
J Sci Comput
https://doi.org/10.1007/s10915-018-0761-3

EPIRK-W and EPIRK-K Time Discretization Methods

Mahesh Narayanamurthi1 · Paul Tranquilli1 ·
Adrian Sandu1 · Mayya Tokman2

Received: 20 February 2017 / Revised: 17 December 2017 / Accepted: 2 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Exponential integrators are special time discretization methods where the tradi-
tional linear system solves used by implicit schemes are replaced with computing the action
of matrix exponential-like functions on a vector. A very general formulation of exponential
integrators is offered by the Exponential Propagation Iterative methods of Runge–Kutta type
(EPIRK) family of schemes. The use of Jacobian approximations is an important strategy
to drastically reduce the overall computational costs of implicit schemes while maintaining
the quality of their solutions. This paper extends the EPIRK class to allow the use of inexact
Jacobians as arguments of thematrix exponential-like functions. Specifically, we develop two
new families of methods: EPIRK-W integrators that can accommodate any approximation
of the Jacobian, and EPIRK-K integrators that rely on a specific Krylov-subspace projection
of the exact Jacobian. Classical order conditions theories are constructed for these families.
Practical EPIRK-W methods of order three and EPIRK-K methods of order four are devel-
oped. Numerical experiments indicate that the methods proposed herein are computationally
favorable when compared to a representative state-of-the-art exponential integrator, and a
Rosenbrock–Krylov integrator.

Keywords Time integration · Exponential integrator · Krylov · B-series · Butcher trees

B Mahesh Narayanamurthi
maheshnm@vt.edu

Paul Tranquilli
ptranq@vt.edu

Adrian Sandu
sandu@cs.vt.edu

Mayya Tokman
mtokman@ucmerced.edu

1 Computational Science Laboratory, Department of Computer Science, Virginia Tech, Blacksburg,
VA 24060, USA

2 School of Natural Sciences, University of California, Merced, CA 95343, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0761-3&domain=pdf
http://orcid.org/0000-0002-4410-4499

J Sci Comput

Mathematics Subject Classification 65L05 · 65L04 · 65F60 · 65M22

1 Introduction

The following initial value problem for a system of ordinary differential equations (ODEs)

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tF , y(t) ∈ R
N (1)

arises in many applications including numerical solution of partial differential equations
(PDEs) using a method of lines. Different time discretization methods can then be applied
to solve (1) and approximate numerical solutions yn ≈ y(tn) at discrete times tn .

Runge–Kutta methods [9] are the prototypical one-step discretizations that use internal
stage approximations to propagate the numerical solution forward in time from tn to tn+1 =
tn + h. Explicit Runge–Kutta methods [9, Section II.2] perform inexpensive calculations
at each step, but suffer from stability restrictions on the time step size which makes them
inappropriate for solving stiff systems. ImplicitRunge–Kuttamethods [9, Section II.7] require
solution of non-linear systems of equations at each step that can be done, for instance, by
using a Newton-like approach. This eases the numerical stability restrictions and allows to
use large time step sizes for stiff problems, however it also increases the computational cost
per step.

Rosenbrock methods [10, Section IV.7] arise from the linearization of diagonally implicit
Runge–Kutta methods, and solve only linear systems of equations at each time step. In
Rosenbrock methods, the Jacobian of the ODE function (1)

J(t, y) = ∂f(t, y)
∂y

(2)

appears explicitly in the formulation. Consequentially, the order conditions theory of these
methods relies on using an exact Jacobian during computations. For the solution of large linear
systems any popular implementation of the Rosenbrock method will use Krylov projection-
based iterative methods like GMRES [23,35]. Early truncation of the iterative method is
equivalent to the use of an approximation of the Jacobian, and the overall scheme may
suffer from order reduction [30]. Rosenbrock-W (ROW) methods [10,34] mitigate this by
admitting arbitrary approximations of the Jacobian (A ≈ J). This is possible at the cost of
a vastly increased number of order conditions, and by using many more stages to allow for
enough degrees of freedom to satisfy them. Rosenbrock-K (ROK) methods [32] are built in
theROWframework bymaking use of a specificKrylov-based approximation of the Jacobian.
This approximation leads to a number of trees that arise in ROW order conditions theory
becoming isomorphic to one another, leading to a dramatic reduction in the total number of
order conditions.

Exponential integrators [1,3,4,7,12–16,18,19,24,27,28,33] are a class of timestepping
methods that replace the linear system solves in Rosenbrock style methods with operations
involving the action of matrix exponential-like functions on a vector. For many problems
these products of a matrix exponential-like function with a vector can be evaluated more
efficiently than solving the corresponding linear systems.

Both the W -versions [13] and K -versions [31] of exponential methods have been estab-
lished for particular formulations of exponential methods. This paper extends the theory of
W - and K -type methods to the general class of Exponential Propagation Iterative methods
of Runge–Kutta type (EPIRK) [27,28].

123

J Sci Comput

The remainder of the paper is laid out as follows. In Sect. 2, we describe the general
form of the EPIRK method and some simplifying assumptions that we make in this paper.
In Sect. 3, we derive the order conditions for an EPIRK-W method and construct methods
with two different sets of coefficients. In Sect. 4, we extend the K-theory, introduced in [32]
for Rosenbrock–Krylov methods, to EPIRK methods and construct an EPIRK-K method.
Section 5 addresses strategies to evaluate products involving exponential-like functions of
matrices and vectors that are present in the formulation of methods discussed in this paper.
Section 6 presents the numerical results, and conclusions are drawn in Sect. 7.

2 Exponential Propagation Iterative Methods of Runge–Kutta Type

A very general formulation of exponential integrators is offered by the EPIRK family of
methods, which was first introduced in [27]. As is typical for exponential methods, the
formulation of EPIRK is derived from the following integral form of the problem (1) on the
time interval [tn, tn + h]:

y(tn + h) = yn + h ϕ1
(
h Jn

)
f(yn) + h

∫ 1

0
eh Jn (1−θ) r

(
y(tn + θh)

)
dθ. (3)

Equation (3) is derived by splitting the right hand-side function of (1) into a linear term and
non-linear remainder using first-order Taylor expansion

y′ = f(yn) + Jn (y − yn) + r(y), r(y) := f(y) − f(yn) − Jn (y − yn), (4)

and using the integrating factor method to transform this ODE into an integral equation [28].
In Eq. (3) the Jacobian matrix (2) evaluated at time tn is Jn = J(tn, yn), and r(y) is the non-
linear remainder term of the Taylor expansion of the right-hand side function. The function
ϕ1(z) = (ez − 1)/z is the first one in the sequence of analytic functions defined by

ϕk(z) =
∫ 1

0
ez (1−θ) θk−1

(k − 1)! dθ =
∞∑

i=0

zi

(i + k)! , k = 1, 2, . . . , (5)

and satisfying the recurrence relation

ϕ0(z) = ez; ϕk+1(z) = ϕk(z) − 1/k!
z

, k = 1, 2, . . . ; ϕk(0) = 1

k! . (6)

As explained in [28], the construction of exponential integrators requires a numerical
approximation of the integral term in Eq. (3), and to compute exponential-likematrix function
times vector products ϕk(·) v that include the second term in the right hand side of (3) as
well as additional terms needed by the integral approximation.

Construction of an EPIRK-type scheme begins by considering a general ansatz [28] that
describes an s-stage method:

Yi = yn + ai,1 ψ i,1(gi,1 hAi,1) hf(yn) +
i∑

j=2

ai, j ψ i, j (gi, j h Ai, j) h�(j−1)r(yn),

i = 1, . . . , s − 1,

yn+1 = yn + b1 ψ s,1(gs,1 hAs,1) hf(yn) +
s∑

j=2

b j ψ s, j (gs, j h As, j) h�(j−1)r(yn), (7)

123

J Sci Comput

where Yi are the internal stage vectors; yn , also denoted as Y0, is the input stage vector;
and yn+1 is the final output stage of a single step. The j-th forward difference �(j)r(yn) is
calculated using the residual values at the stage vectors:

�(1)r(Yi) = r(Yi+1) − r(Yi), �(j)r(Yi) = �(j−1)r(Yi+1) − �(j−1)r(Yi).

Particular choices ofmatricesAi j , functionsψ i j and r(y) define classes of EPIRKmethods as
well as allow derivation of specific schemes. In this paper we will focus on general, so called
unpartitioned, EPIRK methods which can be constructed from (7) by choosing all matrices
as a Jacobian matrix evaluated at tn , i.e. Ai j = Jn , function r(y) to be the remainder of the
first-order Taylor expansion of f(y) as in (4) and functions ψ i j to be linear combinations of
ϕk’s:

ψ i, j (z) =
s∑

k=1

pi, j,k ϕk(z). (8)

Here we will also use the simplifying assumption from [28, eq. 25]

ψ i, j (z) = ψ j (z) =
j∑

k=1

p j,k ϕk(z). (9)

These choices lead to the class of general unpartitioned EPIRK schemes described by

Yi = yn + ai,1 ψ1(gi,1 hJn) hf(yn) +
i∑

j=2

ai, j ψ j (gi, j h Jn) h�(j−1)r(yn),

i = 1, . . . , s − 1,

yn+1 = yn + b1 ψ1(gs,1 hJn) hf(yn) +
s∑

j=2

b j ψ j (gs, j h Jn) h�(j−1)r(yn). (10)

Coefficients p j,k , ai, j , gi, j , and b j have to be determined from order conditions to build
schemes of specific order.

Remark 1 Computationally efficient strategies to evaluate exponential-like matrix function
times vector products vary depending on the size of theODE system.Approximating products
ψ(z)v constitutes the major portion of overall computational cost of the method. Taylor
expansion or Pade based approximations can be used to evaluate the products ψ(z)v for
small systems. For large scale problems, particularly those where matrices cannot be stored
explicitly and a matrix-free formulation of an integrator is a necessity, Krylov projection-
based methods become the de facto choice [28].

EPIRK methods of a given order can be built by solving either classical [28] or stiff [21]
order conditions. In this paper we will focus on the classically accurate EPIRK methods. A
classical EPIRK scheme is constructed by matching required number of Taylor expansion
coefficients of the exact and approximate solutions to derive order conditions. The order
conditions are then solved to compute the coefficients of the method. To ensure that the error
has the desired order, the exact Jacobian matrix Jn has to be used in the Taylor expansion
of the numerical solution. If the Jacobian or its action on a vector is not computed with full
accuracy, the numerical method will suffer from order reduction.

In this paper we construct EPIRK methods that retain full accuracy even with an approx-
imated Jacobian. The theory of using inexact Jacobians in the method formulation, first

123

J Sci Comput

proposed in [26] for implicit schemes, is extended to EPIRK methods. More specifically,
EPIRK-W methods that admit arbitrary approximations of the Jacobian while maintaining
full order of accuracy are derived in Sect. 3. The drawback of W -methods, as mentioned in
[10, section IV.7], is the very fast growth of the number of order conditions with increasing
order of the method. In such cases, significantly larger number of stages are typically needed
to build higher-order methods.

