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Abstract—As the level of uncertain renewable capacity in-
creases on power systems worldwide, industrial and academic
researchers alike are seeking a scalable, transparent, effective
approach to unit commitment under uncertainty. This paper
presents a statistical ranking methodology that allows adaptive
robust stochastic unit commitment using a modular structure,
with much-needed flexibility. Specifically, this work describes a
bus ranking methodology that identifies the most critical buses
based on a worst-case metric. An important innovation is the
ability to identify alternative metrics on which to rank the
uncertainty set — for example to minimize economic dispatch
cost or ramping needs, to provide a customized robust unit
commitment solution.

Compared to traditional robust unit commitment models,
the proposed model combines statistical tools with analytical
framework of power system networks. The resulting formulation
is easily implementable and customizable to the needs of the
system operator. The method and its applications are validated
against other established approaches, showing equivalent solution
to the state-of-the-art approach. Case studies were conducted
on the IEEE-30, IEEE-118 and the pegase-1354 networks. In
addition, the flexibility of bus ranking formulation is illustrated
through implementation of alternative definitions of worst-case
metrics. Results show that the bus ranking method performs as
well as the best of these methods, with the provision of additional
flexibility and potential for parallelization.

Index Terms—Robust Unit Commitment, Bus ranking, Flexible
Ramping, Bootstrap Aggregation, Customizability, Parallelizable

I. INTRODUCTION

The last decade has seen the electric power system under
increasing stress due to fundamental changes in both supply
and demand technologies. On the supply side, there is a
significant shift to renewable generation such as wind and
solar which are plentiful, environment-friendly, and widely
distributed [1]. On the demand side, there is a growing number
of distributed generation resources and thereby necessity for
viable demand response strategies. The real-time uncertainty
induced by intermittent resources such as wind or price-
responsive demand has created new and complex challenges
for operational security of power systems.

Critical decision processes like day-ahead unit commitment
and real-time economic dispatch require more complex and
thorough analysis to manage the uncertainty or risk insufficient
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ramping capabilities, load surge, and transmission congestion
[2]. Various approaches, both physical and operational, have
been proposed and tested in the literature to address the
impacts of uncertainties in order to obtain reliable solutions
[3]. As physical measures, strategies such as balancing area
consolidation, increasing flexibility in the resource portfolio,
demand-side management, and use of storage devices [4] have
been implemented. In addition to the physical means, updating
current systems planning and operation with scenario-based,
probabilistic and interval based methods has been particularly
recommended as a promising solution to help maintain and
improve system reliability with increasing penetration of vari-
able energy resources [5]. These formulations and solution
methodologies have evolved over the years from early tools
based on a priority list and dynamic programming to the
current to methods based on mixed integer programming [6].

There is significant literature on various approaches to tackle
uncertainty, including stochastic optimization [7], chance-
constrained optimization [8] and robust optimization [9].
Stochastic optimization approaches require probability distri-
bution and scenario information about the uncertain processes
before implementing the optimization model. The chance-
constrained formulation allows for a compromise between risk
and cost of solution through manipulation of the probability
level. Recently, the robust optimization approach [10] has
received significant attention as it does not require detailed
analysis of the distribution of the underlying uncertainty.
The methodology utilizes upper and lower bounds of the
uncertain process to construct a solution immunized against
all realizations within the bounds, and optimal for the worst
case scenario. Different variations of analytical robust UC have
been proposed in [1], [9], [11] and [12]. These models demon-
strate significantly better solution efficiency and uncertainty
management capabilities as compared to the deterministic ap-
proach [13].Current industry approaches, however, still involve
solving a deterministic unit commitment model with either ad-
hoc reserves, storage or flexible ramping as protection against
variability [14].

The reasons for the lack of implementation of complex
analytical models in the industry are multifold. Stochastic op-
timization and traditional chance-constrained approaches face
tractability issues as large number of scenarios are required
to attain high probabilistic guarantees of system reliability.
Robust optimization does well in terms of tractability because
of the deterministic uncertainty set [15] but the approach is
susceptible to implementation [13] or complexity [16] bot-
tlenecks in bigger networks. Traditional two-stage robust UC
models, lack tools to render them customizable and adaptable
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in accordance to the needs of the system operator.

With increasing scale, complexity, and variability, in modern
power systems, there is an increasing need for UC models
combining the statistical tools in machine learning applications
with the significant data and computational power available to
the system operators. Making effective use of these resources
supports the need for hybrid methodologies that are simple,
customizable, scalable, as well as parallelizable. All the while,
providing decisions comparable to proven analytical methods
in the literature.

In this paper, a UC methodology is proposed based on a
feature ranking algorithm traditionally used in pattern recog-
nition problems to provide a robust unit commitment decision.
The decision obtained is secure against all possible uncertainty
realizations. This hybrid model unifies statistical tools with
analytical framework of power system networks and such a
formulation has not been proposed in the literature to our
knowledge. The potential benefits of such a model are :

« A simpler and easily implementable formulation to com-
pute a robust unit commitment solution. A case study is
performed on an IEEE 30-bus system to demonstrate that
the solution is superior to current deterministic models
used in industry and on par with the analytical approaches
in the literature.

