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The representation of nonlinear sub-grid processes, especially
clouds, has been a major source of uncertainty in climate models
for decades. Cloud-resolving models better represent many of these
processes and can now be run globally but only for short-term simu-
lations of at most a few years because of computational limitations.
Here we demonstrate that deep learning can be used to capture many
advantages of cloud-resolving modeling at a fraction of the compu-
tational cost. We train a deep neural network to represent all at-
mospheric sub-grid processes in a climate model by learning from
a multi-scale model in which convection is treated explicitly. The
trained neural network then replaces the traditional sub-grid param-
eterizations in a global general circulation model in which it freely
interacts with the resolved dynamics and the surface-flux scheme.
The prognostic multi-year simulations are stable and closely repro-
duce not only the mean climate of the cloud-resolving simulation but
also key aspects of variability, including precipitation extremes and
the equatorial wave spectrum. Furthermore, the neural network ap-
proximately conserves energy despite not being explicitly instructed
to. Finally, we show that the neural network parameterization gener-
alizes to new surface forcing patterns but struggles to cope with tem-
peratures far outside its training manifold. Our results show the fea-
sibility of using deep learning for climate model parameterization. In
a broader context, we anticipate that data-driven Earth System Model
development could play a key role in reducing climate prediction un-
certainty in the coming decade.

Climate modeling | Sub-grid parameterization | Convection | Deep

learning

M any of the atmosphere’s most important processes oc-
cur on scales smaller than the grid resolution of current
climate models, around 50-100 km horizontally. Clouds, for
example, can be as small as a few hundred meters; yet they
play a crucial role in determining the earth’s climate by trans-
porting heat and moisture, reflecting and absorbing radiation,
and producing rain. Climate change simulations at such fine
resolutions are still many decades away (1). To represent
the effects of such sub-grid processes on the resolved scales,
physical approximations—called parameterizations—have been
heuristically developed and tuned to observations over the last
decades (2). However, owing to the sheer complexity of the
underlying physical system, significant inaccuracies persist in
the parameterization of clouds and their interaction with other
processes, such as boundary-layer turbulence and radiation
(1, 3, 4). These inaccuracies manifest themselves in stubborn
model biases (5-7) and large uncertainties about how much
the earth will warm as a response to increased greenhouse gas
concentrations (1, 8, 9). To improve climate predictions, there-
fore, novel, objective and computationally efficient approaches
to sub-grid parameterization development are urgently needed.

Cloud-resolving models (CRMs) alleviate many of the issues

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

related to parameterized convection. At horizontal resolutions
of at least 4 km deep convection can be explicitly treated
(10), which substantially improves the representation of land-
atmosphere coupling (11, 12), convective organization (13)
and weather extremes. Further increasing the resolution to a
few hundred meters allows for the direct representation of the
most important boundary-layer eddies, which form shallow
cumuli and stratocumuli. These low clouds are crucial for the
Earth’s energy balance and the cloud-radiation feedback (14).
CRMs come with their own set of tuning and parameterization
decisions but the advantages over coarser models are substan-
tial. Unfortunately, global CRMs will be too computationally
expensive for climate change simulations for many decades (1).
Short-range simulations covering periods of months or even
a few years, however, are beginning to be feasible and are in
development at modeling centers around the world (15-18).
In this study, we explore whether deep learning can provide
an objective, data-driven approach to utilize high-resolution
modeling data for climate model parameterization. The
paradigm shift from heuristic reasoning to machine learning
has transformed computer vision and natural language pro-
cessing over the last few years (19) and is starting to impact
more traditional fields of science. The basic building blocks of
deep learning are deep neural networks which consist of sev-
eral inter-connected layers of nonlinear nodes (20). They are
capable of approximating arbitrary nonlinear functions (21)
and can easily be adapted to novel problems. Furthermore,
they can handle large datasets during training and provide fast
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predictions at inference time. All of these traits make deep
learning an attractive approach for the problem of sub-grid
parameterization.