In [31,32] we developed K -methods, versions of W -methods that use a specific Krylov-
subspace approximation of the Jacobian, and dramatically reduce the number of necessary
order conditions.Herewe construct K -methods for EPIRKschemes in Sect. 4. The K -method
theory enables the construction of high order methods with significantly fewer stages than
W -methods. For example, we show that three stage EPIRK W -methods only exist up to
order three, whereas we derive here two three-stage fourth order K -methods. Furthermore,
as shown in the the numerical results in Sect. 6, for some problems K -methods have better
computational performance than traditional exponential integrators.

3 EPIRK-W Methods

An EPIRK-W method is formulated like a traditional EPIRK method (10) with the only
difference being the use of an inexact Jacobian (An) in place of the exact Jacobian (Jn).
Using the simplification (9) the method reads:

Yi = yn + ai,1 ψ1(gi,1 h An) hf(yn) +
i∑

j=2

ai, j ψ j (gi, j h An) h�(j−1)r(yn),

i = 1, . . . , s − 1,

yn+1 = yn + b1 ψ1(gs,1 h An) hf(yn) +
s∑

j=2

b j ψ j (gs, j h An) h�(j−1)r(yn). (11)

This requires the order conditions theory to be modified to accommodate the approximation.

3.1 Order Conditions Theory for EPIRK-W Methods

The classical order conditions for EPIRK-W methods result from matching the Taylor series
expansion coefficients of the numerical solution yn+1 up to a certain order with those from
the Taylor series expansion of the exact solution y(tn + h). The construction of order con-
ditions is conveniently expressed in terms of Butcher trees [9]. The trees corresponding to
the elementary differentials of the numerical solution are the TW -trees. TW -trees are rooted
Butcher trees with two different colored nodes—fat (empty) andmeagre (full)—such that the
end vertices are meagre and the fat vertices are singly branched. The TW -trees up to order
four are shown in Tables 1 and 2 following [31].

In TW -trees that correspond to elementary differentials of the Taylor expansion of numer-
ical solution, the meagre nodes represents the appearance of f and its derivatives. The fat
nodes represent the appearance of the inexact Jacobian An . It is useful to note that trees that
contain both meagre and fat nodes do not appear in the trees corresponding to the Taylor
expansion of the exact solution, as such an expansion does not contain the inexact Jacobian.

In order to construct the order conditions for theW -methodwe rely onB-series theory.AB-
series [9, Section II.12] is an operator that maps a set of of trees onto the set of real coefficients
corresponding to the coefficients of the elementary differentials in a Taylor expansion. If

123

J Sci Comput

Table 1 TW-trees up to order four (part one of two) [31]

τ
j j

k

j

k

j

kl

W-tree name τW1 τW2 τW3 τW4

K-tree name τ K1 τ K2 – τ K3

F(τ) f J f JK f K AJ K f K f JK L f K f L

a(τ) x1 x2 x3 x4

B# (hf(B(a, y))) 1 x1 0 x21
B# (hAB(a, y)) 0 0 x1 0

B#
(
ϕ j (h A)B(a, y)

)
c0x1 c0x2 c0x3 + c1x1 c0x4

τ
j

k

l

j

k

l

j

k

l

j

k

l

W-tree name τW5 τW6 τW7 τW8

K-tree name τ K4 – – –

F(τ) f JK f KL f L f JKAK L f L AJ K f KL f L AJ KAK L f L

a(τ) x5 x6 x7 x8

B# (hf(B(a, y))) x2 x3 0 0

B# (hAB(a, y)) 0 0 x2 x3

B#
(
ϕ j (h A)B(a, y)

)
c0x5 c0x6 c0x7 + c1x2 c0x8 + c1x3 + c2x1

τ
j

k
l

m

j

k l

m

j

k l

m

j

k

lm

W-tree name τW9 τW10 τW11 τW12

K-tree name τ K5 τ K6 – τ K7

F(τ) f JK LM f K f L f M f JK L f LM f M f K f JK LALM f M f K f JK f KLM f M f L

a(τ) x9 x10 x11 x12

B# (hf(B(a, y))) x31 x1x2 x1x3 x4

B# (hAB(a, y)) 0 0 0 0

B#
(
ϕ j (h A)B(a, y)

)
c0x9 c0x10 c0x11 c0x12

a : TW ∪ ∅ → R is a mapping from the set of TW trees and the empty tree to real numbers
the corresponding B-series is given by:

B(a, y) = a(∅) y +
∑

τ∈TW
a(τ)

h|τ |

σ(τ)
F(τ)(y).

123

J Sci Comput

Table 2 TW-trees up to order four (part two of two) [31]

τ
j

k

lm

j

k

l

m

j

k

l

m

W-tree name τW13 τW14 τW15

K-tree name τ K8 τ K9 –

F(τ) AJ K f KLM f L f M f JK f KL f LM f M f JK f KL ALM f M

a(τ) x13 x14 x15

B# (hf(B(a, y))) 0 x5 x6

B# (hAB(a, y)) x4 0 0

B#
(
ϕ j (h A)B(a, y)

)
c0x13 + c1x4 c0x14 c0x15

τ
j

k

l

m

j

k

l

m

j

k

l

m

W-tree name τW16 τW17 τW18
K-tree name – – –

F(τ) f JKAK L f LM f M f JKAK LALM f M AJ K f KL f LM f M

a(τ) x16 x17 x18

B# (hf(B(a, y))) x7 x8 0

B# (hAB(a, y)) 0 0 x5

B#
(
ϕ j (h A)B(a, y)

)
c0x16 c0x17 c0x18 + c1x5

τ
j

k

l

m

j

k

l

m

j

k

l

m

W-tree name τW19 τW20 τW2,1

K-tree name – – –

F(τ) AJ K f KL ALM f M AJ KAK L f LM f M AJ KAK LALM f M

a(τ) x19 x20 x21

B# (hf(B(a, y))) 0 0 0

B# (hAB(a, y)) x6 x7 x8

B#
(
ϕ j (h A)B(a, y)

)
c0x19 + c1x6 c0x20 + c1x7 + c2x2 c0x21 + c1x8 + c2x3 + c3x1

123

J Sci Comput

Here τ is a TW -tree and |τ | is the order of the tree (the number of nodes of the TW -tree), and
σ(τ) is the order of the symmetry group of the tree [5,28]. A simple algorithm for evaluating
σ(τ) is given in [28]. Lastly, F(τ)(y) is the elementary differential corresponding to the tree
τ evaluated at y.

We also make use of the operator B#(g), first defined in [31], which takes a B-series g
and returns its coefficients. Therefore:

B#(B(a, y)
) = a.

TK-trees, a subset of TW -trees, arise when the Jacobian is approximated in the Krylov-
subspace and are central to the discussion of K -methods, in the next section. Tables 1 and 2
list bothTW - andTK-trees up to order four and the corresponding tree names. The subsequent
rows of the two tables show the following:

– The elementary differentials corresponding to each TW -trees up to order four.
– A set of coefficients xi for an arbitrary B-series a(τ).
– The coefficients of theB-series resulting from composing the function f with theB-series

a(τ). The rules for composing B-series are discussed in [6,28].
– The coefficients of the B-series resulting from left-multiplying the B-series a(τ) by an

inexact Jacobian. The multiplication rule for B-series is explained in [6].
– The coefficients of the B-series resulting from left-multiplying the B-series a(τ) by

ϕ j (h An). The rules for multiplying a B-series byψ(h Jn), where Jn is the exact Jacobian
at yn , are given in [28]. The rules for multiplying a B-series by ψ(h An), for an arbitrary
matrix An , are given in [31].

In addition, we note that the B and B# operators are linear. Consequently, the B-series of the
sum of two arbitrary functions is the sum of the B-series of each and likewise, the operator
B# returns the sum of the coefficients of each lined up against corresponding elementary
differentials.

Using B-series operations, as described above, one can systematically construct the B-
series coefficients of the EPIRK-W numerical solution. This is achieved in Algorithm 1.
The algorithm starts by initializing the set of B-series coefficients to those of the solution
at the current time step, yn . Next, it operates on the sequence of coefficients by applying
the B-series operations that correspond to the mathematical calculations performed during
each stage of the EPIRK-W method. All B-series operations are done on coefficient sets
truncated to the desired order (order four herein). We repeat this process for each internal
stage, and finally for the last stage, to obtain the coefficients of the B-series corresponding
to the numerical solution of one EPIRK-W step.

We now recall the following definition:

Definition 1 (Density of a tree [5,9]) The density γ (τ) of a tree τ is the product over all
vertices of the orders of the sub-trees rooted at those vertices.

And we have the following theorem:

Theorem 1 (B-series of the exact solution) The B-series expansion of the exact solution at
the next step y(tn + h), performed over TW-trees, has the coefficients:

a(τ) =
{
0 τ ∈ TW � T,

γ (τ) τ ∈ T .

where T is the set of trees corresponding to the exact solution.

123

J Sci Comput

Algorithm 1 Compute the B-series coefficient of numerical solution
1: Input: yn
 B-series coefficient of the current numerical solution.
2: for i = 1 : s − 1 do
 Do for each internal stage of the method
3: u = B#(h f(B(yn, y)))
 Composition of f with B-series of the current solution.
4: u = B#(ψ i,1(h gi,1 An) · B(u, y))
 Multiplication by ψ function
5: u = ai,1 ∗ u
 Scaling by a constant
6: for j = 2 : i do
7: v = B#(h �(j−1)r(yn))
 Recursive forward-difference
8: v = B#(ψ i, j (h gi, j An) · B(v, y))
9: u = u + ai, j ∗ v
10: end for
11: Yi = yn + u
 Addition of two B-series
12: end for
13: u = B#(h f(B(yn, y)))
14: u = B#(ψs,1(h gs,1 An) · B(u, y))
15: u = b1 ∗ u
16: for j = 2 : s do
17: v = B#(h �(j−1)r(yn))

18: v = B#(ψs, j (h gs, j An) · B(v, y))
19: u = u + b j ∗ v
20: end for
21: yn+1 = yn + u
22: Output: yn+1
 B-series coefficient of the next step numerical solution.

Proof First part of the proof follows from the observation that the elementary differentials in
the B-series expansion of the exact solution cannot have the approximate Jacobian appearing
anywhere in their expressions. Second part of the proof follows from [9, Theorem 2.6, 2.11]
and [5, Subsection 302, 380]. �

EPIRK-W order conditions are obtained by imposing that the B-series coefficients of the
numerical solution match the B-series coefficients of the exact solution up to the desired
order of accuracy.

3.2 Construction of Practical EPIRK-W Integrators

We now focus on constructing EPIRK-W methods (11) with three stages. Such a method
using an approximate Jacobian reads:

Y1 = yn + a1,1 ψ1,1(g1,1 h An) hf(yn),

Y2 = yn + a2,1 ψ2,1(g2,1 h An) hf(yn) + a2,2 ψ2,2(g2,2 h An) h�(1)r(yn),

yn+1 = yn + b1 ψ3,1(g3,1 h An) hf(yn) + b2 ψ3,2(g3,2 h An) h�(1)r(yn)

+ b3 ψ3,3(g3,3 h An) h�(2)r(yn).

