
Low-Energy Architectures of Linear Classifiers for IoT
Applications using Incremental Precision and Multi-Level

Classification
Sandhya Koteshwara

University of Minnesota, Twin Cities
Minneapolis, MN
kotes001@umn.edu

Keshab K. Parhi
University of Minnesota, Twin Cities

Minneapolis, MN
parhi@umn.edu

ABSTRACT
This paper presents a novel incremental-precision classification ap-
proach that leads to a reduction in energy consumption of linear
classifiers for IoT applications. Features are first input to a low-
precision classifier. If the classifier successfully classifies the sample,
then the process terminates. Otherwise, the classification perfor-
mance is incrementally improved by using a classifier of higher
precision. This process is repeated until the classification is com-
plete. The argument is that many samples can be classified using
the low-precision classifier, leading to a reduction in energy. To
achieve incremental-precision, a novel data-path decomposition
is proposed to design of fixed-width adders and multipliers. These
components improve the precision without recalculating the out-
puts, thus reducing energy. Using a linear classification example, it
is shown that the proposed incremental-precision based multi-level
classifier approach can reduce energy by about 41% while achieving
comparable accuracies as that of a full-precision system. 1

CCS CONCEPTS
•Hardware→Arithmetic and datapath circuits;Application
specific integrated circuits;

KEYWORDS
Incremental-precision, Low-energy, Multi-level classification, Data-
path decomposition, Fixed-width multiplication

1 INTRODUCTION
There is a growing trend towards connecting millions of devices
to form what is termed as the Internet-of-Things (IoT). Reducing
the energy consumption of these IoT devices connected to the
network has become critical. Also, there is an increasing need to
incorporatemachine learning algorithms onto resource-constrained
hardware to perform several tasks. Hence, low-energy solutions for
IoT machine learning applications have become important. In this
1This research was supported in part by the National Science Foundation under grant
number CCF-1749494.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’18, May 23–25, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194603

paper, we approach classification using bit-width reduction and a
multi-level approach. This means that we compute features and
perform classification using the lowest possible precision and then
improve classification accuracy in a step by step manner based on
certain criteria. The argument is that significant amount of data
can be classified using the lowest precision components and only
the remaining data need to be processed using higher precision
components. Thus, overall energy consumption can be reduced.

The paper presents an incremental-precision algorithm for clas-
sification termed as multi-level classification. To process the data in
each stage of the algorithm, we need hardware components which
start processing in low precision and then increase precision as
needed. This necessitates the design of basic components such as
adders and multipliers which can perform the required incremental-
precision operation. The required adders and multipliers are de-
signed using fixed width components based on novel data-path
decomposition techniques. Using multi-level classification imple-
mented with incremental-precision components, we demonstrate
energy reduction in a linear classification system.

The rest of the paper is divided as follows: Section 2 describes
the incremental-precision addition and subtraction units. In Section
3, the incremental-precision multiplier based on approximation is
introduced. The multi-level classification algorithm is presented in
Section 4. Finally, using a linear classification example, results with
respect to both accuracy and energy consumption are presented in
Section 5.

2 INCREMENTAL-PRECISION ADDITION
AND SUBTRACTION

Consider the sum of two N bit numbersA and B given by S = A+B.
If we splitA and B into their MSB and LSB parts, we obtain the sum
in the following format:

S = AMSB + 2−pALSB + BMSB + 2−pBLSB

In this equation, p represents the number of bits of the MSB. The
sum can now be rewritten as the following:

S = (AMSB + BMSB) + 2−p (ALSB + BLSB)

= SM + 2−pSL (1)

This is termed as data-path decomposition and has been proposed
in the context of error-tolerant applications [1].

The hardware architecture of a signed 8-bit incremental-precision
adder/subtractor unit decomposed into two 4-bit adders/subtractors
is illustrated in Figure 1. The top adder operates on 4MSB bits of the
data and stores it in memory. If a 4-bit output is desired, this output

https://doi.org/10.1145/3194554.3194603

can be read. Instead, if an 8-bit output is desired, the sum of the
MSB terms can be read frommemory and combined with the output
from the lower 4-bit adder/subtractor. The combination equations
for both addition and subtraction are also presented in Figure 1.
Note that the carry information from the lower adder needs to
be included in the combination equation. Also since sign bits are
considered, appropriate sign extensions are required for subtrac-
tion operation. The decomposition can be extended further on the
upper or lower adder to create various combinations of incremental
precision adders with precision 2-bit/4-bit/6-bit/8-bit. The decom-
position of adder/subtraction units and combining the outputs of
different precisions leads to an error-free result. However, this is not
the case for computing multiplication using incremental-precision,
as discussed in next section.

