Incremental-Precision based Feature Computation
and Multi-Level Classification for Low-Energy
Internet-of-Things

Sandhya Koteshwara, Student Member, IEEE, and Keshab K. Parhi, Fellow, IEEE

Abstract—This paper presents a novel technique to reduce
energy consumption of a machine learning classifier based
on incremental-precision feature computation and classification.
Specifically, the algorithm starts with features computed using
the lowest possible precision. Depending on the classification
accuracy, the features of the previous level are combined with
features of the incremental-precision to compute the features in
higher-precision. This process is continued till a desired accuracy
is obtained. A certain threshold that allows many samples to
be classified using a low-precision classifier can reduce energy
consumption, but increases misclassification error. To implement
hardware which provides the required updates in precision, an
incremental-precision architecture based on data-path decompo-
sition is proposed. One novel aspect of this work lies in the
design of appropriate thresholds for multi-level classification
using training data such that a family of designs can be obtained
that enable trade-offs between classification accuracy and energy
consumption. Another novel aspect involves the design of hard-
ware architectures based on data-path decomposition which can
incrementally increase precision upon demand. Using a seizure
detection example, it is shown that the proposed incremental-
precision based multi-level classification approach can reduce
energy consumption by 35% while maintaining high sensitivity,
or by about 50% at the expense of 15% degradation in sensitivity
compared to similar approaches to seizure detection in literature.
The reduction in energy is achieved at the expense of small area,
timing and memory overheads as multiple classification steps are
used instead of a single step.

Index Terms—Energy reduction, Machine learning, Multi-level
classification, Datapath decomposition, Incremental-precision
computation, Approximate computing, Seizure Detection

I. INTRODUCTION

With ever shrinking devices and embedded platforms, there
is an increased demand for energy reduction in applications.
Approximate computing has been proposed as an approach
to address the energy requirements of modern devices. In
this regard, several approximate computing techniques at al-
gorithmic, circuit and synthesis levels have been proposed
over the past decade [1]. Reducing word-lengths of compo-
nents and wires is one of the approaches to achieve energy
savings. In this work, we consider approximation as applied
to feature extraction unit of classification systems. Feature
extraction, which involves extraction of useful information
from samples, helps in discriminating the data belonging to
different classes. The datapaths of feature extraction consume
significant amount of energy. For a complete system-on-
chip classifier it is important to focus on the approximation

This paper was supported in part by the National Science Foundation under
grant number CCF-1749494.

of feature extraction unit which has not been addressed in
previous literature.

To apply approximation techniques using word-length re-
duction we propose a novel incremental-precision feature
extraction and classification algorithm. The rationale for using
incremental-precision is that samples that are far away from
the decision boundary can be easily classified using lower
precision using a Level-1 classifier. Furthermore, the classifier
may require lower precision and may be a simple classifier
that requires thresholding. Samples that are not classifiable by
the Level-1 classifier can be processed by a Level-2 classifier
where the features are computed by incrementally augmenting
higher precision to the features of earlier precision. This
process is repeated as needed to achieve the desired classifier
performance.

For the classification of samples from one step to the next,
we design a threshold calculation unit. This paper also pro-
poses the design of incremental-precision feature computation
which are suitable for the incremental-precision classification
paradigm. Specifically, an incremental-precision fast Fourier
transform (FFT) design is proposed in this paper. These archi-
tectures are based on data-path decomposition approaches [2]
which are commonly used in error correction schemes but
have not been applied in an incremental-precision scenario.
Error models to understand the errors due to approximation
and estimates of power reduction, area reduction/overhead and
timing overheads are also presented.

To demonstrate the applicability of incremental precision
algorithm and hardware architecture, a complete case study
using the seizure detection classification problem is presented.
The proposed incremental-precision FFT architecture and its
corresponding error and energy models are employed in this
design. By studying the trade-off between classification ac-
curacy and associated energy reduction, we identify different
configurations of values that can be selected to construct the
incremental-precision system. An approach to incremental-
precision based classification specifically addressing linear
classifiers is presented in [3]. The proposed incremental-
precision algorithm, incremental-precision architecture and its
application to feature extraction are the first in literature and
to the best of our knowledge have not been presented before.

The rest of the paper is organized as follows. Section II
discusses the current state of the art in approximate comput-
ing, incremental algorithms and seizure detection. Section III
presents the incremental-precision feature extraction and clas-
sification algorithm by describing training, testing and thresh-

old calculation steps. The design approaches for incremental-
precision datapaths are described in Section IV. In Section
V we apply the incremental precision architecture design
methodology on an FFT datapath and discuss associated error
and energy models in Section VI. A detailed description of
the seizure detection application and the experimental method-
ology for accuracy and energy measurements is provided in
Section VII. Finally we present classification performance vs.
energy tradeoff results using incremental-precision in Section
VIIL

II. RELATED WORK

In this section, we discuss some of the recent literature
which address approximate computing algorithms and archi-
tectures. Approximate computing has been used in the realm of
signal processing applications [4], [5]. With the increasing use
of machine learning based techniques, approximate computing
has been applied to typical components such as classifiers [6]
and synapses of Artificial Neural Networks (ANN) [7]. Bit-
width reduction on feature extraction units has been discussed
in [8] for the features of an object detection algorithm. An
approach to energy reduction by incrementally improving pre-
cision of neural networks has been addressed in [9]. However,
none of these literature has presented the application of multi-
stage bit-width reduction.

The proposed incremental-precision classification approach
is similar to the concept of boosting. Boosting is a technique
that has been popularly adopted in several machine learning
algorithms to design strong classifiers from multiple weak
classifiers. The multiple classifiers used in boosting try to
improve on the misclassifications of the predecessor [10].
Several applications of the AdaBoost technique to boosting
have been outlined in [11]. In this paper, we apply the basic
idea of boosting to classification but with the goal of energy
reduction in mind. However, there are several differences
between the proposed approach and the boosting strategy.
These are outlined in Section III-D.

Data-path decomposition has been used to design error-
resilient architectures [2]. In this technique, the data-path is
divided into most significant bits (MSB) and least significant
bits (LSB) components and it is assumed that the two are
subject to different types of errors. By combining the two
data-paths, error correction can be obtained. The proposed
incremental-precision algorithm utilizes a similar approach
to decomposing data-paths. The resultant architecture can
provide outputs of different precisions by consuming minimal
energy.

Incremental-precision architecture is demonstrated using
fast Fourier transform (FFT) architectures. Several approaches
to both real and complex FFT architectures using ideas of
folding, pipelining and parallel processing for both real and
complex inputs have been addressed in literature [12], [13].
However, none of these architectures can provide improve-
ments in precision in an incremental manner as required for the
proposed low energy algorithm. Approaches to incrementally
increasing the length of FFT algorithms has been proposed
in [14], [15]. These algorithms improve the SNR by increasing

number of stages but do not address lowering precision which
is better suited for low-energy multi-level machine learning
classifiers. Dynamic Precision has been proposed to adapt the
word-length to SNR; however, a single-precision architecture
is used in this system [16]. No literature specifically addresses
the challenges of FFT data-path decomposition including step
wise increments and handling of scaling and other issues.

Seizure detection is used as an example to illustrate the
incremental-precision algorithm and its associated architec-
ture. Several techniques to detect seizures have been presented
in the literature [17]-[19]. It has also been shown that using
spectral powers as features results in high accuracy for seizure
prediction [20]. A low complexity, high accuracy algorithm for
seizure prediction has been proposed in [21], [22]. The features
used in this algorithm include absolute spectral powers, rela-
tive spectral powers and ratios of spectral powers. These fea-
tures have also been used to detect seizures [23]. However, the
energy consumption of these algorithms is still high and can be
reduced by using lower precision datapaths. Moreover, support
vector machines (SVMs) which are resource consuming are
used in this algorithm. [24] implements seizure detection using
Logistic regression (LR) classifiers proving that LR classifiers
require the least energy among classifiers such as k-nearest
neighbor classifiers, support vector machines with linear and
polynomial kernels, naive Bayes and neural networks. Thus,
use of LR in seizure detection algorithms can reduce energy
as well as complexity.

ITI. INCREMENTAL-PRECISION FEATURE EXTRACTION
AND CLASSIFICATION SYSTEM

The proposed incremental-precision algorithm operates on
different precision data in an incremental manner starting from
the lowest precision. We attempt to classify most of the sample
points in low precision before we select samples which need
to be processed in the next higher precision. Four important
questions need to be addressed:

o How should the samples which need to be reprocessed in

the next precision step be selected?

o After how many stages (precision updates), should the

algorithm stop?

o« What is the value of the lowest precision that the

incremental-precision algorithm can start with?

o What are the trade-offs between classification accuracy

and energy consumption?
The first two questions are addressed in this section. The last
two questions will be discussed using a specific example in
Section VI.

