

2
u4−4δ+2jv−2+4δ � 1.

Since there is no curvature term on the right hand side, we do not have the
derivative loss problem we experience in the other ∇3 equations. After commuting
with ∇j and repeating the estimate above, we easily obtain

sup
0≤j≤N

∫

Su,v

∣

∣

∣
∇jtrχ
�

∣

∣

∣

2
u4−4δ+2jv−2+4δ � 1.

Finally, the desired estimates for χ̂ follows from its ∇4 equation in a similar to
the estimates above. The presence of the ∇η of the right hand side of the equation

is the reason we only get estimates up to ∇N−1χ̂.
It is clear that the proof for n-even works analogously. ��

In the next lemma, we will use elliptic estimates to recover the estimates for the
top-order angular derivatives of the Ricci coefficients.

Proposition 6.10. We have
∫

Su,v

∣

∣

∣
∇Ñη

∣

∣

∣

2
u4−4δ+2Nv−2+4δ ≤ C, (106)

∫

Su,v

∣

∣

∣
∇Ñω

∣

∣

∣

2
u6−8δ+2Nv−4+8δ ≤ C, (107)

∫

Su,v

∣

∣

∣
∇Ñ χ̂

∣

∣

∣

2
u4−4δ+2Nv−2+4δ ≤ C. (108)

Proof. We will give the proof for odd n. The case of even n is completely analogous.
We start with η. The ∇3 equation for η can be written schematically as

∇3η +
1

u
η = ψ̊ · η + ψ · ψ̊ + β.

Let m = Ñ − 1, we commute with ∇m and use Lemma 3.7 to obtain
∣

∣

∣

∣

∇3∇
mη +

1 + m

u
∇mη − ∇mβ

∣

∣

∣

∣

�
∑

i+j+k=m,

∇iψ̊j+1∇kψ.
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Finally, we commute through divergence relative to the last index of ∇mη:

∣

∣

∣

∣

∇3∇
A∇mη

A
+

2 + m

u
∇A∇mη

A
− ∇A∇mβ

A

∣

∣

∣

∣

�
∑

i+j+k=m+1,

∇iψ̊j+1∇kψ (109)

Next, we observe that by signature considerations, in the ∇3 equation for ρ,
the only curvature terms that appear on the right hand side are Ψ̊. Thus, a slight
variation of Proposition 5.1 yields the following equation for ρ:

∣

∣

∣
∇3∇

mρ + ∇A∇mβ
A

∣

∣

∣

�
∑

i+j+k=m+1,

∇iψ̊j+1∇kψ +
∑

i+j=m

∇iψ∇jΨ̊ +
∑

i+j=m

∇i
(

/Riem
j+1

Ψ̊
)

.

Combining this with (109) yields
∣

∣

∣

∣

∇3

(

∇A∇mη
A

+ ∇mρ
)

+
2 + m

u

(

∇A∇mη
A

+ ∇mρ
)

∣

∣

∣

∣

�
∑

i+j+k=m+1,

∇iψ̊j+1∇kψ +
∑

i+j=m

[

∇iψ + |u|−i−i
]

∇jΨ̊ +
∑

i+j=m

∇i
(

/Riem
j+1

Ψ̊
)

.

(110)

Integrating this and estimating as in Propsition 6.9, using our previous estimates,
using Proposition 4.2, and appealing to the bootsrap assumption yields

∫

Su,v

∣

∣

∣
∇A∇mη

A
+ ∇mρ

∣

∣

∣

2
u4+2m �

v2−4δ

|u|2−4δ
⇒

∫

Su,v

∣

∣

∣
∇A∇mη

A

∣

∣

∣

2
�

v2−4δ

|u|6+2m−4δ
(111)

Next, arguing in a similar fashion using the constraint equation (52), the boot-
strap assumption, and our previous estimates, one easily establishes

∫

Su,v

∣

∣

∣
∇[A∇mη

B]

∣

∣

∣

2
� C

v2−4δ

|u|6+2m−4δ
.

Combining these two estimates with Lemma 6.3 finally yields

∫

Su,v

∣

∣∇m+1η
∣

∣

2
≤ C

v2−4δ

|u|6+2m−4δ
.

This establishes (106).
Now we turn to ω. This time we set m = Ñ − 2 and we start by deriving, using

signature considerations as we did above,

−∇4∇
mβ

A
= ∇A∇mρ + ∇B∇mσBA
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+
∑

i+j+k=m+1,

∇iψ̊j+1∇kψ +
∑

i+j=m

[

∇iψ∇jΨ̊ + ∇iψ̊∇iΨ
]

+
∑

i+j=m

∇i
(

/Riem
j+1

Ψ̊
)

. (112)

Next, using the anti-symmetry of σ, we note that

∇A∇B∇C1C2...Cm
σAB =

[

∇A, ∇B
]

∇C1C2...Cm
σAB

=

m
∑

i=1

/R
BA D

Ci
∇C1...Ci−1DCi+1...Cm

σAB + /R
BA D

A ∇mσDB

+ /R
BA D

B ∇mσAD

= /Riem · ∇mσ.

In particular, we easily obtain

−∇4∇
A∇mβ

A
= /∆∇mρ + /Riem · ∇mσ

+
∑

i+j+k=m+2

∇iψ̊j+1∇kψ +
∑

i+j=m+1

[

∇iψ∇jΨ̊ + ∇iψ̊∇iΨ
]

+
∑

i+j=m+1

∇i
(

/Riem
j+1

Ψ̊
)

. (113)

We also may easily derive

∇4 /∆∇mω =
1

2
/∆∇mρ +

∑

i+j+k=m+2

∇iψ̊j+1∇kψ̊.

In turn, we obtain
∣

∣

∣
∇4

(

/∆∇mω + ∇A∇mβ
A

)∣

∣

∣

� /Riem · ∇mσ +
∑

i+j+k=m+2

∇iψ̊j+1∇kψ +
∑

i+j=m+1

[

∇iψ∇jΨ̊ + ∇iψ̊∇iΨ
]

+
∑

i+j=m+1

∇i
(

/Riem
j+1

Ψ̊
)

. (114)

Arguing as above, we easily obtain

∫

Su,v

∣

∣

∣
∆∇mω + ∇A∇mβ

A

∣

∣

∣

2
�

v4−8δ

u2m+10−8δ
.

This then implies

∫

Su,v

∣

∣ /∆∇mω
∣

∣

2
�

v4−8δ

u2m+10−8δ
.
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Now the estimate for ω is finished by an application of Lemma 6.4.
Lastly, there is χ̂. The desired estimates follow in a straightfoward fashion using

the elliptic estimate of Lemma 6.3, the constraint equations (48) and (50), and the
fact that we already have the desired estimates for ∇trχ from Proposition 6.9. ��

Finally, combining the above two propositions immediately yields

Proposition 6.11. We have

V ≤ C.

6.7 Estimates for S. In this section we will provide the estimates for S.

Proposition 6.12. We have

S ≤ C.

Proof. If ψ is one of trχ, χ̂, η, or ω, then ψ will satisfy an equation schematically of
the form

∇4ψ = ψ · ψ + Ψ.

Commuting with ∇i and ∇j
4 yields the schematic equation

∇4∇
i∇j

4ψ =
∑

k+l=i

∇k∇j
4

(

ψl+1ψ
)

+ ∇k∇j
4Ψ ⇒

∇4∇
i∇j

4ψ
�

= O
(

u−2
)

+
∑

k+l=i

∇k∇j
4

(

ψl+1ψ
)�

+ ∇k∇j
4Ψ

�

.

The desired estimate for ∇i∇j
4ψ

�

then follows in a straightforward fashion by
inducting on i and j, integrating the v-direction, using the previously established
estimates, and the bootstrap assumption.

Now we turn the case when ψ is one of the Ricci coefficients trχ
�

, χ̂, η or ω. Let’s
denote these by ψ0. For these we will instead use the corresponding ∇3 equation.
After replacing trχ with n

u + trχ
�

, the general form of these equations is as follows:

∇3ψ0 +
c

u
ψ0 = ψ1 · ψ2 + ψ̊3u

−1 + Ψ.

For trχ
�

, χ̂, η or ω we will have c = 2, 2, 1, 0 respectively. Furthermore, the ψ̊3 term

only appears in the case of trχ
�

. We now explain the general heuristic for estimating
ψ. (This is, of course, similar to the method in Proposition 6.9.) For simplicity we
will first prove the estimate without any angular differentiation. It will be clear then
how to handle the general case.

Let m denote the maximal number of of ∇4 derivatives (this will be 0 if n = 2,
n−3

2 if n ≥ 3 and odd, and n−4
2 if n ≥ 4 and even). The first observation is that
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the following strong estimates for ∇jψ0 with j < m follow immediately from the
bootstrap assumption:

∫

Sû,v̂

∣

∣

∣

∣

∇j
4ψ0

�
∣

∣

∣

∣

2

�

∫

Sû,v̂

(∫ v̂

0

∣

∣∇j+1ψ0

∣

∣ dv

)2

�

∫

Sû,v̂

(∫ v̂

0

(

u−j−2 +

∣

∣

∣

∣

∇j+1ψ0

�
∣

∣

∣

∣

)

dv

)2

�
v̂2

|û|2j+4
+

v̂3−4δ

|û|2j+5−4δ

∫

Sû,v̂

∣

∣

∣

∣

∇j+1
4 ψ0

�
∣

∣

∣

∣

2

|û|2(j+1)+3−4δ v̂−1+4δ

�
v̂2

|û|2j+4
. (115)

Note that this is stronger than what the norm S dictates.
Similarly, one may establish

sup
j≤m−1

sup
i≤N+m−1−j

∫

Sû,v̂

∣

∣

∣

∣

∇i∇j
4ψ0

�
∣

∣

∣

∣

2

|û|2(i+j)+4δ|v̂|−2 � 1.

For ∇m
4 ψ0 we commute with ∇m

4 and use Lemma 3.8:

∇3∇
m
4 ψ0 +

c

u
∇m

4 ψ0

=
∑

m1+m2=m

∇m1

4 ψ1 · ∇m2

4 ψ2 + ∇m
4 Ψ + ∇m

4 ψ̊3|u|−1

+
∑

i+j+k=m,k 
=m

∣

∣∇i
4ψ

j
∣

∣

∣

∣

∣
∇k

4

(

ψ1 · ψ2 + Ψ + ψ̊3|u|−1
)∣

∣

∣

∑

i+j1+j2+k=m

[∣

∣

∣
∇i

4ψ̊
∣

∣

∣
+
∣

∣

∣
∇∇i−1

4 ψ̊
∣

∣

∣

] [∣

∣

∣
∇∇j1−1

4 ψj2
∣

∣

∣
+
∣

∣

∣
∇j1

4 ψj2
∣

∣

∣

] [∣

∣

∣
∇∇k−1

4 ψ0

∣

∣

∣

+
∣

∣

∣
∇k

4ψ0

∣

∣

∣

]

.
= H0 (116)

Next, we write the equation in terms of ∇mψ0
�

and obtain:

∇3∇
m
4 ψ0
�

+
c

u
∇m

4 ψ0
�

= H0
�

.