4-bit MSB adder/subtractor

4-bit LSB adder/subtractor

A[7:4]

B[7:4]

A[3:0]

B[3:0]

SM

SL

C

Addition: {SM 0 0 0 0} + {0 0 0 C SL}

Subtraction: {SM 0 0 0 0} + {C C C C SL}

Memory 8-bit output

4-bit output
4

4

4

4

4

4

Figure 1: Decomposition and subsequent combination op-
erations on 8-bit inputs to create incremental-precision
adder/subtraction unit. The 8-bit inputs are decomposed
into two 4-bit inputs in this example.

3 INCREMENTAL-PRECISION FIXED-WIDTH
MULTIPLIERS

Consider the multiplication of two inputs x and y. Data-path de-
composition can be applied on the multiplication operation of these
two inputs as given by Equation (2).

P = x × y = xMSB y + 2−p xLSB y (2)

xLSB can be further decomposed to produce multiplication in the
form of Equation (3), where p′ is the number of bits in xLSB1.

P = xMSB y + 2−p xLSB1 y + 2−(p+p
′) xLSB2 y (3)

This process can be continued on the LSB bits to produce a de-
composed multiplier whose precision improves with every stage.
The data flow of the decomposed multiplier is presented in Figure
2. To implement the products in this decomposition, fixed-width
multipliers are required. Several approaches to implementation
of fixed-width multipliers have been presented in the literature.
Among them, the approach proposed in [2] is a technique which
results in low-error implementations of fixed-width multipliers.
This technique is described in detail in the next subsection. The
following subsections discuss the modifications required to convert
these fixed-width multipliers to incremental-precision fixed-width
multipliers using certain approximations.

3.1 Fixed-width multipliers
Consider multiplication of two inputs x and y of lengthW bits. The
resultant output after multiplication is a value P which is of width

xMSB y

xLSB1 y

xLSB2 y

P

Stage 1

Stage 2

Stage 3

Figure 2: Data-path decomposition of multiplier into multi-
ple stages by incrementally increasing the precision of x and
maintaining y at a constant precision.

2W − 1 bits. To perform multiplication, the coefficient y is first
recoded into y′ bits using Booth recoding techniques. This results
in less number of partial products that need to be finally summed
to generate the terms of the product. The fixed-width multiplier
based on Booth recoding is illustrated in Figure 3.

x7 x6 x5 x4 x3 x2 x1 x0

 y3 y2 y1 y0

p08 p07 p06 p05 p04 p03 p02 p01 p00

p18 p17 p16 p15 p14 p13 p12 p11 p10

p28 p27 p26 p25 p24 p23 p22 p21 p20

p38 p37 p36 p35 p34 p33 p32 p31 p30

n00

n10

n20

n30

2W-1 bits

(Recoded multiplier bits)

Figure 3: Multiplication of two 8-bit inputs by applying
Booth recoding on the input y. The resultant output is of
length 2W − 1 bits.

For a fixed-width multiplier, we constrain the number of terms
in the final output to be of lengthW bits. If direct truncation is used,
the resultant outputs produced will have high error. Hence, appro-
priate rounding needs to be performed and this idea is illustrated in
Figure 4. In this figure, the final output is presented as three terms:
MP , LP_major and LP_minor which represent the most significant
part, the major part of the least significant part, and the minor
part of the least significant part, respectively. The MP part needs
to be computed precisely. This means that all the partial products
required for this part need to be generated. The rest of the output
can be approximated using an actual carry and approximate carry
value whose details are discussed next. The final carry is termed as
error compensation bias.