o A customizable framework, as compared to models in
literature, providing flexibility to the system operator
while not compromising on solution performance. The
adaptability of the bus ranking model is demonstrated by
computing robust decisions with different definitions of
worst-case scenarios. The paper compares robust solution
for worst-case economic dispatch cost against flexible
ramping products [17], [18] and a hybrid definition. The
hybrid definition combines the properties of two differing
worst-case metrics with the goal to provide more freedom
to the system operator and obtain a solution that satisfies
contrasting objectives. An example will be a situation
where the system operator needs to be robust against
both economic dispatch cost and ramping capacity, a
middle ground approach in such a scenario could be the
desirable solution. Results of the case study, performed
on these definitions, provide interesting insights into
potential applications of such an approach and highlight
the flexibility of the formulation. This is the first robust
UC model addressing flexible ramping proposed in the
literature.

e A modular structure which renders it highly scalable
and parallelizable, thus not susceptible to implementation
and computation bottlenecks in bigger networks. The
structure ensures that the methodology is not limited by
execution times of sequentially operated processes.

The paper is organized as follows: Section 2 provides an
overview of the robust unit commitment models, followed by
the detailed description of the bus ranking model in Section
3. The performance of the approach is illustrated in Section 4
followed by concluding remarks in Section 5.

II. ROBUST UNIT COMMITMENT

The robust unit commitment model has been studied in great
detail in the power system literature [19], [9], [20], [12], [21].

Most robust unit commitment frameworks are two-stage
formulations where the first stage handles unit commitment
and the second stage manages dispatch decision which is
immunized against all uncertainty realizations and is optimal
for the worst case of system operation. Generally, the robust
models developed are constructed based on worst-case ED
cost. However, different definitions such as worst-case load
shedding, operation cost variance etc. are used depending on
the operational and economic security of the power system
[22]. The first step in robust unit commitment models is to
define a deterministic uncertainty set via limited information
on uncertain variables like the expected wind power and ranges
of possible variations around that expectation [23].

Modern robust models provide the system operator ability
to adjust the robustness of the solution by incorporating
a parameter, defined as budget of uncertainty in [9]. The
budget parameter takes values between zero and the number
of buses (V) with uncertainty variables. Thus a value of zero
corresponds to a deterministic case while a value of N will
mean immunization against uncertainties on all buses. One of
the earliest robust formulations was proposed in [9]:

: T T

b y(d
G T)
S.t.

Fx < f, x is binary
Hy(d) < h(d), Vd € D
Az + By(d) < g, ¥d € D
Ly(d)=d, Vd e D

The objective of the formulation is to minimize commitment
cost as well as the highest dispatch cost under uncertainty, thus
identifying it as the worst case scenario. The first set of con-
straints involve commitment variables, followed by dispatch
related constraints, min/max generation capacity constraints
and uncertain nodal injection constraints [9].

The above formulation is decomposed into two stages,
where the master problem is unit commitment problem and
the subproblem aims to solve the dispatch problem under
the worst-case economic dispatch with fixed unit commitment
solution [13]. The min-max subproblem can be converted to
a maximization problem, resulting in non-linear terms in the
objective function.

Convergence can take a long time if the subproblem is
solved using an exact method [16]. Instead, various heuristic
techniques such as outer approximation and equivalent MIP
have been utilized in literature to overcome this hurdle. For
example authors in [12] convert the bilinear subproblem into a
mixed integer problem following the observation that for any
given unit commitment decision the worst-case value of the
uncertain variable is a vertex of the polyhedron uncertainty set.
Similar observations motivated the formulation of bus ranking
model, as will be discussed later.
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III. Bus RANKING MODEL

The proposed methodology utilizes a deterministic uncer-
tainty set, a feature ranking algorithm [24] and a simple UC
model to compute a commitment schedule immunized against
all uncertainties in the polyhedron set. Hence, the formulation
behaves like existing robust unit commitment models. The bus
ranking formulation begins with constructing a deterministic
polyhedron uncertainty followed by computing a baseline
commitment schedule using expected net-load. The next step
involves utilizing the feature ranking algorithm commonly
implemented in machine learning applications, for example
in facial recognition and text classification. This algorithm,
combined with the baseline commitment schedule allows the
model to rank buses of the network on the basis of worst-
case metric such as dispatch cost. The last step involves
computing a commitment and dispatch decision, based on
the bus ranks, that is robust against worst-case uncertainty.
The overall algorithm has been summarized in the Algorithms
1 and 2. The following section provides a comprehensive
outline of the bus ranking formulation. The methodology can
be applied to various metrics but will be described using worst-
case economic dispatch cost, as it is the most commonly used
definition.

A. Uncertainty Set

This section defines the uncertainty set used to obtain
bus ranking. The uncertainty is introduced as a percentage
of deviation from expected net load profile estimated using
historical data. For a set of nodes N with renewable
integration, d' being the final net load set at time t, the
uncertainty set can be defined as:

dt:={dte[d —di,d+d), VieN (1)

where d is the expected net load and d! is the possible
deviation for bus ¢ at time ¢. For the proposed methodology (Zf
will be represented as a percentage of Jﬁ. Thus the uncertainty
set encompasses situations from maximum renewable injection
at a bus to the minimum, which in the case of wind integration
is generally zero.

B. Baseline Schedule

The first step in the approach is to run a deterministic unit
commitment [25] using expected net load at all buses to obtain
a baseline schedule. Please see appendix for description of a
unit commitment formulation. The solution provides an initial
schedule which can be used as a baseline for rest of the
methodology.