Let κ > 0. Now, conjugating by |u|c, multiplying by |u|c∇m
4 ψ0
�

, integrating and
estimating as in Proposition 6.9 yields

∫

Sû,v̂

|u|2c
∣

∣

∣
∇m

4 ψ0
�

∣

∣

∣

2
� |û|−2κ

∫ û

−1

∫

Su,v̂

|H0|
2 |u|2c+1+2κ. (117)

Before we deal with the generic case, we will need to argue a little more carefully
in the case when m = 0, i.e., when n = 2, 3, 4. In this case Proposition 6.9 has
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already dealt with all the necessary estimates except for ω. For ω we have that c = 0
and

|H0| � |ρ| + |η|2 +
∣

∣η
∣

∣

2
+ |ω| |ω| .

It then straightforward to see that the desired estimate follows from the previously
established estimates. The key points are that η and η enter quadratically and that
ω has an improved decay estimate in v.

Now we return to the general case of estimating the right hand side of (117) when
m ≥ 1. In what follows we will freely use Sobolev inequalities and the bootstrap

without explicit comment. Keeping in mind that
∣

∣

∣
fg
�
∣

∣

∣
� |fg�| +

∣

∣

∣
f
�

g
∣

∣

∣
, let’s consider

that various terms that show up when we try to estimate the right hand side of (117).
Note that the curvature term is never given by α and thus it will be straightforward
to estimate. When n ≥ 3 and odd we have:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
∇m

4 Ψ
�

∣

∣

∣

2
|u|2c+1+2κ

� |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
∇m

4 Ψ
�

∣

∣

∣

2
|u|4+2m−2δ v̂−1+2δ|u|2c−3−2m+2δ+2κv̂1−2δ

�
v̂1−2δ

|u|3+2m−2c−2δ
.

The key point here is that 3 + 2m − 2c − 2δ > 0 since m ≥ 1 and c ≤ 2.

Next we consider the terms on the right hand side of (117) which do not contain
any ∇m

4 derivative or an angular derivative. A generic such term can be represented
by letting i + j + k = m for i �= m and considering the following:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣

∣

∇i
4ψ
�

∣

∣

∣

∣

2 ∣
∣

∣
∇j

4ψ
k+1
∣

∣

∣

2
|u|2c+1+2κ

� |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣

∣

∇i
4ψ
�

∣

∣

∣

∣

2

|u|2c−1+2κ−2j−2k

� |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣

∣

∇i
4ψ
�

∣

∣

∣

∣

2 |u|2i+4

v̂2
|u|2c−5+2κ−2mv̂2

� v̂2|û|−2κ

∫ û

−1
|u|2c−5+2κ−2m

�
v̂2

|u|4+2m−2c−4
.

Here we used the estimate (115), and the fact that −2c+5−2κ+2m > 1. Similarly,
still relying on (115), a analogous estimate will work for terms which contain an
angular derivative as long as they are proportional to ∇∇j

4 for j ≤ m − 2.
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Next we consider the term where a term with ∇∇m−1
4 shows up. Here we cannot

use (115). However, the point will be that such terms in (116) are always multiplied
by a ψ̊ and this yields the desired decay:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
ψ̊
∣

∣

∣

2 ∣
∣∇∇m−1

4 ψ
∣

∣

2
|u|2c+1+2κ

� |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
ψ̊
∣

∣

∣

2
|u|2c−1−2m+2κ

� |û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
ψ̊
∣

∣

∣

2 |u|4−4δ

v̂2−4δ
|u|2c−5−2m+4δ+2κv̂2−4δ

� v̂−2+4δ|û|−2κ

∫ û

−1
|u|2c−5−2m+4δ+2κ

�
v̂2−4δ

|u|4+2m−2c−4δ
.

Finally, we come to terms with ∇m
4 . These terms can arise in the second and

fourth line of (116). If they arrive in the fourth line, then they come with a ψ̊ and
they can be estimated as above. When they arrive in the first line we have to be a

little more careful. We start with the terms ψ1 · ∇m
4 ψ2
�

or ∇m
4 ψ1
�

· ψ2. (The terms

ψ1
�

·∇m
4 ψ2 are straightforward to estimate as before using the bootstrap assumption

and the estimate (115).) Here, the point is simply that direct inspection of the

equations shows that either the term ∇m
4 ψ
�

has already been estimated with a ∇4

equation, or it is multiplying a ψ̊. The case where the term is multiplied by a ψ̊ can
be handled in an analogous fashion to the above estimates. Let’s consider the case

where ∇m
4 ψ1
�

has already been estimated by a ∇4 equation:

|û|−2κ

∫ û

−1

∫

Su,v̂

∣

∣

∣
∇m

4 ψ1
�

∣

∣

∣

2
|ψ2|

2 |u|2c+1+2κ � |û|−2κ|v̂|1−4δ

∫ û

−1

∫

Su,v̂

|u|2c−4−2m+4δ+2κ

�
v̂1−4δ

|u|3+2m−2c−4δ
.

Here we used that we have that 2c − 4 − 2m + 4δ + 2κ < −1.
The term ψ3u

−2 may be treated similarly after noting that ψ3 is always equal to
ω and hence is estimated by a ∇4 equation.

Finally, the desired estimates for /Riem are straightforward to establish using the
Gauss equation (44) which relates /RiemABCD and RABCD and then exploiting the
∇4 equation for RABCD. We omit the details. ��

7 Regular Estimates

In this section we will show that if we have a proto-ambient metric (M, g) which
arises from compatible regular conjugate data and exists in a suitably small charac-
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teristic rectangle Rũ,ṽ, then we have quantitative estimates for the regularity of the
solution (see Definition 1.3). More precisely, we have the following three propositions:

When n = 2 we have full C∞ estimates.

Proposition 7.1. Suppose that n = 2 and that (M, g) is a proto-ambient metric
arising from compatible regular conjugate data and exists in characteristic rectangle
Rũ,ṽ with ṽ

|ũ| ≤ ε for ε > 0 suitable small. Then, for every curvature component Ψ

and Ricci coefficient ψ and (i, j, k) ∈ N × N × N, there exists a constant Cijk such
that for all (u, v, θA) ∈ R we have

∣

∣

∣
∇i

4∇
j
3∇

kΨ
∣

∣

∣
≤ Cijk|u|−2−i−j−k,

∣

∣

∣
∇i

4∇
j
3∇

kψ
∣

∣

∣
≤ Cijk|u|−1−i−j−k.

Similar estimates hold directly for the metric components /g, Ω, and b.

When n ≥ 3 and odd, we have estimates which, among other things, allow for a
quantitative estimate for the little o error in the expansion (5).

Proposition 7.2. Suppose that n ≥ 3 and odd and that (M, g) is a proto-ambient
metric arising from compatible regular conjugate data and exists in characteristic
rectangle Rũ,ṽ with ṽ

|ũ| ≤ ε for ε > 0 suitable small. Then, for every curvature

component Ψ and Ricci coefficient ψ, 0 ≤ i ≤ n−3
2 , and (j, k) ∈ N × N × N, there

exists a constant Cijk such that for all (u, v, θA) ∈ R we have
∣

∣

∣
∇i

4∇
j
3∇

kΨ′
∣

∣

∣
≤ Cijk|u|−2−i−j−k,

∣

∣

∣
∇i

4∇
j
3∇

kψ
∣

∣

∣
≤ Cijk|u|−1−i−j−k.

For i = n−1
2 , (j, k) ∈ N × N, there is Cjk such that for all (u, v, θA) ∈ R we have

∣

∣

∣
∇

n−1

2

4 ∇j
3∇

kΨ′
∣

∣

∣
≤ Cjk|v|−1/2|u|−3/2− n−1

2
−j−k,

∣

∣

∣
∇

n−1

2

4 ∇j
3∇

kχ̂
∣

∣

∣
≤ Cjk|v|−1/2|u|−1/2− n−1

2
−j−k,

while for any ψ �= χ̂, for all (u, v, θA) ∈ R we have

∣

∣

∣
∇

n−1

2

4 ∇j
3∇

kψ
∣

∣

∣
≤ Cjk|u|−1− n−1

2
−j−k.

Similar estimates hold directly for the metric components /g, Ω, and b.

Finally, when n ≥ 4 and even, we have estimates which, among other things,
allow for a quantitative estimate for the little o error in the expansion (6).

Proposition 7.3. Suppose that n ≥ 4 and odd and that (M, g) is a proto-ambient
metric arising from compatible regular conjugate data and exists in characteristic
rectangle Rũ,ṽ with ṽ

|ũ| ≤ ε for ε > 0 suitable small. Then, for every curvature
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component Ψ and Ricci coefficient ψ, 0 ≤ i ≤ n−4
2 , and (j, k) ∈ N × N × N, there

exists a constant Cijk such that for all (u, v, θA) ∈ R we have

∣

∣

∣
∇i

4∇
j
3∇

kΨ′
∣

∣

∣
≤ Cijk|u|−2−i−j−k,

∣

∣

∣
∇i

4∇
j
3∇

kψ
∣

∣

∣
≤ Cijk|u|−1−i−j−k.

For i = n−2
2 , (j, k) ∈ N × N, there is Cjk such that for all (u, v, θA) ∈ R we have

∣

∣

∣
∇

n−2

2

4 ∇j
3∇

kΨ′
∣

∣

∣
≤ Cjk log

(v

u

)

|u|−2− n−2

2
−j−k,

∣

∣

∣
∇

n−2

2

4 ∇j
3∇

kχ̂
∣

∣

∣
≤ Cjk log

(v

u

)

|u|−1− n−2

2
−j−k,

while for any ψ �= χ̂, for all (u, v, θA) ∈ R we have

∣

∣

∣
∇

n−1

2

4 ∇j
3∇

kψ
∣

∣

∣
≤ Cjk|u|−1− n−1

2
−j−k.

Similar estimates hold directly for the metric components /g, Ω, and b.

Remark 7.1. If one unwinds the renormalization in Ψ′ and expresses the above
propositions in terms of the expansions from Definition 1.3 then the result is a
quantitative estimate for the constant in the big O in terms of the initial data.
In fact, when further regularity assumptions are made on the conjugate data, the
method of proof given for these propositions can be extended to yield full asymptotic
expansions consistent with the expectations from [FG12].

7.1 Estimates for n = 2. We start with the proof of Proposition 7.1.

Proof. This is a relatively standard combination of a preservation of regularity ar-
gument with the already established scale invariant estimates, so we will just sketch
the proof.

First of all, it is clear that Theorem 6.1 can be run with any number of angular
derivatives. Thus, in the various norms controlled by Theorem 6.1 we can apply
Sobolev inequalities to replace any L2 norm over S with the corresponding L∞

norm over S. This establishes L∞ (R) estimates for the Ricci coefficients.

