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Modeling solvent evaporation during thin film
formation in phase separating polymer mixtures†‡

John Cummings,a John S. Lowengrub,b Bobby G. Sumpter, cd

Steven M. Wise *a and Rajeev Kumar *acd

Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the

solvent has become a routine processing procedure. However, modeling of thin film formation in an

evaporating solvent has been challenging due to a need to simulate processes at multiple length and

time scales. In this work, we present a methodology based on the principles of linear non-equilibrium

thermodynamics, which allows systematic study of various effects such as the changes in the solvent

properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting

from such solvent transformations. The methodology allows for the derivation of evaporative flux and

boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it

to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common

volatile solvent and deposited on a planar substrate. Effects of the evaporation rates, interactions of the

polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin

film formation are studied.

Introduction

Evaporation of liquid molecules1–5 is ubiquitous in nature and

used in a number of applications including coatings6,7 and

organic electronics.8–11 Evaporation of liquids involves various

transport phenomena in the linear12–18 and nonlinear19,20

regimes, which include momentum, heat and mass transfer.

Also, evaporation of any liquid involves phase transformation

from liquid to vapor, which becomes coupled with the transport

phenomena. Modeling of evaporation must take into account

the couplings between the kinetics of phase transformation and

various transport phenomena in an accurate manner. The need

for accurate models providing insights into evaporation for

various phenomena occurring in nature and engineering cannot

be overstated. Accurate models can help many engineering

processes be more cost-effective and more efficient by providing

fundamental understanding of various processes involved in the

evaporation.

In 1997, Deegan et al.21 reported a study on a drying sessile

droplet containing solute and presented an explanation for the

ring pattern observed in the dried state. This, so called coffee-

ring effect, was explained4,5,21–26 in terms of mass transfer of

the solute and inhomogeneous evaporation rate, where the

latter was shown to be the highest (in fact, divergent) near the

pinned contact line separating liquid, vapor and solid. A number

of reports focusing on various other effects due to hydrodynamics,

depinning/motion of the contact line, temperature and gravitation

have been reported in the literature.25–35 Conclusions from a large

number of studies focusing on evaporation in drops have been

presented in a review by Larson.4 In particular, analytical relations

for the inhomogeneous evaporation rate, which varies radially

for a spherical drop, have been derived using the lubrication

approximation1,4,22,23 (also called the long-wave theory36,37).

The lubrication approximation leads to a set of equations where

the original complexity of free-boundary problem get relaxed

while preserving many important features of the underlying

physics.36,37 For example, in works by Clarke and co-workers38,39

dealing with pattern formation in phase separating mixtures

(without evaporation), the height of a film is treated using the

lubrication approximation and can be coupled with diffusion of

solutes in the film. A similar set of equations based on the

lubrication approximation was derived by Thiele et al.37,40–42

and effects of solvent evaporation was considered. The coupled
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set of equations are called the gradient dynamics description of

thin films.37,41 In recent works,37 these equations were shown

to be consistent with the Onsager’s symmetry relations.12–14

Differences in the works by Clarke and Thiele lie in the choice of

conserved and non-conserved variables.43 Use of the lubrication

approximation allows explicit calculations for the evaporative

flux,4,21–26 which can be evaluated analytically for specialized

shapes of the liquid–vapor interfaces such as in the case of

spherical droplets with pinned contact lines.21–23

A number of other so-called moving boundary models44–53

for polymer films, not relying on the lubrication approximation,

have been developed and reported in the literature. Broadly, we can

categorize these models into three classes. In the first class of

models, local equilibrium near the liquid–vapor interface is

assumed44–48,51 and the evaporation is assumed to take place from

the top of the liquid–vapor interface. Furthermore, the evaporative

flux is taken to be proportional to the volume fraction of evaporating

solvent at the top,44–48,51which results from the implicit assumption

that the evaporative flux is diffusion limited.44,45 Although this

greatly simplifies the analytical44–47 and numerical48,51 treatment

of solvent evaporation, details of the liquid–vapor interface can not

be captured accurately using suchmodels due to neglect of the non-

equilibrium nature of the liquid–vapor interfaces. These models are

useful for providing morphological details far from the liquid–vapor

interface. In the second class of models, effects of solvent

evaporation are simulated by simply removing the evaporating

molecules at a given rate49,53 and rescaling the volume fractions

inside the simulation box. These models completely ignore

principles of non-equilibrium thermodynamics. In the third

class of models, liquid and vapor are allowed to be in non-

equilibrium conditions. However, expressions of the evaporative

fluxes are assumed e.g., the Hertz–Knudsen–Schrage relations

are invoked,50,52 rather than computed in a self-consistent

manner using principles of non-equilibrium thermodynamics.

Although these models provide useful insights into various

processes resulting from the moving liquid–vapor interface

leading to an increase in density inside the film, these models

make simplified assumptions either about shape of the liquid–

vapor interface or about the evaporative flux. Particle based

simulations such as those based on the classical (Newtonian)

molecular dynamics54,55 have been used to obtain additional

insights. However, in the case of processes occuring at widely

disparate length and time scales (especially in the case of

inhomogeneous polymeric systems), particle based simulations

become computationally expensive and sometimes challenging

to execute.

An accurate solvent evaporation model must account for the

non-equilibrium nature of the liquid–vapor interfaces. This is

evident from the Hertz–Knudsen–Schrage relations for the

evaporative flux, which are based on the classical kinetic theory

of gases.56,57 In these relations, the evaporative flux depends on

the temperature and pressure on both sides of the interface.