C. Dispatch Simulations

(@ dispatch simulations [25] are run using the baseline
commitment schedule for randomly sampled net load values
from the uncertainty set, which defines a range of net load
values for each bus ¢ at time £. A set of uniformly distributed
random load values are then sampled from this range to be

used for each simulation. These simulations provide net-load
vectors, called input vectors, for each bus ¢ and a dispatch
cost vector, the output vector, of size ). The input and output
vectors obtained from the dispatch simulations can then be
fed into a feature ranking algorithm which compares the net-
load input vectors of each bus against the output dispatch cost
vector ranks each pair according to the similarity between
them.

D. Ranking Buses

To rank the buses, feature selection algorithms [26] applied
in the field of pattern classification and text classification have
been used. Specifically, the filters class of these algorithms,
which rely on sorting individual variables based on their
correlation to an output variable were analyzed. The bus rank-
ing methodology utilizes a variation of the feature selection
technique called the probe feature method [24], [26] with a
modification inspired from [27]. The algorithm approximates
a linear relationship between the input and output vectors.

The dispatch runs provide N candidate buses with a dataset
containing () input-output vector pairs. In the context of the
current problem one such definition could be

Input variable = Net Load at a bus Vt € T’
Output variable = Economic dispatch cost Vi € T'

These vector pairs are then compared to find net load vector
that is most similar to the dispatch cost. The metric used
for comparison is called cosine similarity [28], which is a
correlation criterion. A correlation criterion was selected over
information theory or decision tree based metrics on account
of simple formulation and better performance on continuous
data [29]. Cosine similarity is defined as:

it (93“

y) = v)

=———"_ VieNVteT (2
2| [yl

cos(x
where z%! is the net-load vector for bus i at time t, and y
is the dispatch cost. The metric always assumes values within
the range of -1 and +1 where the -/+ determine the nature of
correlation between the input-output pair.

The buses are ranked through an iterative process as de-
scribed in Algorithms 1 and 2. The Modified Gram-Schmidt
orthogonalization [30], [31] is used for projecting features
onto null subspaces which terminates once all net-load vectors
have been ranked. The final ranking vector consists of bus
indices in accordance with ranking. One such example could
be V! [bus3,bus8,...], Vt € T, where bus3 vector is

rank —
most correlated to dispatch cost in time period ¢.

E. Selecting Buses

Now that that bus ranking has been computed, the ranking
vector details the order in which buses should be immunized
against uncertainty. The selection can be made using the
following criterion:

VEi=LieVt Vi <At 3)

anklVrank =
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Algorithm 1 Statistical Bus Ranking Formulation

Compute baseline commitment for dt € dt
Run @ dispatch simulations
Define V'vrtank: = {}
while n(V/}, ) < N do
Run Ranking Algorithm
end while
V! . contains bus indices in order of their similarity to
the economic dispatch vector.

8: Run deterministic unit commitment for a robust solution

A o e

Algorithm 2 Ranking Algorithm

1: NV is the set of buses that have uncertainty and N is the
number of such buses.
for every bus i € N do
Calculate cos(z*.y)
end for
Select bus with argmaz; |cos(z.y)|
viow=Vt .+ {selected bus}
N = N— {selected bus}
Project y and remaining z° onto the null space of selected
bus

® DN A RN

where V; are the buses selected to be secured against
t

uncertainty, and Vj{ﬁbk is the index of the elements of V! ..
Similar to traditional robust unit commitment models, the level
of conservativeness can be decided using A* € [0, N], V¢,
called the budget of uncertainty [9]. Thus the value of A®
decides how many buses to be immunized. As the value of
At increases from 0 to N so does the size of the uncertainty
set and hence level of conservativeness of the resulting com-
mitment solution. Thus at A* = 0 the model will be solved for
a deterministic case and at A* = N the model will immunize

against uncertainty at all buses.

F. Robust Unit Commitment

A deterministic optimization model can now be imple-
mented obtain a robust UC decision. Once a value for the
A is known the criterion in (3) can be used to decide which
buses to secure while (4) helps select worst case net-load value
for the respective bus. nl! being the worst case net-load for
bus i € V7 at time t.

dt+dt, if cos(zity) >0 Vie VS
nlf = {dt—dt, if cos(zty) <0 Vie Vs “)
d otherwise

The selected net-load values for the buses to secured
and expected net-load values for the rest can be fed into a
deterministic framework which then provides a UC solution.
The obtained UC solution is robust owing to the observation
made by [12] and authors of this paper as mentioned earlier.

Traditionally, two-stage robust models utilize a commitment
decision and a user-defined value such as budget of uncer-
tainty, to decide whether the uncertainty at a particular bus

should take the max or min value. The second stage of these
models is used to make a decision on which bus to secure
iteratively over the uncertainty set. This proposed bus ranking
model, on the other hand, first calculates an order in which the
buses of the network should be immunized against uncertainty.
Once the order is known for any budget of uncertainty value
and V! . set, a deterministic UC with the help of (3) and (4)

can provide a solution as robust as other approaches, which
will be illustrated with the help of case studies.