(12)

The order conditions corresponding to trees τW
1 . . . τW

8 of the three stage EPIRK-W
method (12) are given in Table 3. The difference between B-series coefficients of the exact
solution and of the numerical solution corresponding to τW

14 turns out to be equal to −1/24
and cannot be zeroed out. τW

14 is a tree that has four meagre nodes in it and appears in the
B-series expansions of both the exact solution and the numerical solution. The conclusion
is that three stage EPIRK-W methods with the simplified choice of ψ i, j (z) given in Eq. (9)
cannot achieve order four. Consequently, we will limit our solution procedure to construct-
ing third order EPIRK-W methods by satisfying the above eight order conditions. We use

123

J Sci Comput

Table 3 Order conditions for the three stage EPIRK-W method

Tree Order Order condition: B#(yn+1) − B#(y(tn + h)
) = 0

τW1 1 b1 p1,1 − 1 = 0

τW2 2 1
6 (6a1,1 b2 p1,1 p2,1 + 3a1,1 b2 p1,1 p2,2 − 12a1,1 b3 p1,1 p3,1
+ 6a2,1 b3 p1,1 p3,1 − 6a1,1 b3 p1,1 p3,2 + 3a2,1 b3 p1,1 p3,2
− 2a1,1 b3 p1,1 p3,3 + a2,1 b3 p1,1 p3,3 − 3) = 0

τW3 2 1
6 p1,1 (3b1 g3,1 − 6a1,1 b2 p2,1 − 3a1,1 b2 p2,2
+ 12a1,1 b3 p3,1 − 6a2,1 b3 p3,1 + 6a1,1 b3 p3,2
−3a2,1 b3 p3,2 + 2a1,1 b3 p3,3 − a2,1 b3 p3,3) = 0

τW4 3 1
6

(
6a21,1 b2 p2,1 p21,1 + 3a21,1 b2 p2,2 p21,1 − 12a21,1 b3 p3,1 p21,1

+ 6a22,1 b3 p3,1 p21,1 − 6a21,1 b3 p3,2 p21,1 + 3a22,1 b3 p3,2 p21,1
− 2a21,1 b3 p3,3 p21,1 + a22,1 b3 p3,3 p21,1 − 2

)
= 0

τW5 3 1
12 (12a1,1 a2,2 b3 p1,1 p2,1 p3,1 + 6a1,1 a2,2 b3 p1,1 p2,2 p3,1
+ 6a1,1 a2,2 b3 p1,1 p2,1 p3,2 + 3a1,1 a2,2 b3 p1,1 p2,2 p3,2
+ 2a1,1 a2,2 b3 p1,1 p2,1 p3,3 + a1,1 a2,2 b3 p1,1 p2,2 p3,3 − 2) = 0

τW6 3
1
12 p1,1 (6a1,1 b2 g1,1 p2,1 − 12a1,1 a2,2 b3 p3,1 p2,1
− 6a1,1 a2,2 b3 p3,2 p2,1 − 2a1,1 a2,2 b3 p3,3 p2,1
+ 3a1,1 b2 g1,1 p2,2 − 12a1,1 b3 g1,1 p3,1 + 6a2,1 b3 g2,1 p3,1
− 6a1,1 a2,2 b3 p2,2 p3,1 − 6a1,1 b3 g1,1 p3,2
+ 3a2,1 b3 g2,1 p3,2 − 3a1,1 a2,2 b3 p2,2 p3,2 − 2a1,1 b3 g1,1 p3,3
+ a2,1 b3 g2,1 p3,3 − a1,1 a2,2 b3 p2,2 p3,3) = 0

τW7 3 1
24 p1,1 (12a1,1 b2 g3,2 p2,1 − 24a1,1 a2,2 b3 p3,1 p2,1
− 12a1,1 a2,2 b3 p3,2 p2,1 − 4a1,1 a2,2 b3 p3,3 p2,1
+ 4a1,1 b2 g3,2 p2,2 − 24a1,1 b3 g3,3 p3,1 + 12a2,1 b3 g3,3 p3,1
− 12a1,1 a2,2 b3 p2,2 p3,1 − 8a1,1 b3 g3,3 p3,2
+ 4a2,1 b3 g3,3 p3,2 − 6a1,1 a2,2 b3 p2,2 p3,2 − 2a1,1 b3 g3,3 p3,3
+ a2,1 b3 g3,3 p3,3 − 2a1,1 a2,2 b3 p2,2 p3,3) = 0

τW8 3 1
24 p1,1

(
4b1 g

2
3,1 − 12a1,1 b2 g1,1 p2,1 − 12a1,1 b2 g3,2 p2,1

− 6a1,1 b2 g1,1 p2,2 − 4a1,1 b2 g3,2 p2,2 + 24a1,1 b3 g1,1 p3,1
− 12a2,1 b3 g2,1 p3,1 + 24a1,1 b3 g3,3 p3,1 − 12a2,1 b3 g3,3 p3,1
+ 24a1,1 a2,2 b3 p2,1 p3,1 + 12a1,1 a2,2 b3 p2,2 p3,1
+ 12a1,1 b3 g1,1 p3,2 − 6a2,1 b3 g2,1 p3,2 + 8a1,1 b3 g3,3 p3,2
− 4a2,1 b3 g3,3 p3,2 + 12a1,1 a2,2 b3 p2,1 p3,2
+ 6a1,1 a2,2 b3 p2,2 p3,2 + 4a1,1 b3 g1,1 p3,3
− 2a2,1 b3 g2,1 p3,3 + 2a1,1 b3 g3,3 p3,3 − a2,1 b3 g3,3 p3,3
+ 4a1,1 a2,2 b3 p2,1 p3,3 + 2a1,1 a2,2 b3 p2,2 p3,3

) = 0

Mathematica® to solve the order conditions using two different approaches, as discussed
next.

First approach to solving the order conditions In the first approachwe seek tomake the terms
of each order condition as similar to another as possible. We start the solution process by
noticing that the first order condition trivially reduces to the substitution b1 → 1/p1,1. The
substitution p3,2 → −2p3,1 will zero out the following four terms: −12a1,1 b3 p1,1 p3,1 +
6a2,1 b3 p1,1 p3,1 − 6a1,1 b3 p1,1 p3,2 + 3a2,1 b3 p1,1 p3,2 , in order conditions τW

2 and τW
3

and hence reducing the complexity of the two conditions. It is immediately observed that
g3,1 → 1 as all the other terms in order conditions τW

2 and τW
3 are the same. Additionally,

we make a choice that g3,3 → 0. After making the substitutions, we solve order condition
τW
2 or τW

3 to get,

123

J Sci Comput

Table 4 Coefficients for epirkw3a

a =
[

1
2 0 0

0 1 0

]

,

[
b
b̂

]
=

[3
4

1
2 1

3
4

3
4

6
5

]

, g =
⎡

⎢
⎣

2
3 0 0

0 0 0
1 3

5 0

⎤

⎥
⎦ , p =

⎡

⎢
⎣

4
3 0 0

1 2 0
0 0 3

4

⎤

⎥
⎦ .

p3,3 → 3(2a1,1 b2 p1,1 p2,1 + a1,1 b2 p1,1 p2,2 − 1)

b3 p1,1 (2a1,1 − a2,1)
.

This substitution results in a number of terms in multiple order conditions having the expres-
sion (2a1,1 − a2,1) in the denominator. So we arbitrarily choose a2,1 → 2a1,1 − 1. The
order conditions are far simpler now with several terms having the factor (−1 + 2a1,1) and
its powers in their expression. We choose a1,1 → 1/2. Following this substitution, we can
solve from order condition τW

4 that p1,1 → 4/3. After plugging in the value for p1,1 , order
conditions τW

5 and τW
6 suggest that g1,1 → 2/3. Now order conditions τW

5 , τW
6 , τW

7 and τW
8

have the following coefficients as part of their expressions: a2,2 , p2,1 , p2,2 , g3,2 and b2 .
We arbitrarily set p2,2 → 2p2,1 and solve for the remaining coefficients to obtain

b2 → 3a2,2 p2,1 + 1

8a2,2 p22,1
and g3,2 → 12 a2,2 p2,1

5(3 a2,2 p2,1 + 1)
.

We now select arbitrary values for some of the remaining coefficients. We choose p2,1 → 1,
a2,2 → 1, b3 → 1, a1,2 → 0, a1,3 → 0, a2,3 → 0, p3,1 → 0, p2,3 → 0, p1,2 → 0,
p1,3 → 0, g1,2 → 0, g1,3 → 0, g2,1 → 0, g2,2 → 0, and g2,3 → 0.

In order to solve for a second order embedded method we rewrite the final stage of the
method with new coefficients b̂i . Plugging in the substitutions that have been arrived at while
solving the order conditions for the third ordermethod results in a set of newconditions in only
the b̂i . It is again straightforward to observe that b̂1 → 1/p1,1. We next solve the conditions
for TW -trees up to order = 2. Solving order conditions τW

2 and τW
3 we get b̂3 → −3+ 8 b̂2.

The resulting coefficients for a third-order EPIRK-W method (epirkw3a) with an embed-
ded second-order method are given in Table 4.

The choices that we have made for the coefficients a’s, b’s, g’s and p’s result in the sum of
coefficients on trees τW

5 , τW
6 , τW

7 and τW
8 to sum to zero in the embedded method no matter

what value is chosen for b̂2. And when we choose An = Jn , the exact Jacobian, trees τW
5 ,

τW
6 , τW

7 and τW
8 are the same tree and it turns out that we incidentally solve the embedded

method up to third order as well. To get a second-order embedded method, we need to make
a, g and p be independent of b and solve separately for b̂.

Second approach to solving the order conditions In this approach we impose a horizontal
structure on the g coefficients akin to the horizontally adaptive method described in [21]. In
order to impose a horizontal structure on gwemake the following substitutions: g1,2 → g1,1 ,
g1,3 → g1,1 , g2,2 → g2,1 , g2,3 → g2,1 , g3,2 → g3,1 , and g3,3 → g3,1 . We also note that
the first order condition reduces to b1 → 1/p1,1 again. Order-conditions τW

2 and τW
3 imply

g3,1 → 1. We solve order-conditions τW
2 and τW

3 and get two different solutions for a subset
of the variables. We plugin one of the two solutions and solve order conditions τW

4 , τW
5 and

τW
6 . We continue this process of solving a subset of order conditions, each time plugging the
result back into the remaining order conditions. This process led to the following family of
order three method coefficients:

123

J Sci Comput

Table 5 Coefficients for epirkw3b

a =
[
0.22824182961171620396 0 0
0.45648365922343240794 0.33161664063356950085 0

]
,

b =
⎡

⎣
1

2.0931591383832578214
1.2623969257900804404

⎤

⎦

T

,

b̂ =
⎡

⎣
1

2.0931591383832578214
1

⎤

⎦

T

,

g =
⎡

⎣
0 0 0

0.34706341174296320958 0.34706341174296320958 0.34706341174296320958
1 1 1

⎤

⎦ ,

p =
⎡

⎣
1 0 0
0 2.0931604100438501004 0
1 1 1

⎤

⎦ .

