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The representation of nonlinear sub-grid processes, especially
clouds, has been a major source of uncertainty in climate models
for decades. Cloud-resolving models better represent many of these
processes and can now be run globally but only for short-term simu-
lations of at most a few years because of computational limitations.
Here we demonstrate that deep learning can be used to capture many
advantages of cloud-resolving modeling at a fraction of the compu-
tational cost. We train a deep neural network to represent all at-
mospheric sub-grid processes in a climate model by learning from
a multi-scale model in which convection is treated explicitly. The
trained neural network then replaces the traditional sub-grid param-
eterizations in a global general circulation model in which it freely
interacts with the resolved dynamics and the surface-flux scheme.
The prognostic multi-year simulations are stable and closely repro-
duce not only the mean climate of the cloud-resolving simulation but
also key aspects of variability, including precipitation extremes and
the equatorial wave spectrum. Furthermore, the neural network ap-
proximately conserves energy despite not being explicitly instructed
to. Finally, we show that the neural network parameterization gener-
alizes to new surface forcing patterns but struggles to cope with tem-
peratures far outside its training manifold. Our results show the fea-
sibility of using deep learning for climate model parameterization. In
a broader context, we anticipate that data-driven Earth System Model
development could play a key role in reducing climate prediction un-
certainty in the coming decade.
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Many of the atmosphere’s most important processes oc-1

cur on scales smaller than the grid resolution of current2

climate models, around 50–100 km horizontally. Clouds, for3

example, can be as small as a few hundred meters; yet they4

play a crucial role in determining the earth’s climate by trans-5

porting heat and moisture, reflecting and absorbing radiation,6

and producing rain. Climate change simulations at such fine7

resolutions are still many decades away (1). To represent8

the effects of such sub-grid processes on the resolved scales,9

physical approximations—called parameterizations—have been10

heuristically developed and tuned to observations over the last11

decades (2). However, owing to the sheer complexity of the12

underlying physical system, significant inaccuracies persist in13

the parameterization of clouds and their interaction with other14

processes, such as boundary-layer turbulence and radiation15

(1, 3, 4). These inaccuracies manifest themselves in stubborn16

model biases (5–7) and large uncertainties about how much17

the earth will warm as a response to increased greenhouse gas18

concentrations (1, 8, 9). To improve climate predictions, there-19

fore, novel, objective and computationally efficient approaches20

to sub-grid parameterization development are urgently needed.21

Cloud-resolving models (CRMs) alleviate many of the issues22

related to parameterized convection. At horizontal resolutions 23

of at least 4 km deep convection can be explicitly treated 24

(10), which substantially improves the representation of land- 25

atmosphere coupling (11, 12), convective organization (13) 26

and weather extremes. Further increasing the resolution to a 27

few hundred meters allows for the direct representation of the 28

most important boundary-layer eddies, which form shallow 29

cumuli and stratocumuli. These low clouds are crucial for the 30

Earth’s energy balance and the cloud-radiation feedback (14). 31

CRMs come with their own set of tuning and parameterization 32

decisions but the advantages over coarser models are substan- 33

tial. Unfortunately, global CRMs will be too computationally 34

expensive for climate change simulations for many decades (1). 35

Short-range simulations covering periods of months or even 36

a few years, however, are beginning to be feasible and are in 37

development at modeling centers around the world (15–18). 38

In this study, we explore whether deep learning can provide 39

an objective, data-driven approach to utilize high-resolution 40

modeling data for climate model parameterization. The 41

paradigm shift from heuristic reasoning to machine learning 42

has transformed computer vision and natural language pro- 43

cessing over the last few years (19) and is starting to impact 44

more traditional fields of science. The basic building blocks of 45

deep learning are deep neural networks which consist of sev- 46

eral inter-connected layers of nonlinear nodes (20). They are 47

capable of approximating arbitrary nonlinear functions (21) 48

and can easily be adapted to novel problems. Furthermore, 49

they can handle large datasets during training and provide fast 50
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predictions at inference time. All of these traits make deep51

