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Abstract Wind integration in power grids is challenging because of the uncertain
nature of wind speed. Forecasting errorsmay have costly consequences. Indeed, power
might be purchased at highest prices to meet the load, and in case of surplus, power
may be wasted. Energy storage may provide some recourse against the uncertainty
of wind generation. Because of their sequential nature, in theory, power scheduling
problems may be solved via stochastic dynamic programming. However, this scheme
is limited to small networks by the so-called curse of dimensionality. This paper ana-
lyzes the management of a network composed of conventional power units and wind
turbines through approximate dynamic programming, more precisely stochastic dual
dynamic programming. A general power network model with ramping constraints on
the conventional generators is considered. The approximate method is tested on sev-
eral networks of different sizes. The numerical experiments also include comparisons
with classical dynamic programming on a small network. The results show that the
combination of approximation techniques enables to solve the problem in reasonable
time.
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1 Introduction

Cost-effective management of power units is a very challenging task. Generating
units must be committed such that demand for electricity is met. This is more difficult
to carry out because of significant variability among loads and generation sources.
Commitment of traditional units such as nuclear and coal-fired plants involve cost,
mostly due to fuel consumption, and is source of environmental concern. Driven by
both increasing environmental awareness and technological advances, over the last
decade, wind-based electricity generation has been widely promoted (Zhou et al.
2014). For instance, in 2014, the European Council set three new targets for 2030,
namely: “(i) a target to reduce the EU greenhouse gas emissions by 40% relative to
emissions in 1990, (ii) a renewable energy target of at least 27%atUnion level; and (iii)
an indicative target for energy efficiency of at least 27% at Union level.” (European
Commission 2016). As a result of political emphasis, in 2006, on the need to increase
theUnited States energy efficiency and to diversify the energy portfolio, a collaborative
initiative was created to explore the requirements for a 20% wind integration scenario
(share of wind power in the total power generation) by 2030 (Lindenberg 2009). In
the United States, the renewable energy share of total electricity generation grew from
13.7% in 2015 to over 15% in 2016 (Renewable Energy Policy Network for the 21st
Century, 2017).

However, unlike conventional power sources, output from wind turbines is unpre-
dictable.Thus, these resources cannot be reliedupon to serveboth supply and reliability
needs in situations of network stress, such as generator or line failures. As a conse-
quence, wind turbines cannot reliably replace conventional generators tomeet all loads
(Moura and De Almeida 2010). The intermittency of wind generation may create an
imbalance between the supply and demand for power. In situations of very high gener-
ation, combined with inaccurate forecasting, wind power may be curtailed to maintain
balance. Counter-intuitively, in cases of transmission congestion, wind generationmay
be curtailed while traditional resources in other locations are increased to meed the
demand.

Energy storage devices may serve as recourse to circumvent the uncertainty of wind
power. Such devices may be used to store excess generation, or for arbitrage profits.
Indeed power might be purchased at a lower price during off-peak hours, to be stored
and sold at a higher price during peak demand for power hours (Mokrian and Stephen
2006). For an in-depth description of existing and in-development storage technology,
see Tan et al. (2013), Wee (2013) and Mahlia et al. (2014).

A significant stream of research has been focusing on harvesting wind power in
the presence of storage. The benefits of coupling intermittent renewable energy with
storage are discussed in Grillo et al. (2012), Heussen et al. (2012), Castillo and Gayme
(2014) and Suberu et al. (2014). Prior studies have also analyzed the coupling of
wind generation with storage via stochastic programming, e.g. Garcia-Gonzalez et al.
(2008), Abbey and Joós (2009) andMeibom et al. (2011). Unlike other research where
a fixed wind generation curve is used, Succar et al. (2012) analyze the optimal wind
turbine rating and the storage configuration of a wind farm coupled to compressed air
energy storage. Scott and Powell (2012) compare approximate dynamic programming
schemes for energy storagemanagement based on instrumental variables and projected
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Bellman errors for a model ignoring transmission lines in the presence of a single
storage device. In Zhou et al. (2014), the valuation of a single storage unit provided by
a stochastic approach is compared with several valuation heuristics for a model with
limited transmission capacity. Storage of energy for arbitrage opportunities is studied
by Thatte et al. (2013), Bradbury et al. (2014) and Khani and Zadeh (2015).

The foregoing studies are limited, since they ignore network constraints, and only
consider a single storage facility and a single wind turbine. Indeed, power flow equa-
tions increase the size of the problem, and both number of wind turbines as well as
storage facilities increase the dimension of the state space. The dimensionality is a
critical issue particularly in the context of stochastic dynamic programming (SDP).
Several approximate schemes have been proposed to tackle the inherent dimensionality
issue of SDP.One such approach is the stochastic dual dynamic programming (SDDP),
particularly widespread in the community of mid- and long-term hydropower manage-
ment (e.g.Pereira and Pinto 1985; Goor et al. 2010; Maceira et al. 2008; Homem-de
Mello et al. 2011; Löhndorf et al. 2013). The convergence of this algorithm is proved
by Philpott and Guan (2008), and more recently, Philpott and de Matos (2012) and
Shapiro et al. (2013) extended SDDP to embed risk measures. The SDDP algorithm
is implemented in this paper.

This paper addresses the shortcomings of these previous studies by: (i) examining
the management of a power network composed of conventional units, wind turbines,
as well as storage devices, taking into account network constraints; (ii) exploiting the
information-decision structure of the problem to derive an SDP formulation, and an
approximate dynamic programming scheme using ideas from generalized linear pro-
gramming, cutting plane methods, and SDDP. In addition, we (iii) provide a detailed
description of the problem as well as discuss approaches for its solution, (iv) com-
pare the approximate scheme to classical stochastic dynamic programming, and (v)
numerically analyze the scalability of the approximate scheme.

In Sect. 2, the operation of a power system equipped with energy storage facilities
is detailed. The problem is formulated under the framework of SDP in Sect. 3. In
Sect. 4, some general approximate dynamic programming techniques are reviewed,
while Sect. 5 deals with the approximation techniques implemented in this paper.
Results of numerical experiments are reported in Sect. 6.