To obtain similar estimates L∞ (R) for the Ψ’s (and any angular derivative
thereof) we need to use the Bianchi equations. This is most straightforward for
any curvature component Ψ not equal to α; in this case, we can simply integrate
the corresponding ∇4 Bianchi equation use Theorem 6.1 to control the L1 norm
of the right hand side. Commuting with angular derivatives then establishes the
corresponding estimates for any number of angular derivatives these components.

For α, we have to integrate the ∇3 equation. Given the previous estimates we
can write the ∇3 equation for α as

∇3α + u−1α = O

(

v1−δ

|u|2−δ

)

α + O
(

u−3
)

.
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We conjugate the equation through by |u| to obtain

∇3 (|u|α) = O

(

v1−δ

|u|2−δ

)

|u|α + O
(

u−2
)

.

Then we can integrate from the initial data along {u = −1} and apply Gronwall to
establish the desired estimate.

Next, given these estimates on curvature, it is straightforward to get estimates
on ∇4ψ and ∇3ψ via the null structure equations. (As we have already seen multiple
times before, if, say, one does not have an explicit null structure equation giving an
expression for ∇4ψ, then one commutes the ∇3 equation to derive an equation for
∇3∇4ψ and then integrates as we did for α. See the estimates in Section 6.6 and 6.7.)

Revisiting Bianchi allows one to obtain L∞ estimates for ∇4 and ∇3 derivatives
of curvature. The proof for an arbitrary number of derivatives then follows by a
straightforward induction argument. ��

7.2 Estimates for n ≥ 3 and odd. We next give the proof of Proposition 7.2.

Proof. The estimates when one commutes with at most n−3
2 ∇4 derivatives are

straightforward and follow analogously to the case of n = 2. We omit the details.
The estimate for the maximal number, n−1

2 , of ∇4 derivatives requires a little

more care due to the singular terms generated by the v
n−4

2 |u|
n

2
+2hAB which is present

in the various nonlinear terms. As usual, the estimate is easiest to obtain for any
curvature component Ψ other than α; these all satisfy a ∇4 equation and via Propo-
sition 5.1 the desired estimate follows immediately. For α we have to commute it’s

∇3 equation with ∇
n−1

2

4 . It follows from Proposition 5.1 and the previous estimates
we have established that we have

∇3∇
n−1

2

4 α′
AB +

n

2
u−1∇

n−1

2

4 α′
AB = O

(

v−1/2|u|−5/2− n−1

2

)

,

from which the desired estimate for ∇
n−1

2

4 α′ follow in a straightforward fashion.
(The reason we see singular terms like v−1/2 is that in the nonlinear terms from
Proposition 5.1 there are terms proportional to

∇
n−1

2

4

(

ψ̊hABv
n−4

2 |u|−
n

2
+2
)

,

and the best estimate we have for ψ̊ is
∣

∣

∣
ψ̊
∣

∣

∣
� v|u|−2.) From here the desired estimate

for ∇
n−1

2

4 follows after conjugating the equation with |u|
n

2 and integrating in the ∇3

direction.
Estimates for additional derivatives follow in a straightforward fashion. ��

7.3 Estimates for n ≥ 4 and odd. The proof of Proposition 7.3 is completely
analogous to the proof of Proposition 7.2 and hence we omit it.
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8 Self-Similar Extraction

In this section we will discuss the extraction of the self-similar solution from succes-
sive rescalings of a proto-ambient metric.

8.1 Initial Data Analysis. Suppose that (M, g) is a proto-ambient metric
produced by Theorem 1.1. Let 1 > λ > μ > 0 and consider the rescaled metrics
(M, gλ) and (M, gμ) defined by

gλ
.
= λ−2Φ∗

λg, gμ
.
= μ−2Φ∗

μg,

where the rescaling diffeomorphism Φ is defined by (1).
We will refer to metric coefficients, Ricci coefficients, and curvature components

of gλ by φλ, ψλ, Ψλ. We adopt a similar notation for gμ. We will put an overline over
quantities which denote the difference of two double null quantities corresponding
to gλ and gμ respectively. For example, we set

α
.
= αλ − αμ.

In the following sequence of lemmas, we will show that the data corresponding
to φ, ψ, and Ψ along {v = 0} exhibits many cancellations.

We start with the case of n = 2.

Proposition 8.1. When n = 2, we have that every φ, ψ, and Ψ vanishes along
{v = 0} except for α, which satisfies

∣

∣α|{v=0}

∣

∣ � |λ − μ| |u|−1.

Furthermore, we have the following improved vanishing for some Ricci coefficients
for any i:

[∣

∣∇iχ̂
∣

∣+
∣

∣∇itrχ
∣

∣+
∣

∣∇iη
∣

∣+
∣

∣∇iω
∣

∣

]

|{u=−1} � v2−δ. (118)

The implied constants just depend on i and (71) (with N taken suitably large.)

Proof. Other than (118), this follows immediately from the formulas in Section 3.11
and Proposition 4.1. (Keep in mind that the formulas in Section 3.11 are given with
respect to a Lie-propagated frame!)

Before we show how to obtain (118), we first note that by integrating the ∇4

Bianchi equations and using the estimates from Theorem 1.1 and Sobolev inequal-

ities, we obtain that for Ψ �= α we have

∣

∣

∣

∣

∇iΨ
�

∣

∣

∣

∣

≤ C v1−δ

|u|i+3−δ . Using the ∇4 Bianchi

equations once again yields
∣

∣

∣
∇i∇4Ψ
�

∣

∣

∣
≤ C v1−δ

|u|i+4−δ for all Ψ �= α, β.

Now let’s turn to (118). Let’s start with the estimate for χ̂. First of all, it fol-

lows immediately from the corresponding ∇4 null structure equation that
∣

∣

∣
∇iχ̂

�
∣

∣

∣
≤

C v1−δ

|u|2+i−δ . In turn this immediately implies that
∣

∣∇iχ̂
∣

∣ ≤ C v1−δ

|u|2+i−δ . Then the desired

estimate for χ̂ just follows by integrating it’s ∇4 equation and using that everything
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on the right hand side vanishes in v. The estimates for trχ are analogous except that

one also needs to use that
∣

∣∇iρ
∣

∣ ≤ C v1−δ

|u|2+i−δ which itself follows from the uniform

bound for ∇4ρ we derived in the previous paragraph and the fact that ρ vanishes
on {v = 0}.

Next, we turn to ω. First of all, using the estimates we have for ∇4ρ, it follows

easily by commuting with ∇4 and integrating the ∇3 equation for ω that
∣

∣

∣
∇i∇4ω
�

∣

∣

∣
�

v1−δ

|u|3+i+δ . We then obtain that
∣

∣∇i∇4ω
∣

∣ � v1−δ

|u|3+i+δ and the desired estimate for ω

follows from the fundamental theorem of calculus. A similar argument works for η.

��

Next we have n ≥ 3 and odd.

Proposition 8.2. When n ≥ 3 and odd, we have that for every 0 ≤ i ≤ n−3
2 ,

Li+1
v φ, Li+1

v ψ, and Li
vΨ vanish along {v = 0}, except for L

n−3

2
v α and L

n−1

2 χ̂. Instead
we have

∣

∣

∣
L

n−3

2
v α|{v=0}

∣

∣

∣
� |λ − μ|1/2 |u|−

n

2 .

Furthermore, we have the following improved vanishing for some Ricci coefficients
for any i:

[∣

∣∇iχ̂
∣

∣+
∣

∣∇itrχ
∣

∣+
∣

∣∇iη
∣

∣+
∣

∣∇iω
∣

∣

]

|{u=−1} � v3/2−δ. (119)

The implied constants just depend on i and (71) (with N taken suitably large.)

Proof. This is analogous to the case when n = 2. ��

For n ≥ 4 and even we have

Proposition 8.3. When n ≥ 4 and even, we have that for every 0 ≤ i ≤ n−4
2 ,

Li+1
v φ, Li+1

v ψ, and Li
vΨ vanish along {v = 0}.

Furthermore, we have the following improved vanishing for some Ricci coefficients
for any i:

[∣

∣∇iχ̂
∣

∣+
∣

∣∇itrχ
∣

∣+
∣

∣∇iη
∣

∣+
∣

∣∇iω
∣

∣

]

|{u=−1} � |log(v)| v2−δ. (120)

The implied constants just depend on i and (71) (with N taken suitably large.)

Proof. This is also analogous to the case of n = 2. ��

Remark 8.1. There exists many more improvements in the vanishing of the over-
lined double-null quantities as v → 0. However, we have just listed here the ones
that we will need later.

8.2 Supercritical Estimates. In this section we will show that the various
overlined quantities satisfy a supercritical estimates.
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8.2.1 The Norms. Recall that in Section 5.1, we defined renormalized versions of
α which eliminated the most singular behavior as v → 0. However, Propositions 8.2
and 8.3 imply that for α the most singular pieces always vanish. Hence, we do not
need to define a renormalized α.

For the norms we have following definition for n ≥ 3 and odd or n = 2.

Definition 8.1. Let n ≥ 3 and odd or n = 2. Let κ > 0 be sufficiently small and
fixed and choose N̂ sufficiently large. Then we define the norms T, L, U, V, and S,
by replacing in each of the norms T, L, U, V, and S the corresponding ψ or Ψ with
ψ or Ψ and then lowering the the power of |u| in the definition by 2κ. Throughout
we use gλ to define the covariant derivatives and contractions.

For example, when n is odd,

∣

∣

∣

∣Ψ
∣

∣

∣

∣

2

Tũ,ṽ

.
= sup

0≤j≤N̂

sup
(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2j−2κv−1+2δ

+

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2j−2κv−1+2δ

+

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−3

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+1−2δ+2j−2κv−2+2δ

]

.

When n ≥ 4 and even we have the following.

Definition 8.2. Let n ≥ 4 and even. Let κ > 0 be sufficiently small and fixed
and choose N̂ sufficiently large. Then we define the norms T, L, U, V, and S, by
replacing in each of the norms T, L, U, V, and S the corresponding ψ or Ψ with ψ
or Ψ and then lowering the the power of v in the definition by 2κ.

For example,

||Ψ||2
Tũ,ṽ

.
= sup

0≤j≤N̂

sup
(u0,v0)∈Rũ,ṽ

[

∫ u0

−1

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1−2κ

+ v−2δ
0

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−1−2κ+2δ

+ v−2δ
0

∫ u0

−1

∫ v0

0

∫

S

∣

∣

∣

∣

∣

∣

∇j∇
n−4

2

4 Ψ
�

∣

∣

∣

∣

∣

∣

2

un+2jv−2−2κ+2δ

]

.

Remark 8.2. We have written N̂ in the above instead of N (which appeared in
Section 5) to emphasize that the norms of this section and the norms of Section 5
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do not have to have the same number of angular derivative commutations. In fact,
due to the quasilinear nature of the Einstein equations, we expect that in order
to control the convergence of the rescaled solutions, we will be required to have
established that each rescaled solution is bounded in a space that involves one more
derivative. Specifically, in our context, one we have fixed the number N̂ of angular
commutation in the norm used for convergence, we will need to take N ≥ N̂ + 1 in
the norm used for Theorem 1.1. Since we have already not concerned ourselves with
trying to minimize the use of angular derivatives in Theorem 1.1, here we will also
not attempt to optimize N̂ .