learning an attractive approach for the problem of sub-grid52

parameterization.53

Extending on previous offline or single-column neural net-54

work cumulus parameterization studies (22–24), here we take55

the essential step of implementing the trained neural network56

in a global climate model and running a stable, prognostic57

multi-year simulation. To show the potential of this approach58

we compare key climate statistics between the deep learning-59

powered model and its training simulation. Furthermore, we60

tackle two crucial questions for a climate model implementa-61

tion: first, does the neural network parameterization conserve62

energy; and second, to what degree can the network generalize63

outside of its training climate? We conclude by highlight-64

ing crucial challenges for future data-driven parameterization65

development.66

Model and neural network setup. Our base model is the super-67

parameterized Community Atmosphere Model v3.0 (SPCAM)68

(25) in an aquaplanet setup (see SI Appendix for details). The69

sea surface temperatures (SSTs) are fixed and zonally invariant70

with a realistic equator-to-pole gradient (26). The model has71

a full diurnal cycle but no seasonal variation. The horizontal72

grid spacing of the global circulation model (GCM) is approx-73

imately 2 degrees with 30 vertical levels. The GCM time step74

is 30 minutes. In super-parameterization, a two-dimensional75

CRM is embedded in each global circulation model grid col-76

umn (27). This CRM explicitly resolves deep convective clouds77

and includes parameterizations for small-scale turbulence and78

cloud microphysics. In our setup, we use eight 4 km-wide79

columns with a CRM time step of 20 seconds, after Ref. (28).80

For comparison, we also run a simulation with the traditional81

parameterization suite (CTRLCAM) that is based on an undi-82

lute plume parameterization of moist convection. CTRLCAM83

exhibits many typical problems associated with traditional84

sub-grid cloud parameterizations: a double inter-tropical con-85

vergence zone (ITCZ) (5); too much drizzle and missing precip-86

itation extremes; and an unrealistic equatorial wave spectrum87

with a missing Madden-Julian-Oscillation (MJO). In contrast,88

SPCAM captures the key benefits of full three-dimensional89

CRMs in improving the realism all of these issues with respect90

to observations (29–31). In this context, a key test for a neural91

network parameterization is whether it learns sufficiently from92

the explicitly resolved convection in SPCAM to remedy such93

problems while being computationally more affordable.94

Analogous to a traditional parameterization, the task of95

the neural network is to predict the sub-grid tendencies as96

a function of the atmospheric state at every time step and97

grid column (Table S1). Specifically, we selected the following98

input variables: the temperature T (z), specific humidity Q(z)99

and wind profiles V (z), surface pressure Ps, incoming solar100

radiation Sin and the sensible H and latent heat fluxes E.101

These variables mirror the information received by the CRM102

and radiation scheme with a few omissions (SI Appendix).103

The output variables are: the sum of the CRM and radiative104

heating rates ∆Tphy, the CRM moistening rate ∆Qphy, the net105

radiative fluxes at the top of atmosphere and surface Frad and106

precipitation P . The input and output variables are stacked107

to vectors x = [T (z), Q(z), V (z), Ps, Sin, H, E]T with length108

94 and y = [∆Tphy(z), ∆Qphy(z), Frad, P ]T with length 65 and109

normalized to have similar orders of magnitude (SI Appendix).110

We omit condensed water to reduce the complexity of the111

problem (see Discussion). Furthermore, there is no momentum 112

transport in our version of SPCAM. Informed by our previous 113

sensitivity tests (24) we use one year of SPCAM simulation 114

as training data for the neural network, amounting to around 115