2 Operation and control of a power system with storage

Optimization models are often used to determine an optimal generation schedule for
conventional generators over a finite planning horizon, T , in order to meet the demand
in each time step t atminimal cost. This is usually achieved by formulating the problem
as a two-stage optimization problem, wherein the first stage decisions are made about
unit commitment, or the on/off status, of the conventional generators based on forecasts
of electricity demand and wind generator output (see Ostrowski et al. 2012; Morales-
España et al. 2013). The second stage decisions are concernedwith economic dispatch,
which is the determination of optimal generation output of the committed generators,
as well as recourse actions such as reserve requirements. Reserves are pre-determined
excess generation capability, held to ensure real-time balance between the supply and
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demandwhen imbalances arise from forecasting errors, or other unforseen events such
as generator failure or transmission line disruption. The time step is typically an hour
or a 15-min interval, and the planning usually spans 24, 48 or 168h (a week).

Based on load (energy demand) and wind generation forecasts, the operator of the
network makes the decisions about the commitment of the conventional generators in
each time period of the horizon.We assume that decisions aremade before observation
of the random variables (wind generator output). Note that this assumption will be
important for the formulation of the objective function as presented below. Here, the
focus is on the economic dispatch problem alone, assuming that the conventional
generators are previously committed.

2.1 Problem formulation

Apower networkmay be represented by a graph G := (N , L), where each node n ∈ N
represents a bus, where components such as generators and loads are connected to the
system, and each link a transmission line. In each node a set of conventional generators
Gn , a wind farm, and a storage device may be located. The different components of the
graph are distinguished via the following set of indices: (i) G is the set of conventional
generators, (ii) Gn ⊆ G is the subset of conventional generators located at bus n, (iii)
M ⊆ N is the set of wind farms, and (iv) S ⊆ N denotes the set of storage facilities.

The generators are mechanical devices, and have to operate within finite generating
limits.While inmotion, aminimal outputmaybe required for a generator to be in steady
state. Similarly, a threshold is imposed on the maximal output to avoid mechanical
damages. For any generator g ∈ G, p

g
and p̄g (in MW ) denote lower and upper

bounds, respectively. In addition, there usually are minimum and maximum allowable
changes in generation between two consecutive periods. For any generator g ∈ G,
the following defines ramp down and ramp up limits: −λg ≤ pgt − pg,t−1 ≤ λ̄g . In
addition to power generated in a node, power can flow between two nodes through
transmission lines defined as the set of undirected pairs L ⊆ N × N (assuming power
can flow in either direction). For any node n ∈ N , define On := {(n, j) ∈ L} to be
the set of transmission lines that leave it; similarly, let In := {( j, n) ∈ L} be the set
of transmission lines that enter node n.

For any node n, D̂nt denotes a “reliable” forecast (in MW ) of the load (demand
for power), in period t at bus n. This demand is supplied by the generation in the
node, or power transported to the node through the transmission lines, or the stored
energy, if any, or some combination of power from the three; thus, pgt denotes power
generation, in MW , from generator g in period t at the cost CPgt (pgt ). The output
from thewind turbines is random. Indeed, generation from such units is conditioned on
wind speed, which depends on uncontrollable meteorological conditions. Therefore,
W̃t = (W̃1t , . . . , W̃|M|t ) denotes the random vector of outputs from the wind turbines
in period t ; wmt , in MW , is a particular realization of the stochastic process {W̃mt }.
For any set X, |X| denotes its cardinality.

We note by elt the power, in MW , flowing through transmission line l in period t .
The transmission lines having limited capacity, upper bounds are imposed on the power
flowing through to prevent disruption; ēl , l ∈ L , denote such bounds. Power can flow
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in either direction of the line, therefore, for any transmission line l := (n, n′) ∈ L , in
period t , if elt is positive, power is transmitted from node n to node n′; a negative value
indicates the opposite. The power flowing through a transmission line is proportional
to the difference between the phase angles, in radians, of the two end buses, i.e.,
elt = Bl(θn′t − θnt ) (Papavasiliou and Oren 2013), where Bl is the susceptance of
line l, i.e. “the measure of how much a circuit is susceptible to conducting a changing
current.”1 The system includes a reference/slack bus, which can absorb and emit power
(e.g. in case of losses), whose voltage angle is usually set to zero to guarantee that the
system is not overdetermined.

In eachperiod t , in addition to generation decisions, the networkoperator alsomakes
decisions on the use of the storage. In each node where a storage device is located, in
each period, the latter is charged or discharged to compensate for imbalance between
the supply and demand. Such imbalance is more likely to occur in peak demand
hours, i.e., periods where electricity consumption is highest. Peak demand hours vary
by both geographic region and season. Operators usually prepare for peak demand by
committing extra power plants that may be called upon quickly in periods of higher
demand or equipment failures.

Define snt to be the level of stored energy (MWh) at bus n in the beginning of
period t (or the end of period t −1). This energy is converted into power (MW) via the
simple equation Energy = Power× Time. �+

nt (resp. �
−
nt ) denotes the positive (resp.

negative) variation in the level of charge from the beginning through the end of period
t . The storage units have limited capacity, and in order to last, cannot be completely
depleted. Consequently, the level of charge can only be varied progressively over time.
Therefore denote by sn and s̄n , lower and upper bounds, respectively, on the level of
the storage at bus n. Assume that the discharge and charge maximum capacity is
the same, in period t , the variation in the level of the storage device at bus n then
obeys:

0 ≤ �+
nt ≤ �̄n

0 ≤ �−
nt ≤ �̄n

Lastly, each storage facility has input and output efficiency; energy is lost both at
charging and discharging. Let cn (resp. dn) be the efficiency coefficient of charging
(resp. discharging) of the storage device at bus n, where 0 < cn ≤ 1, and 0 < dn ≤ 1.