8.2.2 Double-null equations for the Overlined Quantities. We will eventually
want to derive equations for the overlined double-null quantities. We first recall
the various formulas relating the covariant derivatives to coordinate derivatives and
Ricci coefficients:

∇4φA1...Ak
= Ω−1∂v [φA1...Ak

] −
k
∑

i=1

χ B
Ai

φA1...ÂiB...Ak
, (121)

∇3φA1...Ak
= Ω−1

(

∂u + bB∂B

)

[φA1...Ak
] −

k
∑

i=1

(

χ B
Ai

− Ω−1∂Ai
bB
)

φA1...ÂiB...Ak
,(122)

∇BφA1...Ak
= ∂B [φA1...Ak

] −
k
∑

i=1

/Γ
C
AiBφA1...ÂiC...Ak

. (123)

In particular, the following formulas may be easily derived:

Ωλ (∇4)λ (φλ)A1...Ak
− Ωμ (∇4)μ (φμ)A1...Ak

= Ωλ (∇4)λ φA1...ÂiB...Ak
−

k
∑

i=1

Ωχ
B

Ai
(φμ)A1...ÂiB...Ak

, (124)

Ωλ (∇3)λ (φλ)A1...Ak
− Ωμ (∇3)μ (φμ)A1...Ak

(125)

= Ωλ (∇3)λ φA1...ÂiB...Ak
−

k
∑

i=1

[

Ωχ
B

Ai
− Ω∂Ai

b
B
]

(φμ)A1...ÂiB...Ak

+ b
B

∂B

[

(φμ)A1...Ak

]

.

A key point of these formulas is that to highest order in the overlined quantities,
they are the same as the original λ equations.

Analogous formulas hold for differences Dλφλ − Dμφμ of angular operators. By
using these types of formulas systematically we will be able to use the differences
of the various double null equations to effectively estimate the overlined double null
quantities. We turn now to the details.
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8.2.3 The Estimates. In this section we will establish the desired estimates. As
we have seen before, separate arguments are required in the case of n ≥ 3 and odd,
n ≥ 4 and even, and n = 2.

Theorem 8.1. Let n ≥ 3 and odd. Assume that we have a proto-ambient metric
(M, g) which arises from Theorem 1.1 and exists in a characteristic rectangle Rũ,ṽ

with ṽ
|ũ| ≤ ε for ε > 0 sufficiently small, and furthermore satisfies (70).

Then, for ε > 0 sufficient small there exists a constant C ≥ 1 depending only on
the size of the initial data such that

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ C.

Proof. We introduce the bootstrap assumption

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ A. (126)

(Later in the proof we will justify why the initial fluxes when u = −1 are bounded.)

We start by explaining how we will establish the energy estimates behind the
bound for Tũ,ṽ.

As usual, we start with
(

α,
(

β, ν
))

. We have the following equations for
(αλ, (βλ, νλ)):

Ωλ∇3 (αλ)AB + Ωλ
n/2

u
(αλ)AB = Ωλ

(

u2
/gλ

)CD
∇D (νλ)C(AB) + Ωλ∇(A (βλ)B)

+ ΩλEλ,

Ωλ∇4 (βλ)A = Ωλ

(

u2
/gλ

)BC
∇C (αλ)BA + ΩλEλ,

Ωλ∇4 (νλ)ABC = −2Ωλ∇[A (αλ)B]C + ΩλEλ. (127)

Here the covariant derivatives are all defined with respect to gλ even though we have
suppressed this in the notation.

We have an analogous set of equations for (αμ, (βμ, νμ)). Taking the difference
of the equations and using the identities (124), (125), and the counterparts for the
angular derivatives then yields that (127) holds again where

(1) We replace each αλ, βλ, and νλ with the corresponding overlined quantities α,
β, ν.

(2) We must add the error term −ΩμEμ.

(3) We must add an error term Ê which results from the applications of the identi-
ties (124), (125), and the angular variants. This will be of the schematic form:

Ê =
[

Ωψ + ∇b
]

Ψμ +
[

Ω/g + b
]

∇Ψμ + Ω/ΓΨμ.

A key point in the error term Ê is that the highest order terms are all in term of
Ψμ for which we already have estimates.
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The next set is to conjugate the equation with the weight |u|−κ = (−u)−κ. This
only changes the nature of the left hand side. We obtain

∇3

(

|u|−κα
)

AB
+

(n/2) + κ

u

(

|u|−κα
)

AB
= |u|−κ (· · · ) (128)

∇4

(

|u|−κβ
)

A
= |u|−κ (· · · )

∇4

(

|u|−κν
)

ABC
= |u|−κ (· · · ) ,

where the terms in the (· · · ) are just the same that were on the right hand side of
non-conjugated equation.

We draw attention to the fact that conjugation by the weight |u|−κ has effectively
left the form of the equations unchanged except for the that the second term on the
left hand side of α’s equation has had it’s coefficient slightly raised. (Keep in mind
that κ > 0 is a small constant).

We conjugate the equation just as we did in to obtain (79) and then we proceed
to carry out the energy estimates in the same fashion. Due to original conjugation
by |u|−κ, the left hand side of our estimates will control T. Note that after we carry
out the energy estimate via the standard integration by parts, there will be no terms
with angular derivatives of α, ν, and β!

When we estimate the various error terms on the right hand side, the differences
from before are as follows:

(1) In the equation for w|u|−κα, the coefficients of the second term on the left
hand side will be proportional to 1 − δ − κ instead of 1 − δ. However, since
|δ|, |κ| 
 1, this term is still positive.

(2) When we estimate the resulting nonlinear error terms we need to take account
of the presence of the |u|−κ which we conjugated the equation by. The key
point is that after using inequalities of the form

|ψλΨλ − ψμΨμ| ≤
∣

∣ψ
∣

∣ |Ψλ| + |ψμ|
∣

∣Ψ
∣

∣ ,

every error term coming from Eλ − Eμ contains a product with at least one
overlined quantity coming from the difference of double null quantities associ-
ated to gλ and gμ. This term will satisfy estimates associated to T, L, etc., and
hence can absorb the |u|−κ. Furthermore, the other terms do not pose a threat
due to the scale invariance of the norms in T, L, etc., the scaling properties
from Section 3.11 (see especially Remark 3.8), and the already established esti-
mates from Theorem 4.1. The additional error terms from Ê may be handled in
a similar fashion after noting that, in particular, we already have appropriate
scale-invariant bounds on ∇ (αμ, βμ, νμ). Note that even though we use that
we control angular derivatives of αμ, βμ, and νμ, at this stage of the energy
estimates we will not control any derivatives of α, β, and ν. This represents
the usual loss of a derivative that occurs when studying differences of solutions
of quasilinear wave equations.
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(3) We have to argue that the inhomogeneous terms which are introduced when we

replace Ψ with Ψ
�

are integrable, even though there is an extra factor of |u|−κ.
However, Lemma 8.2 implies that we only see such terms arising from α’s
equation, and that the corresponding inhomogeneous error term which arises

on the right hand side of the energy estimate is O
(

|u|−
n+1+2κ+2i

2

)

which is

better than the O
(

|u|−
n+3+2i

2

)

we saw when we were estimating T, and hence

this does not pose any danger.
(4) We have to explain how we obtain higher order estimates. For this we sim-

ply directly take the difference of the equations from Section 5.8 and repeat
the above analysis, modulo straightforward additional estimates of Christoffel
symbols (Cf. analogous arguments from Section 5 of [LR15].)

(5) Finally, we have to argue that the initial fluxes along {u = −1} are under
control. However, for this we can just use the inequality |Dαλ| � |Dα�′

λ|+
∣

∣Dα�′
μ

∣

∣

and exploit the the scale invariance of the T norms and the fact that |u|−κ = 1
along {u = −1}. For example, using the self-similar relations of Section 3.11 and
the change of variables ũ = λ−1u, ṽ = λ−1v, we have the following estimates
for the u-flux of α′

λ:

∫ v0

0

∫

S

∣

∣

∣
∇j∇

n−3

2

4 α′
λ

∣

∣

∣

2

v−1+2δ|{u=−1} dv

=

∫ v0

0

∫

S

∣

∣

∣
∇j∇

n−3

2

4 α′
λ

∣

∣

∣

2

|u|n+1−2δ+2jv−1+2δ|{u=−1} dv

=

∫ λv0

0

∫

S

∣

∣

∣
∇j∇

n−3

2

4 α′
∣

∣

∣

2

|ũ|n+1−2δ+2j ṽ−1+2δ|{u=−1} dṽ

� 1.

It is now clear that the estimates for T can be successfully established. Analogous
arguments allow one to bound L and U.

We now turn to a discussion of the estimates for V and S for the Ricci coefficients.
We undertake a different strategy for estimates based on ∇4 equations or estimates
based on ∇3 equations. The ∇4 equations are the most straightforward. In analogy
with the Bianchi system, we simply derive an equation for ∇4 of ψ and carry out the
same estimates as we did when previously estimates V and S. Due to Lemma 8.2
there is no contribution from initial data or an inhomogeneous terms, and it is clear,
just as it worked for Bianchi, that each term on the right hand of the estimate will
contain at least one overlined quantity which produces an extra |u|2κ and allows us
to close the estimate. So that the mechanism is clear, let us consider a representative
equation. For χ̂ one derives an equation of the following form:

Ω∇4χ̂AB = − 2Ω (χλ) B
A (χ̂λ)BC − 2Ωμχ B

A (χ̂λ)BC − 2Ωμ (χμ) B
A χ̂BC

−
2

n
Ωtrχλ (χ̂λ)AB −

2

n
Ωμtrχ (χ̂λ)AB −

2

n
Ωμtrχμχ̂AB
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− Ω (αλ)AB − ΩμαAB + · · · ⇒
∣

∣Ω∇4χ̂
∣

∣ �
∣

∣Ω
∣

∣ |u|−2 + |χ| u−1 + |α| + · · · ,

from which it is clear that the desired estimates for χ̂ can be obtained by integrating
in the v-direction. Note that this same strategy allows one to prove the analogue of
Proposition 6.2 in a way which gains a factor of |u|−2κ.

For estimates of Ricci coefficients which use ∇3 equations we have to be a bit
more careful because there is a contribution from from the initial data for the over-
lined Ricci coefficients along {u = −1}, and we have to explain how we can gain
a |u|2κ from this. Fortunately, this can easily be accomplished from exploiting van-
ishing in v: More specifically, for the ∇3 based estimates involved in V we can
exploit (119), which implies that the Ricci coefficients decay v1/2 faster as v → 0
than we could exploit in our previous analysis of the V norms. Since in the region
under consideration, we have v ≤ ε|u|, the extra v-decay easily provides the desired
extra |u|−κ. ��

Next, we turn the case of n ≥ 4 and even.