Table 6 Coefficients for epirkw3c

a =
[282

311 0 0

294
311

− 7
94 0

]

,

[
b
b̂

]
=

[
1 − 3421

987
− 622
105

1 13
9 1

]

, g =

⎡

⎢⎢
⎣

1
5 0 0

1
8

1
8 0

1 1 1

⎤

⎥⎥
⎦ , p =

⎡

⎢
⎣

1 0 0
1
2

1
2 0

1
3

1
3

1
3

⎤

⎥
⎦ .

g1,2 → g1,1 , g1,3 → g1,1 , g2,2 → g2,1 , g2,3 → g2,1 , g3,2 → g3,1 , g3,3 → g3,1 ,

b1 → 1

p1,1
, b2 → − a2,2 (3a2,1 p1,1 − 4)

2a22,1 p21,1
, b3 → − 3a2,1 p1,1 − 4

a22,1 p21,1 (6p3,1 + 3p3,2 + p3,3)
,

p2,1 → 0, a1,1 → a2,1
2

, g3,1 → 1, g2,1 → 2(3a2,1 g1,1 p1,1 − a2,1 p1,1 − 2g1,1)

3a2,1 p1,1 − 4
,

p2,2 → −
2

(
9a1,1 a2,1 a2,2 p1,1 p2,1 − 6a1,1 a2,1 p1,1 − 12a1,1 a2,2 p2,1 + 8a1,1 + 6a22,1 p1,1 − 4a2,1

)

3a1,1 a2,2 (3a2,1 p1,1 − 4)
.

(13)

After making the above substitutions in the embedded method, we obtain the following
solutions for the embedded coefficients:

b̂1 → 1

p1,1
, b̂2 → −a2,2 (3a2,1 p1,1 − 4)

2a22,1 p
2
1,1

,

with b̂3 a free parameter that can be chosen to obtain a second order embedded method.
A solution to the above family leads to the third order EPIRK-W method (epirkw3b) in

Table 5, with a second order embedded method.
Additionally, we derived epirkw3c, a third order W -method with a second order embed-

ded method, to have full a, b, g and p coefficient matrices such that all ψ function products
appearing in the three stage formulation (12) need to be computed and contribute to the final
one-step solution. Table 6 lists the coefficients for epirkw3c.

123

J Sci Comput

4 EPIRK-K Methods

W -methods have the advantage that any approximation of the Jacobian that ensures stability
can be used, therefore they have the potential for attaining excellent computational efficiency
in comparison to methods that require exact Jacobians. The drawback of the W -methods,
however, is the very large number of order conditions that need to be solved for constructing
the method [10, Section IV.7].

In order to reduce the number of order conditions Krylov-based methods (K -methods)
were developed for Rosenbrock integrators in [32] and for exponential integrators in [31].
K -methods are built in the framework of W -methods and use a very specific approximation
to the Jacobian constructed in the Krylov space. This approximation allows TW -trees with
linear sub-trees having fat root to be re-colored (as meagre), leading to the new class of TK-
trees. The recoloring results in substantially fewer trees, and therefore fewer order conditions
for the K -methods [32, Lemma 3.2, 3.3].

In this section we derive K -methods in the framework of EPIRK integrators.

4.1 Krylov-Subspace Approximation of Jacobian

K -methods build theKrylov-subspaceM-dimensional Krylov-subspaceKM ,M � N , based
on the exact Jacobian Jn and the ODE function value fn at the current time step tn :

KM = span{fn, Jnfn, J2nfn, . . . , JM−1
n fn}. (14)

The modified Arnoldi iteration [35] computes an orthonormal basisV and upper-Hessenberg
matrix H such that:

KM = span{v1, . . . , vM }, V = [v1, . . . , vM] ∈ R
N×M ,

VTV = IM , H = VT JnV ∈ R
M×M . (15)

Using H and V the approximation of the Jacobian matrix Jn in the Krylov sub-space is
defined as

An = VHVT = VVT JnVVT ∈ R
N×N . (16)

This approximation of the Jacobian is used by K -methods. The important properties of this
approximation are given by the following Lemmas from [31].

Lemma 1 (Powers of An [31]) Powers of An: Ak
n = VHkVT for any k ≥ 1.

Lemma 2 (Evaluation of ϕ functions (5) on the approximate Jacobian (16) [31]) We have
that:

ϕk(h γ An) = 1

k!
(
IN − VVT

)
+ Vϕk(h γ H)VT , k = 1, 2,

In order to derive the Krylov formulation of the EPIRK methods (12) we need to extend
Lemma 2 to the evaluation of ψ functions (9). We have the following result.

Lemma 3 (Evaluation of ψ functions (9) on the approximate Jacobian (16))

ψ j (h γ An) = p̃ j

(
IN − VVT

)
+ Vψ j (hγH) VT , j = 1, 2, . . . where p̃ j =

j∑

k=1

p j,k

k! .

123

J Sci Comput

Proof From the definition (9) we have:

ψ j (hγAn) =
j∑

k=1

p j,k ϕk(h γ An)

=
j∑

k=1

p j,k

[
1

k! (IN − VVT) + Vϕk(h γ H)VT
]

= (IN − VVT)

[j∑

k=1

p j,k

k!
]

+ Vψ j (hγH)VT

= p̃ j (IN − VVT) + Vψ j (hγH)VT .

�

4.2 Formulation of EPIRK-K Methods

We now derive the Krylov-subspace formulation of the EPIRK methods, which will be
called EPIRK-K methods. For this we begin with the EPIRK-W formulation (11) and use
the Jacobian approximation (16). The first step in the method derivation is to split all vectors
appearing in the method formulation (11) into components within the Krylov-subspace and
components orthogonal to it, as follows:

1. Splitting the internal stage vectors leads to:

Yi = Vλi + Y⊥
i where VTYi = λi ,

(
IN − VVT

)
Yi = Y⊥

i , (17)

where Y0 ≡ yn .
2. Splitting the right-hand side function evaluated at the internal stage vectors gives:

fi := f(Yi) = Vηi + f⊥i where VT fi = ηi ,
(
IN − VVT

)
fi = f⊥i , (18)

where f0 ≡ f(yn).
3. Splitting the non-linear Taylor remainder terms of the right-hand side functions yields:

r(Yi) = f(Yi) − f(yn) − An (Yi − yn) = fi − f0 − VHVT (Yi − yn),

where VT r(Yi) = ηi − η0 − H (λi − λ0),(
IN − VVT

)
r(Yi) = f⊥i − f⊥0 . (19)

4. Splitting the forward differences of the non-linear remainder terms leads to:

r̃(j−1) := �(j−1)r(yn) = Vd(j−1) + r̃⊥
(j−1),

where VT r̃(j−1) = d(j−1),
(
IN − VVT

)
r̃(j−1) = r̃⊥

(j−1).
(20)

In the above equations, Vλi , Vηi and Vd(j−1) are components of Yi , fi and �(j−1)r(yn) in
the Krylov-subspace, whereas Y⊥

i , f
⊥
i and r̃⊥

(j−1) lie in the orthogonal subspace.
Using the above equations and Lemma 3, the intermediate stage equations of the method

(11)

Yi = yn + ai,1 ψ1

(
gi,1 h VHVT

)
hf(yn) +

i∑

j=2

ai, j ψ j

(
gi, j h VHVT

)
h�(j−1)r(yn),

(21)

123

J Sci Comput

become:

Yi = Vλi + Y⊥
i = yn + h ai,1

(
p̃1 (f0 − Vη0) + Vψ1(h gi,1H)η0

)

+
i∑

j=2

h ai, j

(
p̃ j r̃⊥

(j−1) + Vψ j (h gi, j H)d(j−1)

)
, (22)

where r̃⊥
(j−1) and d(j−1) can be proved to be, as is done in “Appendix B”,

d(j−1) =
j−1∑

k=0

(
(−1)k

(
j − 1

k

)
η j−1−k − H

(
(−1)k

(
j − 1

k

)
λ j−1−k

))
, (23a)

r̃⊥
(j−1) =

j−1∑

k=0

(
(−1)k

(
j − 1

k

)
(f j−1−k − Vη j−1−k)

)
. (23b)

The reduced stage vector for the K -method is obtained by multiplying the full stage vector
in Eq. (22) by VT from the left,

λi = λ0 + h ai,1ψ1(h gi,1H) η0 +
i∑

j=2

h ai, j ψ j (h gi, j H)d(j−1), (24)

and the component of the full stage vector, when multiplied by (I −VVT), in the orthogonal
subspace is,

Y⊥
i = (yn − Vλ0) + h ai,1 p̃1 (f0 − Vη0) +

i∑

j=2

h ai, j p̃ j r̃⊥
(j−1). (25)

The full-stage vector can be recovered by first projecting the reduced stage vector λi back
into full space and adding the piece that is orthogonal to it, Y⊥

i , as done in Eq. (22).
Similarly, the computation of the next solution in the method (11)

yn+1 = yn + b1 ψ s,1(gs,1 h An) hf(yn) +
s∑

j=2

b j ψ s, j (gs, j h An) h�(j−1)r(yn), (26)

becomes:
yn+1 = Vλs + y⊥

n+1, (27)

where

λs = λ0 + h b1 ψ1(h gs,1H)η0 +
s∑

j=2

h b j ψ j (h gs, j H)d(j−1), (28)

and

y⊥
n+1 = (yn − Vλ0) + h b1 p̃1 (f0 − Vη0) +

s∑

j=2

h b j p̃ j r̃⊥
(j−1). (29)

One step of the resulting EPIRK-K method (for an autonomous system) is summarized in
Algorithm 2.

123

J Sci Comput

Algorithm 2 EPIRK-K
1: f0 := f(yn)
 Repeat for every timestep in the timespan
2: Jn := J(yn)

3: [H,V] = Arnoldi(Jn , f0)
4: λ0 = VT yn
5: η0 = VT f0
6: for i = 1 : s − 1 do
 Do for each stage of the method

7: d(i−1) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , if i = 1
i−1∑

k=0

(
(−1)k

(
i − 1

k

)
ηi−1−k − H

(
(−1)k

(
i − 1

k

)
λi−1−k

))
, if i ≥ 2

8: r̃⊥
(i−1) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , if i = 1
i−1∑

k=0

(
(−1)k

(
i − 1

k

)
(fi−1−k − V ηi−1−k)

)
, if i ≥ 2

9: λi = λ0 + h ai,1 ψ1(h gi,1H) η0 +
i∑

j=2

h ai, j ψ j (h gi, j H)d(j−1)

10: Yi = V λi + (yn − V λ0) + h ai,1 p̃1 (f0 − V η0) +
i∑

j=2

h ai, j p̃ j r̃
⊥
(j−1)

11: fi = f(Yi)
12: ηi = VT fi
13: end for

14: d(s−1) =
s−1∑

k=0

(
(−1)k

(
s − 1

k

)
ηs−1−k − H

(
(−1)k

(
s − 1

k

)
λs−1−k

))

15: r̃⊥
(s−1) =

s−1∑

k=0

(
(−1)k

(
s − 1

k

)
(fs−1−k − V ηs−1−k)

)

16: λs = λ0 + h b1 ψ1(h gs,1H) η0 +
s∑

j=2

h b j ψ j (h gs, j H)d(j−1)

17: yn+1 = V λs + (yn − V λ0) + h b1 p̃1 (f0 − V η0) +
s∑

j=2

h b j p̃ j r̃
⊥
(j−1)

4.3 Order Conditions Theory for EPIRK-K Methods

K -methods construct a single Krylov-subspace per timestep, and use it to approximate the
Jacobian. All stage vectors are also computed in this reduced space, before being projected
back into the full space between successive stages. The order condition theory accounts for
this computational procedure [32, Theorem 3.6].