Imbalance between the load and supply may result because of wind power fore-
casting errors. Since the storage units have limited capacity, they may not be able to
absorb the total production surplus (charging) or to deliver the difference (discharg-
ing) in case of power shortage. For any node n ∈ N , �nt ∈ R denotes the power
absorbed or delivered by the storage unit at bus n. In case of imbalance, we assume
that power excess (shortage) is absorbed (delivered) at a high rate. For each node
n ∈ N , κ+

nt ∈ R+ (κ−
nt ∈ R+) denotes such excess (shortage); R and R+ are the set

of real and non-negative real numbers, respectively. Thus, in each period t , the power
balance equations read

1 http://www.allaboutcircuits.com/textbook/alternating-current/chpt-5/susceptance-and-admittance/.
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|Gn |∑

k=1

pkt +
∑

l∈In
elt + wnt − δn�nt − κ+

nt + κ−
nt =

∑

l∈On

elt + D̂nt ,∀n ∈ N ,

with

δn =
{
1 if there is a storage facility at node n,
0 otherwise.

By convention, wnt = 0, if there is no wind farm at node n. Note that �+
nt =

max{0, cn�nt }, and �−
nt = max

{
0,−�nt

dn

}
. The storage level then evolves according

to

sn,t+1 = αnsnt + �+
nt − �−

nt ,∀n ∈ N ,

where αn ∈ (0, 1] is the storage efficiency of the device located at bus n. There may
be a cost, CSnt (�nt ), associated with varying the stored energy level. Such cost is
proportional to the amount of energy stored or discharged (Schoenung 2011).

A summary of the notation is provided in the “Appendix”.

2.2 Optimization program

We aim to find the policy (P∗,�∗) = [
(P∗

1 ,�∗
1), . . . , (P

∗
T ,�∗

T )
]
that mini-

mizes the expected operating cost over the entire planning horizon, where P∗
t =

(p∗
1t , . . . , p

∗|G|t ), and �∗
t = (�∗

1t , . . . ,�
∗|N |t ), 1 ≤ t ≤ T . (P∗,�∗) then solves

min
Xt

⎧
⎨

⎩E

⎡

⎣
T∑

t=1

⎛

⎝
|G|∑

g=1

CPgt (pgt ) +
|N |∑

j=1

δnCSnt (�nt ) + M
|N |∑

n=1

(κ+
nt + κ−

nt )

⎞

⎠

⎤

⎦

⎫
⎬

⎭ (1)

S.t., for 1 ≤ t ≤ T :
|Gn |∑

k=1

pkt +
∑

l∈In
elt + wnt − δn�nt − κ+

nt + κ−
nt =

∑

l∈On

elt + D̂nt , n ∈ N (2)

elt = Bl(θn′t − θnt ), l = (n, n′) ∈ L (3)

− ēl ≤ elt ≤ ēl , l ∈ L (4)

sn,t+1 = αnsnt + �+
nt − �−

nt , n ∈ N (5)

sn ≤ sn,t+1 ≤ s̄n, n ∈ N (6)

0 ≤ �+
nt ≤ �̄n, n ∈ N (7)

0 ≤ �−
nt ≤ �̄n, n ∈ N (8)

�nt = �+
nt

cn
− dn�

−
nt , n ∈ N (9)

κ+
nt , κ

−
nt ,≥ 0, n ∈ N (10)
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− λg ≤ pgt − pg,t−1 ≤ λ̄g, g ∈ G (11)

p
g

≤ pgt ≤ p̄g, g ∈ G (12)

where Xt := (Pt ,�t , κt , st+1),E is the expectation operator, which is taken over
W̃t . M is a big number.

The multi-period problem (1–12) can theoretically be solved to optimality if
functions CPgt are convex in pgt , CSnt being proportional to �nt . Indeed, the set

Ψt =
{
(Pt , et , W̃t , θt , st ,�

+
t ,�−

t ,�t , κ
+
t , κ−

t )|(2−12)
}
is a polyhedron. Therefore,

by convexity of the cost functions, (1–12) is a convex problem. Note however that due
to change of fuel or valve-point effects, the cost functions may be non-smooth (e.g.
Park et al. 2005; Sayah and Zehar 2008), though convex polynomial approximations
are often used (Pereira-Neto et al. 2005; dos Santos Coelho and Mariani 2006).

The problem may not be tractable numerically if we want a detailed representation
for the underlying process of {W̃t}. Wind speed (wind power) are often assumed to be
serially correlated. For simplicity, authors (e.g. Luh et al. 2014;Yu et al. 2015) assume a
lag-oneMarkovian process, in the sense that the wind in the current time period is only
conditioned on realizations at the previous time period. This assumption is removed
in Papaefthymiou and Klockl (2008), where the wind process is assumed to obey a
general order-n Markovian process. In the same vein, general ARMA models, where
current wind realization are assumed to be conditioned on p previous realizations
and random shocks, are among the most popular proposals in the literature of wind
modeling/forecasting (see Pinson et al. 2013).

3 Representation under the framework of stochastic dynamic
programming

Power network management is a sequential decision problem. In each period t , the
operator observes the level of the stored energy, and generation in the previous period,
and based on updated forecast for the wind turbines outputs (or wind speed) and
the observation of the previous outputs, the operator determines the output of the
conventional generators and the variation in the storage (charging or discharging) in
order to meet the demand in each node. Thus, the tuple (st , pt−1, wt−1) will be called
the state of the system, or state for short.

Let us observe that whereas pt−1 is known, from constraints (11–12), pg,t−1 − λg

and p
g
are two minorants for pgt , g ∈ G. Similarly, pg,t−1 + λ̄g and p̄g are two

majorants for pgt . Consequently,

max{pg,t−1 − λg, pg} ≤ pgt ≤ min{pg,t−1 + λ̄g, p̄g}.