However, usage of the Maxwell–Boltzmann distribution for the

velocity of molecules in deriving these relations limit their

range of validity and several empirical ways for interpreting

experimental data for the evaporative fluxes have been devised.57

Furthermore, there are cases when evaporative flux is not

dominated by the diffusion of the vapors e.g., when evaporation

takes place at very low pressure of the air. In these cases, the

evaporative flux is affected by the rate of phase transformation

from liquid to vapor and corresponds to faster evaporation in

comparison with the diffusion dominated evaporation. Such

cases have been explored extensively by Ward and co-workers57–59

while studying evaporation of water and ethanol. A statistical rate

theory based on the concept of transition probability was used to

derive an expression for the evaporative flux.57,58 The theory

accounts for thermally activated transfer of molecules from

liquid to vapor phase and the thermal activation results from

temperature differences between two sides of the liquid–vapor

interfaces. The expression was used to estimate empirical

coefficients,57 which appear in the Hertz–Knudsen–Schrage

relations for the evaporative flux. These works57–59 have high-

lighted the importance of entropy production in the evaporation

resulting from transfer of molecules from liquid to vapor phase

due to discontinuities in temperature and pressure at the

liquid–vapor interfaces. The entropy is generated near interfaces

(also called interfacial entropy) due to the changes in the

number of available quantum mechanical states resulting from

transfer of molecules.58,59 At equilibrium, the changes in

entropy are zero and net rate of entropy production has been

derived at the steady state.59 As the entropy production is a

central concept in the field of non-equilibrium thermo-

dynamics, it is natural to develop a method for describing

solvent evaporation using the ideas of non-equilibrium thermo-

dynamics for systems close to equilibrium.12–18 Constraint of

near-equilibrium conditions can be realized in experiments, for

example, when solvent evaporation is mainly used as a tool for

overcoming the free energy barriers to reach the global free

energy minimum state characterizing equilibrium. Solvent

annealing for block copolymers7 is an example.

Taking into account the entropy generation near equilibrium,

we have developed a methodology to study solvent evaporation in

multicomponent systems based on the concepts of linear non-

equilibrium thermodynamics.12–18 The methodology is limited to

systems close to equilibrium. However, it is quite general and

allows systematic investigations of various non-trivial effects. Vapors

are included as an additional component in the theoretical descrip-

tion and expressions for the evaporative flux as well as boundary

conditions are derived by making sure that in the long-time limit,

the equilibrium state having the lowest free energy is obtained. Our

approach is general enough to capture effects of diffusion,

convection and phase transformation (or reaction) from liquid

to vapor. Furthermore, the methodology makes it possible to

simulate structure and dynamics of the liquid–vapor interface

in a self-consistent manner rather than assuming a flat inter-

face, thus allowing modeling of rough polymer–air interfaces.

Model overview

We present a methodology for constructing a thermodynamically

consistent model in order to study kinetics of thin film formation in
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a multi-component system in which one of the components is

evaporating. As an example, we present the derivation for a

quaternary system, which consists of two phase segregating

polymers, liquid solvent and its vapors such that the solvent is

volatile and evaporating. Generalization to other systems is

straightforward. Construction of a model is based on the concept

that near equilibrium, the total energy must be dissipated with time

and approach a minimum free energy state representing an

equilibrium in the limit of long time.

The rate of dissipation of the energy can be cast in the form

of a variational principle12–18 by constructing a function called

the Rayleighian, which captures details of various dissipative

processes. As per the variational principle, the rate of dissipation

of the energy is the negative of a so-called, dissipation

function.12–14 This approach based on the dissipation function

can be used to study couplings among mass, momentum and

energy while considering conserved and nonconserved quantities.

As an example, consider the so-called model-H, which considers

coupling between thermal diffusion and hydrodynamics i.e.,

coupling between mass and momentum.43 The standard model-H

and its extended version for the study of moving ‘‘external’’

surfaces can be derived using the variational principle, which

allows study of viscous and concentration dependent stresses (also

called Korteweg stresses).60 However, the functional form for the

dissipation function is assumed to be known in order to use the

variational principle and there is no prescription for deriving it. In

this paper, we derive a functional form for the dissipation function

by making sure that the rate of the dissipation of the total

energy is maximum, which leads to a model similar to the

model-H. As a posteriori analysis, it is shown that an approach

based on the Rayleighian with the derived functional form

for the dissipation function leads to an identical set of

equations (see the ESI†). In particular, for the quaternary

polymer–polymer–liquid–vapor mixture, a set of three coupled

Cahn–Hilliard61 type equations along with a Poisson-like equation

for the pressure is derived. Boundary conditions at different

interfaces are systematically derived by making sure that they

do not violate the concept of the dissipation even when the

solvent vapors are allowed to exit from one of the computational

boundaries.

Mass conservation and local
incompressibility constraint

For a mixture of two polymers (p and q) and solvent (see Fig. 1),

which can be present in the liquid phase (sl) or in the vapor

phase (sv), we enforce the conservation of mass for each

component through the continuity equations

_ri(x,t) + r!(ri(x,t)ui(x,t)) = Si(x,t), (1)

where i A {p,q,sl,sv} and _riðx; tÞ ¼
@riðx; tÞ

@t
. The fields ri(x,t)

and ui(x,t) are the number density and velocity of the ith

component, respectively, at location x at time t. Si(x,t) is a

source (or the reaction rate) term, which allows molecules to

undergo phase change from the liquid to the vapor phase, for

example, and is vital for modeling the evaporation of the

volatile molecules. For the quaternary mixture with the

evaporating solvent, Si(x,t) = 0 for all i e {sl,sv}. Introducing

the volume fraction of the ith component via the relation,

fiðx; tÞ ¼
riðx; tÞ

r
%

i

– where r
%

i 4 0 is the (constant) number

density of the pure ith phase at a fixed temperature T – we

can rewrite eqn (1) as

_fiðx; tÞ þr ! fiðx; tÞuiðx; tÞð Þ ¼ r
%

i
'1Siðx; tÞ: (2)

Assuming that there are no voids in the mixture, so that

X

i

fiðx; tÞ ( 1; (3)

one of the volume fractions can be algebraically eliminated in

terms of the others.