Theorem 8.2. Let n ≥ 4 and even. Assume that we have a proto-ambient metric
(M, g) which arises from Theorem 1.1 and exists in a characteristic rectangle Rũ,ṽ

with ṽ
|ũ| ≤ ε for ε > 0 sufficiently small, and furthermore satisfies (70).

Then, for ε > 0 sufficient small there exists a constant C ≥ 1 depending only on
the size of the initial data such that

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ C.

Proof. The difference with the case of n ≥ 3 and odd is that we are making the
norms supercritical by lowering the v-weight instead of lowering the u-weight. The
reason we cannot lower the u-weight is because, unlike the case when n ≥ 3 and
odd, if we conjugated the ∇3 equation for α by an additional negative u-weight we
would produce a lower order term of the wrong sign. However, in contrast to the case
of n ≥ 3 and odd, Proposition 8.3 yields that all overlined curvature components
vanish at {v = 0}. Thus, when carrying out the energy estimates via the Bianchi
equations, no inhomogeneous terms are generated; this is what allows us to use a
lower v-weight. With these caveats, and after replacing |u|−κ with v−κ, it is clear
that the proof can proceed exactly as in the case of n ≥ 3 and odd if(!) we can show
that the initial energy fluxes are bounded, i.e.,

T−1,ṽ + L−1,ṽ + U−1,ṽ + S−1,ṽ + V−1,ṽ ≤ C.

(Of course, the fluxes along {v = 0} all vanish.)
Note that we cannot directly appeal to a rescaling argument as we did when n ≥ 3

and odd because the v-weight we need to control inside the integral is v−1−2δ−2κ,
while rescaling will only ever produce an estimate for v−1−2δ. Let’s specialize to the
case of n = 4 as the high dimensional case is analogous. First we consider how we
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control the initial v-flux for Ψ �= α. For any Ψ �= α, integrating the corresponding
∇4 Bianchi equation and using the previously established estimates immediately

yields
∣

∣

∣
∇iΨ

�
∣

∣

∣
� v1−δ

|u|3+i−δ . We immediately obtain that
∣

∣∇iΨ
∣

∣ � v1−δ

|u|3+i−δ which easily

implies that the desired initial v-flux is finite. For α, we do not have a corresponding
∇4 Bianchi equation, and instead we will have to exploit assumption (4) on the
initial data. However, with the estimate (4) in hand, it is clear what we need to
do. Integrating α’s ∇3 equation and using the estimates we have just established
along with the estimates from Theorem 4.1 easily yields the estimate

∣

∣∇iα�
∣

∣ |u,v �
v1−δ

|u|3+i−δ +
∣

∣∇iα�
∣

∣ |−1,v. Given this, the desired initial flux estimate of α follows by the

same scaling argument we have used repeatedly. ��

Finally, we have the analogous result for n = 2.

Theorem 8.3. Let n = 2. Assume that we have a proto-ambient metric (M, g)
which arises from Theorem 1.1 and exists in a characteristic rectangle Rũ,ṽ with
ṽ
|ũ| ≤ ε for ε > 0 sufficiently small, and furthermore satisfies (70).

Then, for ε > 0 sufficient small there exists a constant C ≥ 1 depending only on
the size of the initial data such that

Tũ,ṽ + Lũ,ṽ + Uũ,ṽ + Sũ,ṽ + Vũ,ṽ ≤ C.

Proof. This is proven in exactly the same fashion as when n ≥ 3 and odd. Note that
the situation is strictly easier since there are no singular terms, and α|v=0 blows-up
at an even slower rate than when n is odd. ��

8.3 Extracting the Limit. In this section we will show that gλ has a unique
limit as λ → 0.

Theorem 8.4. Assume that we have a proto-ambient metric (M, g) which arises
Theorem 1.1 and exists in a characteristic rectangle Rũ,ṽ with ṽ

|ũ| ≤ ε for ε > 0

sufficiently small, and furthermore satisfies (70).
Then there exists a unique metric gsim such that (M, h) is a self-similar solution

to the Einstein equations and

gλ → gsim as λ → 0,

where the convergence is with respect to the supercritical norms of ||·||
T
, ||·||

L
, etc.,

applied to the various double-null unknowns associated to gλ and h.

Proof. Let’s introduce the notation

||gλ − gμ||
E

.
= ||gλ − gμ||

T
+ ||gλ − gμ||

L
+ ||gλ − gμ||

U
+ ||gλ − gμ||

S
+ ||gλ − gμ||

V
.

(129)
Theorems 8.1, 8.2, and 8.3 have shown that

||gλ − gμ||
E

� 1,



GAFA THE ASYMPTOTICALLY SELF-SIMILAR REGIME 861

for any 0 < λ, μ ≤ 1.
Let’s suppose that 0 < μ < λ < 1. Since the overlined norms have broken the

scale-invariance, it now immediately follows by rescaling that

||gλ − gμ||
E

=
∣

∣

∣

∣

∣

∣
gλ·1 − gλ· µ

λ

∣

∣

∣

∣

∣

∣

E

≤ λκ
∣

∣

∣

∣

∣

∣
g1 − gµ

λ

∣

∣

∣

∣

∣

∣

E

� λκ.

In particular, it immediately follows that there exists a unique metric gsim such
that

||gλ − gsim||
E

→ 0 as λ → 0.

It remains to argue that gsim is self-similar. However, this can be easily seen as
follows: Let s > 0 and consider the rescaled metric (gsim)s. We then have that

||gsλ − (gsim)s||E ≤ sκ ||gλ − gsim||
E

→ 0 as λ → 0,

||gsλ − gλ||
E

≤ λκ ||gs − g||
E

� λκ → 0 as λ → 0.

Together this implies that gλ → (gsim)s and then, by uniqueness of limits, we
conclude that gsim = (gsim)s, i.e., gsim is a self-similar solution. ��

It turns out that our rescaling procedure also allows us to classify the limits gsim.

Theorem 8.5. The limiting self-similar solution gsim produced by Theorem 8.4 de-
pends only on the following two tensors associated to the original metric g:

(1) The original induced metric on {u = −1}, /gAB
|{(u,v)=(−1,0)}.

(2) (a) When n = 2, the tensor χ̂AB|(u,v)=(−1,0).
(b) When n ≥ 3 and odd, the tensor hAB which determines the singular

behavior of αAB as v → 0.
(c) When n ≥ 4 and even, the tensor which is equal to

(

∇
n−4

2

4 α − OAB log(v)
)

|(u,v)=(−1,0).

Proof. Suppose we have two self-similar metrics g(1) and g(2) for which the two ten-
sors defined above agree. Then, if one re-runs the proof of Propositions 4.1, 4.2,
or 4.3, depending on the dimension n, one finds that the conclusions of Proposi-
tions 8.1, 8.2, or 8.3, depending on the dimension, hold with g replaced by g(1)−g(2).
This allows us to run our a priori estimates and conclude that

∣

∣

∣

∣g(1) − g(2)
∣

∣

∣

∣

E
� 1.

Arguing as Theorem 8.4 then shows that
(

g(1) − g(2)
)

λ
must converge to 0 as λ → 0.

By self-similarity the two metrics must in fact be equal. ��
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Appendix A. Local Existence for regular Data

In this section we will discuss the local theory behind the proof of Theorem 4.1.
First of all, we recall the well-posedness of the standard characteristic initial value
problem.

Theorem A.1. Let
(

S, /g0

)

be a closed orientable n-dimensional Riemannian man-

ifold and /̂g(v) be conjugate data which is smooth as v → 0. Then, after possibly

taking ε smaller, there exists an open set M0 ⊂ M
.
= {(u, v, θA) ∈ (0, −1]× [0, ε)×S

around ({v = 0} ∪ {u = −1})∩M and a unique smooth metric g on M0 solving the
Einstein equations such that in the corresponding double null gauge we have

(1)

/g|v=0 = u2
/g0

.

(2)

ζ|(u,v)=(−1,0) = 0.

(3)

Ω2|{v=0}∪{u=−1} = 1.

(4)

b|{v=0} = 0.

(5)

trχ|(u,v)=(−1,0) =
/R0

n − 1
.

(6) There exists a function Φ
(

v, θA
)

with

/g|u=−1 = Φ2
/̂g.

Proof. As discussed before the statement of Theorem 4.1 in Section 4, in the case
of n = 2, this follows from [Luk12]. An examination of the proof in [Luk12] shows
that there are no essential changes for the case of general n ≥ 2. ��

Now we turn to Theorem 4.1.
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Proof. When n = 2, the conjugate data is always smooth, so the desired result
follows immediately from Theorem A.1.
Next, let’s consider the case when n ≥ 4. In this case, even though the conjugate
data is not smooth as v → 0, the curvature components and angular derivatives
thereof are all in L2 on the initial conjugate null cone. An examination of the es-
timates and the convergence scheme of [Luk12,LR15] and the equations we have
derived in Propositions 3.2, 3.3, and 3.6 allow one to prove a local existence result
in a straightforward manner. The desired regularity statement then follows in an
analogous fashion to the proofs of Propositions 7.2 and 7.3. (Note that we are in a
strictly easier situation here since for the proof of this theorem, we do not need to
track any singular behavior as u → 0.)
When n = 3 then α ∼ v−1/2 along {u = −1} and hence is not in L2 on the conjugate
cone. However, we can write

α|u=−1 = α(1) + v−1/2α(2),

for α(1) and α(2) in L∞. Then we can mimic Definition 5.1 and set (in the coordinate
frame)

α′
AB

.
= αAB − v−1/2u1/2α

(2)
AB|u=−1.

In Section 6 we have seen that we can replace α with α′ as an unknown in the double-
null unknowns. The main difference is that on the right hand side of various ∇4

equations for curvature, one will now see an inhomogeneous term which is O
(

v−1/2
)

.

In the ∇3 equation for α′, one now finds terms like O
(

v−1/2
[∣

∣χ̂
∣

∣+ |ω|
])

. One can
now easily check that the schemes from [Luk12,LR15] work for this modified system.
The key point being that for the ∇4 Bianchi equations, one can just use that v−1/2

is integrable, and for the ∇3 equation of α, one will have that χ̂ and ω decay as

v → 0 and thus that v−1/2
[∣

∣χ̂
∣

∣+ |ω|
]

is square integrable. ��

Remark A.1. Theorem 4.1 could also easily be proven directly using Theorem A.1
and a density argument which exploits the difference estimates that we developed
in the study of self-similar extraction, but this is “overkill” in the sense that Theo-
rem 4.1 does not need to use any control of the solution near {u = 0}.

Finally, we note that the following lemma can proved by combining the above proof
with a standard last slice and density argument.

Lemma A.1. Theorem 6.1 implies Theorem 1.1.