In principle, SDP is suited for problem (1–12). SDP sequentially decomposes (by
period) the overall problem into smaller subproblems in a coordinated way, by seek-
ing the best trade-off between the immediate and future use of the storage. Define
Ft (st , pt−1, wt−1) to be the cost-to-go function from the beginning of period t to
the end of the horizon. In addition, assume that the process {W̃t } is Markovian, i.e.,
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P(W̃t = wt |W̃t−1 = wt−1, . . . , W̃0 = w0) = P(W̃t = wt |W̃t−1 = wt−1). Therefore,
for t = T, T − 1, . . . , 1, an SDP recursion associated with problem (1–12) is given
by

Ft (st , pt−1, wt−1) := min
Xt

{
ht (pt ,�t , κt ) + EW̃t |wt−1

[
Ft+1(st+1, pt , W̃t )

]}
(13)

S.t. (2 − 10) (14)

pgt ≥ max{pg,t−1 − λg, pg}, g ∈ G (15)

pgt ≤ min{pg,t−1 + λ̄g, p̄g}, g ∈ G (16)

where ht (pt ,�t , κt ) := ∑|G|
g=1 CPgt (pgt ) + ∑|N |

j=1 δnCSnt (�nt ) + M
∑|N |

n=1(κ
+
nt +

κ−
nt ).
The complexity of problem (13–16) stems from two fronts, namely (i) computing

an expectation, and (ii) finding an optimal policyΠ∗(st , pt−1, wt−1). The complexity
of (i) is related to the dimension of the random vector W̃t−1, ranging from one to ten in
the numerical experiments, and step (ii) may be prohibitive because of the dimension
of the joint state space (st , pt−1, W̃t−1). As a result, (13–16) is not tractable even for
modest size networks. Approximation schemes must then be used.

4 Approximate dynamic programming approaches

A common approach to solve problem (13–16) is to discretize st , pt−1, and W̃t−1
spaces into “partial grids”, and to solve the problem over the Cartesian product of these
grids. Since its inception, DP has been limited to small instance of problems because of
the curse of dimensionality, as coined by its author, Bellman. The computation burden
increases exponentially as the number of states increases, which significantly limits the
practicality of SDP as a solution method for real world problems. This is reinforced by
the fact that in certain circumstances, the problem is to be solved periodically within
constrained time frame. For instance, in the case of the economic dispatch problem,
the operator of the system may need to adjust generating decisions based on signals
from the market, or may have to resolve the problem periodically as a result of data
changes or updated forecast as he/she gets to receive new observations for the random
variables.

The practical limitation of DP paved the way for approximate DP (ADP) schemes.
The purpose is usually to strike a balance between solution time and reasonable per-
formance of the prescribed policy by replacing the function Ft (st , pt−1, wt−1) with
some approximation F̂t (st , pt−1, wt−1). Though he did not refer to as ADP, Bellman
was the first to propose approximations of what he called the functional equation [e.g.,
here Eq. (13)]. Using Lagrange relaxation technique, Bellman (1956) (see also Bell-
man and Dreyfus 1962) discusses successive approximations (SA) of the functional
equation by partitioning the computation of the original sequence of functions into the
computation of a sequence of functions of fewer state variables. Korsak and Larson
(1970) provide a detailed algorithm for the SA technique, and settle conditions for
the convergence to true optimal solution. Examples of applications of such technique
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to power production are available in Zurn and Quintana (1975), Turgeon (1980) and
Yang and Chen (1989).

As indicated earlier, any DP implementation resorts to discretization of the state
space. One straightforward approximation of the cost-to-go function is to select, in
each period, a small sample of states instead of a dense grid, and solve problem
(13–16) for each point of the sample, assuming that the minimization as well as the
expectation computation can be carried out efficiently. Then the cost-to-go function
may be approximated for any out-of-grid point, for instance by interpolation (e.g.,
linear, multilinear) of the neighboring grid states (see Johnson et al. 1993; Keane and
Wolpin 1994; Philbrick and Kitanidis 2001). Based on convexity assumptions on the
cost-to-go function and assuming that the state space is a hyperrectangle, Zéphyr et al.
(2015) propose a simplicial approximation scheme guided by local estimations of
the approximation error. However, the complexity of hypercube decomposition limits
the scope of the method. The hyperrectangle assumption is dropped in Zéphyr et al.
(2017), but the methodology is still limited to modest dimension problems.

Several approximation schemes fall within the broader class of parametric approx-
imation, wherein the approximation may be noted F̂t (st , pt−1, wt−1, δ); δ is a set
of parameters or weights, which usually are to be determined. For instance, in Bell-
man (1957) such parameters are Legendre polynomial coefficients. Other polynomial
types traditionally used to approximate the cost-to-go function include orthogonal,
Chebyshev, spline, andHermite polynomials. Formore account on polynomial approx-
imations, see Howitt et al. (2002) and Topaloglu and Powell (2006). Interpolations for
out-of-grid states are performed in Philbrick and Kitanidis (2001) within hypercubes
using weighted sums of the cost-to-go function evaluations as well as derivatives (first
and second order) of the function at the vertices. The weights are defined as poly-
nomials in the state variables. This multi-dimensional interpolation approach stems
from previous works by Kitanidis (1987), and is an extension of the gradient dynamic
programming scheme by Foufoula-Georgiou and Kitanidis (1988).

Combining ideas from various fields such as neural networks, artificial intelligence,
cognitive sciences, and so on, reinforcement learning iteratively constructs approxima-
tions to the optimal cost-to-go function, or its expected value (Bertsekas and Tsitsiklis
1995) through simulations; this methodology is applied by Johri and Filipi (2011) and
Momoh et al. (2005), to power control decision problems. Though there exist sev-
eral reinforcement learning techniques, the most popular is the Q-learning algorithm,
which in contrast with DP, computes the cost-to-go function for a set of randomly
selected decisions considering only “visited states”. For further details on contextual
applications of this algorithm to power system problems, see Naghibi-Sistani et al.
(2006), Lee and Labadie (2007) and Tan et al. (2009). Reinforcement learning is built
around policy iteration, and value iteration, two widespread DP algorithms (Bertsekas
and Tsitsiklis 1995). The former algorithm iteratively alternates between policy eval-
uation and policy improvement, until no further improvement can be achieved (see
Qiu and Pedram 1999; Anderson et al. 2011). The latter algorithm is a later name in
the DP literature for successive approximation (see Song et al. 2000; Anderson et al.
2011).

A complete review of ADP methods is beyond the scope of this paper.
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5 Solution strategy

In this paper a two step strategy is used to solve problem (13–16). First, in Sect. 5.1, a
linearization technique based on generalized linear programming is discussed. Second,
in Sect. 5.2, an outer polyhedral approximation to the expected cost-to-go is described.
This leads to an algorithmic implementation via SDDP in Sect. 5.3.