G. Bootstrap Aggregation

Accurate ranking of the buses can be one of the po-
tential challenges in the proposed methodology. A resam-
pling methodology, called bootstrap aggregation, is utilized
to improve prediction accuracy [32]. Bootstrap aggregation
is a method for generating multiple versions of a predictor
and using these to get an aggregated predictor [33]. Please
see the appendix for a more detailed description of boot-
strap aggregation. Figure 1 depicts a bootstrap aggregation
incorporated flow diagram of the bus ranking methodology.
Once the baseline commitment is obtained, the formulation is
divided into m independent bootstrap modules each containing
the baseline schedule. Each of these modules run Q/m dis-
patch simulations and compute m independent ranking vectors
which are then aggregated to compute final ranking vector. The
final ranking vector V!, . is obtained by taking mean of the
individual vectors provided by the modules to obtain a better
prediction. Figure 1 demonstrates this process with the help of
a flowchart. It is worth noting that each bootstrap module can
be further divided for dispatch simulations based on available
computing power.

Fig. 1: Statistical Bus Ranking Model
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IV. RESULTS

This section presents computational studies performed to
evaluate the functionality of statistical bus ranking model.
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The goal of these case studies is to demonstrate that the
commitment and dispatch decision computed by the proposed
model are comparable to traditional robust UC models and
hence have similar solution integrity while maintaining a
formulation structure which is easily customizable, adaptable
and conducive to parallelization.

A. Solution Integrity

The statistical bus ranking methodology is a heuristic ap-
proach to defining the extremes of the uncertainty set in robust
optimization. To validate this approach, we compare perfor-
mance of this approach to analagous, validated approaches
in the literature. To validate solution integrity, the statistical
bus ranking methodology[StatMod] is compared against a
traditional analytical robust optimization model [AdpRob]
proposed in [9] and a reserve adjustment approach [AdjRes].
As one of the earliest adaptable robust UC models and having
been used in various comparative studies, the AdpRob model
is a good benchmark to test for a robust unit commitment
decision where the worst case is defined as maximum eco-
nomic dispatch cost. The AdjRes model handles uncertainty by
defining reserve requirements based on deterministic criteria,
which is a good representation of models used by system
operators. The three models are implemented and compared
with two versions of the IEEE 30-bus system, and the IEEE
118-bus system (see Section IV-E). In each of these models,
the budget of uncertainty A’ takes values in the entire range
of 0 to N where NV = 20 . The statistical and analytical robust
models manage uncertainty as defined in equation 1, and [9].
For the reserve adjustment approach, uncertainty is considered
through a deterministic criterion as defined in (5).

At Jd

0 5t

4t = q; + § di (5
Na =

where ¢, is the system reserve requirement at time ¢,
composed of a basic reserve level ¢ and an adjustment
proportional to the variation of load. Thus, the uncertainty
is controlled by A as for the other models.

The three models are solved for a range of A! on the
standard IEEE 30-bus system, which has (essentially) no trans-
mission limits. Subsequent tests are conducted on a modified
system, which has transmission capacity limits and reduced
overall generation capacity, in order to provide some solution
challenges to better compare the three methods.

In order to validate the performance of the model, it is
necessary to test the solution in an out-of-sample context.
Commitment decisions provided by each model are tested by
solving 1000 dispatch problems for randomly generated net-
load scenarios. These samples follow a normal distribution
with parameters such that about 15% of the scenarios fall
outside [d! — dt, d! + d!] while negative values are discarded.
Thus the model performances can also be analyzed for an in-
accurate definition of the uncertainty set, as might be the case
in real-world applicaiton. An expensive slack variable(penalty)
with cost $5000/M Wk is introduced in energy balance and
transmission constraints to account for any violation during

real-time dispatch operation. The planning horizon is kept at
24 hrs.

B. Solution Integrity - Results

The commitment schedule for the three models was identi-
cal for the standard IEEE 30-bus system with no penalties.
This is a result of abundant generation and transmission
capacities in this fairly simplified version of a power system.

For the modified system the StatMod, AdpRob, and AdjRes
are compared along three metrics - mean dispatch costs,
standard deviation of dispatch costs and penalty costs. Mean
and standard deviation of dispatch costs illustrate economic
efficiency and reliability, while penalty costs measure solu-
tion robustness. Table 1 illustrates monotonically decreasing
average dispatch for the StatMod and AdpRob formulations
with increasing levels of uncertainty budget. Conversely, the
AdjRes solution does not change significantly until high levels
of reserves have been committed at A* = 12. Units committed
(Figure 2) and total cost (Table 1) support this observation as
both are significantly higher for AdjRes model especially as
the solution becomes more conservative. Since the solutions
for AdpRob and StatMod are identical, the red plot-line covers
the blue in Figure 2. Also note that all three models provide
an identical solution at At = 0, as it represents a deterministic
case. With increasing value of A?, more units are committed
and penalties decrease for the StatMod and AdpRob models.
The AdjRes methodology commits extra generation resources
based on an ad-hoc rule. At A® = 20 the average penalty
costs for the StatMod and AdpRob models are negligible while
the AdjRes approach never manages to completely eliminate
penalty costs even with a larger number of generating units
switched on, as can be seen in Table 2. The two robust models
are able to overcome congestion while computing commitment
solutions, as uncertainty at individual buses is included in
the decision, something the deterministic approach does not
include.

The economic reliability of three models can also be
compared using Table 2. As expected, the standard deviations
of dispatch costs are highest for the deterministic scenario.
The StatMod and AdpRob solutions become significantly more
reliable than the AdjRes model and remain nearly 2x better
even at Al = 20.