For the quaternary mixture with evaporating solvent, the

liquid and the vapor phases of the solvent are distinct from

each other only in terms of their respective number densities.

We do not consider effects of thermal gradients in this work but

these effects can be systematically included in the methodology

presented here along the lines of ref. 15, 58, 60, 62 and 63.

The source terms can lead to a change in the number of

solvent molecules in an individual phase. In particular, we

assume that

Ssv(x,t) = 'Ssl(x,t). (4)

Using the no-voids assumption (3) and the source term

conservation condition (4), and summing eqn (2), we obtain

the following quasi-incompressibility condition

X

i

r ! fiðx; tÞuiðx; tÞð Þ ¼ r
%

sl
'1 ' r

%

sv
'1

! "

Sslðx; tÞ: (5)

To identify the constraints on the velocities at the boundaries

(cf. Fig. 1), we consider the total number of particles in the

domain O, denoted M, which is defined as

MðtÞ ¼
X

i

ð

O

ri
%
fiðx; tÞdx: (6)

Fig. 1 Schematic of the thin-film system considered in this work.
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Using the divergence theorem, the time derivative of M may be

expressed as

dMðtÞ

dt
¼

ð

O

X

i

r
%

i
_fiðx; tÞdx ¼ '

ð

G

r
%

ifiðx; tÞuiðx; tÞ ! ndr

þ

ð

O

Ssvðx; tÞ þ Sslðx; tÞ½ *dx;

¼ '

ð

G

r
%

ifiðx; tÞuiðx; tÞ ! ndr

(7)

where n is the outward-pointing unit normal on the boundary

of O, which is denoted G in Fig. 1. When no-flow or periodic

boundary conditions for ui!n are imposed at the boundary G,

the time derivative is zero, i.e., the total number of particles

remains constant in time. However, for the moment, we

leave open the possibility that particles may flux across the

boundary, and we discuss the boundary conditions for ui!n

in the next section.

Thermodynamically consistent
equations via the principle of maximal
energy dissipation

In order to make further progress, we need constitutive equations

relating the velocities and source terms to the volume fractions

and thermodynamic quantities, such as the chemical potentials.

We start by considering the free energy (F), written in a form,

F = Fb + Fs where

Fb ¼

ð

O

fb fi;rfif gð Þdx; (8)

Fs ¼

ð

G

fs fif gð Þdr (9)

so that fb and fs are the bulk and surface contributions to the

free energy density, with functional dependencies on fi and its

gradient. The quasi-incompressibility constraint in eqn (5) is

introduced in the time derivative of the free energy by using a

Lagrange multiplier p(x,t), so that

X

i

ð

O

pðx; tÞr ! fiðx; tÞuiðx; tÞð Þdx

¼

ð

O

pðx; tÞ r
%

sl
'1 ' r

%

sv
'1

! "

Sslðx; tÞdx:

(10)

The variable p(x,t) will henceforth be referred to as the pressure.

Taking the time derivative of the free energy functional and

using eqn (10), we have

dF

dt
¼
X

i

ð

O

miðx; tÞ
_fiðx; tÞ þ pðx; tÞ

n

$

+ r
%

i
'1Siðx; tÞ 'r ! fiðx; tÞuiðx; tÞð Þ

h io

dx

þ

ð

G

@fs fif gð Þ

@fi

þ
X

j

@fb

@ @fi

%

@xj
& 'nj

" #

_fiðx; tÞdr

)

;

(11)

where xj and nj are the jth components of vectors x and n,

respectively, so that x = {x1,x2,x3} and n = {n1,n2,n3}. Here, we

have introduced the chemical potential of the ith component,

mi(x,t), defined as

miðx; tÞ ¼
dFb

dfiðx; tÞ
:¼

@fb

@fi

'
X

j

@

@xj

@fb

@ @fi

%

@xj
& '; (12)

i.e., the variational derivative of Fb with respect to fi. Now, using

the continuity eqn (2), (10) and the divergence theorem, we get

dF

dt
¼
X

i

ð

O

fiðx; tÞr miðx; tÞ þ pðx; tÞ½ * ! uiðx; tÞ

$

dx

þ

ð

O

miðx; tÞ þ pðx; tÞ½ * r
%

i
'1Siðx; tÞdx

'

ð

G

fiðx; tÞ miðx; tÞ þ pðx; tÞ½ *uiðx; tÞ ! ndr

þ

ð

G

@fs fif gð Þ

@fi

þ
X

j

@fb

@ @fi

%

@xj
& 'nj

" #

_fiðx; tÞdr

)

:

(13)

We assume that in the vicinity of the boundaries, the volume

fractions equilibrate at a rate that is much faster than in the bulk.