3.2 Approximate carry generation
The partial products ofLP_major need to be computed precisely. For
the terms of the LP_minor , statistical analysis can be used to derive
an approximate carry value. Consider Table 1 which lists partial
products for all possible combinations of recoding (represented by
three adjacent bits of y) and combinations of adjacent x inputs. It
can be seen that when the recoded value is greater than or equal to
1 (represented by y′′ = 1), the expected value of partial products is
E[pi, j] = 1/2. Considering Figure 4, we see that the contribution

Table 1: Table of partial products and the expected values
of partial products for every combination of recoded bits y′

and input x jx j−1

Partial products
with x jx j−1 (pi, j)

Expected
value
(E[pi, j])

y2i+1 y2i y2i−1 y′ y′′ 00 01 10 11
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 1/2
0 1 0 1 1 0 0 1 1 1/2
0 1 1 2 1 0 1 0 1 1/2
1 0 0 -2 1 1 0 1 0 1/2
1 0 1 -1 1 1 1 0 0 1/2
1 1 0 -1 1 1 1 0 0 1/2
1 1 1 0 0 0 0 0 0 0

of each y′′ bit on the expected value of LP_minor is 2−1. Thus, the
total expected value of LP_minor is given by :

E[LP_minor] = 2−1[y′′0 + y
′′
1 + y

′′
2] (4)

The carry signals are generated depending on the values of y′′0

x7 x6 x5 x4 x3 x2 x1 x0

 y3 y2 y1 y0

p08 p07 p06 p05 p04 p03 p02 p01 p00

p18 p17 p16 p15 p14 p13 p12 p11 p10

p28 p27 p26 p25 p24 p23 p22 p21 p20

p38 p37 p36 p35 p34 p33 p32 p31 p30

n00

n10

n20

n30

MP LP_major LP_minor

y0' E[pi,j] = 2-1(2-1) + 2-2 (2-1) + 2-3(2-1) + 2-4 (2-1) + 2-5(2-1) + 2-6 (2-1+2-1) = 2-1

y1' E[pi,j] = 2-1(2-1) + 2-2 (2-1) + 2-3(2-1) + 2-4 (2-1+2-1) = 2-1

y2' E[pi,j] = 2-1(2-1) + 2-2 (2-1+2-1) = 2-1

 carry_0 = y2 y1 y0 (OR)
 carry_1 = y2 y1 y0 (AND)

LP_minor = carry_1 + carry_0
LP_major = LP_minor+ p06+p14+p22+p30+n30

Error compensation bias

Figure 4: Calculation of the error compensation bias terms
LP_major and LP_minor based on carry signals.

to y′′2 . The maximum value of carry in this case occurs when all
values of y′′0 ,y

′′
1 an y′′2 are equal to 1. This is equal to a value of

E[LP_minor] = 1.5 which can be rounded to a value of 2. Note
that y′′3 does not contribute to the approximate carry value. For
an expected value of 2, the number of carry signals required is 2.
Solving for all values of y′′0 to y′′2 using Karnaugh maps, we obtain
the required equations for the carry signals as shown in Figure 4.

3.3 Two-stage incremental-precision
multipliers

From Equation (2), we require the computation of two products:
xMSB ×y and xLSB ×y. Observe that the coefficienty is of the same
width while x is split into MSB and LSB parts. Hence, the previous
example of 8×8 bit multiplication requires the decomposition of

8-bit operand x into two parts and the multiplication result is ap-
proximated. This can be achieved by separating the partial products
and redesigning the carry generation circuit as illustrated in Figure
5. The top part of the figure presents the approximate multiplier

 x7 x6 x5 x4

 y3 y2 y1 y0

 p08 p08 p08 p07 p06 p05 p04

 p18 p17 p16 p15 p14

 p28 p27 p26 p25 p24

 p38 p37 p36 p35 p34

MP LP_major LP_minor

E[pi,j] = 2-1 (2-1) + 2-2 (2-1) + 2-3(2-1) + 2-4 (2-1) + 2-5(2-1) + 2-6 (2-1) = 0.4922

E[pi,j] = 2-1(2-1) + 2-2 (2-1) + 2-3(2-1) + 2-4 (2-1) = 0.4688

E[pi,j] = 2-1(2-1) + 2-2 (2-1) = 0.375

 carry_0 = y2 y1 y0 y1 y2 y0

LP_minor = {carry_0}
LP_major = LP_minor+ p08+ p18+ p26+ p34

 x3 x2 x1 x0

 y3 y2 y1 y0

 p04 p03 p02 p01 p00

 p14 p13 p12 p11 p10

 p14 p23 p22 p21 p20

 p34 p33 p32 p31 p30

n00

n10

n20

n30

MP LP_major LP_minor

E[pi,j] = 2-2(2-1) + 2-3(2-1) + 2-4 (2-1) + 2-5(2-1) + 2-6 (2-1+2-1) = 0.25

E[pi,j] = 2-1(2-1) + 2-2 (2-1) + 2-3(2-1) + 2-4 (2-1+2-1) = 0.5

E[pi,j] = 2-1(2-1) + 2-2 (2-1+2-1) = 0.5

 carry_0 = y1 y2

LP_minor = {carry_0}
LP_major = LP_minor+ p14+ p22+ p30+ n30

Approximate multiplier for MSB bits (PMSB = P8 P7 P6 P5 P4)