A. Training steps

The training steps of the incremental-precision algorithm are
described in Fig. 1. The first step of the algorithm starts with
the lowest precision N. The feature extraction unit operates
in N-bit precision in this step. The generated features (F') are
passed to a feature selection algorithm to reduce the dimen-
sionality and obtain selected features (S'F’). A simple classifier
is trained and predictions are obtained (denoted as L). We
note that along with predicted labels, probability estimates

(denoted as P) for each sample are also required. Probabilities
of the classified samples determine the probability of a sample
belonging to a particular class. This information will be used
for threshold calculation and, hence, the classifier should be
able to provide good probability estimates. These probabilities
can be obtained by training a logistic regression function on
the decision variables of a classifier.

The generated labels (L), probabilities (P) and actual labels
(AL) of the training data are then fed to a threshold calculation
unit. We will discuss the details of the threshold calculation
unit next. However, we observe that the threshold calculation
unit generates two thresholds: minimum threshold (7'1) and
maximum threshold (7'2). The threshold filter then uses P,
T1 and T2 to determine which of the samples are to be
reprocessed. This information is provided as indices to the
next step of the algorithm. The selected features, classifier
model and the threshold values 7'1 and 72 are stored and are
used for testing of the data. This completes one step of the
training process.

For subsequent steps, the unclassified samples from the
threshold filter are reprocessed in higher precision feature
extraction units of precision IV + 2. Note that other increments
in precision can also be used depending on the requirements
of the application. The samples are then subjected to the
same process of classification and threshold calculation as
before. Minimum and maximum thresholds (7’3 and T4, T5
and 76 etc.) are also calculated for these steps. For the last
step of the process, no threshold calculation is performed.
The stopping criteria can be pre-determined to be equal to
a specified number of steps (which simplifies the algorithm)
or when the number of samples reselected is lower than a
specified value. Stopping the algorithm when the number of
samples reselected is too low prevents overfitting of data.

AIL Features
+
I r—l—) Classifier
model
N-bit Feature simple Threshold +
s(n)->| feature —>) ! i
N F selection SF classifier |, p| calculation Max &
extraction 4 .
Min
threshold
P 1,72 e
rﬁ'!m‘l‘m—l Model 1
L__filter
AL Features
+
[—\l—) Classifier
model
N+r — bit
Fi Threshold +
Ll feature eatl{re S\mvp\ve reshol
selection [yS| . F selection SF classifier L, P| calculation Max &
3 extraction 4 Mi
in
threshold

P 3,74

resho Model 2

[)
Indices
® Iterate for k steps

Features
+
Classifier
model

R

N+r*k bit
feature -—F>
extraction

Sample
selection [\

Feature
selection | SF

Simple
classifier

Model k

Fig. 1. Steps of training process of the incremental-precision algorithm using
varying precision features.

B. Threshold calculation

The threshold calculation algorithm is an important step
in the incremental-precision algorithm since it determines

the number of samples to be selected for reprocessing in
higher precision. This affects both the accuracy of the overall
classification as well as the energy consumption of the system.
The goal of this unit is to try to filter out as many correctly
classified samples as possible from the misclassified samples.

A better visualization of the thresholds that need to be
calculated is provided in Fig. 2. To generate this plot, four
arrays are created representing the probabilities of misclassi-
fied samples and correctly classified samples in class 0 and
class 1. The arrays are then sorted in ascending order of
probabilities. For example, let us consider P to be probability
of a sample in class 1. For correctly sampled class 1 points,
this value is high. For incorrectly classified class 1 points this
value is low. The opposite values hold for class 0 samples.
The two thresholds 7'1 (minimum) and 72 (maximum) are
also marked in this plot. It is to be noted that all sample
points having probabilities between minimum and maximum
thresholds need to be resampled. By adjusting the value of 7'1
and T2, we determine how many points should be reprocessed
while ensuring high accuracy values.

1
- ([+ class1-incorrect
@ —— Fclass T2
E 0.8 Max threshold g assﬁorrect
] class0-incorrect
2 * class0-correct
2
g) 0.6
S Samples for
8 reclassification
%5 0.4
2 b
z | :
2
fo02
2
a Min threshold

0 — —T1

0 500 1000 1500 2000 2500 3000

Sample number in a sorted sample array

Fig. 2. Plot of sorted probability estimates of classified data samples for class
0 and class 1 samples. Initial values of thresholds can be set using this data.

Next, we discuss the algorithm for threshold calculation
as outlined in Algorithm 1. First, consider the calculation
of minimum threshold value (7'1 for Step 1). Sample points
lying above the minimum threshold are to be resampled in the
next higher precision. This means that the higher the value
of T'1, less are the number of samples to be reprocessed.
However, this also means that more number of blue points
(incorrectly classified class 1 samples) are not selected for
reprocessing. Thus, to obtain a desirable value, we start with
a threshold value of 71 = 0.1 (for example) and set the
maximum percentage of misclassified class-1 points allowed
to a value M1. At each iteration, the threshold is lowered
and the percent of misclassified class-1 points are calculated.
The algorithm stops when the percent of misclassified class-
1 points is lower than M1. The final threshold value T'1 is
the output of the algorithm. The initial value of 71 = 0.1 is
based on the data from Fig. 2 and results in faster convergence
of the threshold calculation algorithm. In general, the initial
value (init_vall) can be selected based on the characteristics
of the data being classified. Similar steps can be followed
to calculate the maximum threshold value 72 using allowed
class-0 misclassification error, M2, and an initial value of 72

equal to nit_val0.

Algorithm 1: Algorithm for calculating maximum and
minimum threshold values 71 and 72 of Step 1 of
incremental-precision classification algorithm

Output: Final threshold = T1, T2
Input: P (Probability estimates from the classifier),
L (Predicted labels), AL (Actual labels),
M1 (Allowed misclassification error Class-1),
M2 (Allowed misclassification error Class-0)
Initialize: T1 = init_vall; T2 = init_val0;
Compute T1 (Minimum threshold):
while Class-1 misclassification error > M1 do
T1 = T1 - 0.0005;
for i =0; i < size(L); i=1i+1do
if P < TI then
if AL / = L then
| errl =errl + 1;
end
end
end
Class-1 misclassification error = errl / Total class-1
points;

end
Compute T2 (Maximum threshold):
while Class-0 misclassification error > M2 do
T2 = T2 + 0.0005;
for i =0; i < size(L); i=1i+1 do
if P > T2 then
if AL ! = L then
| err0 =err0 + 1;
end
end
end
Class-0 misclassification error = errQ / Total class-0
points;

end

Once these thresholds are obtained, the sample probabilities
can be used to determine whether processing in the next
precision is necessary or not. Thus, the sample is reselected
if its probability P > T'1 and P < T2. This is performed in
the threshold filtering unit to complete the sample selection
process and obtain unclassified samples (US). The number
of unclassified samples are then checked to see if they are
sufficiently high. For simplicity, we check if size(US) >
1% x size(S) where size(US) is the size of reselected sample
set and size(S) is the size of the original sample set. If this
check passes, the feature extraction and classification continue
in the next higher precision. Else, the algorithm is stopped.
Note that the stopping criterion of the algorithm can be varied
to ensure prevention of overfitting. Similarly the thresholds 7'3
and T4 of stage 2 can be calculated using maximum allowed
class-1 misclassification error, M3, and maximum allowed
class-0 misclassification error, M4. Thresholds 7'5 and 176 of
stage 3 can be calculated using M5 (maximum allowed class-
1 misclassification error) and M6 (maximum allowed class-0
misclassification error) and so on.

C. Testing steps

The testing algorithm follows the training process of incre-
mentally increasing precision of feature computation. To move
from one precision to the next, the threshold values calculated
and stored at each step of the training process are used. If
the probability estimate of the test sample does not lie in
the window formed by the maximum and minimum threshold
values, testing is stopped. Else, the sample is reprocessed in
the next higher precision. This process is illustrated in Fig. 3.
We note that even though the training process has an overhead
with respect to threshold calculation, this overhead is not
reflected in the testing process. During testing, only the stored
classification model and calculated threshold values are used
for sample selection. We observe that the only overhead in
this case is the comparison of the probability with thresholds
which can be done with a simple comparator.

Model 1 Model 1

Predicted
Labels
N-bit Feature +
s(n)=>| feamnte _F) computation ? Prediction L—) Probability
extraction . estimates
T1,T2
Threshold
filter
Model 2 Model 2
Indice: Predicted
Labels Selected Test
N+r = bit + (=) Prediction [>'€S
o bl reature [y Feete 1o prediction Probability labels | result
. extraction i LT estimates
T3, T4

Threshold

filter
L]
@ Iterate for k steps

°
Model k Model k
J J

N+r*k bit
feature
extraction

Indices

Feature
computation

Predicted
Labels

Sample

Prediction
selection | Us

_F) >

»
-

Fig. 3. Steps of the testing process of incremental-precision algorithm using
varying precision features.

D. Similarities and differences between AdaBoost and incre-
mental precision algorithm

The incremental precision feature extraction and classifica-
tion algorithm is similar to the AdaBoost algorithm popularly
used in machine learning algorithms [10]. The similarities and
differences between boosting and our algorithm are presented
next.