This is enforced by the ‘‘quasi-stationary’’ or ‘‘local thermo-

dynamic equilibrium’’ boundary conditions

@fs

@fi

'
@fs

@fsv

þ
X

j

@fb

@ @fi

%

@xj
& ''

@fb

@ @fsv

%

@xj
& '

" #

nj ¼ 0; iasv:

(14)

Similar boundary conditions have been derived while considering

surface contributions to the free energy of systems undergoing

spinodal decomposition.64,65 For the quaternary mixture, using

eqn (4), (14) and (13) can be re-expressed as

dF

dt

¼
X

i

ð

O

fiðx;tÞr miðx;tÞþpðx;tÞ½ *!uiðx;tÞ

$

dx

'

ð

G

fiðx;tÞ miðx;tÞþpðx;tÞ½ *uiðx;tÞ!ndr

(

þ

ð

O

r
%

sl
'1mslðx;tÞ'r

%

sv
'1msvðx;tÞþ r

%

sl
'1'r

%

sv
'1

! "

pðx;tÞ
! "

Sslðx;tÞdx:

(15)

Now, linear constitutive relations for the velocities ui(x,t), source

Ssl(x,t), and boundary velocity terms ui(x,t)!n can be readily

identified by (i) making sure that the equations result in a

dissipation of the free energy and (ii) addressing the appropriate

physical transport mechanisms associated to the microstructural

evolution. Our first assumption is that the dynamics will be

dominated by diffusion-like processes, and we neglect the

effects of viscous flow. This suggests simple Darcy-type flow

assumptions for the component velocities. The boundary flux

of the evaporating solvent is assumed to be non-zero, so that

the total number of particles, M, can change in time. This is
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vitally important for evaporation processes in a fixed domain,

since the vapor phase number density is significantly lower

than that for the liquid phase. To summarize, we make the

specific constitutive assumptions

ui(x,t) = 'gifi(x,t)r(mi(x,t) + p(x,t)) (16)

Sslðx; tÞ

¼ 'l r
%

sl
'1mslðx; tÞ ' r

%

sv
'1msvðx; tÞ þ r

%

sl
'1 ' r

%

sv
'1

! "

pðx; tÞ
h i

(17)

and

uiðx; tÞ ! n ¼
oifiðx; tÞ miðx; tÞ þ pðx; tÞð Þ on Gtop

0 on Gbottom

(

(18)

where gi, l and oi are non-negative coefficients. We should

point out that these coefficients can be dependent on the

volume fractions. For example, it can be readily shown that

giB 1/fi for deriving the Fick’s law in the absence of liquid–vapor

phase change and the incompressibility constraint. However, in

order to derive their dependencies on the volume fractions, one

has to consider equations of motion of various moving species

such as done in ref. 66. In this work, we use these coefficients in

an ad hoc manner. Here, Gtop and Gbottom represent the top and

the bottom boundaries of the computational domain, respectively

(Fig. 1). With these choices, we have

dF

dt

¼
X

i

'

ð

O

gi fiðx;tÞr miðx;tÞþpðx;tÞð Þj j2
$

dx

'

ð

Gtop

oi fiðx;tÞ miðx;tÞþpðx;tÞð Þ½ *2dr

)

'

ð

O

l r
%

sl
'1mslðx;tÞ'r

%

sv
'1msvðx;tÞþ r

%

sl
'1'r

%

sv
'1

! "

pðx;tÞ
h i2

dx,0:

(19)

We observe that each process – diffusion, mass exchange, and

boundary flux – independently dissipates the free energy. Our

constitutive assumptions result in a dynamical system that

represents a type of gradient flow, such that, up to the choices

of the coefficients, the free energy decreases maximally, i.e., in

the negative gradient direction. Of course, there are other

constitutive choices that could lead to energy dissipation. For

example, one could make assumptions such that one of the

energy terms above had no definite sign, but proving energy

dissipation would be challenging. Our theory is linear in the

thermodynamic sense since the energy dissipation rates are

quadratic, as can be observed in eqn (19).

Eliminating the velocities and sources, we can write the

governing equations purely in terms of the functions fi, mi, and

p as

fsvðx; tÞ ¼ 1'
X

iasv

fiðx; tÞ; (20)

_fslðx; tÞ 'r ! gslfsl
2ðx; tÞr mslðx; tÞ þ pðx; tÞð Þ

& '

;

¼' r
%

sl
'1l r

%

sl
'1mslðx; tÞ ' r

%

sv
'1msvðx; tÞ þ r

%

sl
'1 ' r

%

sv
'1

! "

pðx; tÞ
! "

;

(21)

_fi(x,t) ' r!(gifi
2(x,t)r(mi(x,t) + p(x,t))) = 0, i = p, q. (22)

'
X

i

r ! gifi
2ðx; tÞr miðx; tÞ þ pðx; tÞð Þ

& '

¼ ' r
%

sl
'1 ' r

%

sv
'1

! "

+ l r
%

sl
'1mslðx; tÞ ' r

%

sv
'1msvðx; tÞ þ r

%

sl
'1 ' r

%

sv
'1

! "

pðx; tÞ
h i

:

(23)

The boundary conditions are the local thermodynamic equilibrium

conditions eqn (14) and the dissipative flux boundary conditions

eqn (18). Periodic boundary conditions are imposed on the right

and left (vertical) boundaries, simulating a film of infinite extent in

the in-plane direction (cf. Fig. 1).

Change of variables and reformulation

A change of variables simplifies the structure of the equations

by eliminating the chemical potential msv. It also will help to

clarify the structure of the flux boundary conditions. Consider

the following redefined pressure and chemical potentials:

p̃(x,t) = msv(x,t) + p(x,t) and ~mi(x,t) = mi(x,t) ' msv(x,t)

for i = p, q, sl. (24)

Let us also define the parameter

ns :¼ r
%

sl
'1 ' r

%

sv
'1

! "

¼
r
%

sv ' r
%

sl

r
%

sl r
%

sv

; (25)

which is clearly negative, since r
%

sv o r
%

sl. The source term can

be rewritten in terms of the new variables as

Sslðx; tÞ ¼ 'l r
%

sl
'1
~mslðx; tÞ þ ns~pðx; tÞ

h i

: (26)

In terms of the new variables, the dynamical equations are

_fslðx; tÞ 'r ! gslfsl
2ðx; tÞr ~mslðx; tÞ þ ~pðx; tÞð Þ

& '

¼ ' l r
%

sl
'1 r

%

sl
'1
~mslðx; tÞ þ ns~pðx; tÞ

h i

;