Extending on previous offline or single-column neural net-
work cumulus parameterization studies (22-24), here we take
the essential step of implementing the trained neural network
in a global climate model and running a stable, prognostic
multi-year simulation. To show the potential of this approach
we compare key climate statistics between the deep learning-
powered model and its training simulation. Furthermore, we
tackle two crucial questions for a climate model implementa-
tion: first, does the neural network parameterization conserve
energy; and second, to what degree can the network generalize
outside of its training climate? We conclude by highlight-
ing crucial challenges for future data-driven parameterization
development.

Model and neural network setup. Our base model is the super-
parameterized Community Atmosphere Model v3.0 (SPCAM)
(25) in an aquaplanet setup (see SI Appendix for details). The
sea surface temperatures (SSTS) are fixed and zonally invariant
with a realistic equator-to-pole gradient (26). The model has
a full diurnal cycle but no seasonal variation. The horizontal
grid spacing of the global circulation model (GCM) is approx-
imately 2 degrees with 30 vertical levels. The GCM time step
is 30 minutes. In super-parameterization, a two-dimensional
CRM is embedded in each global circulation model grid col-
umn (27). This CRM explicitly resolves deep convective clouds
and includes parameterizations for small-scale turbulence and
cloud microphysics. In our setup, we use eight 4 km-wide
columns with a CRM time step of 20 seconds, after Ref. (28).
For comparison, we also run a simulation with the traditional
parameterization suite (CTRLCAM) that is based on an undi-
lute plume parameterization of moist convection. CTRLCAM
exhibits many typical problems associated with traditional
sub-grid cloud parameterizations: a double inter-tropical con-
vergence zone (ITCZ) (5); too much drizzle and missing precip-
itation extremes; and an unrealistic equatorial wave spectrum
with a missing Madden-Julian-Oscillation (MJO). In contrast,
SPCAM captures the key benefits of full three-dimensional
CRMs in improving the realism all of these issues with respect
to observations (29-31). In this context, a key test for a neural
network parameterization is whether it learns sufficiently from
the explicitly resolved convection in SPCAM to remedy such
problems while being computationally more affordable.
Analogous to a traditional parameterization, the task of
the neural network is to predict the sub-grid tendencies as
a function of the atmospheric state at every time step and
grid column (Table S1). Specifically, we selected the following
input variables: the temperature T'(z), specific humidity Q(z)
and wind profiles V (z), surface pressure P;, incoming solar
radiation Si, and the sensible H and latent heat fluxes E.
These variables mirror the information received by the CRM
and radiation scheme with a few omissions (SI Appendix).
The output variables are: the sum of the CRM and radiative
heating rates ATpny, the CRM moistening rate AQpny, the net
radiative fluxes at the top of atmosphere and surface Fiaqa and
precipitation P. The input and output variables are stacked
to vectors x = [T(2), Q(2),V(2), Ps, Sin, H, E]" with length
94 and y = [ATpny(2), AQphy(2), Fraa, P]T with length 65 and
normalized to have similar orders of magnitude (SI Appendix).
We omit condensed water to reduce the complexity of the
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problem (see Discussion). Furthermore, there is no momentum
transport in our version of SPCAM. Informed by our previous
sensitivity tests (24) we use one year of SPCAM simulation
as training data for the neural network, amounting to around
140 million training samples.

The neural network itself § = N(x) is a nine layer deep,
fully-connected network with 256 nodes in each layer. In
total, the network has around half a million parameters that
are optimized to minimize the mean squared error between
the network’s predictions § and the training targets y (see
SI Appendix). This neural network architecture is informed
by our previous sensitivity tests (24). Using deep rather
than shallow networks has two main advantages: first, deeper,
larger networks achieve lower training losses; and second, deep
networks proved more stable in the prognostic simulations
(for details see SI Appendix and Fig. S1). Unstable modes
and unrealistic artifacts have been the main issue in previous
studies that used shallow architectures (22, 23).