The AdaBoost algorithm operates by training multiple weak
classifiers to the training data in a step-wise manner using
weights, eventually resulting in a strong classifier. The weights
selected determine the significance of the particular training
sample. We summarize the AdaBoost algorithm below:

o Initialize the weights of all samples of the training data

to be equal.

o Train a weak classifier and obtain the accuracy in terms
of a weighted error (based on both weight of sample and
its classification label).

o Update the weights of training samples using the accuracy
of previous step.

o Repeat for specified number of steps or till no further
improvement in accuracy is obtained.

o Test by applying all weak classifiers on the testing data
and use a weighted average (based on the predictions and
accuracy of each step) to determine the final prediction
label.

Similarly, the target of incremental classification algorithm
is to use multiple weak classifiers (due to low precision feature
extraction) to obtain a final strong classifier. However, the goal
of this system is to minimize energy by minimizing the number
of samples that need to be processed in higher precision. Thus
the incremental precision algorithm can be summarized as
below:

o Begin with a low precision of /N —bits on all training data.

e Train a simple classifier and obtain the threshold values
T1 and T72.

« Pass data through a threshold filter and update the filtered
indices of training data to next higher precision N + 2.
The increment by 2 bits could be varied in different
applications. Note that, unlike AdaBoost, all the training
samples are not reclassified in this step.

o Repeat for specified number of steps or till number of
filtered samples is low. Note that the stopping criteria is
based on the size of the training sample set since we are
reducing this value in each step.

o Test by applying the classifiers in an incremental manner.
Only test samples which are filtered through the thresh-
olds need to be reprocessed. Unlike AdaBoost, all test
samples need not go through all steps of training. Also,
the proposed algorithm does not compute a weighted
result like in AdaBoost.

IV. INCREMENTAL-PRECISION HARDWARE
ARCHITECTURES USING DATA-PATH DECOMPOSITION

The incremental-precision classification algorithm is based
on the idea of incrementally improving precision of features
at each level. This can be achieved by converting the feature
extraction process to an incremental-precision system using
data-path decomposition of the architecture. Data-path decom-
position of adders, multipliers and several other components
with respect to error-correction schemes have been addressed
in [2]. However, in this paper, we approach data-path decom-
position such that the complete data-path is decomposed. The
goal is to separate the processing of most significant bits and
the least significant bits of the system. After computation of
the most significant bits of the output, the outputs are stored
in memory. For subsequent improvements in accuracy, the
output is accessed from memory and combined with the output
generated by computation of lower bits. The details of data-
path decomposition of a fast Fourier transform (FFT) module
is discussed next.

A. Decomposition of adders and multipliers

The decomposition of addition of two operands x; and
o can be represented by Equation (1). In this equation N

represents the number of most significant bits computed in
the first part of the decomposed hardware.

S=x1+ 12
= (z1m + 2 N o) + (wans + 27 Vaop)
= (v1ar + w2nr) + 27N (211 + w21) (1)
Similarly, the decomposition of multiplication of two
operands = and W is represented by Equation (2). In this
equation, the value x is decomposed while W is not. W

represents coefficients such as filter weights or twiddle factors
which are generally stored in memory.

Y=axW
= (.Z’M +2_N1‘L)W
= (xp W) + 27N (z W))

To implement these adders and multipliers in fixed-width,
appropriate carry generation, approximation of multiplication
and carry propagation have to be performed. The details of
the decomposition are provided in Appendix A. From the de-
composition architectures, it is to be noted that decomposition
of addition followed by subsequent combination results in no
error. However, decomposition of multiplication followed by
combination results in approximation error. We discuss the
associated error in Section V-A.

B. Decomposition of data-path of FFT to form incremental-
precision architectures

The idea of incremental-precision architecture is demon-
strated using a real FFT architecture as described in [25]. Fig.
4 illustrates a 16-point radix-22, 2-parallel folded real FFT.
This architecture belongs to the class of hybrid architectures
where the datapath includes both real and complex data-paths.
Folding is a technique to reduction of hardware consumption
by time-multiplexing data to reuse components [26]. The paths
marked in blue are the complex paths while the rest are
real datapaths. Individual components of the data-path which
include butterflies (BFI, BFII and BFIV) and Delay-switch-
delay (DS) are also defined in Fig. 4. The multiplier indicated
in the figure is a complex multiplier which consists of 4 real
multipliers. Details of the architecture including the control-
path signals are not discussed in this paper and the reader
is referred to [25]. Radix-22 architectures are low-complexity,
low area architectures where the multiplier stage is present
only in every other stage of the FFT. However, it is to be
noted that the discussions below are not limited to these FFT
architectures and can be applied in general.

Note that the main components of the FFT architecture
include butterfly units and complex multiplication operation.
The decomposition of adders and multipliers are applicable
to these components. However, in the case of FFT, we defer
the final combination to the output of the last stage of the
FFT. Hence, the butterfly and multiplier operations allow for
carry propagation, overflow propagation and any approxima-
tions. The details of these decompositions are provided in
Appendix B. Note from the decompositions that for correct
recombination, the butterfly stages need to increase by one bit

X(2K)
4
BFII l D l BFI
S
X(2k+1)
t2 t3

s3

{

BFIV = BFIl =
d - > ﬂ >
-
- T |

t t t

Fig. 4. 16-point, 2-parallel, folded, radix-22 real FFT architecture using a
hybrid data-path. The components and paths marked in blue are complex
data-paths.

at each stage. The decomposed 8-bit/4-bit data-path obtained
after the required modifications is illustrated in Fig. 5.

Precision select
89 9-10 10-11

10 bit 112

8 bit 11 bit

Xulk)
e P e I o P o I B B S
D BFI D BFIV D BFIl D BFI i Memory y
8 S S S S — 8/12/16
wak) = T ST T T s =" ot
N output
T I ol el S
[s0 0 s1 t1 52 2 s3 3]
4-5 5-6 6-7 7-8
L A L Xk *ulks8)
e T e T e P O e Y e O s P
D BFI D BFIV D BFIl D BFI
4 S S S S
DI e R e e I o B o = I
T ’Eexlebﬂr T

[0 t0 s1 t1 52 2 s3 B3]

Fig. 5. Decomposition of 16-point, 2-parallel architecture into upper and
lower data-paths with growing bit-widths at each stage. The components and
paths marked in blue are complex data-paths. Note that varying precision
multipliers are required. The controlpath is common for both the data-paths.

In this figure, the top datapath is used for computation of
the first 8 bits of the output. After computation, these values
are stored in memory. Next, when a 12-bit output is desired,
the 8-bit output is accessed from memory and combined with
the 4-bit output from the bottom datapath using a combination
equation G to produce a 12-bit output. The 12-bit output now
replaces the previously stored 8-bit outputs in memory. This
process is continued to incrementally improve the precision
of the outputs. The final combination equation G for every
output X (K) is given by:

G: X(k) = Xpnm(k)+ sign_extend(X(k),N) (3)

where the sign_extend function, extends the sign bit of the
output of the bottom datapath by the number of bits computed
in the top datapath (V).

V. ERROR AND ENERGY REQUIREMENT ANALYSIS

From Section IV, the decomposition and subsequent com-
bination of multiplication operation introduces errors in the

final output which is in addition to the error introduced due
to lowering of precision of inputs. In this section, we model
the errors due to these approximations using standard error
models. We then contrast the error model with the reduction in
resources due to incremental-precision architectures. This pro-
vides us with a method to determine if incremental-precision
architectures are indeed beneficial to an application or not.

A. Modeling of error due to input approximation and approx-
imate multipliers

Several studies have been performed to model noise propa-
gated in fixed-point FFT architectures [27], [28]. A simple
yet practical approach to model errors in fixed-point im-
plementations of FFT is presented in [29]. Here, we apply
similar concepts to the FFT architecture described previously
i.e., a 2-parallel, folded, Radix—2? architecture. Note that the
described error model can be used in general and is not limited
to the architecture under discussion.

From [29], the addition and subtraction operations of but-
terfly units can be modeled as a gain unit of 2 followed by
noise source due to rounding. However, if scaling is applied,
the model is changed to a gain unit of 1/2 followed by a
noise source. For multipliers, recall that each multiplication
operation is a complex multiplication consisting of four real
multiplication operations. For example if the input is a+;jb and
the multiplier is Wr + jW+, four multiplications are carried
out and the sums aWr —bWi and bW r + aWi are generated.
Hence, the total error due to multiplication at each output (real
and imaginary) is equal to two times the error due to a single
multiplication. Using these concepts, for the architecture of a
16-point FFT illustrated in Fig. 4, the error model is presented
in Fig. 6.