(27)

and

_fi(x,t) ' r!(gifi
2(x,t)r(~mi(x,t) + p̃(x,t))) = 0, for i = p, q,

(28)
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with the pressure Poisson equation

'
X

i

r ! gifi
2ðx; tÞr~pðx; tÞ

& '

'
X

iasv

r ! gifi
2ðx; tÞr~miðx; tÞ

& '

¼ ' lns r
%

sl
'1
~mslðx; tÞ þ ns~pðx; tÞ

h i

:

(29)

The flux boundary conditions for these variables transform

as follows: at the top boundary, Gtop, we have (from eqn (16)

and (18)), setting bi :¼
oi

gi
,

rp̃(x,t)!n = 'bsvp̃(x,t) (30)

r(~mi(x,t) + p̃(x,t))!n = 'bi(~mi(x,t) + p̃(x,t)), i a sv, (31)

and at the bottom boundary, Gbottom, we have

rp̃(x,t)!n = 0 (32)

r(~mi(x,t) + p̃(x,t))!n = 0, i a sv. (33)

At the top boundary, Gtop, we imagine that there is a semi-

permeable membrane that allows only solvent vapor out of the

system, which is plausible, since the solvent molecules should

be significantly smaller than the polymers then bsv 4 0, but

bi = 0, i a sv. We can then satisfy our dissipative boundary

conditions simply as

rp̃(x,t)!n = 'bsvp̃(x,t), r~mi(x,t)!n = 'rp̃(x,t)!n, i a sv, on Gtop.

(34)

On the bottom boundary, the no-flux boundary conditions are

even easier to satisfy:

rp̃(x,t)!n = 0, r~mi(x,t)!n = 0, i a sv, on Gbottom. (35)

Now, eliminating the volume fraction of the solvent in the

vapor phase in the free energy densities, we define

~fb fi;rfif giasv

& '

:¼ ~fb fsl;fp;fq;rfsl;rfp;rfq

! "

:¼ fb 1'
X

iasv

fi;fsl;fp;fq;'
X

iasv

rfi;rfsl;rfp;rfq

 !

:

Then, using the chain rule, we have

~miðx; tÞ ¼
dFb fi;rfif gð Þ

dfi

'
dFb fi;rfif gð Þ

dfsv

¼
@fb

@fi

'
@fb

@fsv

'
X

j

@

@xj

@fb

@ @fi

%

@xj
& ''

X

j

@

@xj

@fb

@ @fsv

%

@xj
& '

 !

¼
@ ~fb

@fi

'
X

j

@

@xj
;

@ ~fb

@ @fi

%

@xj
& '; iasv:

(36)

Likewise, defining

~fs fif giasv

& '

:¼ ~fs fsl;fp;fq

! "

:¼ fs 1'
X

iasv

fi;fsl;fp;fq

 !

;

(37)

the local thermodynamic equilibrium boundary conditions

transform as

@ ~fs

@fi

þ
X

j

@ ~fb

@ @fi

%

@xj
& '

" #

nj ¼ 0; iasv: (38)

Phase separating polymer mixtures:
a Flory–Huggins–Cahn–Hilliard
description

For modeling solvent evaporation in thin films of phase separating

polymer blends, we use the Cahn–Hilliard61 functional form for

the inhomogeneous free energy density along with surface

interaction terms. In particular, we write

fb fi;rfif gð Þ ¼ fhðffiðx; tÞgÞ þ
X

i

ei
2

2
rfiðx; tÞj j2; (39)

where fh is the so-called homogeneous free energy density,

which is modeled as

fh fif gð Þ ¼ kBT
X

i

r
%

i

Ni

fiðx; tÞ ln fiðx; tÞð Þ

 

þ
X

iaj

wijfiðx; tÞfjðx; tÞ ' cfsvðx; tÞ

!

:

(40)

The parameter kB is the Boltzmann constant; T is the absolute

temperature; wij are the interaction parameters between compo-

nents i and j; and ei
2 are defined as67

ei
2 ¼

r
%

i bi
2kBT

18
; (41)

where bi is the Kuhn segment length of the polymer of type i.

For a homogeneous mixture without any vapor phase,

eqn (39) becomes the Flory–Huggins free energy density.

A phase diagram for the Flory–Huggins free energy density

can be readily constructed using standard techniques. For the

quaternary system with volatile solvent, we expect the vapor

phase to be energetically favorable. Such a thermodynamic

preference for the vapor phase is encoded in the free energy

density by the linear term cfsv in eqn (40). Specifically, c can be

chosen so that the vapor is the minimum energy phase. The

effect of this term is readily seen in the free energy plots (see

Fig. S1 and S2 in ESI‡). However, we remark that this term has

no contribution to the free energy itself when fsv = 0 (i.e., when

the mixture has no vapor phase component).

On the top boundary Gtop, we take fs({f}) ( 0, and there is,

therefore, no energetic preference of any of the phases to be
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near the boundary. On the bottom boundary, Gbottom, we

suppose that fs has a linear dependence on the polymer volume

fractions, so that

fs({fi}) = [apfp(x,t) + aq fq(x,t)]. (42)

With an appropriate choice of parameters, an energetic preference

exists for one of the polymer phases to partially or completely wet

the substrate to which the film is attached.68

With the particular form of fs given in eqn (42), the local

equilibrium boundary conditions on Gbottom (cf. eqn (38)) may

be expressed as

ai + (ei
2 + esv

2)rfi(x,t)!n = 0 for i = p, q, (43)

rfsl(x,t)!n = 0. (44)

Eqn (27)–(29) may be written in dimensionless form by

choosing characteristic length and time scales. The characteristic

length is determined by the radius of gyration, Rpg, of the longer

polymer, taken to be p, without loss of generality, where

Rp
g ¼

ffiffiffiffiffiffiffiffiffiffiffi

Np

%

6
q

bp. The time scale is set equal to the Rouse time

of polymer p: t ¼ Rp
g

! "2

Np

,

gpkBT r
%

p

! "

. Defining x̂ = x/Rpg and

t̂ = t/t, we can write eqn (27)–(29) as

_fslðx̂; t̂Þ ' r̂ !
gslNpfsl

2ðx̂; t̂Þ

gpr̂p
r̂ m̂slðx̂; t̂Þ þ p̂ðx̂; t̂Þð Þ

 !