Approximate multiplier for LSB bits (PLSB = P P3 P2 P1)

 (P4 P = {PMSB 0 0 0 } + {0 0 0 0 PLSB}
 (P4 P = {PMSB 0 0 0 } - {P4 P4 P4 P4 PLSB}

P8 P7 P6 P5 P4

P P3 P2 P1

Figure 5: Splitting the 8-bit multiplier into two approximate
multipliers of 4 bits each.

required for computation of the MSB bits. Note that the sign bit
nt0, where t denotes the row of the partial product, is not present
in any of the partial product arrays. However, partial products pt8
is required in the calculations. The carry signal is also modified and
reduced to just one compared to the 8-bit fixed-width multiplier
presented in Figure 4.

The bottom part of the figure presents the approximatemultiplier
required for computation of LSB bits. In this case, the additional
partial products (pt8) are not present. However, the sign bit nt0
is processed by the bottom part. This requires the calculation of
different carry signals. Note again that only one carry signal is
required for this multiplier compared to two in the full precision
fixed-width multiplier. The two data-paths can now operate inde-
pendently of each other and produce approximate multiplication
outputs. The combination of the two products is illustrated in Fig-
ure 5. The precision of the 4-bit multiplier operating on the MSB
bits is improved by combining the product generated by operating
on the LSB bits. The final output obtained through this combina-
tion will be an approximation of the full 8-bit precision fixed width
output. This is because of the loss of precision during approxima-
tion of the products. Approximation is inherently introduced by
the fixed-width multipliers as well as the incremental-precision
architectures. It may be noted that approximations have been used
in other contexts [3–5].

3.4 Multi-stage incremental-precision
multipliers

The approximate multiplier required to compute the LSB bits can be
further split into two as given by Equation (3). This idea is illustrated
in Figure 6. The difference between the two multipliers is that the
top multiplier does not account for the sign bit nt0 (similar to the

multiplier operating on MSB bits). The final output is a combination
of the product from MSB bits overlapped with the product from
the middle multiplier operating on the first two LSB bits and the
last multiplier operating on the last two LSB bits. With each step,
precision is improved.

 x3 x2

 y3 y2 y1 y0

 p04 p03 p02

 p14 p13 p12

p24 p23 p22

p34 p33 p32

MP LP_major LP_minor

E[pi,j] = 2-4 (2-1) + 2-5(2-1) + 2-6 (2-1) = 0.0547

E[pi,j] = 2-2(2-1) + 2-3 (2-1) + 2-4 (2-1) = 0.2188

E[pi,j] = 2-1(2-1) + 2-2 (2-1) = 0.375

LP_minor = {carry_0}
LP_major = LP_minor + p24 + p32

 x1 x0

 y3 y2 y1 y0

 p02 p01 p00

 p12 p11 p10

p22 p21 p20

p32 p31 p30

n00

n10

n20

n30

MP LP_major LP_minor

E[pi,j] = 2-4(2-1) + 2-5(2-1) + 2-6 (2-1+2-1) = 0.0625

E[pi,j] = 2-2(2-1) + 2-3(2-1) + 2-4 (2-1+2-1) = 0.25

E[pi,j] = 2-1(2-1) + 2-2 (2-1+2-1) = 0.5

 carry_0 = y2

LP_minor = {carry_0}
LP_major = LP_minor+ p22+ p30+ n30

Approximate multiplier for first two LSB bits (PLSB_1 = P P3 P2)

Approximate multiplier for last two LSB bits (PLSB_2 = P P1)

 P P3 P2

P P1

 carry_0 = y2 y1

 (P4 P1 = {PMSB 0 0 0 } + {0 0 0 0 PLSB_1 0}
 (P4 P1 = {PMSB 0 0 0 } - {P4 P4 P4 P4 PLSB_1 0}

 (P2 P = P1 + {0 0 0 0 0 0 PLSB_2}
 (P2 P = P1 - {P2 P2 P2 P2 P2 P2 PLSB_2}

Figure 6: Splitting the LSB 4-bit multiplier into two approx-
imate multipliers of 2 bits each.