140 million training samples. 116

The neural network itself ŷ = N (x) is a nine layer deep, 117

fully-connected network with 256 nodes in each layer. In 118

total, the network has around half a million parameters that 119

are optimized to minimize the mean squared error between 120

the network’s predictions ŷ and the training targets y (see 121

SI Appendix). This neural network architecture is informed 122

by our previous sensitivity tests (24). Using deep rather 123

than shallow networks has two main advantages: first, deeper, 124

larger networks achieve lower training losses; and second, deep 125

networks proved more stable in the prognostic simulations 126

(for details see SI Appendix and Fig. S1). Unstable modes 127

and unrealistic artifacts have been the main issue in previous 128

studies that used shallow architectures (22, 23). 129

Once trained, the neural network replaces the super- 130

parameterization’s CRM as well as the radiation scheme in 131

CAM (NNCAM). In our prognostic global simulations, the neu- 132

ral network parameterization interacts freely with the resolved 133

dynamics as well as with the surface flux scheme. The neural 134

network parameterization speeds up the model significantly: 135

NNCAM’s physical parameterization is around 20 times faster 136

than SPCAM’s and even 8 times faster than NNCAM’s, in 137

which the radiation scheme is particularly expensive. The 138

key fact to keep in mind is that the neural network does not 139

become more expensive at prediction time even when trained 140

with higher-resolution training data. The approach laid out 141

here should, therefore, scale easily to neural networks trained 142

with vastly more expensive three-dimensional global CRM 143

simulations. 144

The subsequent analyses are computed from five-year prog- 145

nostic simulations after a one-year spin-up. All neural network, 146

model and analysis code is available online (SI Appendix). 147

Results. 148

Mean climate. To assess NNCAM’s ability to reproduce SP- 149

CAM’s climate we start by comparing the mean sub-grid 150

tendencies and the resulting mean state. The mean sub-grid 151

heating (Fig. 1A) and moistening rates (Fig. S2) of SPCAM 152

and NNCAM are in close agreement with a single latent heat- 153

ing tower at the ITCZ and secondary free-tropospheric heating 154

maxima at the mid-latitude storm tracks. The ITCZ peak, 155

which is co-located with the maximum SSTs at 5°N, is slightly 156

sharper in NNCAM compared to SPCAM. In contrast, CTRL- 157

CAM exhibits a double ITCZ signal, a common issue of tradi- 158

tional convection parameterizations (5). The resulting mean 159

state in temperature (Fig. 1B), humidity and wind (Fig. S2B 160

and C ) of NNCAM also closely resembles SPCAM throughout 161

the troposphere. The only larger deviations are temperature 162

biases in the stratosphere. Since the mean heating rate bias 163

there is small, the temperature anomalies most likely have 164

a secondary cause—for instance differences in circulation or 165

internal variability. In any case, these deviations are not of 166

obvious concern because the upper atmosphere is poorly re- 167

solved in our setup and highly sensitive to changes in the 168

model setup (Fig. S5C and D). In fact, CTRLCAM has even 169

larger differences compared to SPCAM in the stratosphere 170

but also throughout the troposphere for all variables. 171
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Fig. 1. All figures show longitudinal and five year-temporal averages. (A) Mean convective and radiative sub-grid heating rates ∆Tphy. (B) Mean temperature T of SPCAM
and biases of NNCAM and CTRLCAM relative to SPCAM. The dashed black line denotes the approximate position of the tropopause, determined by a ∂pθ contour. (C) Mean
shortwave (solar) and longwave (thermal) net fluxes at the top of the atmosphere and precipitation. Note that in all figures the latitude axis is area-weighted.