¼ Ŝslðx̂; t̂Þ;

(45)

_fiðx̂; t̂Þ ' r̂ !
giNpfi

2ðx̂; t̂Þ

gpr̂p
r̂ m̂iðx̂; t̂Þ þ p̂ðx̂; t̂Þð Þ

 !

¼ 0

for i ¼ p; q;

(46)

where r̂i ¼
r
%

i

r
%

sl

; m̂iðx̂; t̂Þ¼ ~miðx;tÞ

*

r
%

slkBT ; p̂ðx̂; t̂Þ¼ ~pðx;tÞ

*

r
%

slkBT ;

Ŝsl = 'l̂(m̂sl(x̂,t̂) + p̂(x̂,t̂) ' r̂sv
'1p̂(x̂,t̂)); (47)

and l̂ ¼ tlr
%

slkBT . The time and space derivatives are hereafter

understood to be with respect to non-dimensional time and

space, respectively.

For the free energy calculated using eqn (39), the ith

chemical potential transforms as

m̂iðx̂; t̂Þ ¼
@f̂ h fif giasv

& '

@fi

' êi
2
D̂fiðx̂; t̂Þ '

X

jasv

êsv
2
D̂fjðx̂; t̂Þ; iasv;

(48)

where êi
2 ¼

r̂ibi
2

18 R
p
g

& '2
and

f̂ h f̂i

n o

iasv

+ ,

¼

fh 1'
P

iasv

fi;fsl;fp;fq

+ ,

r
%

slkBT
;

which can be written in terms of dimensionless parameters

ŵij ¼ wij

*

r
%

sl. Also, writing the boundary conditions in terms

of dimensionless parameters leads to two new quantities:

b̂sv = bsvR
p
g and âi ¼ ai

*

r
%

slR
p
gkBT

! "

, i = p and q.

Results

In the following, we present results obtained after numerically

solving the equations presented in the previous section. For details

of the numerical methods, see the ESI.‡ It is to be noted that the

rate of phase change (i.e., the source term, Ssl given by eqn (17)) is

directly coupled to the chemical potential of the liquid and the

vapor, which is in qualitative agreement with a general expression

for the evaporative flux derived by Ward et al.58 In the model

developed here for the phase separating polymer blends, motion of

the interface separating the polymer blend and the vapor phase

depends on the parameters, b̂sv and l̂, both of which affect the

evaporative flux through the top boundary. Physically, bsv =osv/gsv is

a ratio of the velocity of the vapors near the top boundary

characterized by osvkBT and its diffusion constant, gsvkBT. It is to

be noted that bsv has units of length inverse. l controls the rate of

conversion/phase change from the liquid to the vapor phase. First

we show the effects of b̂sv and l̂ on the motion of the interface

separating the vapor phase from the polymer blends. Later, results

for the simulations executed in two dimensional space are

presented, focusing on the effects of concentration dependent

diffusion constants and effects of interfacial interactions.

Simulations in one dimensional space

Presented in this section are simulations analyzing the dependence

of the model on the parameters b̂sv and l̂. Each simulation was run

on a computational domain of x̂ A [0,100]. For x̂ o 75, all

simulations were initialized with fp = 0.1 + rand(x̂) where

rand(x̂) is a random number between '0.1 and 0.1, fq = 0.15

and fsv = 10'8, with fsl initialized to satisfy the no voids

constraint
P

i

fi ¼ 1. In order to model a polymer mixture, with

the solvent in the vapor phase above it, we initialized fsl = fp =

fq = 10'8, with fsv = 1.0–3 + 10'8 for x̂ 4 75. By definition,

r̂sl = 1.0 and without any loss of generality, gp = 1.0 can be

chosen. For the sake of completeness, all of the parameters for

running these simulations are presented in Table 1. All simulations

were done on a grid with 128 spatial grid points and time step

Dt̂ = 0.001. Typical plots of the vapor phase volume fraction (fsv) are

presented in Fig. 2. Similar plots were obtained by varying b̂sv and l̂.

The general qualitative behavior shown in Fig. 2 is expected for a

mixture with an evaporating solvent. Initially, there was a vapor

phase indicated byfsvE 1 on top of the polymermixture containing

fsv E 0. As the solvent in the liquid phase evaporated, the vapor

phase grew until the solvent in the liquid phase completely ran out,

after which the vapor phase cannot grow anymore.

Dependence of interface velocity on the parameters. Effects

of the parameters, b̂sv and l̂, on the location of the interface

between the polymer blend and the vapor phase are shown in
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Fig. 3 and 4, respectively. All of the other parameters are the

same as in Table 1. The interface location is defined here to be

the x̂ such that fsv(x̂) = 0.5 (which is unique in these simulations).