5.1 Linear approximation

Problem (13–16) is linearized via inner generalized linear programming (GLP) (see
Shapiro 1979). For each generator g ∈ G, the cost is computed exactly over a sample
of generation points

{
p̂g j | j ∈ Λg

}
, and interpolated elsewhere. As shown in Sect. 5.2,

the expectation will be replaced by an outer approximation; therefore, the following
is a linear approximation to (13–16):

F̃t (st , pt−1, wt−1) := min
Xt ,βt ,ρt+1

⎧
⎨

⎩

|G|∑

g=1

∑

j∈Λg

βg j,tC Pg( p̂g j ) + gt (pt ,�t , κt ) + ρt+1

⎫
⎬

⎭

(17)

S.t. (14)−(16) (18)

pgt =
∑

j∈Λg

βg j,t p̂g j , g ∈ G (19)

∑

j∈Λg

βg j,t = 1, g ∈ G (20)

βg j,t ≥ 0, g ∈ G, j ∈ Λg (21)

ρt+1 ≥ EW̃t |wt−1

[
Ft+1(st+1, pt , W̃t )

]
(22)

with gt (�t , κt ) := ∑|N |
j=1 δnCSnt (�nt )+M

∑|N |
n=1(κ

+
nt+κ−

nt ). In eachperiod t , for each
generator g, Eq. (19), interpolates the production over the sample of generating points{
p̂g j | j ∈ Λg

}
using convex combination coefficients βg j,t as computed in Eqs. (20),

(21). In addition, it is clear that (18–22) is a finite intersection of closed half-spaces,
hence it is a polyhedral set. By construction, F̃t (st , pt−1, wt−1) is piecewise linear,
since in the objective, we seek the best interpolation for the cost functions. Hence,
F̃t (st , pt−1, wt−1) is convex, and so is its expectation (by the linearity property of the
expectation).

Let us now briefly turn to the implementation of the linear approximation scheme.
For each generator, a non-linear analytical expression for the cost function is available.
One straightforward way to build sample points may be by discretizing the production
levels to obtain the samples

{
p̂g j | j ∈ Λg

}
, and evaluate the cost for each point of each

sample. Note that the sample points need not be feasible since the production decisions

are constrained in the optimization problem. Out-of-sample points
{
p̂′

g j | j ∈ Λ′
g

}
are
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Cost-to-go

State

Vt+1

Vt+1

Ht+1

Ht+1

Ht+1

1

2

3

Fig. 1 Illustration of outer approximation of the expected cost-to-go approximation. The approximation is
given by the maximum of the supporting hyperplanes of the epigraph of the expected cost-to-go function

then selected and their exact cost (using the true cost functions) is compared to their
interpolated cost over the first sample (that will be used to implement GLP). The
sample points

{
p̂g j | j ∈ Λg

}
may be densified until the maximum interpolation error

is less than a predefined threshold, yet noting that ideally, the sizes of the samples of
points should be kept as small as possible as each sample point entails a new decision
variable (a convex combination coefficient). Note that the generation of the sample
points is carried out once for all, and is independent of the SDP loop.

5.2 Outer approximation to the expected cost-to-go

The next challenge is the computation of the expectation. In general, the expecta-
tion cannot be computed exactly, because of the large dimension of the state space.
Assuming the expected cost-to-go to be convex, the latter will be replaced with an
outer polyhedral approximation.

Let Vt+1(st+1, pt , wt ) := EW̃t |wt−1
[F̃t+1(st+1, pt , W̃t )]. By the convexity of

Vt+1(st+1, pt , wt ) and the feasible domain, there exist points (sit+1, p
i
t , w

i
t ), such

that Hi
t+1(st+1, pt , wt ), i ∈ I, are supporting hyperplanes of the epigraph of

Vt+1(st+1, pt , W̃t ) (see Theorem 3.2.5 in Bazaraa et al. 2013, p. 107). As a result
V̂t+1(st+1, pt , wt ) := max

i
{Hi

t+1(st+1, pt , wt )|i ∈ I } is a lower bound of the true

expected cost-to-go Vt+1(st+1, pt , wt ). Figure 1 illustrates such an approximation for
a hypothetical case.

Recall that for any function f of three variables x, y, and z, the first-order Taylor
approximation, f̂ , in the neighborhoodof the point (x0, y0, z0) is givenby f̂ (x, y, z) =
f (x0, y0, z0) + g′

x (x − x0) + g′
y(y − y0) + g′

z(z − z0), which reduces to f̂ (x, y, z) =
c + g′

x x + g′
y y + g′

z z, where gx ∈ ∂x f (x0, y0, z0), (gy ∈ ∂y f (x0, y0, z0), resp. gz ∈
∂z f (x0, y0, z0)) is a partial subgradient vector of f at x(y, resp. z), and

c = f (x0, y0, z0) − g′
x x0 − g′

y y0 − g′
z z0. (23)
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For any vector a, ga is a column vector, and g′
a is its transpose. We will henceforth

drop the transposition operator for simplicity. For a given set of “trial points”Θt+1 :={(
sit+1, p

i
t , w

i
t

) |1 ≤ i ≤ I
}
, the equation of each hyperplane i is given by

Hi
t+1(st+1, pt , wt ) = c̃it+1 + g̃sit+1

st+1 + g̃pit pt + g̃wi
t
wt , 1 ≤ i ≤ I ;

c̃ and g̃ are expected values with respect to the random variable W̃t+1. It is readily
verified that

V̂t+1(st+1, pt , wt ) = min
{
ρt+1|ρt+1 ≥ c̃it+1 + g̃sit+1

st+1 + g̃pit pt + g̃wi
t
wt

}
.

An approximation to function F̃t (st , pt−1, wt−1) then reads:

F̂t (st , pt−1, wt−1) := min
Xt ,ρt+1,βt

⎧
⎨

⎩

|G|∑

g=1

∑

j∈Λg

βg j,tC Pg( p̂g j ) + gt (pt ,�t , κt ) + ρt+1

⎫
⎬

⎭

(24)

S.t. (18) − (21) (25)

ρt+1 − g̃sit+1
st+1 − g̃pit pt ≥ c̃it+1 + g̃wi

t
wt , 1 ≤ i ≤ I (26)

One can easily figure out that this approximation scheme is akin to general ideas
from Benders’ decomposition and cutting plane algorithms (e.g. see Kelley 1960).