Before we discuss the order conditions for the K -methods, we define the trees that arise
in the expansion of their solutions. Recalling that a linear tree is one where each node has
only one child, consider the following definition:

Definition 2 (TK-Trees [32])

T K =
{
TW-trees: no linear sub-tree has a fat (empty) root

}
.

T K (k) =
{
TW-trees: no linear sub-tree of order � k has a fat (empty) root

}
.

123

J Sci Comput

Theorem 2 Trees corresponding to series expansion of the numerical solution of K -method
with Krylov-subspace dimension M are T K (M).

Proof Using Lemmas 1, 2, 3, and [31, Lemmas 3, 4] we arrive at the desired result. �

The order conditions are derived frommatching the coefficients of the B-series expansion

of the numerical solution to those of the B-series expansion of the exact solution. If the
expansion is made in the elementary differentials corresponding to the TK trees, then for a
fourth order method there is a single additional tree (τ K

8) in the numerical solution having
both meagre and fat nodes in comparison to the T -trees up to order four for a classical EPIRK
method. In contrast with theW -method that has twenty-one order conditions, the K -method
has just nine for a fourth order method, which is almost the same as a classical EPIRK having
eight.

As mentioned earlier, TK-trees come from re-coloring all the linear sub-trees with a fat
root as meagre in the TW -trees. This significantly reduces the number of order conditions for
the K -method since groups of TW -trees become isomorphic to one another after recoloring.
TK-trees up to order four are given in [31]. This also indicates that the coefficients in front of
theseTK-trees in theB-series expansion can be obtained by summing together the coefficients
of TW -trees, which become isomorphic to one another, from the corresponding expansion.

The order four conditions for EPIRK-K methods with three stages (12) are discussed next
and are summarized in Table 7.

Corollary 1 Any EPIRK-K -method of order p gives rise to a classical EPIRK method of
order p (with the same coefficients).

Proof The proof follows directly from comparing the set of T -trees to TK-trees. �

Corollary 2 Any classical EPIRK method of order p ≥ 3 gives rise to an equivalent K -
method of order at least three (with the same coefficients).

Proof The proof follows directly from comparing the set of T -trees to TK-trees. �

4.4 Construction of Practical EPIRK-K Integrators

Note that order condition τ K
8 is the additional order condition that was mentioned earlier

whose TW -tree could not be re-colored according to [32, Lemmas 3.2, 3.3]. This is the only
tree that is not present in T -trees up to order 4, and therefore we impose that the associated
coefficient is equal to zero. To solve the order conditions we use Mathematica® and the
solution procedure described for the first variant of EPIRK-W method where we make terms
of each order condition similar to one another by making suitable substitutions. We arrive
at the EPIRK-K method (epirkk4a) of order four in Table 8, with an embedded method of
order three.

We also derived epirkk4b, a fourth-order K -methodwith a third order embeddedmethod,
whose coefficients are given in Table 9. epirkk4b has full a, b, g and pmatrices so that every
ψ function product appearing in the three stage formulationwill contribute to the computation
of the final one-step solution. Furthermore, the g coefficients were chosen so as to minimize
the number of matrix exponential operations needed for the three stage formulation.

The theory of K -methods gives a lower bound on theKrylov-subspace size that guarantees
the order of convergence [32, Theorem 3.6]. This bound depends only on the order of conver-
gence of the method and not on the dimension of the ODE system. Here we have constructed
two fourth order EPIRK-K methods, whose coefficients are listed in Tables 8 and 9, and they

123

J Sci Comput

Table 7 Order conditions for the three stage EPIRK-K method

Tree # Order Order condition: B#(yn+1) − B#(y(tn + h)
) = 0

τ K1 1 b1 p1,1 − 1 = 0

τ K2 2 1
2 (b1 g3,1 p1,1 − 1) = 0

τ K3 3

1
6

(
6a21,1 b2 p21,1 p2,1 + 3a21,1 b2 p21,1 p2,2 − 12a21,1 b3 p21,1 p3,1

− 6a21,1 b3 p21,1 p3,2 − 2a21,1 b3 p21,1 p3,3 + 6a22,1 b3 p21,1 p3,1

+ 3a22,1 b3 p21,1 p3,2 + a22,1 b3 p21,1 p3,3 − 2
)

= 0

τ K4 3 1
6

(
b1 g

2
3,1 p1,1 − 1

)
= 0

τ K5 4

1
12

(
12a31,1 b2 p31,1 p2,1 + 6a31,1 b2 p31,1 p2,2 − 24a31,1 b3 p31,1 p3,1

− 12a31,1 b3 p31,1 p3,2 − 4a31,1 b3 p31,1 p3,3 + 12a32,1 b3 p31,1 p3,1

+ 6a32,1 b3 p31,1 p3,2 + 2a32,1 b3 p31,1 p3,3 − 3
)

= 0

τ K6 4

1
24

(
12a21,1 b2 g1,1 p21,1 p2,1 + 6a21,1 b2 g1,1 p21,1 p2,2

− 24a21,1 b3 g1,1 p21,1 p3,1 − 12a21,1 b3 g1,1 p21,1 p3,2
− 4a21,1 b3 g1,1 p21,1 p3,3 + 12a22,1 b3 g2,1 p21,1 p3,1

+ 6a22,1 b3 g2,1 p21,1 p3,2 + 2a22,1 b3 g2,1 p21,1 p3,3 − 3
)

= 0

τ K7 4

1
12

(
12a21,1 a2,2 b3 p21,1 p2,1 p3,1 + 6a21,1 a2,2 b3 p21,1 p2,1 p3,2

+ 2a21,1 a2,2 b3 p21,1 p2,1 p3,3 + 6a21,1 a2,2 b3 p21,1 p2,2 p3,1

+ 3a21,1 a2,2 b3 p21,1 p2,2 p3,2 + a21,1 a2,2 b3 p21,1 p2,2 p3,3 − 1
)

= 0

τ K8 4

1
24 p

2
1,1

(
−24a21,1 a2,2 b3 p2,1 p3,1 − 12a21,1 a2,2 b3 p2,1 p3,2

− 4a21,1 a2,2 b3 p2,1 p3,3 − 12a21,1 a2,2 b3 p2,2 p3,1
− 6a21,1 a2,2 b3 p2,2 p3,2 − 2a21,1 a2,2 b3 p2,2 p3,3
+ 12a21,1 b2 g3,2 p2,1 + 4a21,1 b2 g3,2 p2,2 − 24a21,1 b3 g3,3 p3,1
− 8a21,1 b3 g3,3 p3,2 − 2a21,1 b3 g3,3 p3,3 + 12a22,1 b3 g3,3 p3,1

+ 4a22,1 b3 g3,3 p3,2 + a22,1 b3 g3,3 p3,3
)

= 0

τ K9 4 1
24

(
b1 g

3
3,1 p1,1 − 1

)
= 0

Table 8 Coefficients for epirkk4a

a =
⎡

⎣
692665874901013
799821658665135 0 0

692665874901013
799821658665135

3
4 0

⎤

⎦ ,

[
b
b̂

]
=

⎡

⎣
799821658665135
692665874901013

352
729

64
729

799821658665135
692665874901013

32
81 0

⎤

⎦ ,

g =

⎡

⎢⎢
⎣

3
4 0 0

3
4 0 0

1 9
16

9
16

⎤

⎥⎥
⎦ , p =

⎡

⎢⎢
⎣

692665874901013
799821658665135 0 0

1 1 0

1 1 0

⎤

⎥⎥
⎦ .

require a Krylov-subspace of dimension four [32, Theorem 3.6]. All expensive operations
such as computing products of ψ function of matrices with vectors are performed in this
reduced space. Significant computational advantages are obtained if the Krylov-subspace
captures all the stiff eigenmodes of the system. If not all stiff eigenmodes are captured, sta-
bility requirements will force the integrator to take smaller timesteps, which will increase

123

J Sci Comput

Table 9 Coefficients for
epirkk4b

a =
[
1 0 0
1 1 0

]
,

[
b
b̂

]
=

[4
3

112
243 1

4
3

80
243 − 1

]

,

g =

⎡

⎢
⎢
⎣

3
4 0 0

3
4

3
4 0

1 3
4

3
4

⎤

⎥
⎥
⎦ , p =

⎡

⎢
⎢
⎣

3
4 0 0

1 1 0

1 − 962
243

524
81

⎤

⎥
⎥
⎦ .

the overall cost of integration. In such cases we typically observe that adding more vectors
to the Krylov-subspace can improve the performance of the K -type integrator.

5 Implementation Strategies for Exponential Integrators

Computing products of ϕ (or ψ) functions of matrices times vectors is at the core of expo-
nential integrators. We briefly review the strategies we use to evaluate these products on a per
integrator basis before we segue into a discussion on the construction of Krylov-subspaces
that are an integral part of this process. Table 10 lists the methods under study and their
implementation framework.

5.1 Evaluation of ϕk and ψ Products

We start our discussion with the classical exponential integrators listed in Table 10. For
epirkk4- classical and epirk5 [28, Table 4, Equation 28] the evaluation of products of ψ

functions with vectors proceeds by first approximating the individual ϕ function products in
the Krylov-subspace as illustrated in [27, sec 3.1], i.e. ϕk(h γ An)b ≈ s‖b‖Vϕk(h γ H)e1.
The ϕ function products associated with the approximation, ϕk(h γ H)e1, are computed by
constructing an augmented-matrix and exponentiating it as described in [25, Theorem 1].
Finally, taking a linear combination of columns of the resultant matrix gives the ψ function
product.

In the augmented-matrix approach, an Arnoldi (or Lanczos – for a symmetric matrix)
iteration is needed for each distinct vector in the formulation given in Eq. (10). Each of the
classical integrators listed earlier has three stages that work with three different vectors, b,
requiring three Arnoldi (or Lanczos) iterations per timestep. epirk5p1bvar [29], another
classical method that we include in our numerical experiments, also performs three Arnoldi
(or Lanczos) projections per timestep. It combines the Arnoldi (or Lanczos) projection, and
the evaluation of ϕ function products by sub-stepping, into a single computational process
as described in [20].