We combine the three multipliers to produce a multi-stage in-
cremental precision multiplier. Note that in the case of splitting an
8-bit multiplier into three stages of 4-bit, 2-bits and 2-bits, stage 2
and stage 3 of 2-bit multiplication can be performed using the same
multiplier in a time-multiplexed or folded manner [6]. This idea is
illustrated in Figure 7. The incremental-precision multiplier struc-
ture also requires a memory unit. The computation of intermediate
stages are stored in memory.

4-bit approximate multiplier

2-bit approximate multiplier

x[7:4]

x[3:2]

x[1:0]

prec

P_MSB

Carry_MSB

P_LSB

Carry_LSB

Memory

prec

P
4

2

2

4

2

4

4 6

6 8

Figure 7: Incremental-precision 8-bit multiplier using one
4-bit multiplier and one time-multiplexed 2-bit multiplier.
Intermediate outputs are stored in memory.

For example, if only a 4-bit precision output is demanded by
the application, the MSB multiplier functions to generate a 4-bit
output. The output along with a carry bit are stored in memory. If
the application now demands a 6-bit output, the LSB multiplier is

functional (with sign bit set to 0) and the memory unit is accessed
to retrieve the MSB outputs. The combination of the two outputs is
generated as the 6-bit output and also stored in memory along with
the carry generated from the second stage. This process continues
to provide incrementally higher precision outputs.

4 MULTI-LEVEL CLASSIFICATION
ALGORITHM

The incremental-precision components described in this paper can
be utilized in a multi-level classification setup where each stage of
the classification is based on different precision levels for feature
computation as well as classification. In this section, we describe
a general multi-level algorithm with a specific example presented
in later sections. The basic steps of the algorithm are illustrated in
Figure 8.

N-bit precision
classifier

N+2-bit precision
classifier

Correctly
classified
samples

N-bit
precision
samples

Selected
N-bit

precision
samples

Filter

Correctly
classified
samples

Stage 1

Stage 2

Figure 8: Steps of the multi-level classification algorithm
with increasing precision classifier at each stage.

Training algorithm:
• Start with a low-precision classifier which operates at a pre-
cision of N-bits. Samples which are far away from the classi-
fication boundary can be easily classified with this classifier.

• Determine a threshold to filter out samples which need to
be retrained in higher precision. This threshold could be
selected based a distance metric which indicates the distance
from the classification boundary.

• Using the determined threshold, select samples to be reclas-
sified in the next higher precision of N + l-bits. Here l is the
increment in precision between stages.

• This process can be continued till no further improvement
in classification accuracy is obtained or for a predetermined
number of steps.

Testing algorithm:
• For each test sample, use the first classifier of N -bit precision
and obtain a distance metric or probability measure.

• Use the threshold determined in training process to select
the samples which need to be reclassified.

• For the test samples which are reselected apply the next
N + l-bit precision classifier.

• Continue till all stages of classifiers are applied or till no test
sample is reselected.

We assume that training occurs offline and the testing/inference
algorithm is implemented on hardware. For the first step of testing,
a low-precision (N -bit) classifier is used. This implies that all com-
putation can be carried out using the top-level of the decomposed

hardware (Figure 1 and Figure 7). If a sample is reselected to be
classified at the next level, the bottom level of the decomposed
hardware is used to increment the precision of the classification
output. Note that it is not necessary to recompute the first N bits
of the classification output. Since most of the samples can be classi-
fied using low-precision (N -bit) classifiers, the increment operation
is utilized as needed. This leads to significant savings in energy
consumption.

5 EXPERIMENTAL RESULTS
In this section we discuss a binary classification problem based on
linear classifiers. Note that even though this is a simple example,
the operations involved (namely multiplication with weights and
addition of bias) are also fundamental to most machine learning
algorithms such as logistic regression, linear Support Vector Ma-
chines (SVM), perceptron etc. Hence, the techniques in this paper
can be applied to these algorithms as well after necessary exten-
sions.