5.2.1 Computation of the hyperplanes parameters

Constraints (26) are constructed via cut parameters (g̃st+1, g̃pt , g̃wt , and c̃t+1) com-
puted in period t + 1 as follows. Firstly, suppose that in period t + 1, the wind process
is discretized into a finite set of realizations Ωt+1 := {

w1
t+1, . . . , w

J
t+1

}
. Therefore,

in period t + 1, for each state value (st+1, pt , wt ), the problem is solved for each
wt+1 ∈ Ωt+1. For each such value of the random process, let π

j
s,t+1 be the vector

of dual multipliers associated with the storage dynamics constraints (see Eq. (5)). An
expected partial subgradient g̃st+1 may then be computed as g̃st+1 = α

∑J
j=1 ω jπ

j
s,t+1,

where ω j is the probability of the observation w
j
t+1, and

∑J
j=1 ω j = 1. Secondly,

in period t + 1, let π
j
gl and π

j
gu be the dual prices associated with constraints (15),

and (16) (for each generator g ∈ G), respectively. Then, g̃pt = ∑J
j=1 ω j (π

j
gl + π

j
gu)

is taken. Third, the computation of the partial subgradients g̃wt is not as straightfor-
ward as that of the partial subgradients g̃st+1 and g̃pt . Indeed, the generation of wind
turbines located in the same region are correlated because of similar environmental
conditions (wind speed). Consequently, suppose the wind generation is modeled as a
lag-p multivariate autoregressive process:
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wt+1 = μ +
p−1∑

i=0

Φ j (wt−i − μ) + ε̃t+1, (27)

Φ j , 0 ≤ j ≤ p − 1, is an M × M matrix of coefficients; μ is the mean vector of the

process, and ε̃t+1 is a vector of innovations. In period t + 1, for each w
j
t+1 ∈ Ωt+1,

and each bus where a wind farm m is located, the power balance equation is defined
as

|Gm |∑

k=1

pk,t+1 +
∑

l∈Im
el,t+1 − �m,t+1 − κ+

m,t+1 + κ−
m,t+1 −

∑

l∈Om

el,t+1

= D̂m,t+1 − w
j
m,t+1. (28)

Let π
j
wd,t+1 be the vector of dual multipliers associated with these constraints. Also

recall that in period t + 1, function Vt+2(st+2, pt+1, wt+1) is approximated through
a set of cuts:

ρt+2 − g̃skt+2
st+2 − g̃pkt+1

pt+1 ≥ c̃kt+2 + g̃wk
t+1

w
j
t+1, 1 ≤ k ≤ K , (29)

(see (24–26)). Let π
jk
wc,t+1 be the dual multiplier associated with inequality k. Com-

bining the dual prices associated with Eq. (28) and inequalities (29), respectively, and
Eq. (27), by the chain rule, a partial subgradient g j

wt is computed as

g
w

j
t

= Φ1

(
−π

j
wd,t+1 +

K∑

k=1

π
jk
wc,t+1g̃wk

t+1

)
.

Thus, an expected partial subgradient g̃wt is given by g̃wt = ∑J
j=1 ω j gw

j
t
. Lastly,

from Eq. (23), we see that

c̃t+1 =
J∑

j=1

ω j F̂t+1(st+1, pt , wt ) − g̃st+2st+2 − g̃pt+1 pt+1 − g̃wt+1wt+1,

where (st+2, pt+1, wt+1) is the state observed in t + 2 when (st+1, pt , wt ) was
observed in t + 1.

5.3 Algorithmic implementation

It is clear from the above discussions that in each period t , a sample of points is
required to approximate the expected cost-to-go. The algorithmic framework of the
stochastic dual dynamic programming (SDDP) (see Pereira and Pinto 1985; Pereira
1989; Pereira and Pinto 1991) is used to alternate between backward and forward steps
toward solving the approximate problem (24–26).
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Fig. 2 Backward induction procedure

The purpose of the backward recursion phase is to construct the approximations
of the cost-to-go function, in each iteration through supporting hyperplanes of the
epigraph of the true function. In each period (for each iteration), suppose a set of
states, Θt := {(

sit , p
i
t−1, w

i
t−1

) |1 ≤ i ≤ I
}
, has been sampled. For each state vector,

assume J vectors of wind generation w
i j
t , 1 ≤ j ≤ J , are sampled with probability

ω
j
i each. Then for each wind output value, the minimization problem (24-26) is solved

backward in time. From the J minimization problems the appropriate multipliers are
retrieved to compute the expected value of the parameters g̃sit , g̃pit−1

, g̃wi
t
, and c̃it .

These parameters are used to construct one supporting hyperplane Hi
t (st , pt−1, wt−1)

for the minimization problem in period t − 1. Thus, at the end of the recursion, I
supporting hyperplanes are constructed to pass to period t − 1. As initial conditions,
we set ΘT+1 = ∅, g̃sT+1 = 0, g̃pT = 0, g̃wT = 0, and c̃T+1 = 0. Thus the terminal
value is assumed to be zero. A typical backward iteration is summarized in Fig. 2.

The objective of carrying out a forward step is to sample state points (sit , p
i
t−1,

wi
t−1), i ∈ I , around which the expected cost-to-go will be approximated in each

period. For a given initial state (s1, p0, w0), K series of wind generation vectors
wk
t , 1 ≤ t ≤ T, 1 ≤ k ≤ K , with probability ωk each, are simulated. For each

such trajectory, problem (24–26) is solved, forward in time, using the last approxi-
mation to the expected cost-to-go function constructed in the backward step as well
as the simulated wind generations. Thus, K series of admissible trajectories for the
storage as well as the generation levels are obtained, which will be used as sam-
pled states in the next backward recursion step. Figure 3 summarizes the forward
procedure.

Possible termination criteria may include (i) a fixed number of iterations, (ii) a
threshold on the computation time, (iii) the first period cost-to-go function is steady,
and (iv) statistical comparison of an upper and a lower bound (see Pereira 1989). For
more details, see Shapiro (2011). In this paper, depending on the cases, the number of
iterations performed varied between 4 and 11, based on the convergence of the first
period cost-to-go function.
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Fig. 3 Forward simulation procedure

In closing this section, it is worth pointing out that the main shortcoming of SDP
is the discretization of the state space; in SDDP the discretization is replaced with
sampling; consequently, this is the main advantage of SDDP over SDP. On the other
hand, this accelerates the backward phase; parameters are easily computed using the
optimal value and correspondingdualmultipliers suppliedby all commonLPsoftwares
along with an optimal solution.