Once trained, the neural network replaces the super-
parameterization’s CRM as well as the radiation scheme in
CAM (NNCAM). In our prognostic global simulations, the neu-
ral network parameterization interacts freely with the resolved
dynamics as well as with the surface flux scheme. The neural
network parameterization speeds up the model significantly:
NNCAM’s physical parameterization is around 20 times faster
than SPCAM’s and even 8 times faster than NNCAM’s, in
which the radiation scheme is particularly expensive. The
key fact to keep in mind is that the neural network does not
become more expensive at prediction time even when trained
with higher-resolution training data. The approach laid out
here should, therefore, scale easily to neural networks trained
with vastly more expensive three-dimensional global CRM
simulations.

The subsequent analyses are computed from five-year prog-
nostic simulations after a one-year spin-up. All neural network,
model and analysis code is available online (SI Appendix).

Results.

Mean climate. To assess NNCAM’s ability to reproduce SP-
CAM’s climate we start by comparing the mean sub-grid
tendencies and the resulting mean state. The mean sub-grid
heating (Fig. 14) and moistening rates (Fig. S2) of SPCAM
and NNCAM are in close agreement with a single latent heat-
ing tower at the I'TCZ and secondary free-tropospheric heating
maxima at the mid-latitude storm tracks. The ITCZ peak,
which is co-located with the maximum SSTs at 5°N, is slightly
sharper in NNCAM compared to SPCAM. In contrast, CTRL-
CAM exhibits a double ITCZ signal, a common issue of tradi-
tional convection parameterizations (5). The resulting mean
state in temperature (Fig. 1B), humidity and wind (Fig. S2B
and C) of NNCAM also closely resembles SPCAM throughout
the troposphere. The only larger deviations are temperature
biases in the stratosphere. Since the mean heating rate bias
there is small, the temperature anomalies most likely have
a secondary cause—for instance differences in circulation or
internal variability. In any case, these deviations are not of
obvious concern because the upper atmosphere is poorly re-
solved in our setup and highly sensitive to changes in the
model setup (Fig. S5C and D). In fact, CTRLCAM has even
larger differences compared to SPCAM in the stratosphere
but also throughout the troposphere for all variables.
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Fig. 1. All figures show longitudinal and five year-temporal averages. (A) Mean convective and radiative sub-grid heating rates AT}, . (B) Mean temperature T" of SPCAM
and biases of NNCAM and CTRLCAM relative to SPCAM. The dashed black line denotes the approximate position of the tropopause, determined by a dpé contour. (C) Mean
shortwave (solar) and longwave (thermal) net fluxes at the top of the atmosphere and precipitation. Note that in all figures the latitude axis is area-weighted.

The radiative fluxes predicted by the neural network param-
eterization also closely match those of SPCAM for most of the
globe, whereas CTRLCAM has large differences in the tropics
and subtropics caused by its double ITCZ bias (Figs. 1C and
S2D). Towards the poles NNCAM’s fluxes diverge slightly, the
reasons for which are yet unclear. The mean precipitation
of NNCAM and SPCAM follows the latent heating maxima
with a peak at the ITCZ, which again is slightly sharper for
NNCAM.

In general, the neural network parameterization, freely
interacting with the resolved dynamics, reproduces the most
important aspects of its training model’s mean climate to
a remarkable degree, especially compared to the standard
parameterization.

Variability. Next, we investigate NNCAM'’s ability to capture
SPCAM’s higher-order statistics—a crucial test since climate
modeling is as much concerned about variability as it is about
the mean. One of the key statistics for end users is the precip-
itation distribution (Fig. 24). CTRLCAM shows the typical
deficiencies of traditional convection parameterizations—too
much drizzle and a lack of extremes. SPCAM remedies these
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biases and has been shown to better fit to observations (31).
The precipitation distribution in NNCAM closely matches
that of SPCAM, including the tail. The rarest events are
slightly more common in NNCAM than in SPCAM, which is
consistent with the narrower and stronger ITCZ (Fig. 14 and
C).