5.1 Multi-level linear classification
This example considers classification between samples of the Fisher’s
Iris data set [7]. Two classes of data belonging to two species are
picked from this set. There are 50 samples in each category which
are randomly divided into training and test data. 60% of the samples
form the training set while 40% of the samples are considered for
testing. For simplicity, only two features out of the four available
features are considered. A linear classifier attempts to train weights
to fit a straight line that separates the data. The classification prob-
lem can then be defined as the following:

siдn(w1x1 +w2x2 +w0) > 0 =⇒ Class = 1 (5)

In this equation, the features are represented as x1 and x2 while the
weights are represented asw0,w1 andw2. We observe that while the
training process involves calculation of weights, the testing process
involves multiplication and addition operations. Hence, we incor-
porate the incremental-precision components in this classification
system.

Consider the multi-level classification algorithm described in
the previous section with a starting precision N = 2 bits and an
increment l = 2 bits. The plots of the data with the separating
line in different precisions are presented in Figure 9. Note that this
figure also presents a margin above and below the separating line
which represents the threshold calculated in the training process.
All samples lying beyond this threshold need not be retrained. The
calculation of the threshold value is obtained after computing the
valuew1x1 +w2x2 +w0 for each sample and setting the threshold
equal to the average of the magnitudes of the computed value
for all training samples. Note that other techniques for threshold
calculations can be used with associated trade-offs.

5.2 Accuracy of classification
The results of training using a full-precision (8-bit) classifier and
the multi-level classification algorithm are presented in Table 2.
The table also provides the number of samples reselected at each
stage. For the multi-level classification algorithm, the class labels
for the samples selected at each stage are replaced with new class

(a) All stages (b) Stage 1- Classifier

(c) Stage-2 Classifier (d) Stage-3 Classifier

Figure 9: Classification of samples using multi-level classifi-
cation algorithm.

Table 2: Accuracy of classification for the training and
testing process using full-precision single stage and
incremental-precision multi-level classifier

Classifier Training
accuracy

Samples
trained

Testing
accuracy

Samples
tested

Full-prec (8-bit) 93.33% 100% 95% 100%
Stage 1 (2-bit) 50 % 100% 50% 100%
Stage 2 (4-bit) 93.33% 56.67% 90% 77.50%
Stage 3 (6-bit) 95% 31.67% 95% 20%
Stage 4 (8-bit) 95% 21.67% 95% 12.5%

labels and the classification accuracy for the entire training set is
calculated. We observe that the classification accuracy improves
with each stage and the number of samples reselected at each step
also reduces.

Using the generated classifier models and the calculated thresh-
olds from the training process, we generate the test accuracy at each
stage of the algorithm. The test accuracy measures along with the
number of reselected samples are also presented in Table 2. Stage-4
does not provide any improvement in accuracy and hence the algo-
rithm can be stopped after 3 stages. These results are obtained using
an assumption that the components used to implement the testing
algorithm provide accurate precision values. In the next section
we provide practical implementation results along with the reduc-
tion in energy consumption after employing incremental-precision
components in hardware.

5.3 Test accuracy and reduction in energy
using incremental-precision components

The classifier using both single stage and multi-level algorithm
is implemented in Verilog Hardware Description Language and
synthesized using Design Compiler with a 65 nm technology library.

Table 3: Accuracy of the classifier based on implementations of the full-precision and multi-level algorithms

Classifier implemented
in hardware

With original thresholds After recalculation of thresholds
Testing accuracy Samples tested Testing accuracy Samples tested

Full-precision (8-bit) 92.5% 100% 92.5% 100%
Stage-1 (2-bit) 37.5% 100% 37.5% 100%
Stage-2 (4-bit) 72.5% 72.5% 85% 100%
Stage-3 (6-bit) 77.50% 17.5% 92.5% 35%

Table 4: Area, Power, Timing and Energy consumption per test sample for the single stage full-precision and multi-level
incremental precision algorithms (Numbers in paranthesis indicate values after recalculation of threshold)

Classifier Without time-multiplexing With time-multiplexing

Area
(um2)

Total
Power
(mW)

Total
time
(ns)

Energy per
test sample

(p J)

Area
(um2)

Total
Power
(uW)

Total
Time
(ns)

Energy per
test sample

(p J)
Full-precision (8-bit) 1123 1.480 167 0.155 1123 1.48 167 0.155

Stage-1 (2-bit) - 0.284 (0.284) 181 (181) - - 0.284 (0.284) 181 (181) -
Stage-2 (4-bit) - 0.234 (0.323) 150 (207) - - 0.249 (0.344) 151 (209) -
Stage-3 (6-bit) - 0.071 (0.143) 25 (50) - - 0.073 (0.145) 26 (53) -

Incremental-precision 987 0.589 (0.75) 356 (438) 0.068 (0.086) 867 0.606 (0.773) 358 (443) 0.072 (0.091)

All implementations are clocked at a frequency of 100 MHz and
performance is measured in terms of area, power and time required
for testing all samples as well as the energy required per sample.