6 Numerical experiments

Two lines of enquiry are pursued. The performance of the approximation scheme
is demonstrated over a small network and comparisons with SDP are provided in
Sect. 6.1. Results of additional experiments on larger networks are reported in Sect. 6.2.

6.1 Illustration and comparison with classical SDP

IEEE 9-bus configuration (three conventional generators) is used to illustrate and
compare SDDPwith classical SDP. NYISO (NewYork Independent SystemOperator)
scaled average hourly load data for January 2016 (see references) are used. One wind
farm and one storage facility are located at bus 5. Wind data were obtained from
the website of the NREL (National Renewable Energy Laboratory) (see references).
A 15% wind integration scenario and a 30% wind capacity factor were used in this
case; indeed, a wind turbine may not continuously operate at full capacity due to,
for instance, the availability of the wind, its location, regulation requirements, market
drivers, and reliability maintenance.

Both algorithms were implemented in Python 2.7.10, and the GLP problems were
solved with Cplex 12.5.1.0 on a Toshiba Portégé Z930-10 Ultrabook (64-bit, Core
i7-3687U CPU @2.10GHz, 8.00 Go RAM). At each iteration of the approximate
dynamic backward pass, 25 vectors of wind outputs were simulated to compute the
expected values of the cost-to-go functions as well as the expected values of the partial
subgradients (g̃st , g̃pt−1, g̃wt−1 ), and the expected values of the intercepts (c̃it ). A set
of 25 series of state values was used in each iteration of the forward pass. As a result,
in each iteration of the backward pass, 25 new cuts were added to the GLP problems.
Note that there is no theoretical rule to select the number of cuts in each iteration; the
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Fig. 4 Example of storage trajectory in which the charging (discharging) cost is low. In case a the battery
is at the minimum required level in the beginning of the first hour; in case b the battery is at 60% of the
maximum level of charge in the beginning. In both cases, the optimal strategy consists in using all the
available energy over the planning horizon based upon the level of charge in the beginning of the first hour,
the net load and the peak hour

number used here was adopted based on empirical trials. In each of the 24h, this small
problem comprises 221 decision variables, and (45+the number of cuts) constraints;
thus, the smallest subproblem contains 70 constraints. Results for much larger size
problems (thousands constraints) are presented in the subsequent subsection. Note
that in SDP, the main challenge is not related to the size of the problem, but to the state
space dimension. In this paper, the state space dimension is related to the number of
conventional generators, wind farm an storage devices.

Figure 4 depicts the trajectories of the storage (obtained with SDDP) facility over
a 24h span for two cases. In case (a) the stored energy is at the minimum allowable
level in the beginning of the first hour; in case (b) the level of charge is at 60% in the
beginning of the first hour. It was also assumed that varying the level of energy was
cost-free in this example. The net load (demand - wind power) is also depicted in each
case.

In the first case, the battery is charged progressively in the beginning as the net
load is low, then is steady as of the first peak hour, and up to the second peak hour.
The battery is then discharged progressively to its minimum level, since the model
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Fig. 5 Example of storage trajectory in which the charging (discharging) cost is high. The storage is used
only when the load cannot be met with the conventional generators

considered no “terminal value” for the storage. In the second case, the level of charge
is steady until the first peak hour, when the battery is depleted until the end of the
horizon. This is exactly what a good algorithm should do. Observe that in case (a) in
contrast with case (b), not only the battery is at its minimum allowable level in the
beginning, but also the net load is lower than in case (b). It is then clear that case
(a) is more favorable to charging than is case (b). In addition in both cases, not only
is the stored energy completely used, discharging occurs almost entirely at the peak
hour.

Figure 5 illustrates a situation in which varying the level of charge of the battery
is very expensive as compared to the cost of operating the conventional units. Since
utilizing the battery is very costly, the stored energy is used only in hours where the
conventional generators cannot meet the demand.

Of course, comparison of the approximate scheme (SDDP) and SDP performance
is an important metric. In general, this is difficult due to the prohibitiveness of the
computational burden of SDP, but the performance of both algorithms are compared
on the 9-bus network example based on two criteria, namely (i) the CPU time, and
(ii) the solution performance (total cost). First the cost functions were approximated
with both approaches. For SDP, in each hour, the storage, and the generators outputs
were discretized into six levels each, and the wind farm output into seven levels. This
was found to be the finest solvable grid for the problems in reasonable time. Since we
assumed the wind process to be Markovian, in each hour, it is necessary to consider
all the transitions from the previous wind values (i.e. 7× 7 transitions). As a result, in
each hour, the SDP problem was solved over a grid of 6× 63 × 72 levels (the network
comprising three conventional generators), which resulted in 63,504 evaluations of
the cost-to-go function in each hour. Therefore, 1,524,096 evaluations were performed
over the 24-h horizon.
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Table 1 Comparison of the
CPU time in seconds: SDDP and
SDP

Method Run 1 Run 2

SDDP 499.35 1 876.22

SDP 13,038.16 12,726.88

Table 2 Comparison of
solution cost: SDDP and SDP

Method Min Max Mean Standard
deviation

Run 1

SDDP 78,622.29 162,215.38 126,872.83 21,812.53

SDP 75,392.76 161,872.07 125,968.26 22,922.10

Run 2

SDDP 88,691.21 164,333.09 134,267.42 19,210.77

SDP 85,882.05 164,333.09 133,981.13 19,657.52

Following the construction of the cost-to-go functions with both methods, the oper-
ation of the network was simulated for two runs, each comprising one hundred 24-h
wind scenarios.With SDP, in both runs, the cost-to-go functions were constructed over
the same state space. With SDDP, in the first run, we performed only four iterations
to approximate the value functions. Since in each hour the expected cost-to-go was
approximated through 25 supporting hyperplanes (state values) and 20 wind values
were used to compute the expectations, with the approximate scheme, the total number
of function evaluations then were 500, for a total of 12,000 function evaluations over
the 24h horizon. Therefore, 480,000 function evaluations were performed overall in
the first simulation. Those numbers do not include the SDDP forward step, since this is
very fast. In the second simulation, we tried to improve the quality of the approxima-
tion by carrying out ten iterations. Consequently, 120,000 function evaluations were
performed in that run.