In Fig. 6, Vi, is the variance of the quantization error
due to fixed-width inputs. This can be measured using the
Fixed Point Designer ToolBox of MATLAB and the command
sfi(zinp, prec, prec — 1) where prec is the total bit-width,
prec — 1 is the fractional bit-width and sfi converts the
input xinp to a signed fixed point variable. The inputs are
assumed to be normalized and represented in the range of
—1 to 1 as used in many practical applications. V4 is
the rounding error after butterfly operation. The variance of
error is dependent on the bit width of the adders and is
proportional to 272P"¢¢ where prec corresponds to the bit-
width. For computing the variance of error in multiplication
operation (V,,,;¢), multipliers are coded in a hardware de-
scription language (Verilog) and simulated with 10,000 inputs.
The variance of error between these simulations and infinite
precision outputs of multiplication is represented as Vj,qu¢-
The total error, V;444;, which is a combination of V;,,, Ving
and Vi, s given by the expression in Fig. 6. Note that at
each stage, the noise sources are added as linear sources. Due
to scaling at each butterfly stage, the error is also scaled.

While decomposing the datapaths into top and bottom
datapaths, we ensure that at each stage the scaled data for
top datapath and carry information of bottom datapath are
saved. This is achieved by construction of data-paths which
grow in precision as described in Section IV-B. Hence, the

>

Vind+Vimit Vind Vind

1/ 2>>—D—-1/2 >

—-?— 1/2>—P

Vinp Vind

Viotat = Vinp * (1/16) + Ving * (1/8 + 1/4 +1/2) + Vinur * (1/4) ‘

Fig. 6. Modeling of error in 16-bit datapath of a 16-point radix-22 FFT.
Note that the butterfly structures are modeled by a gain of 1/2 followed by
rounding noise while the multipliers are modeled using an additional noise
source at every alternate stage.

noise introduced at the output due to fixed-width input and
rounding at butterfly stage remain the same as that of the
error model described in Fig. 6. The change in the noise model
occurs due to the multiplication operation. This is due to the
approximation of multipliers as was discussed in Section IV.
Hence the noise source V,,,;+ of the direct implementation is
modified to V1410 and V146 as illustrated in Fig. 7. These
variances are also obtained through simulation of RTL of the
approximate multipliers of different bit-widths. For simplicity,
this figure does not show the errors of butterflies and input
error. The error due to approximate multipliers propagates to
the outputs as V;,, for the top datapath and V4, for the bottom
datapath. Total error Vi, is now given by the equation in
Fig. 7, where the multiplier error is modified to account for
the approximate multiplier error and subsequent combination
of top and bottom data-paths.

Top datapath
o mi S >
—a{1/2 1/2 1/2 1/2 Vi
12 AR :
vmu\th
Bottom datapath
o mi S >
—201/2 1/2 1/2 1/2 Voot
Vinutts

Vit = Vinp * (1/16) + Vo * (1/8 + 1/4 +1/2) + Vinurso*(1/4)+ 2 Vinus*(1/4) ‘

Fig. 7. Modeling of error in incremental precision architectures due to
approximation. The noise due to addition operation V,.,,4 is included in the
total error but not shown. The noise sources due to approximate multiplication
propagate to the outputs and are added to the total error after combination of
data-paths.

The described error model can be used for any incremental
precision decomposition and for any N-point FFT. Fig. 8
describes the error obtained for an incremental-precision radix-
22, 2-parallel, folded 1024-point FFT with various starting
precision values, incremental step sizes and stopping precision.
The figure also provides the plot of the error obtained with a
direct implementation of the architecture at precisions of 4
bits to 16 bits. The starting precision and step increments are
limited to powers of 2.

From this error model, we observe that for step increments
of 2, the reduction in error stops after a precision of 12-bits
is reached. This is because the errors due to approximation
exceed the reduction in error due to increase of precision.

[|—#— Full-precision
—#— Start2-Step2
6 Start2-Step4
—#— Start4-Step2
—#— Start4-Step4
7r Start6-Step2
—#F— Start6-Step4
—#— Start8-Step2
8 | —— Starts-Step4
Start10-Step2 ~
—#— Start10-Step4
—— Start12-Step2
Start12-Step4
10 N n . .
2 4 6 8 10 12 14 16
Precision in bits

Log of the variance of error

Fig. 8. Logarithm of the variance of error for different starting precision, step
size and final precision for a 1024-point, 2-parallel, radix-22 FFT architecture.

Hence, only configurations upto 12 bits should be considered.
Also observe that while starting at 6, 8 or 10 bits, we are
able to reach the precision of 12 bit implementation. However,
starting at 4 bits, we are able to only reach the precision of a
10-bit implementation. For step increments of 4 bits, the error
reduces upto a precision of 16 bits. However, these increments
are better suited for higher starting precisions such as 10 and
12 bits which are able to achieve almost the same accuracy as
a direct 16-bit implementation.

B. Resource consumption and overhead for incremental-
precision architectures

The main components of the folded FFT architecture in-
clude real multipliers, adders and delay elements. Hence, we
consider the resource consumption in terms of these three main
resources and understand the reduction of resources vs. over-
head incurred for various configurations of the incremental-
precision architecture. Note that only the major components
of the datapath have been considered in our analysis. This is
a fair estimate since controlpath of the design is small (less
than 1% of the total architecture) and remains the same for
both the direct and incremental implementation.

Considering an extension of the architecture as described
in Fig. 4, we describe the number of resources required for
a 16-bit precision 1024-point FFT in Table 1. For real adders
and multipliers, we list the number of resources as well the
size of the components required. From Table I we observe
that for starting precision of 10 bits or higher, the resource
consumption is too high and comparable to that of a full 16-
bit precision architecture. Hence, these incremental-precision
architectures no longer provide sufficient resource reduction
compared to accuracy improvement from Fig. 8. Hence, we
consider starting precisions only upto 8 bits in our design.

To better understand the reduction in resources as well
as the overhead incurred, we combine the area and power
estimates of the top and bottom parts, and present area-power-
timing estimates of different incremental-precision datapaths
in Table II. The estimates of the total resources required
for a 16-bit precision data-path are also reported. For power
estimates, a similar strategy is applied by summing the power

HARDWARE COMPLEXITY OF A 1024-POINT FFT IN TERMS OF REAL ADDERS, REAL MULTIPLIERS AND REAL DELAY ELEMENTS. CELLS WITH TWO

TABLE I

VALUES INDICATE THE RESOURCE COUNT AND CORRESPONDING BIT PRECISION IN PARENTHESES. THE MULTIPLIERS CORRESPOND TO 4 STAGES AND
THE ADDERS CORRESPOND TO 10 STAGES.

Datapath Starting Stens Real multipliers Real Adders Real
P precision P Count (Precision) Count (Precision) Delay

16 16 (16b) 28 (16b) 27264

4 4 (6b), 4 (8b), 4(10b), 4(12b) 2(5b), 4(6b), 2(7b), 4(8b), 2(9b), 4(10b), 2(11b), 4(12b), 2(13b), 2(15b) 12876

6 4 (8b), 4 (10b), 4(12b), 4(14b) 2(7b), 4(8b), 2(9b), 4(10b), 2(11b), 4(12b), 2(13b), 4(14b), 2(15b), 2(16b) 16284

Top 8 4 (10b), 4 (12b), 4(14b), 4(16b) 2(9b), 4(10b), 2(11b), 4(12b), 2(13b), 4(14b), 2(15b), 4(16b), 2(16b), 2(16b) 19180
10 4 (12b), 4 (14b), 4(16b), 4(16b) | 2(11b), 2(12b), 2(13b), 2(15b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b) | 21552

12 4 (14b), 4 (16b), 4(16b), 4(16b) | 2(13b), 2(15b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b), 2(16b) | 23872

Bottom - 2 4 (4b), 4 (6b), 4(8b), 4(10b) 2(3b), 4(4b), 2(5b), 4(6b), 2(7b), 4(8b), 2(9b), 4(10b), 2(11b), 2(12b) 9468
- 4 4 (6b), 4 (8b), 4(10b), 4(12b) 2(5b), 4(6b), 2(7b), 4(8b), 2(9b), 4(10b), 2(11b), 4(12b), 2(13b), 2(14b) 12876

TABLE 11 |

ESTIMATES OF AREA, POWER CONSUMPTION AND TIMING OF CRITICAL
PATH OF THE 1024-POINT INCREMENTAL-PRECISION ARCHITECTURE
COMPARED TO A 16-BIT PRECISION ARCHITECTURE. THE RESOURCE

CONSUMPTION VALUES AND PERFORMANCE NUMBERS ARE OBTAINED
USING SYNTHESIS OF COMPONENTS WITH DESIGN COMPILER, 65NM

TECHNOLOGY LIBRARY AND A CLOCK FREQUENCY OF 100MHz

Sg:g- Area Power Power Timing Timing
prec- Steps in2 inmW | in mW in ns in ns
ision um (top) (bottom) (top) (bottom)
16 - 337450 | 29.0134 - 9.85 -
N 2 223790 | 9.8392 9.8392 9.421 9.421
4 264160 | 9.8392 13.408 9.421 9.469
4 2 264160 13.408 9.8392 9.469 9.421
4 304540 13.408 13.408 9.469 9.469
6 2 305140 | 17.0053 9.8392 9.538 9.421
4 345520 | 17.0053 13.408 9.538 9.469
8 2 346160 | 20.2719 9.8392 9.826 9.421
4 386540 | 20.2719 13.408 9.826 9.469

consumption of all the components. However, in this case
the power consumption of the top and bottom data-paths are
reported separately since it is assumed that only one of the
data-paths would be active at any instant of time. The area
and power consumption of individual components are obtained
through synthesis. For this, Design Compiler synthesis tool is
used and all components are synthesized at a frequency of
100M Hz and a technology library of 65nm. Note that this
is a fairly good estimate of the resource consumption since
the most energy hungry components are accounted for in our
calculations.