We now focus on the variability of the heating and moist-
ening rates (Figs. 2B and S34). Here, NNCAM shows reduced
variance compared to SPCAM and even CTRLCAM, mostly
located at the shallow cloud level around 900 hPa and in
the boundary-layer. Snapshots of instantaneous heating and
moistening rates (Fig. S3B and C) confirm that the neural
network’s predictions are much smoother, i.e. they lack the
vertical and horizontal variability of SPCAM and CTRLCAM.
We hypothesize that this has two separate causes: first, low
training skill in the boundary-layer (24) suggests that much
of SPCAM’s variability in this region is chaotic and, therefore,
has limited inherent predictability. Faced with such seemingly
random targets during training, the deterministic neural net-
work will opt to make predictions that are close to the mean
in order to lower its cost function across samples. Second,
the omission of condensed water in our network inputs and

SPCAM

NNCAM CTRLCAM

Std ATppy [K 5711
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Fig. 2. (A) Precipitation histogram of time-step (30 minutes) accumulation. The bin width is 3.9 mm d~ . Solid lines denote simulations for reference SSTs. Dashed lines
denote simulations for +4K SSTs (explanation in Generalization section). The neural network in the +4K case is NNCAM-ref+4K. (B) Zonally averaged temporal standard

deviation of convective and radiative sub-grid heating rates ATy .
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outputs limits NNCAM’s ability to produce sharp radiative
heating gradients at the shallow cloud tops. Because the circu-
lation is mostly driven by mid-tropospheric heating in tropical
deep convection and mid-latitude storms, however, the lack
of low-tropospheric variability does not seem to negatively
impact the mean state and precipitation predictions. This
result is also of interest for climate prediction in general.

The tropical wave spectrum (32) depends vitally on the
interplay between convective heating and large-scale dynamics.
This makes it a demanding, indirect test of the neural network
parameterization’s ability to interact with the dynamical core.
Current-generation climate models are still plagued by issues in
representing tropical variability: in CTRLCAM, for instance,
moist Kelvin waves are too active and propagate too fast
while the MJO is largely missing (Fig. 3). SPCAM drastically
improves the realism of the wave spectrum (29), including
in our aquaplanet setup (26). NNCAM captures the key
improvements of SPCAM relative to CTRLCAM: a damped
Kelvin wave spectrum, albeit slightly weaker and faster in
NNCAM, and an MJO-like intra-seasonal, eastward traveling
disturbance. The background spectra also agree well with
these results (Fig. S6A)

Overall, NNCAM’s ability to capture key advantages of
the cloud-resolving training model—representing precipitation
extremes and producing realistic tropical waves—is to some
extent unexpected and represents a major advantage compared
to traditional parameterizations.

Energy conservation. A necessary property of any climate model
parameterization is that it conserves energy. In our setup, en-
ergy conservation is not prescribed during network training.
Despite this, NNCAM conserves column moist static energy
to a remarkable degree (Fig. 44). Note that because of our
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Fig. 3. Space-time spectrum of the equatorially symmetric compo-
nent of 15S-15N daily precipitation anomalies divided by background
spectrum after Fig. 3b in Ref. (32). Negative (positive) values denote
westward (eastward) traveling waves.

10

omission of condensed water, the balance shown is only ap-
proximately true and exhibits some scatter even for SPCAM.
The spread is slightly larger for NNCAM, but all points lie
within a reasonable range, which shows that NNCAM never
severely violates energy conservation. These results suggest
that the neural network has approximately learned the physi-
cal relation between the input and output variables without
being instructed to. This permits a simple post-processing of
the neural network’s raw predictions to enforce exact energy
conservation. We tested this correction without noticeable
changes to the main results. Conservation of total moisture is
equally as important but the lack of condensed water makes
even an approximate version impossible.