The testing accuracy obtained is reported in Table 3. Note that
with a full-precision system, an accuracy of 92.5% can be obtained.
This is lower than the value obtained through simulation and can
be attributed to errors in the multiplication hardware. For the
incremental-precision system, we observe that using the original
thresholds calculated through simulation, high test accuracies can-
not be obtained. This is due to lack of accounting for the additional
approximation of the incremental-precision components. After re-
calculation of the thresholds, the incremental-precision system is
able to achieve the same accuracy as that of the fixed-width full-
precision classification system.

Performance measures as well as resource consumption after
synthesis are presented in Table 4. While the area consumption is
not dependent on the number of samples processed at each step,
the power consumption and timing requirements are presented
based on the number of samples processed. We present the energy
consumption per sample after summing the energy requirements
for each stage (obtained as a product of the power and timing re-
quirement) and then dividing by the total number of test samples.
Implementations both with time-multiplexing of the lower stage
and without time-multiplexing are discussed. For each implemen-
tation, the values before and after recalculation of thresholds are
also presented.

We observe that the energy consumption for the incremental-
precision system with the original thresholds is reduced by about
56% compared to the full-precision system. After recalculation of
thresholds, the energy reduction is about 45%. With the multiplexed
hardware, these values correspond to 53% and 41%, respectively.
While the implementation without multiplexing reduces the area
of the incremental-precision system by 12%, multiplexing further

reduces the area consumption by 22%. The improvements in energy
and area consumption are achieved at an expense of increase in the
time to process. This is because of the overheads associated with
comparison and combination. This timing overhead can be reduced
by use of pipelining techniques such that multiple samples can be
processed in parallel [6].

6 CONCLUSIONS
This paper presents a novel multi-level classification algorithm and
corresponding incremental-precision adders and multipliers that
can be used to implement it. Note that the incremental-precision
idea is not limited to the classifiers and can be applied to the features
as well. Also, the proposed algorithms and architectures are not
limited to linear classification and can be used in several machine
algorithms with more sophisticated classifiers. The corresponding
error-energy trade-off needs to be carefully considered.

REFERENCES
[1] Sai Zhang and Naresh R Shanbhag. 2016. Embedded Algorithmic Noise-Tolerance

for Signal Processing andMachine Learning Systems via Data Path Decomposition.
IEEE Transactions on Signal Processing 64, 13 (2016), 3338–3350.

[2] Kyung-Ju Cho, Kwang-Chul Lee, Jin-Gyun Chung, and Keshab K Parhi. 2004.
Design of low-error fixed-width modified booth multiplier. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 12, 5 (2004), 522–531.

[3] S Hamid Nawab, Alan V Oppenheim, Anantha P Chandrakasan, Joseph M Wino-
grad, and Jeffrey T Ludwig. 1997. Approximate signal processing. Journal of
VLSI signal processing systems for signal, image and video technology 15, 1-2 (1997),
177–200.

[4] Jongsun Park, Jung Hwan Choi, and Kaushik Roy. 2010. Dynamic bit-width
adaptation in DCT: an approach to trade off image quality and computation
energy. IEEE transactions on very large scale integration (VLSI) systems 18, 5 (2010),
787–793.

[5] Charbel Sakr, Ameya Patil, Sai Zhang, Yongjune Kim, and Naresh Shanbhag. 2016.
Understanding the Energy and Precision Requirements for Online Learning. arXiv
preprint arXiv:1607.00669 (2016).

[6] Keshab K Parhi. 1999. VLSI digital signal processing systems: design and imple-
mentation. (1999).

[7] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of human genetics 7, 2 (1936), 179–188.

	Abstract
	1 Introduction
	2 Incremental-precision Addition and Subtraction
	3 Incremental-precision Fixed-Width multipliers
	3.1 Fixed-width multipliers
	3.2 Approximate carry generation
	3.3 Two-stage incremental-precision multipliers
	3.4 Multi-stage incremental-precision multipliers

	4 Multi-level classification algorithm
	5 Experimental results
	5.1 Multi-level linear classification
	5.2 Accuracy of classification
	5.3 Test accuracy and reduction in energy using incremental-precision components

	6 Conclusions
	References