Proof. This follows by arguments which are analogous to Section 5 of [LR15]. Let’s
give a sketch of one possible implementation in the case n = 3 since that is where
the curvature is the most singular. By a straightforward density argument and the
convergence estimates we have already established, it suffices to prove Theorem 1.1
for regular conjugate data (see Definition 4.1). In this case, along {u = −1} we
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will be able to write αAB(v)|u=−1 = (αreg)AB (v) + v−1/2̊hAB(v) where (αreg)AB is

smooth and h̊AB(v) and angular derivatives thereof are bounded along {u = −1}.
For every q > 0, let ξq(v) be a smooth function which is identically 0 for v < q/2,
identically 1 when v > q, and satisfies |ξ|+q

∣

∣ξ′
q

∣

∣ � 1. One can find smooth conjugate

data /̂gq
(v) so that the corresponding α component of curvature, which we denote by

α(q) will satisfy
(

α(q)
)

AB
|u=−1 =

(

α
(q)
reg

)

AB
+ ξq(v)v−1/2̊h

(q)
AB where α

(q)
reg converges

to αreg in the bootstrap norm, h̊(q) and angular derivatives thereof are uniformly

bounded, and for any r > 0, h̊(q) converges to h̊ uniformly on {u = −1} ∩ {v ≥ r},
and, also, all of the other double null unknowns converge to the desired values in
the bootstrap norm. Since the initial data is now smooth we can apply the usual
local existence and continuation criteria results. Now we observe that if we define an
alternative renormalization α′

AB
.
= αAB − ξq(v)v−1/2̊hAB and repeat the arguments

mutatis mutandis, the proof of Theorem 6.1 works for solutions arising from the /̂gq

data. (Note, in particular, that at no point in the proof of Theorem 6.1 does one
take a ∇4 derivative of α′). Thus we obtain that these approximate solutions exist
in the desired region. Finally, using Theorem 8.4 of this paper, one can estimate
the differences of the approximate solutions and show that they in fact converge as
q → 0 to the desired solution. The case of general n is similar. ��

Appendix B. Straightness

In this section we will identify conditions on the initial data so that the corresponding
self-similar solution has a trivial lapse Ω and vanishing shift b.
First we record some fundamental consequences of self-similarity for χ, χ, ω, and ω.

Lemma B.1. Suppose we have a self-similar solution. Then

χ
AB

+
v

u
χAB = Ω−1u−1

/gAB
+

1

2
Ω−1

(

Lb/g
)

AB
, (130)

trχ +
v

u
trχ = Ω−1u−1n + Ω−1divb, (131)

χ̂
AB

+
v

u
χ̂AB =

1

2
Ω−1

(

∇⊗̂b
)

AB
, (132)

ω = −
v

u
ω +

1

2
bA∂A

(

Ω−1
)

. (133)

Proof. We recall the formulas

e4 = Ω−1∂v, e3 = Ω−1
(

∂u + bA∂A

)

.

Furthermore, the numerology of Section 3.11 implies that in the coordinate frame
we may write /gAB

as

/gAB
(u, v, θ) = u2̊

/gAB

(v

u
, θ
)

.



GAFA THE ASYMPTOTICALLY SELF-SIMILAR REGIME 865

Denoting the first variable of g̊AB by ρ, we may compute in a Lie-propagated frame
that

χAB =
1

2
Ω−1u

(

∂ρ̊/g
)

AB
, χ

AB
= Ω−1ů/gAB

−
v

2
Ω−1

(

∂ρ̊/g
)

AB
+

1

2
Ω−1

(

Lb/g
)

AB
.

In particular, we obtain the following important identity

χ
AB

+
v

u
χAB = Ω−1u−1

/gAB
+

1

2
Ω−1

(

Lb/g
)

AB
.

Since all the terms are tensorial, we conclude that the identity holds in any frame.

Tracing yields

trχ +
v

u
trχ = Ω−1u−1n + Ω−1divb.

The trace-free part is

χ̂
AB

+
v

u
χ̂AB =

1

2
Ω−1

(

∇⊗̂b
)

AB
.

For ω and ω, we observe that

∂vΩ
−1 = 2ω,

(

∂u + bA∂A

)

Ω−1 = 2ω.

Self-similarity implies that Ω−1 is a function of v
u and θ. Thus, from the above, we

obtain (133). ��

Proposition B.1. We have

∂v

(

Ω−1divb
)

+ Ω−1divb

(

v−1 −
2u

nv
trχ

)

= −4ωnu−1 + 2ω
(

Ωtrχ − divb
)

+ 2ωΩ
u

v
trχ

−
1

4
Ω−1 u

v

∣

∣∇⊗̂b
∣

∣

2
+ Ω

u

v
χ̂ · ∇⊗̂b − Ω−1 u

nv
(divb)2 +

u

v
bA∂A

(

trχ
)

.

Proof. We start by deriving a ∇4 propagation equation for Ω−1divb. The basic idea is
to differentiate the relation (131) with ∇4. We will then use the self-similar relations
to express ∇4trχ in terms ∇3trχ and lower order terms. Then the Raychaudhuri
equations can be used to simplify. We now turn to the details

Self-similarity implies that

trχ = u−1F
(v

u
, θ
)

,

for some function F . We thus easily obtain

∂utrχ = −u−1trχ −
v

u
∂vtrχ. (134)
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Next, we differentiate u
v times the self-similar relation (131) between trχ and trχ:

∇4trχ = Ω−1∂v

(

−
u

v
trχ
)

+ Ω−1∂v

(

Ω−1
)

v−1n − Ω−2v−2n + ∇4

(u

v
Ω−1divb

)

= 2Ω−1 u

v2
trχ + Ω−1 u2

v2
∂utrχ + 2Ω−1ωv−1n − Ω−2v−2n −

u

v2
Ω−2divb

+ Ω−1 u

v
∂v

(

Ω−1divb
)

.

= 2Ω−1 u

v2
trχ +

u2

v2
∇3trχ − Ω−1 u2

v2
bA∂A

(

trχ
)

+ 2ωΩ−1v−1n

− Ω−2v−2n −
u

v2
Ω−2divb + Ω−1 u

v
∂v

(

Ω−1divb
)

. (135)

We get

∂v

(

Ω−1divb
)

− v−1Ω−1divb = Ω
v

u
∇4trχ − 2v−1trχ − Ω

u

v
∇3trχ +

u

v
bA∂A

(

trχ
)

− 2ωu−1n + Ω−1u−1v−1n

= − Ω
v

nu
(trχ)2 − 2ωu−1 (Ωvtrχ) − Ω

v

u
|χ̂|2

+ Ω
u

vn

(

trχ
)2

+ 2ωΩ
u

v
trχ + Ω

u

v

∣

∣χ̂
∣

∣

2

− 2v−1trχ +
u

v
bA∂A

(

trχ
)

− 2ωnu−1 + Ω−1u−1v−1n

= − 2ωu−1 (Ωvtrχ) − Ω
v

u
|χ̂|2

+ 2ωΩ
u

v
trχ + Ω

u

v

∣

∣χ̂
∣

∣

2
− Ω−1 u

nv
(divb)2

+
u

v
bA∂A

(

trχ
)

− 2ωnu−1 + 2
u

nv
trχdivb − 2v−1divb

= − 2ωu−1 (Ωvtrχ) −
1

4
Ω−1 u

v

∣

∣∇⊗̂b
∣

∣

2
+ Ω

u

v
χ̂ · ∇⊗̂b

+ 2ωΩ
u

v
trχ − Ω−1 u

nv
(divb)2

+
u

v
bA∂A

(

trχ
)

− 2ωnu−1 + 2
u

nv
trχdivb − 2v−1divb.

The third and fourth equalities are obtained by squaring the self-similar relations
for trχ and χ̂.
We end up with

∂v

(

Ω−1divb
)

+ Ω−1divb

(

v−1 −
2u

nv
trχ

)

= −4ωnu−1 + 2ω
(

Ωtrχ − divb
)

+ 2ωΩ
u

v
trχ

−
1

4
Ω−1 u

v

∣

∣∇⊗̂b
∣

∣

2
+ Ω

u

v
χ̂ · ∇⊗̂b − Ω−1 u

nv
(divb)2 +

u

v
bA∂A

(

trχ
)

. ��

Next, let’s compute the ∇4 equation for ω.
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Proposition B.2.

∇4ω =
1

4
ω
(

Ω−1u−1n +
v

u
trχ − trχ

)

+
1

4
ω
(

Ω−1v−1n +
u

v
trχ − trχ

)

+
1

2
/∆ log Ω +

1

8
Ω−2v−1divb

+
1

32
Ω−2 u

v

∣

∣∇⊗̂b
∣

∣

2
+

1

8n
Ω−2 u

v
(divb)2 +

1

8
Ω−1 u

v
bA∇A

(

Ω−1divb
)

+ 2ωω + 3 |ζ|2 − |∇ log Ω|2 −
1

2
|η|2 .

Proof. We start with

∇4trχ +
1

n
trχtrχ + χ̂χ̂ = ∇4

(

−
v

u
trχ + Ω−1u−1n + Ω−1divb

)

+
1

n
trχ
(

−
v

u
trχ + Ω−1u−1n + Ω−1divb

)

+ χ̂

(

−
v

u
χ̂ +

1

2
Ω−1

(

∇⊗̂b
)

)

= − Ω−1u−1trχ + 2Ω−1ωu−1n + ∇4

(

Ω−1divb
)

+
1

n

v

u
(trχ)2 + 2

v

u
ωtrχ +

v

u
|χ̂|2

−
1

n

v

u
(trχ)2 + Ω−1u−1trχ +

1

n
Ω−1divbtrχ

−
v

u
|χ̂|2 +

1

2
Ω−1χ̂

(

∇⊗̂b
)

= 2Ω−1ωu−1n + ∇4

(

Ω−1divb
)

+ 2
v

u
ωtrχ

+
1

n
Ω−1trχdivb +

1

2
Ω−1χ̂

(

∇⊗̂b
)

.

Similarly,

∇3trχ +
1

n
trχtrχ + χ̂χ̂ = ∇3

(

−
u

v
trχ + Ω−1v−1n +

u

v
Ω−1divb

)

+
1

n
trχ
(

−
u

v
trχ + Ω−1v−1n +

u

v
Ω−1divb

)

+ χ̂

(

−
u

v
χ̂ +

1

2

u

v
Ω−1

(

∇⊗̂b
)

)

= − v−1Ω−1trχ + 2Ω−1ωv−1n + ∇3

(u

v
Ω−1divb

)

+
1

n

u

v

(

trχ
)2

+ 2ω
u

v
trχ +

u

v

∣

∣χ̂
∣

∣

2

−
1

n

u

v

(

trχ
)2

+ Ω−1v−1trχ +
1

n

u

v
Ω−1trχdivb

−
u

v

∣

∣χ̂
∣

∣

2
+

1

2

u

v
Ω−1χ̂ ·

(

∇⊗̂b
)
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= 2Ω−1ωv−1n + ∇3

(u

v
Ω−1divb

)

+ 2ω
u

v
trχ

+
1

n

u

v
Ω−1trχdivb +

1

2

u

v
Ω−1χ̂ ·

(

∇⊗̂b
)

.