To obtain timing overheads for the design, the critical path
is identified and simulated for different precisions. A pipelined
FFT architecture is considered in this paper with pipeline
stages after every multiplier. Hence, it is understood that the
critical path lies between two multiplier stages. For a 16-
bit data-path, the components between each multiplier are
constant and hence the critical path can be considered to be
composed of BFII and BFIV of Fig. 4. This is indicated in
Fig. 9. However, due to a growing data-path, the incremental-
precision FFT architecture of Fig. 5 has a varying critical path.
This is also indicated in Fig. 9 using a datapath with starting
precision of 4-bit as an example. Using the identified paths
and simulation results, timing requirements of Table II can be
obtained.

16-bit 16-bit

t6 | s7 t7 s8 t8 |

rultipler
t6 | s7 t7 s8 t8 |

Critical path of a 4-bit incremental-precision datapath

Fig. 9. Identification of critical path of a 1024-point 16-bit precision FFT
and comparison with the critical path of a 1024-point incremental-precision
FFT starting at 4 bits. Note that stages 7 and 8 form part of the critical path
for incremental- precision architectures due to a growing data-path.

VI. CASE STUDY: SEIZURE DETECTION USING EEG
SIGNALS

Seizure detection is a binary classification problem which
involves classifying between ictal period (when seizure occurs)
and interictal period (between seizures) of electroencephalo-
gram (EEG) signals. We label the ictal samples as class 1 and
the inter-ictal samples as class 0. For this problem, several
distinguishing features can be used for classification. However,
it has been observed that use of spectral powers in specific
frequency bands of the EEG signals as features is known to
demonstrate high separability between the two classes [30].
Implementations of seizure detection and prediction using
ratios of spectral power have been presented in [22], [23].
Because of the high accuracy achieved by this system using a
low complexity architecture, we use the same algorithm and
architecture for our study but with required modifications for
incremental-precision systems. For the extraction of spectral
powers, an energy hungry power spectral density computation
unit is required. Hence, this application is an ideal candidate
for implementation using the incremental-precision approach.

A. Dataset and System description

For our analysis, we use the database from UPenn and
Mayo Clinic’s Seizure Detection Challenge [31]. The feature
extraction unit works on EEG data segments labeled as ictal
or interictal each of duration 1s. The sampling frequency is
5000H z which results in 5000 samples to be analyzed for
every data segment. 104 features are extracted from each
electrode which include absolute spectral power, ratios of
spectral powers and relative spectral powers in frequency
bands of relevance [23]. Three of the most relevant electrodes
are selected using the results published in [23] to generate
a total of 312 features which are then ranked according to
importance using Classification and Regression Tree (CART).
Using these rankings, feature selection is performed to obtain
the three best features for each data segment. We replace
complex SVM classifiers originally used in [23] with Logistic
Regression based classifiers. LR classifiers are known to
provide good probability estimates [32] and have low hardware
complexity [24]. Since the data is imbalanced, the number of
positive samples is low compared to the number of negative
samples.

A simplified hardware architecture for extracting spectral
power values and power ratios has been proposed in [22]. The
main components of the feature extraction unit are illustrated
in Fig. 10. The extracted spectral powers are converted to
logarithm units which makes it easier to perform addition
and subtraction to obtain absolute, relative and ratios of
spectral powers. The detailed components required for the
power spectral density unit are also shown in this figure.
We note that the PSD unit is based on the Welch PSD
algorithm which uses overlapped data segments and applies
fast Fourier transform (FFT) on each of these segments to
extract frequency components of signals [33], [34]. We also
observe that FFT is the largest component in the feature
extraction unit. By application of the incremental-precision
FFT architecture described in Section IV-B, we demonstrate
reduction in resource consumption.

Retain Lo

PSD unit coefficients Accumulator —> &
. unit
in band

(a) Feature extraction

Welch PSD estimate P PSD

Average
over all
windows

Spectral

s(n) —>
power

—>

s(n) —

Divide into
overlapping)| FFT
windows

Square the
coefficients

(b) Power spectral density estimation

Fig. 10. Low complexity implementation of feature extraction unit for com-
putation of spectral powers. The Power Spectral density can be implemented
using a Welch PSD estimate whose main component is an FFT.

B. Experimental setup

The errors due to approximation as well as the resource
consumption analysis have been discussed in Section V. From
Fig. 8, we obtain the errors for the various configurations
of incremental-precision FFT. The errors are then incorpo-
rated into the feature extraction system to generate features
of varying precision. Classification is performed using the
proposed incremental-precision algorithm for various starting
precisions, step sizes and threshold values. To model resource
consumption, the estimates from Table II are applied to these
configurations. For every experiment performed, the data is
randomly separated into training and test data with 80% of the
data forming the training set and 20% of the data forming the
testing set. The experiments performed are based on varying
the controllable parameters of the design as follows:

« Even though the algorithm has a stopping criteria depen-
dent on the number of samples reselected, the maximum
number of stages allowed can be restricted to a certain
value. We experiment with two configurations with max-
imum values of 3 and 4.

o The maximum allowed misclassification error rates which
in turn determine the maximum and minimum threshold
values can be varied. When maximum number of stages
is 3, the allowed class-0 misclassification error values
(M1 and M3) and the allowed class-1 misclassification
error (M2 and M4) are varied between 0% to 25% in
increments of 5%. For simplicity, the values of allowed
misclassification error at each stage can be equal, i.e.,
M1 = M2 and M3 = M4 etc. This results in 36 config-
urations. When the maximum number of stages allowed
is 4, acceptable misclassification errors (M1, M2, M3,
M4, M5 and M6) are varied in the range of 0% to 10%
in increments of 5%, resulting in 27 configurations. These
configurations are termed as configurations of M values
with M ranging from 1 to 36 for a 3-stage algorithm and
1 to 27 for a 4-stage algorithm, respectively.

o The starting precision values are varied between 2 bits to
8 bits and step size is varied between 2 and 4 bits. The
starting precision of 10 and 12 bits are not used since
the error vs energy trade-off for these precisions is not
favorable as observed from Fig. 8 and Table II.

To measure the improvement in accuracy with respect
to varying parameter values, we use both training and test
accuracy. Since the data is imbalanced, we use Fl-score
as a measure for training accuracy. The Fl-score is given
by Equation (4), where precision = TP/(TP + FP) and
recall = TP/(TP + FN) and TP = True Positive, F'P =
False Positive and F'N = False Negative.

precision X recall

F =2 x @)

precision + recall
The test accuracy is better represented in terms of the Speci-
ficity and Sensitivity of the data. While specificity is the true
negative rate of the test data, sensitivity corresponds to the
true positive rate.
For measuring area, power, timing and energy overheads,
the estimates calculated in Table II are utilized. Assume that

the number of samples selected for classification in each stage
is stored as t1, to, t3 etc. Equation (5) can then be used to cal-
culate the overall overhead or reduction with respect to a full
precision system. In this equation, E'stimatey,, Estimatey
and Estimateys, refer to the corresponding area, power or
timing estimates of the top, bottom and full-precision data-
path, respectively. For energy calculations, Estimatei,, =
Poweryop, x T'iming,,, where Power,), is the power estimate
of top datapath and Timing;,,, is the timing estimate of the top
datapath. Similarly, Estimatep,s = Powerpo X Timingpor
where Powerp,; and Timingy,: are the power and timing
estimates of the bottom data-path, respectively. Note that the
obtained ratio values are calculated per test sample.

. Estimategop.tl + Estimateye 12 + Estimateyo.t3
Ratio =

Estimate ;. (t1 + t2 4 t3)
&)

VII. RESULTS

Based on the proposed incremental-precision classification
algorithm, derived error-energy models and the experimental
setup described in the previous section, we present results
for several configurations. The detailed experimental results
are based on Patient 7 of the dataset whose most relevant
electrodes have been identified in [23]. The seizure detection
example serves as a demonstration of both the multi-level
classification algorithm as well as incremental-precision ar-
chitecture. Overheads of the system are also presented.

A. Training accuracy

First, we consider the effect of lowering the precision of
data as well as the application of LR classifier. The error
values obtained for the full-precision system in Fig. 8 are
used to generate features for this experiment. The results are
reported in the plots of Fig. 11. From this figure we observe
that as the precision of data is increased, both training and
testing accuracy improve. However, it can also be seen that
LR classifier is not able to perform well since the maximum
sensitivity that can be reached even with the highest precision
is about 72%. For high accuracies, SVM classifiers which are
energy consuming would be necessary [23] if an incremental-
precision algorithm is not employed.