The globally integrated total energy and moisture are also
stable without noticeable drift or unreasonable scatter for
multi-year simulations (Fig. 4B). This is still true for a 50-
year NNCAM simulation that we ran as a test. The energy
conservation properties of the neural network parameterization
are promising and show that, to a certain degree, neural
networks can learn higher-level concepts and physical laws
from the underlying dataset.

Generalization. A key question for the prediction of future cli-
mates is whether such a neural network parameterization can
generalize outside of its training manifold. To investigate this
we run a set of sensitivity tests with perturbed SSTs. We
begin by breaking the zonal symmetry of our reference state
by adding a wavenumber one SST perturbation with 3K am-
plitude (Fig. 5A4; SI Appendix). Under such a perturbation
SPCAM develops a thermally direct Walker circulation within
the tropics with convective activity concentrated at the down-
wind sector of the warm pool. The neural network trained
with the zonally invariant reference SSTs only (NNCAM) is
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Fig. 4. (A) Scatter plots of vertically integrated column heating Cp /a f ATpnydp minus the sensible heat flux H and the sum of the radiative fluxes at the boundaries

Z Faa against the vertically integrated column moistening Loy /a

ATynydp minus the latent heat flux H. Each dot represent a single prediction at a single column. A

total of ten time steps are shown. Inset show distribution of differences. (B) Globally integrated total energy (static, potential and kinetic; solid) and moisture (dashed) for the

five-year simulations after one year of spin-up.
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able to generate a similar heating pattern even though the
heating maximum is slightly weaker and more spread out. The
resulting mean temperature state in the troposphere is also in
close agreement, with biases of less than 1 K (Fig. S4). More-
over, NNCAM runs stably despite the fact that the introduced
SST perturbations exceed the training climate by as much as
3 K. CTRLCAM, for comparison, has a drastically damped
heating maximum and a double ITCZ to the west of the warm
pool.

Our next out-of-sample test is a global SST warming of up
to 4 K in 1 K increments. We use the mass-weighted absolute
temperature differences relative to the SPCAM reference solu-
tion at each SST increment as a proxy for the mean climate
state difference (Fig. 5B). The neural network trained with
the reference climate only (NNCAM) is unable to generalize
to much warmer climates. A look at the mean heating rates
for the +4K SST simulation reveals that the ITCZ signal is
washed out and unrealistic patterns develop in and above the
boundary-layer (Fig. S5B). As a result the temperature bias
is significant, particularly in the stratosphere (Fig. S5D). This
suggests that the neural network cannot handle temperatures
that exceed the ones seen during training. To test the opposite
case, we also trained a neural network with data from the +4K
SST SPCAM simulation only (NNCAM+4K). The respective
prognostic simulation for the reference climate has a realistic
heating rate and temperature structure at the equator but
fails at the poles, where temperatures are lower than in the
+4K training dataset (Fig. S54 and C).

Finally, we train a neural network using half a year of data
from the reference and the +4K simulations each, but not
the intermediate increments (NNCAM-ref+4k). This version
performs well for the extreme climates and also in between
(Figs. 5B and S5). Reassuringly, NNCAM-ref+4K is also able
to capture important aspects of global warming: an increase
in the precipitation extremes (Fig. 24) and an amplification
and acceleration of the MJO and Kelvin waves (Fig. S6B).
These sensitivity tests suggest that the neural network is
unable to extrapolate much beyond its training climate but
can interpolate in between extremes.

Discussion. In this study we have demonstrated that a deep
neural network can learn to represent sub-grid processes in
climate models from cloud-resolving model data at a fraction
of the computational cost. Freely interacting with the resolved
dynamics globally, our deep learning-powered model produces
a stable mean climate that is close to its training climate,

Rasp etal.

including precipitation extremes and tropical waves. More-
over, the neural network learned to approximately conserve
energy without being told so explicitly. It manages to adapt to
new surface forcing patterns but struggles with out-of-sample
climates. The ability to interpolate between extremes suggests
that short-term, high-resolution simulations which target the
edges of the climate space can be used to build a compre-
hensive training dataset. Our study shows a potential way
for data-driven development of climate and weather models.
Opportunities but also challenges abound.