TABLE 1: Average Dispatch Cost and Total Cost for the Three Methods

| Average Dispatch Cost (k$) | Total Cost (k$)

Delta | AdpRob StatMod AdjRes AdpRob StatMod AdjRes
0 170.9814  170.9814 1709814 | 172.1234  172.1234  172.1234
2 170.9814 1709814  170.9814 | 172.1234  172.1234  172.1234
4 170.7227  170.7227 1709814 | 172.1047  172.1047  172.1234
6 1704422 170.4422 1709814 | 172.0042  172.0042  172.1234
8 170.4422  170.4422 1709814 | 172.0042 172.0042 172.1234
10 170.4422  170.4422 1709814 | 172.0042  172.0042  172.1234
12 170.4422  170.4422  170.6604 | 172.0042  172.0042  172.0824
14 170.4018  170.4018  170.6604 | 172.0038  172.0038  172.1624
16 170.4018  170.4018  170.6604 | 172.0238  172.0238  172.1624
18 170.4018  170.4018  170.6604 | 172.0238  172.0238  172.5324
20 170.4018  170.4018  170.6604 | 172.0238  172.0238  172.6524

This case study demonstrates solution performance of the
statistical approach. The proposed methodology performs as
well as the analytical model while considerably outperforming
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Fig. 2: Total Units Committed across Horizon
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TABLE 2: Standard Devation of Dispatch Costs and Penalty Costs for the
Three Methods

\ Standard Deviation of Dispatch Costs (k$) \ Average Penalty Costs ($)

Delta | AdpRob  StatMod AdjRes AdpRob StatMod AdjRes
0 4.1593 4.1593 4.1593 581.0823  581.0823  581.0823
2 4.1593 4.1593 4.1593 581.0823  581.0823  581.0823
4 3.2943 3.2943 4.1593 320.3228  320.3228  581.0823
6 2.0085 2.0085 4.1593 40.6372 40.6372  581.0823
8 2.0085 2.0085 4.1593 40.6372 40.6372  581.0823
10 2.0085 2.0085 4.1593 40.6372 40.6372  581.0823
12 2.0085 2.0085 2.9928 40.6372 40.6372  260.7595
14 1.531 1.531 2.9928 0.0 0.0 260.7595
16 1.531 1.531 2.9928 0.0 0.0 260.7595
18 1.531 1.531 2.9928 0.0 0.0 260.7595
20 1.531 1.531 2.9928 0.0 0.0 260.7595

the AdjRes approach. With more complex networks than a 30-
bus system, the solution performance of the StatMod approach
may vary but it will but it will provide an equivalent solution to
the AdpRob model, with a simpler and more flexible structure.

C. Flexibility

A key feature of the StatMod approach is the ability to
incorporate alternative metrics on which to assess the impact
of uncertainty in the unit commitment framework. In order to
demonstrate this feature, this section explores two examples
of possible alternatives to the traditional metric used in the
AdpRob model, the dispatch cost. In this case study, the buses
are ranked on ramping requirements along the time horizon.
Such a day-ahead formulation emulates the flexible ramping
approach being implemented by system operators to manage
uncertainty. Flexible ramping or, flexiramp, aids in ensuring
that sufficient capacity is on-line to manage the increased
volatility of net loads expected under high levels of renewable
integration [34]. Using the StatMod approach two different
definitions are tested, 1) worst-case flexiramp and 2) hybrid
definition which combines worst-case economic dispatch and
flexiramp requirements. The following sections provide an
overview of the two definitions.

1) Flexiramp Robust: In this definition, robust unit com-
mitment is obtained by changing the primary metric from
economic dispatch to ramping. To obtain a robust solution

the buses are now ranked on hourly ramp requirements over
the planning horizon, instead of economic dispatch cost. To
represent the cost of flexiramp products, a slack variable is
added at $5000/M W h. The simpler structure of the statistical
model allows for alternative worst-case definition while the
model structure remains the same.

2) Hybrid Robust: To further demonstrate the flexibility
of the StatMod approach, a hybrid definition is considered
as proof of concept. This formulation combines two different
worst-case definitions in order to obtain a solution that satisfies
contrasting objectives. An example will be a situation where
the system operator needs to be robust against both economic
dispatch cost and ramping capacity. The StatMod approach, as
a result of the simple structure, can be easily applied in these
scenarios by assigning weights to different worst-case metrics
according to the operator’s requirements. For the current study,
equal weights are assigned to economic dispatch cost and
ramping requirements, and the final ranking is the sum of the
two. This type of modification is implementable in the bus
ranking methodology with minimal modifications, making it
very practical for real-world application.

D. Flexibility-Results

The customizability and performance of the StatMod ap-
proach are demonstrated by comparing three different defini-
tions of worst-case, specifically economic dispatch cost(Ed),
flexiramp, and hybrid. As before, the models are run on a mod-
ified IEEE 30-bus test case while penalty costs are added to
transmission, energy balance, and ramp constraints. The three
models are compared on the same metrics as previous study, as
well as on efficient use of generating units. The results show
that, although the three definitions provide similar solutions,
there are distinctions resulting from the different priorities of
the three formulations. These differences would likely be more
pronounced when implemented on more complex networks.

Table 3. shows that although Ed has lower dispatch costs
relative to flexiramp and hybrid approach, in terms of total
cost, it is the most expensive. Table 3 also demonstrates
that across different values of conservativeness the hybrid
approach outperforms flexiramp in dispatch costs and Ed in
total costs, implying that the hybrid approach may provide the
best compromise.