We consider the application of incremental precision algo-
rithm by starting with a precision of 2 bits and incrementing
it in step sizes of both 2 and 4. The results for the training
accuracy at each increment of the algorithm are presented in
Fig. 12. From the two subplots we observe that the training
accuracy improves significantly from stage 1 to stage 3.
Also, increments of step size 4 have higher final accuracies
compared to step sizes of 2.

Extending the previous experiment to data-widths ranging
from 2 to 8 bits and step sizes of 2 and 4, we obtain the results
illustrated in Fig. 13. Also, the observations for the algorithm
when maximum stages is 4 are presented. It can be observed
that the accuracy is highest for the algorithm consisting of 3
stages and a step size of 4.

]
1

—*— F-score
—#— Specificity | |
Sensitivity

o
©

ol
o

/%,J——J* —— % 3

Accuracy

=3 o
o o

=)
=

=3
w

8 10 12 14 16
Precision in bits

IS
=3

Fig. 11. Effect of using varying precision features on training accuracy
(reported as Fl-score) and testing accuracy (reported as Specificity and
Sensitivity).

Training accuracy

|\ [T —#— Stage 1
r\ o\ —#— Stage 2
02F % \ *4 v Stage 3| 7
—#—Final
0.1F ¥
0
0 5 10 15 20 25 30 35 40

Configuration of M values

(a) Starting precision = 4 bits, Maximum stages = 3,
Step size = 2 bits

—+— Stage 1
% —+— Stage 2
09 WAT A Stage 3|
—¥— Final
o8t R

e
3

Training accuracy
o
=)

o
o

o
~

0.3 L L L L L
0 5 10 15 20 25 30 35 40

Configuration of M values
(b) Starting precision = 4 bits, Maximum stages = 3,
Step size = 4 bits

Fig. 12. Improvement in training accuracy at different stages of the
incremental-precision algorithm for various configurations of M values. The
x-axis represents different configurations ranging from 1 to 36 with varying
maximum allowed misclassification errors M1, M2, M3 and M4 (termed
as M values).

085/

Final training accuracy
°
&

Final training accuracy

075

Final training accuracy

0 5 10 15 20 25 30 35 40 0 5 10 15
Configuration of M values
(a) Starting precision = 2,4,6,8, Step size = 2,

Maximum stages = 3 Maximum stages = 3

Configuration of M values

(b) Starting precision = 2,4,6,8, Step size = 4,

25 30 35 40 0 5 10 15 20 25 30
Configuration of M values

(c) Starting precision = 2,4,6, Step size = 2,
Maximum stages = 4

Fig. 13. Final training accuracy for different starting precision, step size, maximum allowed stages and configurations of M value.

B. Testing accuracy and Power reduction

Next, we use the configurations discussed previously to
understand the reduction in power vs. accuracy achieved.
Depending on the number of samples that go through the
testing process at each precision, the power consumption is
calculated from Table II and Equation (5). Since the degrada-
tion in precision does not affect specificity, these values are
not reported. However, it is ensured that high specificity values
are maintained. The plots for trade-off of power reduction (as
a ratio) vs. sensitivity of testing are presented in Fig. 14.

From these plots, we observe several configurations which
provide reduction in power consumption while maintaining
high accuracy values (bottom right corner of the plots). These
plots demonstrate the effectiveness of the incremental preci-
sion algorithm. However, it is also important to understand
the overhead associated with incremental-precision architec-
tures which are studied in the next subsection for selected
configurations.

C. Overhead of selected configurations

Several configurations selected from the power ratio vs.
sensitivity trade-off plots of previous section are considered
and detailed experimental results are presented in Table III.
Configuration values including maximum allowed misclassi-
fication error rates M1, M2, etc., initial and final F1-scores,
specificity and sensitivity are also reported. The power, area
and timing ratios are reported as percentages of reduction with
respect to a full-precision system. Note that there could be a
reduction or overhead in area consumption depending on the
configuration.

From Table III, we observe that there are several configura-
tions that provide reduction in energy while maintaining high
sensitivity values. The configuration with starting precision of
6 bits and step increments of 4 bits results in sensitivity values
of 98% while reducing the energy consumption by almost
35%. Also note that a configuration of starting precision of
2 bits and step increment of 2 bits could provide almost 50%
reduction in energy while providing sensitivity of 82%. All
other reported configurations provide sensitivity values and
energy reductions between that of these two configurations.

Note that there is a cost associated with the incremental-
precision algorithm in terms of the timing overheads. This
is because if selected for the consequent stages, the feature
extraction process repeats, increasing the computation time for
these samples. However, note that for most configurations, the
overhead is not too high. This can be attributed to the fact
that most of the samples get processed in low precision which
occurs faster than high precision computation. The additional
memory overhead for this system is not presented in the table.
However, it is understood that the 1024-point incremental-
precision FFT should have a memory of approximately 2 KB
(1024 outputs x 16 bit) to store intermediate values.

Finally, Table IV compares the test accuracy results of
our proposed algorithm with the results from [18], [19],
[23]. This table shows that the proposed algorithm maintains
high accuracy values similar to other algorithms. For energy
consumption comparison, we compare the results of our work
with [22]. This is a fair comparison since the features used in
both works are spectral energy ratios. Note that even though
other seizure detection algorithms exist which claim lower
energy, the goal of our work is to demonstrate applicability
of the incremental-precision algorithm and architecture. Our
ideas can be applied to other seizure detection or classification
setups to result in configurations with lower energy while
maintaining high accuracy.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a multi-level classification approach
and corresponding incremental-precision datapath architecture
methodology. The proposed algorithm and architecture are
demonstrated on a seizure detection application which uses
spectral powers and ratio of spectral powers as features.
The most energy hungry component of spectral power cal-
culation, the FFT architecture, was decomposed using data-
path decomposition ideas. The resulting configurations were
proven to reduce energy consumption while maintaining high
test accuracy values using models which estimate error and
resource consumption. The overheads in terms of area increase
or timing overhead are also presented. It should be noted that
the energy savings are demonstrated to a first-order approxi-
mation from synthesis of component parts. Future work will

13 T 1.6 15
* * 246 * 2610 *
12F * 468 * 4812 141
* . 6-8-10 14} * 6-10-14 - * 6-8-10-12
o . o L s012] | . % * * 81216 _ 131 ¥ 1
s * * s 5., *
= . = * * = *
g1 = g12 * * * g * « * *
5 * 5 5
2 * 2 3 211 % * * %
*
§09 ¥ S * 3 * * .
5 * . 5 1 5 1f-——mm———- Fmmm g — e ¥ T 1 -
I3 * ¥ s ¥ 5 ¥ ¥
Ex
go08r I S ¥ 3 * * * 3 * K F
3 i " 3 * . * So9l . * *
5 ELg 531 5 30 5 A * 5 * . *
2 07 * % *x i 208 * Frits 208 * - 4
2 - 2 % £ 4
e 06 : ¢ ¥ %) % * * & ¥xx o *
L % ¥] "
* * 07r *
* E P * - * * : * 1 ’ ol
L ek KE K B ¢ ¢ * : ¥
05 x1¥# N . T B o6l . N
§ HAK, X b * ¥ P *
0.4 * 0.4 05
04 05 06 07 08 0.9 1 055 06 065 07 075 08 08 09 095 1 05 06 065 07 075 08 08 09 095
Sensitivity Sensitivity Sensitivity

(a) Starting precision = 2,4,6,8, Step size = 2,

Maximum stages = 3 Maximum stages = 3

(b) Starting precision = 2,4,6,8, Step size = 4,

(c) Starting precision = 2,4,6, Step size = 2,
Maximum stages = 4

Fig. 14. Ratio of power consumption vs Sensitivity of test data for different starting precision, step size, maximum stages and configurations of M value.
Note that configurations towards the right bottom corner of these plots have high sensitivity and low power ratios.