The radiative fluxes predicted by the neural network param-172

eterization also closely match those of SPCAM for most of the173

globe, whereas CTRLCAM has large differences in the tropics174

and subtropics caused by its double ITCZ bias (Figs. 1C and175

S2D). Towards the poles NNCAM’s fluxes diverge slightly, the176

reasons for which are yet unclear. The mean precipitation177

of NNCAM and SPCAM follows the latent heating maxima178

with a peak at the ITCZ, which again is slightly sharper for179

NNCAM.180

In general, the neural network parameterization, freely181

interacting with the resolved dynamics, reproduces the most182

important aspects of its training model’s mean climate to183

a remarkable degree, especially compared to the standard184

parameterization.185

Variability. Next, we investigate NNCAM’s ability to capture186

SPCAM’s higher-order statistics—a crucial test since climate187

modeling is as much concerned about variability as it is about188

the mean. One of the key statistics for end users is the precip-189

itation distribution (Fig. 2A). CTRLCAM shows the typical190

deficiencies of traditional convection parameterizations—too191

much drizzle and a lack of extremes. SPCAM remedies these192

biases and has been shown to better fit to observations (31). 193

The precipitation distribution in NNCAM closely matches 194

that of SPCAM, including the tail. The rarest events are 195

slightly more common in NNCAM than in SPCAM, which is 196

consistent with the narrower and stronger ITCZ (Fig. 1A and 197

C ). 198

We now focus on the variability of the heating and moist- 199

ening rates (Figs. 2B and S3A). Here, NNCAM shows reduced 200

variance compared to SPCAM and even CTRLCAM, mostly 201

located at the shallow cloud level around 900 hPa and in 202

the boundary-layer. Snapshots of instantaneous heating and 203

moistening rates (Fig. S3B and C ) confirm that the neural 204

network’s predictions are much smoother, i.e. they lack the 205

vertical and horizontal variability of SPCAM and CTRLCAM. 206

We hypothesize that this has two separate causes: first, low 207

training skill in the boundary-layer (24) suggests that much 208

of SPCAM’s variability in this region is chaotic and, therefore, 209

has limited inherent predictability. Faced with such seemingly 210

random targets during training, the deterministic neural net- 211

work will opt to make predictions that are close to the mean 212

in order to lower its cost function across samples. Second, 213

the omission of condensed water in our network inputs and 214

Fig. 2. (A) Precipitation histogram of time-step (30 minutes) accumulation. The bin width is 3.9 mm d−1. Solid lines denote simulations for reference SSTs. Dashed lines
denote simulations for +4K SSTs (explanation in Generalization section). The neural network in the +4K case is NNCAM-ref+4K. (B) Zonally averaged temporal standard
deviation of convective and radiative sub-grid heating rates ∆Tphy.
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Fig. 3. Space-time spectrum of the equatorially symmetric compo-
nent of 15S-15N daily precipitation anomalies divided by background
spectrum after Fig. 3b in Ref. (32). Negative (positive) values denote
westward (eastward) traveling waves.