TABLE 3: Average Dispatch Cost and Total Cost for the Three Methods

| Average Dispatch Cost (k$) | Total Cost (k$)

Delta Ed Flexiramp Hybrid Ed Flexiramp  Hybrid
0 689.0969  689.0998  689.0998 | 690.579 690.502 690.502
2 689.0969  689.0998  689.0998 | 690.579 690.502 690.502
4 689.0969  689.0998  689.0998 | 690.619 690.502 690.502
6 688.8441  689.0998  688.8470 | 690.546 690.502 690.502
8 688.8441  688.8470  688.8470 | 690.566 690.429 690.429
10 688.8441  688.8470  688.8470 | 690.566 690.429 690.429
12 688.8441  688.8470  688.8470 | 690.566 690.429 690.429
14 688.8229  688.8470  688.8258 | 690.585 690.429 690.448
16 688.8229  688.8470  688.8258 | 690.545 690.429 690.448
18 688.8173  688.8202  688.8202 | 690.599 690.462 690.448

20 688.8173  688.8202  688.8202 | 690.559 690.462 690.462

Examination of Table 4 shows that all three approaches
incur similar penalties with the exception of A = 6 and 16. In
these time periods, flexiramp has higher penalty costs, which
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can be attributed to the different worst-case metric. The hybrid
approach again appears as a better model, performs as well ac
the worst-case Ed definition. Table 4 also illustrates that th
flexiramp definition provides the most system reliability, witl
the hybrid approach as a close second.

TABLE 4: Standard Deviation of Dispatch Costs and Penalty Costs for the
Three Methods

‘ Standard Deviation of Dispatch Costs (k$) \ Penalty Costs ($)

Delta Ed Flexiramp Hybrid Ed Flexiramp  Hybrid
0 38.5102 38.5053 38.5053 961.39 961.39 961.39
2 38.5102 38.5053 38.5053 961.39 961.39 961.39
4 38.5102 38.5053 38.5053 961.39 961.39 961.39
6 38.4394 38.5053 38.4345 807.62 961.39 807.62
8 38.4394 38.4345 38.4345 807.62 807.62 807.62
10 38.4394 38.4345 38.4345 807.62 807.62 807.62
12 38.4394 38.4345 38.4345 807.62 807.62 807.62
14 38.4226 38.4178 38.4178 789.44 807.62 789.44
16 38.4226 38.4178 38.4178 789.44 807.62 789.44
18 38.422 38.4171 38.4178 789.44 789.44 789.44
20 38.422 38.4171 38.4171 789.44 789.44 789.44

The most significant difference between the three metric
can be seen in Figure 3. which shows total units committex
across the planning horizon. The flexiramp definition, while
considering flexible ramping products, commits a smaller
number of units than Ed. As a result, while the flexiramp
approach incurs more penalty, the committed generating units
are used more efficiently. This is illustrated in Figure 4, which
plots the average usage of a generating unit across the planning
horizon, against levels of robustness. The hybrid approach, as
earlier, has better utilization pattern compared to Ed but also
commits more units than flexiramp to obtain a middle-ground
solution.

Fig. 3: Total Units Committed across the Horizon, for Increasing Budget of
Uncertainty
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The results of this case study provide insight into the per-
formance of this approach under three metrics of robustness;
the worst-case Ed and flexiramp outperform other approaches
in one-dimensional objective, while the hybrid definition pro-
vides a balanced perspective combining the two definitions for
a better overall performance.

The above results demonstrate the ability of the StatMod
framework to customize and adapt and these tools can assist

Fig. 4: Average Usage of Committed Units across the Horizon, for Increasing
Budget of Uncertainty
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the system operator in attaining multiobjective solutions as the
system complexity increases, something that is not currently
available in traditional robust methodologies.

E. 118-Bus System Analysis

The following section details the results of studies con-
ducted on the IEEE 118-bus test system to compare solution
performance of the AdpRob and StatMod on a larger network.
The study parameters are adjusted to increase the size of the
uncertainty set on the larger network. The results in Tables
5 and 6 show that, although there are small differences
among the two approaches, overall the solutions are similar.
The StatMod provides performs slightly better in terms of
economic efficiency, reliability, and robustness for A = 6
by committing one additional generating unit. However, for
higher values of A the StatMod needs to commit two to
three extra generators to models provide the same solution as
AdpRob. These results demonstrate that the StatMod performs
on par with AdpRob and our initial assertion made in the 30-
bus network study.

TABLE 5: Comparison of Average Dispatch Cost and Total Units Committed
for AdpRob and StatMod Methods

\ Average Dispatch CostS (k$) \ Total Units Committed (across 24 hrs)

Delta AdpRob StatMod AdpRob StatMod
0 2427.0642 2427.0642 298 298
6 2304.0128 2303.4060 308 309
12 2303.4060 2303.3920 311 312
18 2303.3301 2303.3301 315 318
24 2303.3301 2303.3301 316 318
30 2303.3301 2303.3301 320 323
36 2303.3301 2303.3301 324 328
42 2303.3301 2303.3301 328 330
48 2303.3301 2303.3301 329 332

F. Computational Efficiency

This section compares computational efficiency of the rank-
ing model against AdpRob. The models used in the study are
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TABLE 6: Standard Deviation of Dispatch Costs and Penalty Costs for
AdpRob and StatMod Methods

\ Standard Deviation of Dispatch Costs (k$) \ Average Penalty Costs (k$)

Delta | AdpRob StatMod AdpRob StatMod
0 159.5033 159.5033 20.2916 20.2916
6 12,7117 12.4581 0.2838 0.07591
12 12.6945 127117 0.07591 0.0619
18 12.6071 12.6071 0.0 0.0
24 12.6071 12.6071 0.0 0.0
30 12.6071 12.6071 0.0 0.0
36 12.6071 12.6071 0.0 0.0
42 12.6071 12.6071 0.0 0.0
48 12.6071 12.6071 0.0 0.0

implemented in Pyomo [35] with CPLEX as the solver on a
Macbook laptop with an Intel Core i7 3.0-GHz CPU and 16
GB memory.