TABLE III
PERFORMANCE OF SELECTED CONFIGURATIONS WITH RESPECT TO FINAL TRAINING ACCURACY, SPECIFICITY, SENSITIVITY, POWER REDUCTION, AREA
REDUCTION, TIMING OVERHEADS AND ENERGY CONSUMPTION

Precision M1I/M2 | M3/M4 | M5/M6 | Fl-score | Fl-score SP SS Power Area Timing Energy
increments | (Step 1) | (Step 2) | (Step 3) | (Step 1) (Final) reduction | reduction | overhead | requirement
16-0-0 - - - - 0.790 0.992 | 0.728 0% 0% 0% 100%
6-10-14 5% 10% - 0.786 0.874 0.988 | 0.982 32.59% -2.39% 15.13% 65.21%
6-8-10 5% 10% - 0.789 0.855 0.985 | 0.964 3541% 9.57% 13.68% 62.47%
4-6-8-10 0% 10% 10% 0.591 0.906 0.992 | 0.946 17.13% 21.72% 99.52% 79.49%
6-8-10 15% 0% - 0.771 0.874 0.992 | 0.893 36.28% 9.57% 11.23% 61.64%
8-10-12 10% 20% - 0.791 0.860 0.989 | 0.875 26.76% - 2.58% 9.27% 72.93%
4-8-12 15% 25% - 0.634 0.807 0.975 | 0.839 46.57% 9.75% 11.15% 51.37%
6-10-14 15% 25% - 0.794 0.862 0.991 | 0.929 37.84% -2.39% 4.21% 60.16%
6-10-14 20% 5% - 0.779 0.859 0.994 | 0911 36.01% -2.39% 8.03% 61.93%
8-12-16 10% 25% - 0.839 0.887 0.995 | 0.928 27.40% - 14.54% 5.49% 72.35%
6-8-10-12 10% 0% 0% 0.771 0.879 0.992 | 0.928 33.68% 9.57% 18.57% 64.13%
6-8-10-12 10% 10% 0% 0.783 0.863 0.983 | 0.893 37.6% 9.57% 7.70% 60.44%
2-4-6 20% 0% - 0.559 0.848 0.995 | 0.821 48.26% 33.68% 4591% 49.48%

TABLE 1V also a topic for further research.

COMPARISON OF TESTING ACCURACY AND ENERGY CONSUMPTION OF
PROPOSED INCREMENTAL-PRECISION SYSTEM APPLIED TO SEIZURE
DETECTION WITH SIMILAR APPROACHES FROM LITERATURE

Comparison of test accuracy
Algorithm Specificity Sensitivity
Ratio of spectral power +
SVM classifier [23] 99.90 100
Ratio of spectral power +
LR classifier 9924 7286
[18] 99.19 91.29
[19] 94.89 91.72
Proposed approach 98.88 98.20
Comparison of energy consumption
Algorithm Energy of.feature Energy of
selection classifier
Ratio of spectral power + 226.26 nJ
SVM classifier [23] (Full-precision FFT) ~60 uJ [35]
~ 147.07 nJ)
Proposed approach (65% of full-precision FFT) ~0.15 uJ [35]

be directed towards synthesis of the complete system. Since
the proposed incremental-precision algorithm and incremental-
precision architectures are not limited to the demonstrated
application, future work will involve applying these ideas
to other machine learning applications. Application of data-
path decomposition approaches to create incremental-precision
architectures for other approximate computing paradigms is

IX. APPENDIX A

The idea of decomposition of fixed-width addition is pre-
sented in Fig. 15. From Equation (1), the input operands are
split such that the most significant part of the operand is
composed of N bits. The operands x; and zo are signed
numbers. Hence, padding with zero is necessary to perform
addition on the lower bits. Also, a carry bit is generated out
of the lower adder which needs to be propagated to the final
combination equation.

X1

X2

Fig. 15. Data-path decomposition of fixed-width adder operating on signed
numbers z1 and x2 and subsequent recombination to produce y. The block
[0]|#] indicates the operation of appending x with one leading zero.

Several techniques to fixed-width multiplication have been
proposed in literature [37], [38]. In this paper, we propose tp

decompose fixed-width multipliers based on the design pre-
sented in [38]. The decomposition of the fixed-width multiplier
is illustrated in Fig. 16. From Equation (2), observe that only
the operand z is decomposed. The upper multiplier produces
an output of size IV bits along with a carry bit C. Similarly,
the lower multiplier produces an output of NV bits. Depending
on the first bit of the lower multiplication output, addition
or subtraction has to be performed as part of recombination.
Hence, we check the sign and if required invert the output
of the lower multiplier. The details of how to decompose
the multiplier is discussed next. The carry signals need to be
propagated to the final combination equation.

Xm

Fig. 16. Data-path decomposition of fixed-width multiplier operating on x and
coefficient W and subsequent recombinaton to produce approximate output
.

As an example of decomposition of the multiplier, we
discuss an 8 x 8 bit fixed-width multiplication split into two
4 x 8 bit multiplications. Fig. 17 represents the required
partial products and summation for a fixed-width 8 x 8 bit
multiplication on inputs z and y. The multiplication performed
here is based on modified Booth’s algorithm where the operand
y is first recoded to ¢y whose values can be -2,-1,-0,1 or 2.
If y is a value greater 1, a second value y” is set to 1. This
architecture is presented in [38] and the details of calculation
of carry signals carry_0 and carry_1 based on y” can be
referenced from the paper.

Fig. 17. Architecture of an 8 x 8 fixed-width multiplier based on modified
Booth multiplication and carry generation.

To decompose the multiplier into two, we split the computa-
tion required for the most significant and least significant bits
of the multiplier. The decomposed multiplier along with the
new carry signals are presented in Fig. 18. Note that there is
additional approximation involved in the computation of both
the most significant and least significant bits of the multipli-
cation operation. Hence, the final output of multiplication (%)

is an approximation of the final 8 — bit output. The multiplier
introduces an error in the data-path decomposition which
needs to be accounted for while calculating the improvement
in accuracy from stage to stage.

Yoy vy

4 Vo'

carry_M

oo
Vi Y2

carry_L

Fig. 18. Splitting of an 8 x 8 bit multiplier into two 4 X 8 bit multipliers by
approximation. The carry information from the top multiplier is merged with
the bottom multiplier during recombination.

X. APPENDIX B

In this section, we continue the decomposition to larger
components such as butterfly units and complex multipliers.
The main challenge in these decompositions is to defer the
combination to the end of computation such that the two data-
paths are truly decomposed. The decomposition of the butterfly
unit is presented in Fig. 19. The butterfly operation involves
addition and subtraction followed by a shift to avoid overflow.
the butterfly can be decomposed using the concept of adder
decomposition as presented in Fig. 15. However, there is an
additional bit from the upper data path due to shifting (s; and
s2) along with the carry information from the lower data path
(c1 and c¢2). This means that the top and bottom butterflies
need to grow at each stage of the FFT.

= {s1,yim}

B>,

- {s2,yam}

X1 =T "e’
Lo

[o11x} ve —» {cy,yu}
m ‘G = {C;,ya1}

XoL—

Fig. 19. Data-path decomposition of the butterfly unit which is composed
of addition, subtraction and shift operations. Recombination of outputs is
deferred to the last stage.

The decomposed multiplier presented in Fig. 16 is utilized
to construct the complex multiplier required for the FFT

operation. The component consisting of four multiplication
operations and subsequent addition operations is presented in
Fig. 20. The carry signals from the top multiplier are included
in the addition operation.

() >

%(Pw; i} N

{Pam, €2}

Wi

Xim -

{Pawm, 3} N

Xr

Xi

-©—Of-

;@—»(—D—-» Vi e

Fig. 20. Data-path decomposition of the complex multiplication unit com-
posed of four real multiplications, addition and subtraction operations.

XI. ACKNOWLEDGMENT

The incremental-precision multi-level classification ap-
proach is inspired by the minimum uncertainty sample elimi-
nation feature ranking algorithm [36].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS). 1EEE, 2013, pp. 1-6.

S. Zhang and N. R. Shanbhag, “Embedded Algorithmic Noise-Tolerance
for Signal Processing and Machine Learning Systems via Data Path
Decomposition,” IEEE Transactions on Signal Processing, vol. 64,
no. 13, pp. 3338-3350, 2016.

S. Koteshwara and K. K. Parhi, “Low-Energy Architectures of Linear
Classifiers for IoT Applications using Incremental Precision and Multi-
Level Classification,” in Proceedings of the Great Lakes Symposium on
VLSI 2018. ACM, 2018.

S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig, “Approximate signal processing,” Journal of VLSI
signal processing systems for signal, image and video technology,
vol. 15, no. 1-2, pp. 177-200, 1997.

J. Park, J. H. Choi, and K. Roy, “Dynamic bit-width adaptation in DCT:
an approach to trade off image quality and computation energy,” IEEE
Transactions on Very Large Scale Integration (VLSI) systems, vol. 18,
no. 5, pp. 787-793, 2010.

M. Shoaib, N. Jha, and N. Verma, “A low-energy computation platform
for data-driven biomedical monitoring algorithms,” in Design Automa-
tion Conference (DAC), 2011 48th ACM/EDAC/IEEE. 1EEE, 2011, pp.
591-596.

D. Kim, J. Kung, and S. Mukhopadhyay, “A Power-Aware Digital
Multilayer Perceptron Accelerator with On-Chip Training based on
Approximate Computing,” IEEE Transactions on Emerging Topics in
Computing, 2017.

A. Suleiman and V. Sze, “Energy-efficient HOG-based object detection
at 1080HD 60 fps with multi-scale support,” in Signal Processing
Systems (SiPS), 2014 IEEE Workshop on. 1EEE, 2014, pp. 1-6.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. Imani, M. Masich, D. Peroni, P. Wang, and T. Rosing, “CANNA:
Neural network acceleration using configurable approximation on
GPGPU,” in Design Automation Conference (ASP-DAC), 2018 23rd Asia
and South Pacific. 1EEE, 2018, pp. 682-689.

Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-
780, p. 1612, 1999.