Recall that W -methods admit arbitrary Jacobian approximations while maintaining full
accuracy. In order to demonstrate this, we have four alternate implementations that use
different approximations to the Jacobian: the Jacobian itself; the identity matrix; the zero
matrix, which reduces the epirkw scheme (12) to an explicit Runge–Kutta scheme; and
lastly, the diagonal of the Jacobian. We will refer to these methods as epirkw3 in the paper
and highlight the approximation in context. Figure 1 in the following section shows that these
alternative implementations retain full order when we use an approximation to Jn . It is to be
noted, however, that in the case of W -methods, An = Jn might be needed to assure stability.
Some discussion in this regard when An = Jn or when ‖An − Jn‖ is small, is done in [10,
Sec IV.7, IV.11] and [26].

123

J Sci Comput

The different implementations of the W -method vary in the way the ψ function products
are computed. We restrict our discussion to the following cases:

1. An = diag(Jn). We compute the individual ϕk functions with successively higher sub-
scripts using the recursive definition given in (6), where ϕ0 is computed as point-wise
exponential of the entries along the diagonal. Next, we take a linear combination of the ϕ

functions to evaluate the ψ function as defined in Eq. (9). Finally, the product of ψ func-
tion of matrix times vector is evaluated as a matrix-vector product. A similar procedure
is adapted for other approximations where An is either zero or identity.

2. An = Jn . The evaluation of products of ψ function of Jacobian with vectors is similar
to classical integrators. An Arnoldi (or Lanczos) iteration is needed for each distinct
vector in the three stage formulation given in Eq. (12). Implementations with non-trivial
approximations to the Jacobian may use a similar strategy to compute the ψ function
products.

We have implemented epirkk4, a fourth-order K -type integrator, and epirk5- k [28,
Table 4], a classical fifth-order method built in the K -framework. Both use the reduced space
formulation for stage values as shown in Algorithm 2. The reduced space is constructed using
a single Arnoldi (or Lanczos) projection per timestep. K -methods require only as many basis
vectors in the reduced space as the order of method to guarantee full accuracy [32]. This is in
direct contrast to classical methods, where the basis size of Arnoldi (or Lanczos) projection
is varied to keep the residual of ϕ1 function evaluated on the upper-Hessenberg matrix, Hm,
below a chosen tolerance, resulting in larger subspaces.

epirkk4, being a fourth order K -method, theoretically, requires only four vectors in the
Krylov-subspace for full accuracy. Stability requirements may, however, impose a need for
larger subspaces. Since the stage values of epirkk4 are computed in this reduced space, the
size of thematrices used in the computation ofψ function products is usually smaller than the
size of the ODE system under consideration. As a result, in our implementation of epirkk4,
quantities ϕk(h γ H) are directly computed using the recursive definition given in (6); they
are stored independently, and linearly combined to compute the ψ function. The product of
a ψ function of a matrix with a vector is computed as a matrix-vector product. We repeat the
procedure with five basis vectors in the Krylov-subspace for epirk5- k.

5.2 Building Krylov-Subspaces

When solving large systems of ODEs, ϕ (and ψ) function products are approximated in the
Krylov-subspace. We use Lanczos iteration to compute the subspace when the Jacobian (or
its approximation) is symmetric, and we use Arnoldi when the Jacobian is not symmetric.
The computational complexity of Lanczos iteration scales linearly with the size of subspace,
whereas it scales quadratically with the subspace size for Arnoldi. Order condition theory
for classical exponential methods relies on using the exact Jacobian when computing ϕ (or
ψ) function products. As a consequence, larger subspaces are usually needed to approximate
the action of the Jacobian accurately. W - and K -methods, on the other hand, account for
Jacobian approximations in their order condition theory and therefore work satisfactorily
with comparably smaller subspaces.

For stiff problems, classical methods incur a huge cost per timestep in building large sub-
spaces to capture enough stiff modes, albeit they take larger timesteps. In classical methods,
if the cost of building the subspace is disproportionately high such that even taking larger
timesteps does not offset it, then W - and K -methods turn out to be more efficient, despite

123

J Sci Comput

the fact that they shrink the stepsize. We observe this to be the case, particularly, when we
use Arnoldi iteration to compute the subspace.

We now delve into the details of construction of Krylov-subspaces for each method that
we evaluate in our variable time-stepping experiments later in the paper.

– EPIRKK4 We test two different implementations of epirkk4. The first one constructs
the Krylov-subspace adaptively, by limiting the residual of ϕ1 evaluated on the (scaled)
upper-Hessenberg matrix, Hm, to be below 1e−12. The residual computations are per-
formed only at certain fixed indices, where the cost of computing a residual equals the
total cost of all previous residual computations [13, Section 6.4]. The maximum dimen-
sion of the subspace is set to 100; and the minimum, which has to be at-least four for
fourth order accuracy, is indicated on plot legends in the subsequent section as a lower
bound on the subspace dimension. Residual checks only occur once the minimum bound
has been exceeded.
The second implementation of epirkk4 constructs Krylov-subspaces with a fixed num-
ber of basis vectors, and does not incur the cost of computing the residuals. In each
experiment, we choose a range of subspace sizes that are a subset of the indices at which
the adaptive variant computes the residuals. We only plot those that performed the best.

– EPIRKK4-CLASSICAL: In our implementation, the Krylov-subspace is built adaptively
using the desired solution tolerance as the tolerance during residual checks, with maxi-
mum dimension of the subspace left unrestricted.

– EPIRKW3: The implementation uses adaptive Krylov to construct subspaces by limiting
the residual to be below the desired solution tolerance, and the maximum dimension of
the subspace is set to 100.

– EPIRK5P1BVAR: No limits are imposed on the subspace size as this would intervene
with the algorithm that builds the Krylov-subspace and does sub-stepping in a single
computational process to compute the ϕ function product [20]. Implementation uses the
desired solution tolerance to determine when the Krylov algorithm has converged.

We also include aRosenbrock–Krylovmethod, rok4a [32], in our numerical experiments.
The implementation ofrok4a thatweuse hasArnoldi iteration baked into it. Consequentially,
we do not use it in numerical experiments that involve symmetric problems, wherewe employ
Lanczos iteration to build Krylov-subspaces in other integrators, as such a comparison will
be unfair to rok4a. Unlike exponential methods that use the Krylov-subspace to compute ϕ

(and ψ) function products, rok4a uses it to solve linear systems corresponding to reduced
stage vectors. Furthermore, our rok4a implementation builds Krylov-subspaces of fixed size
and does not incur cost of computing residuals.

6 Numerical Results

The integrators discussed in Sect. 5 were evaluated by running fixed-step convergence exper-
iments on the Lorenz-96 system [17] and variable time-stepping experiments on Allen–Cahn
[2] and BSVD system [11]. We used the MATLODE framework [8], a MATLAB® -based ODE
solver suite developed by the co-authors, in performing the variable time-stepping experi-
ments.

6.1 Lorenz-96 System

Lorenz-96 model [17] is described by the system of ODEs:

123

J Sci Comput

Table 10 Comparative study of various exponential integrators

Integrator Implementation
framework

Coefficients Derived order Fixed step
convergence order

‡ epirkw3b [An = 0] W -type Table 5 3 2.977000

‡ epirkw3b [An = diag(Jn)] W -type Table 5 3 2.967430

‡ epirkw3b [An = I] W -type Table 5 3 2.987911

epirkw3b [An = Jn] W -type Table 5 3 2.994241

epirkw3c [An = Jn] W -type Table 6 3 3.032945

epirkk4b K -type Table 9 4 4.014407

epirkk4a K -type Table 8 4 4.018722

epirkk4a- classical Classical Table 8 4 4.009777

‡ epirk5- k K -type [28, Table 4] 5∗ 3.051511

‡ epirk5 Classical [28, Table 4] 5 5.016092

epirk5p1bvar Classical [29, Table 3] 5 –

rok4a K -type [32, Table 1] 4 –

The convergence orders shown are obtained from fixed step size experiments with the Lorenz-96 model (30).
Integrators implemented only for studying fixed step convergence behavior that are excluded from variable
timestepping experiments are prefixed with ‡ in column 1. * indicates the order of the original classical method
epirk5

dy j
dt

= −y j−1(y j−2 − y j+1) − y j + F, j = 1 . . . N , y0 = yN . (30)

Here N denotes the number of states and F is the forcing term. For our experiments we
let N = 40, and F = 8. The initial condition for the model was obtained by integrating
ȳ−1 = linspace (−2, 2, N) over [0, 0.3] time unit using MATLAB’s ODE45 integrator and
time span for the experiment is [0, 0.3] time units.

Fixed-step convergence experimentwas performed on theLorenz-96 systemusing a subset
of integrators listed in Table 10. The reference solution was computed using ODE45 with
absolute and relative tolerances set to 1e−12. The convergence plots for this experiment
are shown in Fig. 1. The results for each implementation and coefficient combination are
summarized in Table 10. These results support the following conclusions:

1. The numerical experiment verifies the order of methods derived in the paper. epirkk4 (a
and b) and epirkw3 (b and c) show their respective theoretical order of convergence.

2. The theory ofW -methods is validated by testing different approximations to the Jacobian.
As expected, epirkw3b consistently shows third order convergence irrespective of the
approximation used for the Jacobian.

3. The results demonstrate that every K -method can be implemented as a classical method
of the same order. Here we test epirkk4a- classical, the implementation of the method
epirkk4a (see Sect. 4.4) in the classical framework as discussed in Sect. 5. It has the same
order of convergence as epirkk4a since the coefficients derived for epirkk4a method
satisfy all the order conditions of a fourth order classical epirk method. This is true for
every K -method as shown in Corollary 1.

4. In general, classical methods implemented as a K -method will reduce to a lower order.
epirk5 and epirk5- k were implemented to test this hypothesis, where epirk5- k is a
K -type implementation of the fifth order classical method epirk5 derived in [28]. From
Table 10, we see that the K -type implementation reduces to a lower order. The coeffi-

123

J Sci Comput

10 -2

Stepsize

10-11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

E
rr

or

EPIRKW3b [A n = 0]

EPIRKW3b [A n = diag(J n)]

EPIRKW3b [A n = I]

EPIRKW3b [A n = J n]

EPIRKW3c [A n = J n]

EPIRKK4b [M = 4]
EPIRKK4a [M = 4]
EPIRKK4a-CLASSICAL
EPIRK5-K
EPIRK5

Fig. 1 Convergence plot for different methods applied to Lorenz-96 model (30)

cients of fifth order classical method epirk5 puts a non-zero in front of the elementary
differential corresponding to τ K

8 in the K -type implementation.
Solving the order conditions for a K -type method is more restrictive than for a classical
method due to the additional order conditions that arise from approximating the Jacobian
in the Krylov-subspace. As a consequence, not all classical methods lead to K -type
integrators of the same order. This is in line with Corollary 2.

To evaluate the relative computational efficiency of the integrators—epirkk4 (a and b),
epirkw3 (b and c), and epirkk4a- classical—we perform variable time-stepping experi-
ments with the Allen–Cahn system [2], and the BSVD system [11]. We include a classical
exponential scheme, epirk5p1bvar [29], a Rosenbrock–Krylov method, rok4a, [32], and
MATLAB’s built-in one-step integrator for stiff systems, ode23s, as benchmarks for compar-
ison. Experiments are run for different relative tolerances [1e−1, 3.9e−3, . . . , 1e−8]; the
error controller [9, Section II.4], which is the same across all methods, with the exception of
ode23s, adjusts the step size to ensure that the solutionmeets tolerance requirements.ode23s
has its own error controller built inside MATLAB® . Reference solutions are computed using
ode15s with absolute and relative tolerances set equal to 1e−12.