outputs limits NNCAM’s ability to produce sharp radiative215

heating gradients at the shallow cloud tops. Because the circu-216

lation is mostly driven by mid-tropospheric heating in tropical217

deep convection and mid-latitude storms, however, the lack218

of low-tropospheric variability does not seem to negatively219

impact the mean state and precipitation predictions. This220

result is also of interest for climate prediction in general.221

The tropical wave spectrum (32) depends vitally on the222

interplay between convective heating and large-scale dynamics.223

This makes it a demanding, indirect test of the neural network224

parameterization’s ability to interact with the dynamical core.225

Current-generation climate models are still plagued by issues in226

representing tropical variability: in CTRLCAM, for instance,227

moist Kelvin waves are too active and propagate too fast228

while the MJO is largely missing (Fig. 3). SPCAM drastically229

improves the realism of the wave spectrum (29), including230

in our aquaplanet setup (26). NNCAM captures the key231

improvements of SPCAM relative to CTRLCAM: a damped232

Kelvin wave spectrum, albeit slightly weaker and faster in233

NNCAM, and an MJO-like intra-seasonal, eastward traveling234

disturbance. The background spectra also agree well with235

these results (Fig. S6A)236

Overall, NNCAM’s ability to capture key advantages of237

the cloud-resolving training model—representing precipitation238

extremes and producing realistic tropical waves—is to some239

extent unexpected and represents a major advantage compared240

to traditional parameterizations.241

Energy conservation. A necessary property of any climate model242

parameterization is that it conserves energy. In our setup, en-243

ergy conservation is not prescribed during network training.244

Despite this, NNCAM conserves column moist static energy245

to a remarkable degree (Fig. 4A). Note that because of our246

omission of condensed water, the balance shown is only ap- 247

proximately true and exhibits some scatter even for SPCAM. 248

The spread is slightly larger for NNCAM, but all points lie 249

within a reasonable range, which shows that NNCAM never 250

severely violates energy conservation. These results suggest 251

that the neural network has approximately learned the physi- 252

cal relation between the input and output variables without 253

being instructed to. This permits a simple post-processing of 254

the neural network’s raw predictions to enforce exact energy 255

conservation. We tested this correction without noticeable 256

changes to the main results. Conservation of total moisture is 257

equally as important but the lack of condensed water makes 258

even an approximate version impossible. 259

The globally integrated total energy and moisture are also 260

stable without noticeable drift or unreasonable scatter for 261

multi-year simulations (Fig. 4B). This is still true for a 50- 262

year NNCAM simulation that we ran as a test. The energy 263

conservation properties of the neural network parameterization 264

are promising and show that, to a certain degree, neural 265

networks can learn higher-level concepts and physical laws 266

from the underlying dataset. 267

Generalization. A key question for the prediction of future cli- 268

mates is whether such a neural network parameterization can 269

generalize outside of its training manifold. To investigate this 270

we run a set of sensitivity tests with perturbed SSTs. We 271

begin by breaking the zonal symmetry of our reference state 272

by adding a wavenumber one SST perturbation with 3K am- 273

plitude (Fig. 5A; SI Appendix). Under such a perturbation 274

SPCAM develops a thermally direct Walker circulation within 275

the tropics with convective activity concentrated at the down- 276

wind sector of the warm pool. The neural network trained 277

with the zonally invariant reference SSTs only (NNCAM) is 278

Fig. 4. (A) Scatter plots of vertically integrated column heating Cp/G

∫
∆Tphydp minus the sensible heat flux H and the sum of the radiative fluxes at the boundaries∑

Frad against the vertically integrated column moistening Lv/G

∫
∆Tphydp minus the latent heat flux H. Each dot represent a single prediction at a single column. A

total of ten time steps are shown. Inset show distribution of differences. (B) Globally integrated total energy (static, potential and kinetic; solid) and moisture (dashed) for the
five-year simulations after one year of spin-up.
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Fig. 5. (A) Vertically integrated mean heating rate Cp/G

∫
∆Tphydp for zonally perturbed SSTs. Contour lines show SST perturbation in 1 K intervals starting at 0.5 K.

Dashed contours represent negative values. (B) Global mean mass-weighted absolute temperature difference relative to SPCAM reference at each SST increment. The
different NNCAM experiments are explained in the corresponding text.