Now we use the null structure equations for ∇3trχ and ∇4trχ. We obtain

4ρ + 2ωtrχ + 2ωtrχ + 4 /∆ log Ω + 2 |η|2 + 2
∣

∣η
∣

∣

2

= 2ω
(

Ω−1u−1n +
v

u
trχ
)

+ 2ω
(

Ω−1v−1n +
u

v
trχ
)

+
1

2
Ω−1χ̂

(

∇⊗̂b
)

+
1

2

u

v
Ω−1χ̂

(

∇⊗̂b
)

+ ∇4

(

Ω−1divb
)

+ ∇3

(u

v
Ω−1divb

)

+
1

n
Ω−1divb

(

trχ +
u

v
trχ
)

= 2ω
(

Ω−1u−1n +
v

u
trχ
)

+ 2ω
(

Ω−1v−1n +
u

v
trχ
)

+
1

2
Ω−1χ̂

(

∇⊗̂b
)

+
1

2

u

v
Ω−1χ̂

(

∇⊗̂b
)

+
1

n
Ω−1divb

(

Ω−1v−1n +
u

v
Ω−1divb

)

+ Ω−1bA∇A

(u

v
Ω−1divb

)

.

In the final equality we used that

∇4

(

Ω−1divb
)

+ ∇3

(u

v
Ω−1divb

)

= Ω−1bA∇A

(u

v
Ω−1divb

)

.

To see why this is true, we simply note that

Ω−1divb = u−1F
(v

u
, θ
)

for some function F . Finally, we use the ∇4ω null structure equation to obtain:

∇4ω =
1

2
ρ +

1

4

∣

∣η
∣

∣

2
−

1

4
|η|2 + 2ωω + 3 |ζ|2 − |∇ log Ω|2

=
1

4
ω
(

Ω−1u−1n +
v

u
trχ − trχ

)

+
1

4
ω
(

Ω−1v−1n +
u

v
trχ − trχ

)

+
1

2
/∆ log Ω +

1

8
Ω−2v−1divb

+
1

32
Ω−2 u

v

∣

∣∇⊗̂b
∣

∣

2
+

1

8n
Ω−2 u

v
(divb)2 +

1

8
Ω−1 u

v
bA∇A

(

Ω−1divb
)

+ 2ωω + 3 |ζ|2 − |∇ log Ω|2 −
1

2
|η|2 . ��
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Proposition B.3. We have

∇4ζA +
1

2
ζB
(

χAB + trχ/gAB
−

u

v
χ

AB
−

u

v
trχ/gAB

+ Ω−1v−1
/gAB

)

(136)

−
1

4
Ω−1 u

v
/∆bA

=
1

4
∇B
(

Ω−1
) u

v

(

Lb/g
)

AB
+

1

4
Ω−1 u

v
∇B∇AbB

−
1

2
Ω−1 u

v
bB∇Bη

A
−

1

2
Ω−1 u

v
η

B
∇AbB +

1

4
Ω−1 u

v

(

Lb/g
)B

A
η

B

+
1

2

[

−∇A

(

Ω−1
)

v−1n − ∇A

(

Ω−1
) u

v
divb − Ω−1 u

v
∇Adivb

]

.

Remember that ζ is essentially the negative v-derivative of b!

Proof. Next we turn to the wave equation for the shift. We start by deriving a
relation between ∇4η and ∇3η. In the Lie-Propagated frame we have that

η
A

(u, v, θ) = fA

(v

u
, θ
)

,

for some tensor fA. We denote the first variable of fA by ρ. We then compute in a
Lie-propagated frame {EA} which we can also assume to be geodesic (with respect
to /g) at the give point of interest:

∇4ηA
= Ω−1∂v

[

fA

(v

u
, θ
)]

− χ B
A η

B
(137)

= Ω−1u−1 (∂ρfA)
(v

u
, θ
)

− χ B
A η

B

= − Ω−1 u

v
∂u

[

fA

(v

u
, θ
)]

− χ B
A η

B

= −
u

v
∇3ηA

+ Ω−1 u

v
bB∂B

(

η
A

)

+
u

v
Ω−1

(

∂AbB
)

η
A

−
u

v
χ B

A
η

B
− χ B

A η
B

= −
u

v
∇3ηA

+ Ω−1 u

v
bB∇Bη

A
+ Ω−1 u

v
η

B
∇AbB − Ω−1v−1η

A

−
1

2
Ω−1 u

v

(

Lb/g
) B

A
η

B
.

In the last line we used the self-similarity relation for u
v χ + χ.

The ∇4 equation for ηA is

∇4ηA = −2χ B
A ζB − βA ⇒

2∇4ζA + ∇4ηA
= −2χ B

A ζB − βA. (138)

The ∇3 equation for η
A

is

∇3ηA
= 2χ B

A
ζB + β

A
. (139)
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Now we take (138), add it to u
v times (139), and use (137) to simplify. We obtain:

2∇4ζA + ∇4ηA
+

u

v
∇3ηA

= −2χ B
A ζB − βA + 2

u

v
χ B

A
ζB +

u

v
β

A
⇒

2∇4ζA + Ω−1 u

v
bB∇Bη

A
+ Ω−1 u

v
η

B
∇AbB − Ω−1v−1η

A
−

1

2
Ω−1 u

v

(

Lb/g
) B

A
η

B

= −2χ B
A ζB − βA + 2

u

v
χ B

A
ζB +

u

v
β

A
⇒ (140)

∇4ζA + ζB

(

χ B
A −

u

v
χ B

A

)

−
1

2
Ω−1v−1η

A
= −

1

2
βA +

1

2

u

v
β

A

−
1

2
Ω−1 u

v
bB∇Bη

A
−

1

2
Ω−1 u

v
η

B
∇AbB +

1

4
Ω−1 u

v

(

Lb/g
) B

A
η. (141)

Next, we want to use the constraints to eliminate curvature from (141). The relevant
equations are the following:

βB = −∇AχAB + ∇Btrχ + trχζB − ζAχAB,

β
B

= ∇Aχ
AB

− ∇Btrχ + trχζB − ζBχ
AB

These imply

−βA +
u

v
β

A
= ∇BχBA − ∇Atrχ − trχζA + ζBχBA +

u

v
∇Bχ

BA
−

u

v
∇Atrχ

+
u

v
trχζA −

u

v
ζBχ

BA

= v−1∇A

(

Ω−1
)

+
1

2
∇B
(

Ω−1
) u

v

(

Lb/g
)

AB
+

1

2
Ω−1 u

v
∇B
(

Lb/g
)

AB

+
[

−∇A

(

Ω−1
)

v−1n − ∇A

(

Ω−1
) u

v
divb − Ω−1 u

v
∇Adivb

]

+ ζB
(

χAB − trχ/gAB
−

u

v
χ

AB
+

u

v
trχ/gAB

)

. (142)

All together we obtain

∇4ζA +
1

2
ζB
(

χAB + trχ/gAB
−

u

v
χ

AB
−

u

v
trχ/gAB

+ Ω−1v−1
/gAB

)

−
1

4
Ω−1 u

v
/∆bA

=
1

2
v−1∇A

(

Ω−1
)

+
1

4
∇B
(

Ω−1
) u

v

(

Lb/g
)

AB

+
1

4
Ω−1 u

v
∇B∇AbB +

1

2
Ω−1v−1∇A (log Ω)

+
1

2

[

−∇A

(

Ω−1
)

v−1n − ∇A

(

Ω−1
) u

v
divb − Ω−1 u

v
∇Adivb

]

−
1

2
Ω−1 u

v
bB∇Bη

A
+

1

4
Ω−1 u

v

(

Lb/g
)B

A
η

B
−

1

2
Ω−1 u

v
η

B
∇AbB

=
1

4
∇B
(

Ω−1
) u

v

(

Lb/g
)

AB
+

1

4
Ω−1 u

v
∇B∇AbB −

1

2
Ω−1 u

v
bB∇Bη

A
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−
1

2
Ω−1 u

v
η

B
∇AbB +

1

4
Ω−1 u

v

(

Lb/g
)B

A
η

B

+
1

2

[

−∇A

(

Ω−1
)

v−1n − ∇A

(

Ω−1
) u

v
divb − Ω−1 u

v
∇Adivb

]

. (143)

��

We have

Proposition B.4. For each fixed u ∈ [−1, 0) every self-similar solution satisfies
∣

∣∇iζ
∣

∣+
∣

∣∇iω
∣

∣ = O
(

v
n

2

)

as v → 0, (144)

for every i ≥ 0, and where the implied constant is allowed to depend on i.

Proof. Throughout the proof, we fix an arbitrary value of u ∈ [−1, 0). We also allow
all constants to depend on i without explicitly saying so.
We first note that Propositions B.1, B.3, and Lemma B.1 imply that:

4ωnu−1 = −∂v

(

Ω−1divb
)

+Ω−1divb
(

v−1 + O (1)
)

+v−1O
(

∣

∣ /∇b
∣

∣

2
)

+O
(∣

∣ /∇b
∣

∣+ |b|
)

,

(145)

∂vζA −
n

2
ζA

(

v−1 + O (1)
)

= v−1O
(

∣

∣∇2b
∣

∣+ |∇Ω| + |∇Ω|2 + |∇b|2 + |∇ζ|2
)

,

(146)

where ζA is expressed in the coordinate frame and the big O expansions all hold as
v → 0.
Furthermore, it is straightforward to check that the above equations continue to
hold with ω, ζ, Ω, and b replaced everywhere by ∇i of ω, ζ, Ω, and b respectively.
We now will prove by induction on that the following statement holds for each
k = 1, . . . , �n

2 �:

∇iζ = O
(

vk
)

, ∇iω = O
(

vk
)

, ∇ib = Oi

(

vk+1
)

,

∇i (Ω − 1) = O
(

vk+1
)

. (147)

We start with the base case k = 1. It follows immediately from the initial data
analysis of Propositions 4.1, 4.2, and 4.3 that we have

∇iζ|v=0 = 0, ∇iω|v=0 = 0 ∀i ≥ 0.

Next, it follows from Propositions 7.1, 7.2, and 7.3 that ∇iζ and ∇iω are C1 in v.
Thus we have

∇iζ = O(v), ∇iω = O(v) ∀i ≥ 0.

Similarly, we have that Ω − 1 and b vanish when {v = 0}, and we know that

∂v∂BI
bA = −4∂BI

(

Ω2ζA
)

, ∂v

(

∂BI
Ω−1

)

= 2∂BI
ω, (148)
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where I = (i1, . . . , il) and ∂BI
= ∂Bi1

· · · ∂Bil
denotes an arbitrary product of coor-

dinate derivatives along S. We immediately obtain that (147) holds for k = 1. This
completes the proof of the proposition when n = 2.
Next, we assume that (147) holds for some k ≤ �n

2 � − 1 and we will show that (147)
holds for k + 1:
First of all, using the ∇4 equation for η and ω and Propositions 7.1, 7.2, and 7.3,

it is straightforward to show that there exists tensors ζ(1), · · · , ζ(� n

2
	) and ω(1), · · · ,

ω(� n

2
	) on S so that

ζA = ζ(1)v + · · · + ζ(� n

2
	)v� n

2
	 + O

(

v� n

2
	+ 1

2

)

as v → 0,

ω = ω(1)v + · · · + ω(� n

2
	)v� n

2
	 + O

(

v� n

2
	+ 1

2

)

as v → 0.