6.2 The Allen–Cahn Problem

We consider the Allen–Cahn equation [2]:

∂u

∂t
= α ∇2u+γ (u−u3), (x, y) ∈ [0, 1]×[0, 1] (space units), t ∈ [0, 0.3] (time units).

(31)

123

J Sci Comput

10 2 10 3

CPU Time

10 -10

10 -8

10 -6

10 -4

10 -2

10 0
E

rr
or

EPIRKK4a-Classical
EPIRKK4a [M >= 4]
EPIRKK4a [M >= 20]
EPIRKK4a [M = 100]
EPIRKK4b [M = 100]
EPIRKW3b [A n = J n]

EPIRKW3c [An = J n]
EPIRK5P1BVar
ODE23s

10 1 10 2 10 3

Accepted Steps

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

E
rr

or

EPIRKK4a-Classical
EPIRKK4a [M >= 4]
EPIRKK4a [M >= 20]
EPIRKK4a [M = 100]
EPIRKK4b [M = 100]
EPIRKW3b [A n = J n]

EPIRKW3c [An = J n]
EPIRK5P1BVar
ODE23s

(a) (b)

Fig. 2 Comparison of different integrators when applied to Allen–Cahn system (31) on a 300 × 300 grid.
(using Lanczos to compute Krylov subspace). a Work precision diagram. b Convergence diagram

discretized using second-order finite difference on a 300×300 grid. The diffusion coefficient,
α, equals 1 and the coefficient on reaction term, γ , equals 10. The model is subject to
homogeneous Neumann boundary conditions and the initial condition is u(t = 0) = 0.4 +
0.1 (x + y) + 0.1 sin(10x) sin(20y).

The Jacobian of Allen–Cahn equation (31) is symmetric. Therefore, the methods use
Lanczos iteration to compute the Krylov-subspace. rok4a is excluded from this study as
the implementation we use has Arnoldi baked in. Figure 2 shows both the work-precision
and convergence diagram for the integrators under study (excluding rok4a) on Allen–Cahn
equations.

6.2.1 Observations

Explicit methods ode45, and MATLODE ’s dopri5 do not converge to a solution for the given
settings.

The timesteps of epirkk4 methods are bounded by stability considerations indicated
by the nearly vertical lines in the convergence diagram 2. Nonetheless, epirkk4 [M =
100] (both a and b) perform better than classical integrators—epirkk4a- classical and
epirk5p1bvar—because they are cheaper per timestep by virtue of building comparably
smaller subspaces, and not incurring the cost of computing residuals. Also, the computational
cost of constructing large subspaces by classical methods (see Table 11) is not offset by the
large step sizes that they take. Furthermore, in additional experiments, not reported here,
artificially limiting the subspace size of the classical methods leads to a poor performing
method, where the global error is O(1) for several tolerance settings.

Adaptive variants epirkk4a [M ≥ 4] and epirkk4a [M ≥ 20] are computationally
more expensive than epirkk4 [M = 100] (both a and b) with fixed basis size. They incur
additional costs in computing the residuals and end up taking many more steps than all of the
other integrators (see convergence diagram 2). One reason could be that the estimate of the
residual inside adaptive Krylov algorithm, which is used to terminate the Krylov iterations,
turns out to be an underestimate. This leads to an early termination of the Krylov iterations
resulting in smaller subspaces for the adaptive methods. Furthermore, K -methods only do
a single projection unlike three projections per timestep in other methods that we consider.

123

J Sci Comput

Table 11 Rootmean square number ofKrylov vectors per projection for each integrator applied toAllen–Cahn
equation on a 300 × 300 grid (31)

Integrator Tolerance

1e−1 3.98e-3 1.58e-4 6.31e-6 2.51e-7 1e−8

EPIRKK4a-classical 2 669 564 493 402 309

EPIRKK4a [M ≥ 4] 23 23 23 24 25 25

EPIRKK4a [M ≥ 20] 28 33 33 40 42 52

EPIRKK4a [M = 100] 100 100 100 100 100 100

EPIRKK4b [M = 100] – 100 100 100 100 –

EPIRKW3b [An = Jn] 93 83 93 78 60 39

EPIRKW3c [An = Jn] 2 58 69 67 49 29

EPIRK5P1BVar 3099 2811 2543 1754 1523 1294

The smaller subspaces coupled with the single projection inside K -methods restricts the
stepsize of the adaptive K -methods (epirkk4a [M ≥ 4] and epirkk4a [M ≥ 20]). It is not
immediately clear what measure of residual to use for adaptive K -methods to make them
perform better. Comparing epirkk4a [M ≥ 4] and epirkk4a [M ≥ 20] suggests that setting
a higher value for the lower bound of the subspace size is one solution.

epirkw3 (both b and c) performs just as well as epirkk4methods with fixed basis size for
low-medium accuracy solutions. For tighter solution tolerances, epirkw3 shrinks both the
stepsize and subspace size, and takes longer than epirkk4 [M = 100] methods to compute
the solution.

The new methods (both W and K) are also significantly faster than MATLAB’s built-in
onestep method to tackle stiff problems (ode23s), when computing medium-high accuracy
solutions for this setup.

Remark 2 Earlier, we observed that epirkk4 with [M = 100] is stability bounded with the
integrator taking about the same number of steps for different tolerance settings. However, we
would like to point out that the order of epirkk4method is partially recovered by increasing
the subspace dimension—see Fig. 3, where we increased the Krylov-subspace size to 180
vectors and we see epirkk4a beginning to take different sized steps for tight tolerances.

Remark 3 The inexpensive Krylov-subspace iterations, while using Lanczos for symmetric
problems, results in competitive CPU times for classical methods when compared against
W - and K -methods (see Fig. 2). If the Jacobian of the problem is not symmetric or if
Arnoldi iterations are used to compute theKrylov-subspace, and the problem is large, then the
construction of large Krylov-subspaces, as the classical methods do, will dominate the total
cost of time-stepping. In additional numerical experiments not reported here,we observed this
to be the casewhenwe usedArnoldi iterations to compute theKrylov-subspace for theAllen–
Cahn problem (31). Both the classical methods—epirkk4- classical and epirk5p1bvar—
were half-order of magnitude slower than epirkk4 and epirkw3methods, while taking fewer
steps.

6.3 BSVD: Bistable Equation with Space-Dependent Diffusion

BSVD [11] is a reaction–diffusion PDE:

123

J Sci Comput

60 80 100 120 140 160
Accepted Steps

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

E
rr

or

EPIRKK4a [M = 180]
Order 4

Fig. 3 Convergence diagram of epirkk4a on the Allen–Cahn problem (31) when increasing the Krylov-
subspace size to 180 vectors

∂u

∂t
= ∇ · (D(x, y)∇u) + 10 (1 − u2)(u + 0.6), (x, y) ∈ [0, 1] × [0, 1] (space units),
t ∈ [0, 7] (time units), (32)

where space-dependent diffusion coeffcient is defined as:

D(x, y) = 1

10

3∑

i=1

e−100((x−0.5)2+(y−yi)2),

and the initial condition is given by:

u(x, y, 0) = 2e−10((x−0.5)2+(y+0.1)2) − 1.

yi for i = 1, 2, 3 are y1 = 0.6, y2 = 0.75 and y3 = 0.9. We discretize the PDE using
second-order finite difference on a 150× 300 grid, while imposing homogeneous Neumann
boundary conditions

D(x, y)n̂(x, y).∇u(x, y, t) = 0,

using ghost nodes at the boundary. n̂(x, y) is the normal vector pointing outwards at the
boundary. The problem is implemented in the Computational Science Lab’s ODE Test Prob-
lems [22] currently under active development.

The Jacobian of BSVD equation (32) is nonsymmetric and the methods that we test
use Arnoldi to compute the Krylov-subspace. Figure 4 shows both the work-precision and
convergence diagram for this study.

6.3.1 Observations

ode45 needed O(105) steps to compute the solution and filled up the system memory on
a 64GBmachine. We had to exclude it from our study as the operating system was thrashing.
dopri5, available through MATLODE, didn’t converge to a solution.

123

J Sci Comput

10 2 10 3

CPU Time

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1
E

rr
or

n = J n]

n = J n]

10 2 10 3 10 4

Accepted Steps

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

E
rr

or

EPIRKK4a-Classical
EPIRKK4a [M = 36]
EPIRKK4b [M = 36]
EPIRKW3b [A n = J n]

EPIRKW3c [An = J n]
ROK4A [M = 20]
ODE23s
EPIRK5P1BVar

(a) (b)

Fig. 4 Comparison of different integrators when applied to BSVD system (32) on a 150 × 300 grid. (using
Arnoldi to compute Krylov subspace). a Work precision diagram. b Convergence diagram

Table 12 Root mean square number of Krylov vectors per projection for each integrator applied to BSVD
equation on a 150 × 300 grid (32)

Integrator Tolerance

1e−1 3.98e−3 1.58e−4 6.31e−6 2.51e−7 1e−8

EPIRKK4-classical 248 161 77 62 51 39

EPIRKK4a [M >= 20] – 27 27 27 29 30

EPIRKK4a [M = 36] – 36 36 36 36 36

EPIRKK4b [M = 36] 36 36 36 36 36 –

EPIRKW3b [An = Jn] 88 40 60 28 16 10

EPIRKW3c [An = Jn] 43 38 29 22 13 8

ROK4A [M = 20] – – 20 20 20 20

ROK4A [M = 36] – 36 36 36 36 36

EPIRK5P1BVar – 1177 946 656 472 351

Timesteps of K -methods—both epirkk4 and rok4a—are bounded by stability consider-
ations, which is evident from the nearly vertical lines on the convergence diagram 4. These
methods also reject a number of timesteps, and this may have to do with the single projec-
tion that the K -methods do internally, which likely affects the stepsize; whereas, all other
methods (excluding ode23s) perform three Arnoldi projections per timestep. epirkk4 is
more efficient than rok4a [32], a Rosenbrock–Krylov method built using similar principles
as epirkk4. Note that rok4a [M = 20] performs better than rok4a [M = 36]; whereas,
epirkk4 [M = 36] was the best performing among different subspace sizes that we tested
on, including epirkk4 [M = 20].

epirkw3 is the best performing amongst all methods under study. It admits Jacobian
approximations making it computationally cheap per timestep; in comparison with classical
methods—epirkk4a- classical and epirk5p1bvar—epirkw3 needs fewer vectors in the
Krylov-subspace (see Table 12), besides being capped at a maximum of 100 vectors in our
experiments. It takes larger timesteps than epirkk4methods, and is not bounded by stability
considerations unlike K -methods.