able to generate a similar heating pattern even though the279

heating maximum is slightly weaker and more spread out. The280

resulting mean temperature state in the troposphere is also in281

close agreement, with biases of less than 1 K (Fig. S4). More-282

over, NNCAM runs stably despite the fact that the introduced283

SST perturbations exceed the training climate by as much as284

3 K. CTRLCAM, for comparison, has a drastically damped285

heating maximum and a double ITCZ to the west of the warm286

pool.287

Our next out-of-sample test is a global SST warming of up288

to 4 K in 1 K increments. We use the mass-weighted absolute289

temperature differences relative to the SPCAM reference solu-290

tion at each SST increment as a proxy for the mean climate291

state difference (Fig. 5B). The neural network trained with292

the reference climate only (NNCAM) is unable to generalize293

to much warmer climates. A look at the mean heating rates294

for the +4K SST simulation reveals that the ITCZ signal is295

washed out and unrealistic patterns develop in and above the296

boundary-layer (Fig. S5B). As a result the temperature bias297

is significant, particularly in the stratosphere (Fig. S5D). This298

suggests that the neural network cannot handle temperatures299

that exceed the ones seen during training. To test the opposite300

case, we also trained a neural network with data from the +4K301

SST SPCAM simulation only (NNCAM+4K). The respective302

prognostic simulation for the reference climate has a realistic303

heating rate and temperature structure at the equator but304

fails at the poles, where temperatures are lower than in the305

+4K training dataset (Fig. S5A and C ).306

Finally, we train a neural network using half a year of data307

from the reference and the +4K simulations each, but not308

the intermediate increments (NNCAM-ref+4k). This version309

performs well for the extreme climates and also in between310

(Figs. 5B and S5). Reassuringly, NNCAM-ref+4K is also able311

to capture important aspects of global warming: an increase312

in the precipitation extremes (Fig. 2A) and an amplification313

and acceleration of the MJO and Kelvin waves (Fig. S6B).314

These sensitivity tests suggest that the neural network is315

unable to extrapolate much beyond its training climate but316

can interpolate in between extremes.317

Discussion. In this study we have demonstrated that a deep318

neural network can learn to represent sub-grid processes in319

climate models from cloud-resolving model data at a fraction320

of the computational cost. Freely interacting with the resolved321

dynamics globally, our deep learning-powered model produces322

a stable mean climate that is close to its training climate,323

including precipitation extremes and tropical waves. More- 324

over, the neural network learned to approximately conserve 325

energy without being told so explicitly. It manages to adapt to 326

new surface forcing patterns but struggles with out-of-sample 327

climates. The ability to interpolate between extremes suggests 328

that short-term, high-resolution simulations which target the 329

edges of the climate space can be used to build a compre- 330

hensive training dataset. Our study shows a potential way 331

for data-driven development of climate and weather models. 332

Opportunities but also challenges abound. 333

An immediate follow-on task is to extend this methodology 334

to a less idealized model setup and incorporate more com- 335

plexity in the neural network parameterization. This requires 336

ensuring positivity of water concentrations and stability which 337

we found challenging in first tests. Predicting the condensation 338

rate, which is not readily available in SPCAM, could provide 339

a convenient way to ensure conservation properties. Another 340

intriguing approach would be to predict sub-grid fluxes instead 341

of absolute tendencies. However, computing the flux diver- 342

gence to obtain the tendencies amplifies any noise produced 343

by the neural network. Future efforts using machine learning 344

parameterizations should systematically address these issues. 345

Additional complexities like topography, aerosols and chem- 346

istry will present further challenges but none of those seem 347

insurmountable from our current vantage point. 348

Limitations of our method when confronted with out-of- 349

sample temperatures are related to the traditional problem of 350

overfitting in machine learning—the inability to make accurate 351

predictions for data unseen during training. Convolutional neu- 352

ral networks and regularization techniques are commonly used 353

to fight overfitting. It may well be possible that a combina- 354

tion of these and novel techniques improves the out-of-sample 355

predictions of a neural network parameterization. Note also 356

that our idealized training climate is much more homogeneous 357

than the real world climate, for instance a lack of the El 358

Niño-Southern Oscillation, which probably exacerbated the 359

generalization issues. 360

Convolutional and recurrent neural networks could be used 361

to capture spatial and temporal dependencies, such as prop- 362

agating mesoscale convective systems or convective memory 363

across time steps. Furthermore, generative adversarial net- 364

works (20) could be one promising avenue towards creating a 365

stochastic machine learning parameterization that captures 366

the variability of the training data. Random forests (33) have 367

also recently been applied to learn and model sub-grid con- 368

vection in a global climate model (34). Compared to neural 369
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networks, they have the advantage that conservation proper-370

ties are automatically obeyed but suffer from computational371

limitations.372

Recently, it has been argued (35) that machine learning373

should be used to learn the parameters or parametric functions374

within a traditional parameterization framework rather than375

the full parameterization as we have done. Because the known376

physics are hard-coded this could lead to better generalization377

capabilities, a reduction of the required data amount and the378

ability to isolate individual components of the climate system379

for process studies. On the flip side, it still leaves the burden of380

heuristically finding the framework equations, which requires381

splitting a coherent physical system into sub-processes. In382

this regard, our method of using a single network naturally383

unifies all sub-grid processes without the need to prescribe384

interactions.385

Regardless of the exact type of learned algorithm, once386

implemented in the prognostic model some biases will be un-387

avoidable. In our current methodology there is no way of388

tuning after the training stage. We argue, therefore, that389

an online learning approach, where the machine learning al-390

gorithm runs and learns in parallel with a CRM is required391

for further development. Super-parameterization presents a392

natural fit for such a technique. For full global CRMs this393

likely is more technically challenging.394

A grand challenge is how to learn directly from395

observations—our closest knowledge of the truth—rather than396

high-resolution simulations which come with their own bag-397

gage of tuning and parameterization (turbulence and micro-398

physics) (35). Complications arise because observations are399

sparse in time and space and often only of indirect quantities,400

for example satellite observations. Until data assimilation401

algorithms for parameter estimation advance, learning from402

high-resolution simulations seems the more promising route403

towards tangible progress in sub-grid parameterization.404

Our study presents a paradigm shift from the manual design405

of sub-grid parameterizations to a data-driven approach that406

leverages the advantages of high-resolution modeling. This407

general methodology is not limited to the atmosphere but can408

equally as well be applied to other components of the Earth409

system and beyond. Challenges must still be overcome, but410

advances in computing capabilities and deep learning in recent411

years present novel opportunities that are just beginning to412

be investigated. We believe that machine learning approaches413

offer great potential that should be explored in concert with414

traditional model development.415

Materials and Methods416

Detailed explanations of the model and neural network setup can417

be found in SI Appendix. This also contains links to the online418

code repositories. The raw model output data is available from the419

authors upon request.420
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