To compare run-times of the two models, it is useful to
clarify the key difference between the information provided
by a single run of StatMod and a single run of AdpRob
model. A single iteration of the AdpRob model computes a UC
status for a pre-defined size of the uncertainty set or level of
conservativeness (single value of A?). The StatMod provides
a ranking strategy for the entire uncertainty set, thus providing
UC status for all possible values of At. For example, in case of
the 30-bus test system where 20 buses have uncertain loads, A®
can take any value from O to 20. A complete run of AdpRob
model will provide the commitment solution for one specific
value of At. Conversely, one run of the StatMod will rank all
the buses and provide information on all possible values of
At. Thus, for a fair comparison of the computation times, the
models need to be solved for UC status across all the values
of Al in the uncertainty set.

Average runtimes of the models are compared with in-
creasing network uncertainty. Here, uncertainty reflects the
percentage of buses considered with variable net-load in the
respective network. One runtime reflects the average amount
of time the model takes to compute UC status for all possible
values of A,

TABLE 7: Average Computation Time across Varying Size Network
Uncertainty (% * Total Buses) for the Two Networks

‘ IEEE-30 Average Runtimes(minutes) ‘ IEEE-118 Average Runtimes(minutes)

Uncertainty ‘ AdpRob  StatMod  StatMod/AdpRob ‘ AdpRob  StatMod  StatMod/AdpRob
0.1 0.4046 6.8109 16.8323 4.5209 22.7750 5.0376
0.2 0.7878 6.8418 8.6839 8.9928 23.1350 2.5726
0.3 1.1993 6.8728 5.7304 13.6393  23.4950 1.7225
0.4 1.5516 6.9037 4.4493 17.9856  23.8550 1.3263
0.5 1.9358 6.9347 3.5822 22.1745  24.1850 1.0906
0.6 2.3229 6.9656 2.9986 26.1948  24.5450 0.9370
0.7 2.7210 6.9965 2.5713 31.0532  24.9050 0.8020
0.8 3.1094 7.0275 2.2600 35.0325  25.2650 0.7211

As can be seen from the results, in Table 7, although Stat-
Mod is considerably slow than AdpRob, for smaller network
with lower percentage of uncertain buses, as the network size
or the uncertainty increases, StatMod becomes appreciably
faster. For the 30-bus system the StatMod is approximately
17 times slower when 10 percent of the buses have variable
net-load, and is up to 2 times slower with 80 percent of buses
considered uncertain. For the 118-bus network, the statistical
model starts out at 5 times slower when only 10 percent of
buses are uncertain, and is up to 1.4 times faster when 80
percent of the buses have variable net-load. Table 7 also shows

that for similar uncertainty percentage, the proposed model
becomes relatively faster with increasing network size.

These results demonstrate that, although the StatMod has
higher computation time for one iteration, the quantity of
information provided by the model allows it to be on par,
or faster than the traditional robust approach as the network
size or uncertainty increases. The statistical approach will be
particularly beneficial if the system operator intends to com-
pute a commitment strategy for different levels of uncertainty,
through the use of various sizes of the uncertainty set. It
is worth noting that the the statistical model’s structure also
allows for straightforward parallelization, which will further
help the system operator in reducing computation time.

G. 1354-Bus System Analysis

The proposed methodology is further tested on a modified
version of the pegase 1354-bus system [36], [37] to demon-
strate performance on a real-world sized network. The network
contains 1,354 buses, 260 generators, and 1,991 branches and
represents the size and complexity of part of the European
transmission system. The AdpRob and StatMod formulations
are implemented on a 6-hr time horizon with 300 uncertain
loads, and the study results are shown in Tables 8 and 9.
The two models provide similar solutions, and costs, with
only minor differences in specific units committed at larger
A' values. The penalty costs are never reduced to zero be-
cause of transmission congestion in the network configuration.
These results further validate the solution performance of the
StatMod as compared to state-of-the-art robust methodologies.