Increasing the parameter b̂sv = bsvR
p
g, where bsv = osv/gsv,

corresponds to varying osv for fixed gsv, which increases the flux

of vapor particles across the top boundary. Increasing l̂ increases

the rate at which solvent particles in the liquid phase transition to

solvent particles in the vapor phase. It is to be noted that these

simulations were executed with the no flux boundary conditions

on usl so that solvent in the liquid form cannot directly flux in and

out of the top boundary, but instead must transition first into

vapor phase and then flux out in the vapor phase. These simula-

tions were run with 256 spatial grid points on the domain x A

[0,100] with a time step of Dt̂ = 0.001. Both of the figures reveal that

increase in either b̂sv or l̂ leads to faster motion of the interface, as

expected. Although the one dimensional simulation runs provide

information about the motion of the moving interface, these

simulations do not provide any information about the mesoscale

structure that can form during the solvent evaporation. In order to

get information about the morphologies that can appear during

the solvent evaporation, we have solved the set of equations in two

dimensional space and results are presented below.

Simulations in two dimensional space

Simulations run in two dimensional space were used to under-

stand the effects of different parameters of the model on the

Table 1 Parameters for generating results shown in Fig. 2

Gradient energy coefficients Mobilities Densities

êsv
2 1.00 gsv 5.0 r

%

sv
0.010

êsl
2 1.00 gsl 5.0 r

%

sl
1.0

êp
2 1.00 gp 1.0 r

%

p
1.0

êq
2 1.00 gq 1.0 r

%

q
1.0

Interaction parameters Miscellaneous parameters

ŵsv,sl 1.7 b̂sv 1.000
ŵsv,p 1.7 l̂ 0.001
ŵsv,q 1.7

c

*

r
%

sl

5.0

ŵsl,p 0.4 Np 89.0
ŵsl,q 0.9 Nq 7.0
ŵp,q 1.0

Fig. 2 In this figure, we plot fsv at multiple time steps, and we use parameters

from Table 1. It is shown that there is a well-defined interface between the vapor

phase (fsvE 1) and the polymermixture (fsvE 0), and that the polymermixture

shrinks in height until the solvent in the liquid phase has fully evaporated.

Fig. 3 Dependence of location of the vapor–polymer interface on b̂sv

while l̂ is kept fixed at l̂ = 10'4.

Fig. 4 Dependence of location of the vapor–polymer interface on l̂while

b̂sv is kept fixed at b̂sv = 1.
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morphologies that can appear in thin films. For such purposes,

we varied the coefficients of the square gradient terms as well

as the diffusion constants parameterized by gi in the model.

Furthermore, effects of preferential interactions with the sub-

strates were studied by varying the coefficients of the surface

energy terms, as described earlier. In each simulation, inter-

action parameters ŵsv,i were chosen to be large enough so that

mixing of the solvent in the vapor phase with other components

become highly energetically unfavorable. The other interaction

parameters were chosen so that solvent in the liquid form

prefers polymer p or q, and that polymer p and q are prone

to demixing. Plots of either polymer p or q are provided, along

with a red line indicating the interface between the polymer

blend and the solvent in the vapor phase. Unlike the simulations

executed in one dimensional space with no flux boundary condi-

tions for usl, here we used finite flux boundary condition for the

solvent in the liquid phase (sl) at the top boundary. In particular,

we used b̂sl = b̂sv = 1.0, b̂p = b̂q = 0.0. All simulations were done on a

block structured adaptive mesh with the finest resolution at 128

spatial grid points in both the parallel (taken to be along y axis)

Fig. 5 Effects of the surface energy terms on the phase separation in thin films containing evaporating solvent. (a) Initial configuration for fp = 0.1, with

random fluctuations as described in the main text. The red line indicates the interface between the mixture and the solvent in the vapor phase. (b) Phase

separation as well as shrinkage of the thin film can be seen in this panel showing fp. (c and d) Effects of the surface energy terms can be seen with the

formation of non-perpendicular contact angles at the final time t̂ = 27000.
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and normal (taken to be along x axis) to the bottom boundary

along with a temporal step of Dt̂ = 10'4 using a semi-implicit

method (see the ESI‡ for the details of the numerical algorithm).

Initialization of the volume fractions were, for x̂ o 75 fp(x̂, ŷ) =

0.1 + rand(x̂, ŷ) where rand(x̂, ŷ) is a random number between'0.1

and 0.1,fq(x̂, ŷ) = 0.15,fsv(x̂, ŷ) = 10
'8, andfsl(x̂,ŷ) satisfying the no

voids constraint. For x̂ 4 75 (the initial vapor phase), we have

fsl(x̂, ŷ) = fq(x̂, ŷ) = fp(x̂, ŷ) = 10'8 with fsv(x̂,ŷ) E 1 satisfying the

no voids constraint.

Effects of preferential interactions with a substrate. In order

to understand the effects of preferential interactions with the

underlying substrate, we have included surface energy contri-

butions in the free energy with âp = '0.02 and âq = 0.02. Such a

choice leads to a slight preference of the polymer p to be at the

bottom boundary. All the other parameters are the same as in

Table 1 with the exception of gsv = gsl = 1.0. Snapshots of fp at

different time steps are shown in Fig. 5. In these simulations,

the solvent in the liquid phase is being depleted near the

Fig. 6 Effects of the square gradient coefficients, êi
2 on the morphology depicted via fp. We initialized fp = 0.1 with random fluctuations throughout the

simulation. (a and b) We see similar behavior to Fig. 5, with the polymer phase separating more near the vapor–polymer interface as the solvent in the

liquid phase begins to transition out of the system. (c) As the solvent almost completely exits so that polymer rich phases are left, we see regions of pure

polymer p (fp E 1). (d) Long after the solvent has left the film, we see the last bubble of polymer fp diffuse into the larger region where fp E 1. Though

the end structure is similar to that of Fig. 5, we only see one pillar of each type of polymer appearing due to the fact that gradient energy terms êi
2 are

twice as large in this simulation as opposed to the previous.
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interface of the polymer blend and the solvent in the vapor

phase. As a result, concentration of the polymers p and q

increases in the thin film (see Fig. 5(b) and (c)). Since ŵp,q is

large enough, it is energetically more favorable for polymers p

and q to phase separate at higher concentrations. In the long

time limit, the solvent gets completely removed so that fsl E 0,

and the final structure that is formed are pillar-like pure phases

of the two polymers. Effects of the surface energy terms can be

seen with the formation of non-perpendicular contact angles at

the final time t̂ = 27 000 in Fig. 5(d).