R. E. Schapire, “Theoretical views of boosting and applications,” in
Algorithmic Learning Theory: 10th International Conference, ALT 99,
Tokyo, Japan, December 1999. Proceedings. Springer, 1999, p. 13.
M. Ayinala, M. Brown, and K. K. Parhi, “Pipelined parallel FFT
architectures via folding transformation,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1068-1081,
2012.

S. A. Salehi, R. Amirfattahi, and K. K. Parhi, “Pipelined architectures
for real-valued FFT and hermitian-symmetric IFFT with real datapaths,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60,
no. 8, pp. 507-511, 2013.

J. M. Winograd and S. H. Nawab, “Incremental refinement of DFT and
STFT approximations,” IEEE Signal Processing Letters, vol. 2, no. 2,
pp- 25-27, 1995.

J. M. Winograd, S. H. Nawab, and A. V. Oppenheim, “FFT-based
incremental refinement of suboptimal detection,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-
96. Conference Proceedings., 1996, vol. 5. 1EEE, 1996, pp. 2479-2482.
S. Lee and A. Gerstlauer, “Fine grain word length optimization for dy-
namic precision scaling in DSP systems,” in Very Large Scale Integration
(VLSI-SoC), 2013 IFIP/IEEE 21st International Conference on. 1EEE,
2013, pp. 266-271.

V. Bajaj and R. B. Pachori, “Epileptic seizure detection based on the
instantaneous area of analytic intrinsic mode functions of EEG signals,”
Biomedical Engineering Letters, vol. 3, no. 1, pp. 17-21, 2013.

L. M. Patnaik and O. K. Manyam, “Epileptic EEG detection using neural
networks and post-classification,” Computer methods and programs in
biomedicine, vol. 91, no. 2, pp. 100-109, 2008.

Q. Yuan, W. Zhou, Y. Liu, and J. Wang, “Epileptic seizure detection
with linear and nonlinear features,” Epilepsy & Behavior, vol. 24, no. 4,
pp. 415421, 2012.

Y. Park, L. Luo, K. K. Parhi, and T. Netoff, “Seizure prediction with
spectral power of EEG using cost-sensitive support vector machines,”
Epilepsia, vol. 52, no. 10, pp. 1761-1770, 2011.

Z. Zhang and K. K. Parhi, “Seizure prediction using polynomial SVM
classification,” in Engineering in Medicine and Biology Society (EMBC),
2015 37th Annual International Conference of the IEEE. 1EEE, 2015,
pp. 5748-5751.

——, “Low-Complexity Seizure Prediction From iEEG/SEEG Using
Spectral Power and Ratios of Spectral Power,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 10, no. 3, pp. 693-706, 2016.
Z. Zhang and K. K. Parhi, “Seizure detection using regression tree based
feature selection and polynomial SVM classification,” in 2015 37th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). 1EEE, 2015, pp. 6578-6581.

A. Page, S. P. T. Oates, and T. Mohsenin, “An ultra low power feature
extraction and classification system for wearable seizure detection,”
in Engineering in Medicine and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE. 1EEE, 2015, pp. 7111-
7114.

M. Ayinala and K. K. Parhi, “FFT architectures for real-valued signals
based on radix-23 and radix-24 algorithms,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 60, no. 9, pp. 2422-2430,
2013.

K. K. Parhi, VLSI digital signal processing systems: design and imple-
mentation. Wiley, New York, 1999.

W.-H. Chang and T. Q. Nguyen, “On the fixed-point accuracy analysis
of FFT algorithms,” IEEE Transactions on Signal Processing, vol. 56,
no. 10, pp. 4673-4682, 2008.

T. Thong and B. Liu, “Fixed-point fast Fourier Transform Error Anal-
ysis,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 24, no. 6, pp. 563-573, 1976.

R. B. Perlow and T. C. Denk, “Finite wordlength design for VLSI
FFT processors,” in Conference Record of the Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers, 2001., vol. 2. IEEE,
2001, pp. 1227-1231.

M. Bandarabadi, C. A. Teixeira, J. Rasekhi, and A. Dourado, “Epilep-
tic seizure prediction using relative spectral power features,” Clinical
Neurophysiology, vol. 126, no. 2, pp. 237-248, 2015.

(311

(32]

(33]

[34]

[35]

[36]

[37]

[38]

Upenn and mayo clinic’s seizure detection challenge. USA. [Online].
Available: https://www.kaggle.com/c/seizure-detection

A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities
with supervised learning,” in Proceedings of the 22nd International
conference on Machine Learning. ACM, 2005, pp. 625-632.

P. D. Welch, “The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modi-
fied periodograms,” IEEE Transactions on Audio and Electroacoustics,
vol. 15, no. 2, pp. 70-73, 1967.

K. K. Parhi and M. Ayinala, “Low-complexity Welch power spectral
density computation,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 1, pp. 172-182, 2014.

A. Page, C. Sagedy, E. Smith, N. Attaran, T. Oates, and T. Mohsenin,
“A flexible multichannel EEG feature extractor and classifier for seizure
detection,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 2, pp. 109-113, 2015.

Z. Zhang and K. K. Parhi, “MUSE: Minimum uncertainty and sam-
ple elimination based binary feature selection,” IEEE Transactions
on Knowledge and Data Engineering Large Scale Integration (VLSI)
systems, DOI: 10.1109/TKDE.2018.2865778, 2018.

S.-M. Kim, J.-G. Chung, and K. K. Parhi, “Low error fixed-width CSD
multiplier with efficient sign extension,” /[EEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, vol. 50, no. 12,
pp. 984-993, 2003.

K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, “Design of low-
error fixed-width modified booth multiplier,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 12, no. 5, pp. 522-531,
2004.

Sandhya Koteshwara (S’16) received the B.E. de-
gree in Electronics and Communication from Visves-
varaya Technological University, Belgaum, India,
in 2010 and M.S. degree in electrical engineering
from University of Minnesota, Twin Cities, USA
in 2014. She is currently working towards a Ph.D.
degree at the Department of Electrical and Computer
Engineering, University of Minnesota, Twin Cities,
USA.

Her current research interests include hardware
security, low power architectures for cryptographic

algorithms, and approximate computing.

Keshab K. Parhi (S’85-M’88-SM’91-F’96) re-
ceived the B.Tech. degree from Indian Institute
of Technolgy, Kharagpur, India, in 1982, the
M.S.E.E. degree from the University of Pennsylva-
nia, Philadelphia, PA, USA, in 1984, and the Ph.D.
degree from the University of California at Berkeley,
Berkeley, CA, USA, in 1988.

He has been with the University of Minnesota,
Minneapolis, MN, USA, since 1988, where he is
currently a Distinguished McKnight University Pro-
fessor and Edgar F. Johnson Professor in the De-
partment of Electrical and Computer Engineering. He has published over
600 papers, is the inventor or co-inventor of 29 patents, has authored the
textbook VLSI Digital Signal Processing Systems (New York, NY, USA:
Wiley, 1999), and coedited the reference book Digital Signal Processing for
Multimedia Systems (Boca Raton, FL, USA: CRC Press, 1999). His research
interests include the VLSI architecture design and implementation of signal
processing, communications and biomedical systems, error control coders
and cryptography architectures, high-speed transceivers, stochastic computing,
secure computing, and molecular computing. He is also currently working
on intelligent classification of biomedical signals and images, for applica-
tions such as seizure prediction and detection, schizophrenia classification,
biomarkers for mental disorders, brain connectivity, and diabetic retinopathy
screening.

Dr. Parhi has served on the Editorial Boards of the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS PART I AND PART II, the IEEE TRANS-
ACTIONS ON VLSI SYSTEMS, IEEE TRANSACTIONS ON SIGNAL
PROCESSING, the IEEE SIGNAL PROCESSING LETTERS, and the IEEE
Signal Processing Magazine, and served as the Editor-in-Chief of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I from 2004 to
2005. He currently serves on the Editorial Board of the Journal of Signal
Processing Systems (Springer). He has served as the Technical Program Co-
Chair of the 1995 IEEE VLSI Signal Processing Workshop and the 1996
Application Specific Systems, Architectures, and Processors conference, and
as the General Chair of the 2002 IEEE Workshop on Signal Processing
Systems. He was the Distinguished Lecturer of the IEEE Circuits and Systems
Society from 1996 to 1998. He served as a Board of Governors Elected
Member of the IEEE Circuits and Systems Society from 2005 to 2007. He
is the recipient of numerous awards including the 2017 Mac Van Valkenburg
award, the 2012 Charles A. Desoer Technical Achievement award and the
1999 Golden Jubilee medal, from the IEEE Circuits and Systems society,
the 2013 Distinguished Alumnus Award from IIT Kharagpur, the 2013
Graduate/Professional Teaching Award from the University of Minnesota,
the 2004 F. E. Terman award from the American Society of Engineering
Education, the 2003 IEEE Kiyo Tomiyasu Technical Field Award, and the
2001 IEEE W. R. G. Baker Prize Paper Award. He is a Fellow of the AAAS.