TABLE 8: Comparison of Average Dispatch Cost and Total Units Committed
for AdpRob and StatMod Methods

‘ Average Dispatch CostS (k$) ‘ Total Units Committed (across 6 hrs)

Delta | AdpRob StatMod | AdpRob StatMod
0 1210.1637 1210.1637 1351 1351
75 1178.1932 1178.1932 1356 1356
150 1178.1932 1178.1932 1360 1356
225 1178.4757 1178.4757 1549 1551
300 1183.8361 1183.8361 1559 1560

TABLE 9: Standard Deviation of Dispatch Costs and Penalty Costs for
AdpRob and StatMod Methods

\ Standard Deviation of Dispatch Costs (k$) \ Average Penalty Costs (k$)

Delta | AdpRob StatMod | AdpRob StatMod
0 362.9831 362.9831 608.3991 608.3991
75 343.0100 343.0100 577.5854 577.5854
150 343.0100 343.0100 577.5854 577.5854

225 342.9935 3429816 577.5854 577.5854

300 342.9831 342.9819 577.5854 577.5854

V. CONCLUSION AND DISCUSSION

This paper proposes a data-driven statistical approach to
account for the complexities and correlations within the power
system, identifying the buses most critical to system perfor-
mance, based on a pre-defined optimization objective. The
ranking obtained can be utilized to implement a robust gener-
ation schedule. The method is demonstrated via a case study
and validated against the state-of-the-art method proposed in
[9]. The validation results on three separate test systems show
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that the StatMod approach provides similar solution as the ac-
cepted AdpRob model across all three metrics, supporting the
validity of the approach. In addition, this approach consistently
outperforms the ad-hoc reserve adjustment (AdjRes) approach
typically implemented in practice. From these tests, it can
be concluded that the statistical bus ranking approach also
provided a correct solution to problems of unit commitment
under uncertainty.

The proposed method also provides added utility to system
operators with an easily customizable framework. Compu-
tational studies were performed with varying definitions of
worst-case metric, and demonstrate some advanced capabilities
of the model. For example, results of a hybrid definition of
risk shows value in combining multiple worst-case criteria
for robust unit commitment and is an interesting avenue for
future work. [34] states the flexiramp product clearly improves
the expected performance of market but can fail if used with
deterministic models. While other methods require a complete
reformulation of their models, the StatMod is easily adapted
to this metric. Although out of scope of this paper, a compre-
hensive application of the proposed methodology with flexible
ramping products could provide a better solution without
creating implementation challenges. In addition to flexibility
to handle various objectives, the statistical pre-processing of
this approach is parallelizable and computationally efficient.
Finally, it is worth noting that the statistical ranking is stable to
moderate variations in system condition, providing additional
computational efficiencies. A comprehensive ranking stability
study will be a worthwhile problem for future work.

There is a large resource of literature on the feature ranking
algorithms that are being utilized in the proposed model. It has
been shown that these algorithm scale well and model per-
formance does not decrease significantly with bigger datasets
[38], [24]. Figure 1 depicts the structure of the proposed
model. After computing baseline commitment schedule, the
formulation is broken into a non-sequential modular structure
as evident in the figure. These independent and self-contained
bootstrap modules allow this model to take advantage of the
computational power available to the system operator

The current framework approximates a linear relationship
between the input and output vectors. Modifications to the
framework will be needed to capture convex non-linear and
piecewise relationships. To our knowledge in the current form
it will not be able to provide a convergence guarantee for a
non-convex cost function. Approximation of the relationship
using piecewise linear regression or local basis functions,
before the ranking algorithm is implemented, may also provide
improved solutions under new feature sets. However, given the
approximation, the numerical studies performed on IEEE 30-
bus, 118-bus and pegase 1354-bus networks demonstrate the
the validity of the solutions provided by this formulation.

The framework described here develops ranking vectors
utilizing a baseline commitment decision. Our experiments,
with different commitment decisions, revealed that the model
produces solutions that are stable to the initial baseline unit
commitment. The rate of convergence, however, might vary.
During these studies, best performance was achieved using UC
status with expected net load at all buses.

The proposed framework opens up many directions for fu-
ture work. Testing the method on larger and more complicated
networks will be important, as the ranking may be affected by
correlations between net load at buses. The ranking can be
used to study relationships between different elements of the
electrical network. From studying interactions between buses,
to finding optimum bus locations for microgrids. Simulating
varying storage strategies in parallel for performance compar-
ison is another potential application.

VI. APPENDIX

A. Bootstrap Aggregation

Bootstrap Aggregation or bagging is a popular technique for
constructing an ensemble of diverse and accurate predictors.
The purpose of these collections or ensembles is to make
highly accurate predictions by considering the decisions of
individual predictors in the ensemble. As the name suggests
in Bootstrap aggregation multiple versions of the predictor are
generated and then used to calculate an aggregate predictor.

In the proposed model bagging is implemented to achieve
better prediction for the bus rank vector. With the learning
dataset S defined as {(yn,2n),n = 1..., N} where the y's
are the economic dispatch costs and z’s, the input which will
be dispatch costs and the net load values at any given bus in
our model. The feature ranking algorithm yields bus ranks,
r = ¢(5), serving as the predictor for y. k samples from the
dataset .S are then taken to attain better aggregate prediction as
compared to individual ranking. The k rankings thus obtained
are aggregated by computing a score R; = 1/ kZ(b(Sj’?') for
each bus j as an average function of its rank r;? in the k-th
bootstrap sample.

B. Unit Commitment Model

This section contains a basic formulation of unit commit-
ment model. The objective of the model is to minimize the
cost of running the system based on the number of generators
running, on/off status and the production levels of the on-
generators. The variable x which is binary represents vector
of decisions regarding generator status, while y represents dis-
patch decision of the generating units at each time interval. The
first set of constraints dictates minimum up/down times, and
startup/shutdown costs. Energy balance constraints, reserve
requirements, transmission limits and ramping constraints are
represented in the second set. The third set contains the
generator status and production level coupling constraints.

min Tz +bly
zy(.)
S.t.

Fz < f, x is binary
Hy < h,
Az + By < g,
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