An immediate follow-on task is to extend this methodology
to a less idealized model setup and incorporate more com-
plexity in the neural network parameterization. This requires
ensuring positivity of water concentrations and stability which
we found challenging in first tests. Predicting the condensation
rate, which is not readily available in SPCAM, could provide
a convenient way to ensure conservation properties. Another
intriguing approach would be to predict sub-grid fluxes instead
of absolute tendencies. However, computing the flux diver-
gence to obtain the tendencies amplifies any noise produced
by the neural network. Future efforts using machine learning
parameterizations should systematically address these issues.
Additional complexities like topography, aerosols and chem-
istry will present further challenges but none of those seem
insurmountable from our current vantage point.

Limitations of our method when confronted with out-of-
sample temperatures are related to the traditional problem of
overfitting in machine learning—the inability to make accurate
predictions for data unseen during training. Convolutional neu-
ral networks and regularization techniques are commonly used
to fight overfitting. It may well be possible that a combina-
tion of these and novel techniques improves the out-of-sample
predictions of a neural network parameterization. Note also
that our idealized training climate is much more homogeneous
than the real world climate, for instance a lack of the El
Nino-Southern Oscillation, which probably exacerbated the
generalization issues.

Convolutional and recurrent neural networks could be used
to capture spatial and temporal dependencies, such as prop-
agating mesoscale convective systems or convective memory
across time steps. Furthermore, generative adversarial net-
works (20) could be one promising avenue towards creating a
stochastic machine learning parameterization that captures
the variability of the training data. Random forests (33) have
also recently been applied to learn and model sub-grid con-
vection in a global climate model (34). Compared to neural
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networks, they have the advantage that conservation proper-
ties are automatically obeyed but suffer from computational
limitations.

Recently, it has been argued (35) that machine learning
should be used to learn the parameters or parametric functions
within a traditional parameterization framework rather than
the full parameterization as we have done. Because the known
physics are hard-coded this could lead to better generalization
capabilities, a reduction of the required data amount and the
ability to isolate individual components of the climate system
for process studies. On the flip side, it still leaves the burden of
heuristically finding the framework equations, which requires
splitting a coherent physical system into sub-processes. In
this regard, our method of using a single network naturally
unifies all sub-grid processes without the need to prescribe
interactions.

Regardless of the exact type of learned algorithm, once
implemented in the prognostic model some biases will be un-
avoidable. In our current methodology there is no way of
tuning after the training stage. We argue, therefore, that
an online learning approach, where the machine learning al-
gorithm runs and learns in parallel with a CRM is required
for further development. Super-parameterization presents a
natural fit for such a technique. For full global CRMs this
likely is more technically challenging.

A grand challenge is how to learn directly from
observations—our closest knowledge of the truth—rather than
high-resolution simulations which come with their own bag-
gage of tuning and parameterization (turbulence and micro-
physics) (35). Complications arise because observations are
sparse in time and space and often only of indirect quantities,
for example satellite observations. Until data assimilation
algorithms for parameter estimation advance, learning from
high-resolution simulations seems the more promising route
towards tangible progress in sub-grid parameterization.

Our study presents a paradigm shift from the manual design
of sub-grid parameterizations to a data-driven approach that
leverages the advantages of high-resolution modeling. This
general methodology is not limited to the atmosphere but can
equally as well be applied to other components of the Earth
system and beyond. Challenges must still be overcome, but
advances in computing capabilities and deep learning in recent
years present novel opportunities that are just beginning to
be investigated. We believe that machine learning approaches
offer great potential that should be explored in concert with
traditional model development.

Materials and Methods

Detailed explanations of the model and neural network setup can
be found in SI Appendix. This also contains links to the online
code repositories. The raw model output data is available from the
authors upon request.
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