Final stratified or pillar like structures obtained in these

simulations are found to be more stable than a homogeneous

phase. These results are in qualitative agreement with studies

focusing on the relative stability of pillar like structures with

respect to the homogeneous films, although studied in the

absence of solvent evaporation. These studies either used an

Fig. 7 Effects of the concentration dependent gi on the structure in the thin films shown in terms of fq. (a) We see similar behavior at the beginning of

the simulation as seen in other simulations i.e., enhanced phase segregation near the polymer–vapor interface. (b and c) As the system evolves in time

and solvent escapes the film, the polymer q forms more irregular structures near the interface. (d) Kinetic freezing encoded via the concentration

dependent gi leads to a rougher film, which needs to be contrasted with the behavior of the previous simulation in Fig. 6, especially at t̂ = 70000

where, even though the solvent had been completely removed, the polymer p was able to diffuse from the smaller region of pure fp = 1 on the left

to the larger region on the right. Furthermore, pillar like morphology is obtained if the concentration dependence of gi is deliberately switched off

(see Fig. S3 in the ESI‡).
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extended model-H69,70 or constructed an appropriate energy

functional whose optimization leads to the time independent

solution of the equations describing kinetics of phase separation

in binary mixtures71 in the steady state.

Effects of the square gradient coefficients. For understanding

the effects of the coefficients, êi
2, we performed another simulation

in which we doubled each êi
2 and kept all the other parameters the

same as those used to obtain Fig. 5. This, in turn, means that

spatial gradients of the volume fractions become energetically

more unfavorable leading to fewer interfaces that can form

(cf. Fig. 6). Furthermore, surface energy terms with âp = '0.04,

âq = 0.04 were used to introduce the effects of the preferential

interactions with the bottom substrate.

Effects of kinetic freezing. In the results discussed so far,

stratified or pillar like structures were found to be stable with a

smooth interface between the polymeric film and the vapor

phase. Smooth polymer–air interfaces result from the fact that

the mobility coefficients, gi, were chosen to be independent of

concentration. Physically, this is similar to the case of non-

glassy polymers dissolved in a volatile solvent as discussed by de

Gennes.44 Another scenario of solvent evaporation in thin films

containing glassy polymers was also treated by de Gennes45

while discussing rough polymer–air interfaces and the origin of

the roughness was attributed to the polymer rich ‘‘crust’’ build

up near the air interface. A simple model for the crust formation

(also called the skin formation) based on diffusive processes

was devised by Doi and co-workers46,47 where a cooperative

diffusion constant was assumed to be concentration dependent.

Solvent evaporation in thin films containing glassy polymers

can be treated using the current methodology by treating the

coefficients, gi as concentration dependent so that mobilities of

polymers decrease with an increase in the volume fraction of

the polymer due to the solvent evaporation. Although a number

of choices can be made about gi for the dependence on the

volume fraction, we chose a simple one, which leads to almost

zero mobility for the solvent-free polymer blend. In particular,

we take gi ( gi(x,t) = !gifsl(x,t)/fi(x,t). This, in turn, leads to the

polymer continuity equations implemented as

_fi(x,t) ' r!(!gifi(x,t)fsl(x,t)r(mi(x,t) + p(x,t))) = 0 i = p, q.

(49)

and leads to _fi(x,t)- 0 for fsl(x,t)- 0. Physically, this means

that the polymer motion is kinetically frozen in place after the

solvent has evaporated. Results of such a simulation run are

shown in Fig. 7, which exhibit rougher interface formation

between the polymer blend and the vapor phase. In these

simulations, all the parameters are the same as in Table 1

except êi
2 = 0.7 and !gi ( gi. Furthermore, we have used âp = '0.02

and âq = 0.02 for the surface energy terms. As earlier, reduction

of êi
2 leads to more interfaces in the simulation (cf. Fig. 7). The

effect of the concentration dependent mobility can be seen in

Fig. 7, where a rougher film gets stabilized instead of pillars for

the concentration independent mobility (also see Fig. S3 in the

ESI‡ for comparisons with the simulation run without the

effects of kinetic freezing).

Conclusions

We have developed a general methodology to model solvent

evaporation in thin films. The methodology allows us to connect

thermodynamics with the kinetics of phase separation and

phase change in a consistent manner. In particular, the rate

of phase change (the source term, Ssl) is shown to be directly

coupled to the chemical potential of the liquid and the vapor,

which is in qualitative agreement with a more general expression

for the evaporative flux derived by Ward et al.58 Using the self-

consistent model developed in this work, we have studied the

effects of the rate of phase change/reaction rate (l̂) and rate of

escape of the vapor from the top boundary (osv) on the motion of

the interface. It is shown that not only the velocity of the interface

between the polymer blend and the vapor phase, but also the

structure is determined self-consistently. For example, it is demon-

strated that kinetic freezing resulting from concentration dependent

mobility can lead to rougher films. Also, multiple vertical domains

containing almost pure polymer in each of them can get stabilized

due to the interplay of the square gradient energy coefficients and

interactions with the substrates.

The methodology is general enough to include the effects of

thermal gradients near the liquid–vapor interfaces although these

were not included in the current work. Furthermore, coupling the

continuity equations for the volume fractions to the microscopic

equations of motion of the polymers66 as well as electrostatics72

should allow study of the underlying polymer dynamics and

electrostatics, respectively, on the kinetics of phase separation in

neutral and charged polymers.
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