The induction hypothesis implies that ζ(i) and ω(i) vanish for i = 1, . . . , k − 1.
Plugging in the expansion for ζ into (146) and using the induction hypothesis yields

(

k + 1 −
n

2

)

ζ(k)vk−1 = o
(

vk−1
)

⇒ ζ(k) = 0.

Similarly, we obtain that ∇iζ(k) = 0 for all i ≥ 0. In particular, for all i ≥ 0,

∇iζ = O
(

vk+1
)

.

Using (148) we also obtain that

∣

∣∇ib
∣

∣ = O
(

vk+2
)

.

Then (145) immediately implies that

∇iω = O
(

vk+1
)

.

Finally, (148) then gives that

∇i (Ω − 1) = O
(

vk+2
)

.

This finishes the induction argument and the proof when n is even. When n is odd,
the argument is finished by one final iteration of the induction argument. ��

It is clear that the argument from Proposition B.4 cannot be used to show that ζ
vanishes faster than v

n

2 . However, the next proposition shows that if we happen to
know that ζ vanishes faster than v

n

2 , then ζ, ω, b, and Ω−1 − 1 all vanish to infinite
order as v → 0.

Proposition B.5. Let n ≥ 3. Suppose that we know that for every i ≥ 0

lim
v→0

v− n

2

∣

∣∇iζ
∣

∣ = 0.

Then ω, ζ, b, and Ω−1 − 1 all vanish to infinite order as v → 0.
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Proof. By induction on k we will show that for all i, k ≥ 0

∇iζ = O
(

v
n

2
+k
)

, ∇ib = O
(

v
n

2
+k+1

)

, ∇iω = O
(

v
n

2
+k
)

,

∇i (Ω − 1) = O
(

v
n

2
+k+1

)

, (149)

where the implied constant may depend on k and i.

We start with the base case k = 0. By assumption the desired estimate for ζ already
holds. The desired estimate for b then follows from (148). In turn the desired estimate
for ω follows from (145). Finally, the equation for Ω from (148) finishes the base case.

Now we assume that (149) holds for some fixed k and we need to show it then holds
for k+1. It follows from (146) and the induction hypothesis that, for any multi-index
BI we have

∂v (∂BI
ζA) −

n

2
v−1 (∂BI

ζA) = O
(

v
n

2
+k
)

⇒

∂v

(

v− n

2 ∂BI
ζA

)

= O
(

vk
)

⇒

∂BI
ζ = O

(

v
n

2
+k+1

)

.

This establishes the desired estimate for ζ. The estimates for the other quantities
follow just as in the base case. ��

Next we show that the “straightness” assumption on initial data implies the hy-
pothesis of Proposition B.5 and thus the infinite order vanishing of ζ, ω, b, and
Ω − 1.

Proposition B.6. Let n ≥ 3. Suppose that we have a self-similar solution which
satisfies the following, depending on the parity of the dimension:

(1) When n is odd then

div
(

tfL
n

2
−2

v α|S−1,0

)

= 0.

(2) When n is even then

div
(

tfL
n

2
−2

v α|S−1,0

)

= D,

where D is an explicit 1-form depending on the /gS−1,0
, and the proof below will

indicate how to calculate D in principle.

Then ω, ζ, b, and Ω−1 − 1 all vanish to infinite order as v → 0.

Proof. By Proposition B.5 we just need to show that

lim
v→0

v− n

2

∣

∣∇iζ
∣

∣ = 0, ∀i ≥ 0.
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To see why this holds, we first consider the case of n-odd and i = 0. First of all, it
follows immediately from Proposition B.4 and the null structure equation for ∇4η
that β = O

(

v
n

2
−1
)

as v → 0. Next, since η = ζ + ∇A log Ω and ∇ log Ω = O
(

v
n

2
+1
)

,

it is clear that limv→0 v− n

2 |ζ| = 0 if and only if

lim
v→0

v− n

2
+1 |β| = 0. (150)

However, Proposition 7.2 and signature considerations imply that the only term on
the right hand side of the Bianchi equation for ∇4β which can generate the frac-
tional power v

n

2
−2 and thus invalidate (150) is the ∇AαAB. Then, it follows immedi-

ately from self-similarity and the hypothesis of the proposition that L
n

2
−2

v α|v=0 = 0
and (150) holds. An analogous argument works for ∇iζ.
When n is even, essentially the same argument goes through except that we now

require L
n

2
−2

v α|v=0 is such that the right hand side of the ∇4 Bianchi equation for β

is o
(

v
n

2
−2
)

. Finally, it follows easily from our analysis of admissible conjugate data,

see Proposition 4.3, that this can be arranged if and only if div
(

tfL
n

2
−2

v α|S−1,0

)

= D

for a specific 1-form D which only depends on /g|S−1,0
. ��

Finally, a straightforward unique continuation argument implies that under the hy-
pothesis of the previous proposition, we in fact have that ζ and ω vanish identically.

Proposition B.7. Under the same hypothesis as Proposition B.6, we have that ζ
and ω vanish identically.

Proof. Propositions B.1, B.2, B.3, and Lemma B.1 imply that

∂v

(

Ω−1divb
)

− Ω−1divb
(

v−1 + O (1)
)

= −4ωnu−1 + v−1O
(

∣

∣ /∇b
∣

∣

2
)

+ O
(∣

∣ /∇b
∣

∣+ |b|
)

, (151)

∇4ζ −
n

2
ζ
(

v−1 + O (1)
)

−
1

4

u

v
/∆b +

1

4
Ω−1 u

v
∇Adivb

= v−1O
(

|b| + |∇Ω| + |∇Ω|2 + |∇b|2 + |∇ζ|2
)

. (152)

∇4ω −
n

2
ω
(

v−1 + O (1)
)

+
1

2

u

v
/∆ log Ω

= v−1O
(

|ζ|2 + |∇Ω|2
)

+ v−2
(

|∇b|2 + |b|2 + |divb|
)

+ O
(

|ω|2
)

. (153)

Since we have already established the infinite order vanishing of the quantities as
v → 0 this is a straightforward unique continuation argument for which we will
sketch one possible approach. Neglecting the nonlinear terms, the linear part of the
equations generate a good energy estimate by letting A1 and A2 be large constants
with A2 � A1, multiplying (151) by A2v

−A−1divb, multiplying (152) by v−Aζ,
multiplying (153) by v−Aω, integrating over a region [0, v0]×S, integrating by parts,
adding the resulting estimates together and noting that there is no contribution from
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v = 0 due to Proposition B.6. The nonlinear terms can be easily controlled by the
linear terms after using Proposition B.6 to control one of the terms in each quadratic
combination. ��

Lastly, we note that when n = 2 there is a simple argument directly at the level of
the Bianchi equations.

Proposition B.8. Let n = 2 and suppose that ∇Aχ̂AB|(u,v)=(−1,0) = ∇k, where k
is the Gaussian curvature of /g0

. Then ζ and ω vanish identically, and furthermore,
all null curvature components vanish identically.

Proof. Under the hypothesis of the proposition, Proposition 4.1 implies that all
curvature components vanish along {v = 0}. In particular, the solution will obey the
initial data estimates of Proposition 8.1 without overlining the double null quantities.
It immediately follows that we can apply the energy estimate scheme from Section 8.2
to establish supercritical estimates. It immediately follows that all null curvature
components must vanish from the same scaling considerations as in the proof of
Theorem 8.4.
Given that β and ρ vanish identically, it is straightforward to use the null structure
equations for η and ω as well as (148) to conclude that ω, ζ, b, and Ω − 1 all vanish
identically. ��

Appendix C. Some Coordinates

C.1 Fefferman–Graham coordinates. In [FG84,FG12] Fefferman and Gra-
ham did not work in a double null foliation; however, their coordinates can be easily
understood in the context of a double null foliation after defining

t
.
= u, ρ

.
=

v

u
.

Using

du = dt, dv = ρdt + tdρ,

we find

g = −2Ω2 (dt ⊗ (ρdt + tdρ) + (ρdt + tdρ) ⊗ dt) + /gAB

(

dθA − bAdt
)

⊗
(

dθB − bBdt
)

=
(

−4Ω2ρ + |b|2
)

dt2 − 4tΩ2dtdρ − 2bAdtdθA + /gAB
dθAdθB.

The reader may easily check that we have

∂u = ∂t −
ρ

t
∂ρ, ∂v =

1

t
∂ρ, K = t∂t.

Finally, we observe that if we set

/̊gAB
(ρ, θ)

.
= /gAB

(1, ρ, θ) ,

then self-similar metrics will satisfy

/gAB
(t, ρ, θ) = t2̊/gAB

(ρ, θ) . (154)
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C.2 Straight ambient metrics and asymptotically de Sitter spacetimes.

There exist another set of coordinates which, in certain cases allows us to quotient
out the dilation symmetry and produce an n+1 dimensional asymptotically de Sitter
cosmological spacetime. We define these “cosmological coordinates” (r, s, θ) by

ρ
.
= −

1

4
r2, t

.
=

s

r
.

Using that

dρ = −
1

2
rdr, dt =

1

r
ds −

s

r2
dr,

we find

g =
(

Ω2 + r−2 |b|2
)

ds2 −
2s

r3
|b|2 dsdr −

2

r
bAdsdθA

+
2s

r2
bAdrdθA +

(

r−2 |b|2 − Ω2
) s2

r2
dr2 + /gAB

dθAdθB.

We say the ambient metric is straight if

Ω2 = 1, b = 0.

In this case, the metric will take the form

g = ds2 +
s2

r2

(

−dr2 +
r2

s2 /gAB
dθAdθB

)

= ds2 +
s2

r2

(

−dr2 + /̊gAB
(r, θ) dθAdθB

)

.

A straightforward calculation (see [FG84,FG12]) shows that the Ricci flatness of g
implies that the metric

g̃
.
= r−2

(

−dr2 + /̊gAB
dθAdθB

)

is a solution to the Einstein equations with a cosmological constant:

Ric (g̃) − ng̃ = 0.

Also note that

∂t = r∂s, ∂ρ = −
2

r
∂r −

2t

r
∂s, K = s∂s.
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[CG99] M. Cai and G. Galloway. Boundaries of zero scalar curvature in the AdS/CFT
correspondence. Adv. Theor. Math. Phys., (6)3 (1999), 1769–1783

[Cho93] M. Choptuik. Universality and scaling in gravitational collapse of a massless
scalar field. Phys. Rev. Lett., 70 (1993), 9–12

[Chr93] D. Christodoulou. Bounded variation solutions of the spherically symmetric
Einstein-scalar field equations. Comm. Pure Appl. Math., (8)46 (1993), 1131–1220

[Chr09] D. Christodoulou. The Formation of Black Holes in General Relativity. EMS
Monographs in Mathematics. European Mathematical Society (EMS), Zürich
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