Table 1 presents the CPU time for each method and each run. In the first case, the
computation time for the approximate dynamic scheme (ADS) was nearly 4% of that
of SDP. In the second case, that proportion was about 15% as better approximations
were sought. Table 2 reports descriptive statistics on the performance (total cost) of
each method for each run. In the first case, on average, using SDP, the total cost was
only improved by 0.71% as compared to ADS. In the second case, on average, the
total cost difference decreased to 0.21%. This suggests that, overall, the ADS allowed
for a fair trade-off between solution time and accuracy.

6.2 Additional numerical tests

The ultimate goal of this research was to analyze the scalability of the approximate
dynamic approach to larger networks. We tested the algorithm on different IEEE
networks, with characteristics presented in Table 3. Each network was tested with
different number of storage facilities and wind farms due to the importance of these
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Table 3 Test networks’
characteristics

# Of buses # Of conv.
generators

# Of trans.
lines

Total gen. cap.
(MW)

30 6 41 335.000

57 7 80 1975.880

89 12 210 9921.230

118 54 186 9966.200

300 69 411 32,678.435
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Fig. 6 Mean storage trajectory for the 118-bus network with five storage units and one wind farm. As all
the five batteries are not needed to meet the load, only those with the most charging/discharging efficiency
are used. The optimal strategy is the same for all utilized batteries: charging when the net load is low and
discharging as of the peak hour until the end of the horizon since no terminal value is considered

parameters in the computational effort. Wind and load data were obtained from the
same sources as in Sect. 6.1. As previously, the problems are solved over a 24-h
horizon.

Figure 6 shows an example of the mean trajectory over 100 simulations for a net-
work composed of 118 buses, five storage facilities and one aggregated wind farm,
as well as the net load. Each battery has specific storage, charging, and discharg-
ing efficiency, respectively. The three batteries that either have the highest storage or
charging/discharging efficiency are utilized to contribute to meet the load, whereas
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Table 4 Computation time in seconds for different number of buses, storage facilities and wind farms

# Buses |S| |M| CPU time # Buses |S| |M| CPU time

30 1 1 1229.80 118 1 1 2399.35

30 5 1 1582.67 118 5 1 2444.99

30 5 5 1323.88 118 5 5 2453.89

57 1 1 1388.09 118 10 5 2179.62

57 5 1 1454.47 118 20 10 2248.39

57 5 5 1396.26 300 1 1 4159.16

57 10 5 1597.71 300 5 1 4234.72

89 1 1 1570.67 300 5 5 4570.01

89 5 1 1709.68 300 10 5 4617.65

89 5 5 1575.09 300 20 10 5036.37

89 10 5 1737.32

the energy level of the other two batteries (with either the lowest storage or charg-
ing/discharging efficiency) is steady over the 24-h span.

For each case, Table 4 reports the computation time for each network, and different
number of storage units (|S|) and wind farms (|M|). The number of storage facilities
is varied from one to twenty, and the number of wind farms from one to ten. The
computation timevaried between: (i) 1230 and 1583s in the case of the 30-bus network,
(ii) 1388 and 1598s for the 57-bus network, (iii) 1570 and 1737s for the 57-bus
network, (iv) 2180 and 2454s in the case of the 118-bus network, and, (v) 4159.16
and 5036.37 s for the largest network (300 buses). These results clearly suggest that
the underlying computational burden of SDP is mitigated as the dimension of the state
space increases.

7 Conclusions

This paper analyzed the operation of power networks comprising both conventional
and wind generators in the presence of storage. The problem was formulated as a
stochastic dynamic programming program and approximated via techniques from
generalized linear programming, cutting plane methods, and stochastic dual dynamic
programming. The approximation methods were tested on different combinations of
network sizes, as well as number of storage facilities and wind generators. The combi-
nations of these techniques allowed handling large dimension state space and enabled
to solve the problems in reasonable time. Comparison with stochastic dynamic pro-
gramming on a small network showed that the approximations are promising both in
terms of computation burden, and in accuracy of the solution.

Acknowledgements This work was supported in part by the National Science Foundation under grant
ECCS-1453615. The authors acknowledge constructive comments from two anonymous referees that helped
improve the paper.
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8 Appendix

Nomenclature

Sets

N Buses
L Transmission lines
M Wind farms
G Conventional generators
Gn Conventional generators at bus n
S Storage devices
On Transmission lines that leave node n
In Transmission lines that enter node n
R Real numbers
R+ Non negative numbers

Parameters

T Length of the planning horizon
t Time period
D̂nt Forecast of the load, in period t at bus n
p
g

(resp. p̄g) Lower (resp. upper) bound on generator g output

λg (resp. λ̄g) Ramp down (resp. ramp up) limit on generator g

W̃t Random vector of outputs from the wind turbines in period t
wmt A particular realization of the stochastic process {W̃mt }
ēl Bound on power trough line l
Bl Susceptance of line l
sn (resp. s̄n) Lower (resp. upper) bound on the level of the storage at bus n
cn (resp. dn) Efficiency coefficient of charging (resp. discharging) of the storage

device at bus n

δn =
{
1 if there is a storage facility at node n,
0 otherwise.

Decision variables

pgt Power generation from generator g in period t
elt Power flowing through transmission line l in period t
θnt Phase angle of bus n in period t
snt Level of stored energy at bus n in the beginning of period t
�+

nt (resp. �−
nt ) Positive (resp. negative) variation in the level of charge from the

beginning through the end of period t
κ+
nt (resp. κ−

nt ) Power excess absorbed (resp. delivered) by the storage unit located
at bus n

�nt Power absorbed or delivered by the storage unit at bus n
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Functions

C Pgt (pgt ) Cost function of generator g in period t
CSnt (�nt ) Cost associated with varying the stored energy at bus n

Operators

E Mathematical expectation
|X | Cardinality of the set X
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