123

J Sci Comput

The cost of building large subspaces by the classical exponential method, epirk5p1bvar,
is not offset by the large steps that it takes. As a result, epirk5p1bvar performs poorly in
comparison to all other exponential integrators. Furthermore, we can observe that building
large subspaces using Arnoldi iterations considerably affects the timing of epirk5p1bvar,
where the method takes at least twice as much time as epirkw3 and epirkk4 methods to
compute the solution. Compare this to the Allen–Cahn problem, where the integrators used
Lanczos iteration to compute the Krylov-subspace and the performance of epirk5p1bvar
was about the same as all other methods (see Fig. 2).

Clearly, all the methods perform significantly better than the stiff one-step integrator built
inside MATLAB—ode23s.

7 Conclusions

Exponential Propagation Iterative Methods of Runge–Kutta type (EPIRK) rely on the com-
putation of exponential-like matrix functions of the Jacobian times vector products. This
paper develops two new classes of EPIRKmethods that allow the use of inexact Jacobians as
arguments of the matrix functions.We derive a general order conditions theory for EPIRK-W
methods, which admit arbitrary approximations of the Jacobian. We also derive a similar the-
ory for EPIRK-K methods, which uses a specific Krylov-subspace based approximation of
the Jacobian. A computational procedure to derive order conditions for thesemethods with an
arbitrary number of stages is provided, and the order conditions of a three stage formulation
is solved to obtain coefficients for three third order EPIRK-W -methods, named epirkw3 (a,
b and c), and two fourth order EPIRK-K -method, named epirkk4 (a and b). Furthermore,
several alternative implementations of W -methods and K -methods are discussed, and their
properties are studied.

Numerical experiments are conducted with three different test problems to study the per-
formance of the new methods. The results confirm empirically that epirkw3 method retains
third order of convergence with different Jacobian approximations. The epirkw3 method is
computationally more efficient than epirkk4, for stiff problems, and performs better than
classical methods in a number of different scenarios considered in the paper. In particular
epirkk4 outperforms epirkk4- classical, a method with the same set of coefficients, but
implemented in the classical framework for exponential integrators; epirkk4 also outper-
forms epirk5p1bvar, a classical exponential integrator, and rok4a a Rosenbrock–Krylov
method built using the same principles as epirkk4. More numerical experiments are needed
to assess how these results generalize to different applications.

It was also observed that increasing the basis size can make epirkk4 more stable, but
there is a cost to pay for it and that it is important to balance gains in stability against the
increased computational cost. Adaptive approach to basis size selection for the K -methods
is relevant in this regard and will be considered again in a future work.

Acknowledgements This work has been supported in part by NSF through Awards NSF DMS-1419003,
NSF DMS-1419105, NSF CCF-1613905, by AFOSR through Award AFOSR FA9550-12-1-0293-DEF, and
by the Computational Science Laboratory at Virginia Tech.

123

J Sci Comput

A Derivation of K -Methods

The epirkk method is derived from epirkw method, where a specific Krylov-subspace
approximation of the Jacobian is used instead of an arbitrary approximate Jacobian as admit-
ted by the W -method. We start the derivation by first stating the general form of the epirkw
method:

Yi = yn + ai,1 ψ i,1(gi,1 h An) hf(yn) +
i∑

j=2

ai, j ψ i, j (gi, j h An) h�(j−1)r(yn),

i = 1, . . . , s − 1,

yn+1 = yn + b1 ψ s,1(gs,1 h An) hf(yn) +
s∑

j=2

b j ψ s, j (gs, j h An) h�(j−1)r(yn).

In the above equation, the ψ function is as defined in Eq. (8) and the following simplifying
assumption is made about it:

ψ i, j (z) = ψ j (z) =
j∑

k=1

p j,k ϕk(z),

where ϕ function is as defined in Eqs. (5) and (6). Additionally, the remainder function (r(y))
and the forward difference operator (�(j)r(Yi)) are defined accordingly below:

r(y) = f(y) − f(yn) − An (y − yn),

�(j)r(Yi) = �(j−1)r(Yi+1) − �(j−1)r(Yi),

�(1)r(Yi) = r(Yi+1) − r(Yi). (33)

The K -method uses a specific Krylov-subspace based approximation of the Jacobian (Jn).
An M-dimensional Krylov-subspace is built as,

KM = span{fn, Jnfn, J2nfn, . . . , JM−1
n fn}, (34)

whose basis is the orthonormal matrix V and H is the upper-Hessenberg matrix obtained
from Arnoldi iteration defined as

H = VT Jn V. (35)

The corresponding Krylov-subspace based approximation of the Jacobian is built as

An = VHVT = VVT Jn VVT . (36)

The use of Krylov-subspace based approximation of the Jacobian reduces the ϕ and ψ

function in accordance with Lemmas 2 and 3 to the following

ϕk(h γ An) = 1

k!
(
I − VVT

)
+ Vϕk(h γ H)VT , (37)

ψ j (hγAn) = p̃ j

(
I − VVT

)
+ Vψ j (hγH)VT , (38)

where p̃ j is defined as

p̃ j =
j∑

k=1

p j,k

k! . (39)

123

J Sci Comput

In order to derive the reduced stage formulation of the epirkk method we need to resolve
the vectors in the formulation into components in the Krylov-subspace and orthogonal to it.
Repeating the splittings from the main text:

– Splitting the internal stage vectors noting that Y0 ≡ yn :

Yi = Vλi + Y⊥
i where VTYi = λi ,

(
I − VVT

)
Yi = Y⊥

i . (40)

– Splitting the right-hand side function evaluated at internal stage vectors while noting that
f0 ≡ f(yn):

fi := f(Yi) = Vηi + f⊥i where VT fi = ηi ,
(
I − VVT

)
fi = f⊥i . (41)

– Splitting the non-linear Taylor remainder of the right-hand side functions:

r(Yi) = f(Yi) − f(yn) − An (Yi − yn) = fi − f0 − VHVT (Yi − yn),

where VT r(Yi) = ηi − η0 − H (λi − λ0),(
I − VVT

)
r(Yi) = f⊥i − f⊥0 . (42)

– Splitting the forward differences of the non-linear remainder terms:

r̃(j−1) := �(j−1)r(yn) = Vd(j−1) + r̃⊥
(j−1),

where VT r̃(j−1) = d(j−1),
(
I − VVT

)
r̃(j−1) = r̃⊥

(j−1). (43)

Using these each internal stage of the epirkk method can be expressed as below:

Vλi + Y⊥
i = yn + h ai,1

(
p̃1

(
I − VVT

)
+ Vψ1(h gi,1H)VT

)(
Vη0 + f⊥0

)

+
i∑

j=2

h ai, j

(
p̃ j

(
I − VVT

)
+ Vψ j (h gi, j H)VT

)(
Vd(j−1) + r̃⊥

(j−1)

)

= yn + h ai,1

(
p̃1 f⊥0 + Vψ1(h gi,1H)η0

)

+
i∑

j=2

h ai, j

(
p̃ j r̃⊥

(j−1) + Vψ j (h gi, j H)d(j−1)

)
. (44)

The reduced stage formulation of the epirkk method is obtained by multiplying the above
equation by VT from the left

λi = VT yn + h ai,1ψ1(h gi,1H)η0 +
i∑

j=2

h ai, j ψ j (h gi, j H)d(j−1)

= λ0 + h ai,1ψ1(h gi,1H)η0 +
i∑

j=2

h ai, j ψ j (h gi, j H)d(j−1). (45)

123

J Sci Comput

And the full stage vector can be recovered by first computing the reduced stage vector and
adding the orthogonal piece Y⊥

i obtained when multiplying Eq. (44) by
(
I − VVT

)

Y⊥
i =

(
I − VVT

)
yn + h ai,1 p̃1 f⊥0 +

i∑

j=2

h ai, j p̃ j r̃⊥
(j−1)

= (yn − Vλ0) + h ai,1 p̃1 f⊥0 +
i∑

j=2

h ai, j p̃ j r̃⊥
(j−1). (46)

The final stage can also be written in the above formwith multipliers bi in place of ai j . Notice
that the expensive computations are performed in the reduced space, i.e. the ψ function is
computed in the reduced space instead of the full space offering potential computational
savings. In the above equations, the quantities d(j−1) and r̃⊥

(j−1) can be shown to be

d(j−1) =
j−1∑

k=0

(
(−1)k

(
j − 1

k

)
η j−1−k − H

(
(−1)k

(
j − 1

k

)
λ j−1−k

))
, (47)

r̃⊥
(j−1) =

j−1∑

k=0

(
(−1)k

(
j − 1

k

)
f⊥j−1−k

)
, (48)

as is done in the following “Appendix”.

B Proofs

In order to prove Eqs. (23a) and (23b), we start with the definition of the remainder function
and forward difference.

r(y) = f(y) − f(yn) − An(y − yn), (49)

�(j)r(Yi) = �(j−1)r(Yi+1) − �(j−1)r(Yi), (50a)

�(1)r(Yi) = r(Yi+1) − r(Yi). (50b)

Lemma 4 �(j)r(Yi) =
j∑

k=0

(−1)k
(
j

k

)
r(Yi+ j−k).

Proof In order to prove the lemma, we resort to mathematical induction. Base case j = 1,

�(1)r(Yi) =
1∑

k=0

(−1)k
(
1

k

)
r(Yi+1−k)

= r(Yi+1) − r(Yi).

The base case is true by definition. We now assume that the proposition holds true for all j
up to k − 1. We have,

�(k−1)r(Yi) =
k−1∑

l=0

(−1)l
(
k − 1

l

)
r(Yi+k−1−l), (51)

123

J Sci Comput

�(k−1)r(Yi+1) =
k−1∑

l=0

(−1)l
(
k − 1

l

)
r(Yi+k−l). (52)

Then for j = k,

�(k)r(Yi) = �(k−1)r(Yi+1) − �(k−1)r(Yi)

=
k−1∑

l=0

(−1)l
(
k − 1

l

)
r(Yi+k−l) −

k−1∑

l=0

(−1)l
(
k − 1

l

)
r(Yi+k−1−l)

= r(Yi+k) +
k−1∑

l=1

(−1)l
(
k − 1

l

)
r(Yi+k−l)

−
k−2∑

l=0

(−1)l
(
k − 1

l

)
r(Yi+k−1−l) + (−1)kr(Yi).

Weperform a change of variable for the second summation,m = l+1 �⇒ l = (m−1),

�(k)r(Yi) = r(Yi+k) +
k−1∑

l=1

(−1)l
(
k − 1

l

)
r(Yi+k−l)

−
k−1∑

m=1

(−1)m−1
(
k − 1

m − 1

)
r(Yi+k−m) + (−1)kr(Yi)

= r(Yi+k) +
k−1∑

l=1

(−1)l
(
k − 1

l

)
r(Yi+k−l)

+
k−1∑

m=1

(−1)m
(
k − 1

m − 1

)
r(Yi+k−m) + (−1)kr(Yi).

The summations run between the same start and end indices, and can be collapsed.

�(k)r(Yi) = r(Yi+k) +
k−1∑

l=1

(−1)l
((

k − 1

l

)
+

(
k − 1

l − 1

))
r(Yi+k−l) + (−1)kr(Yi).

We use the identity,
(
k − 1

l

)
+

(
k − 1

l − 1

)
=

(
k

l

)
,

and arrive at the desired result,

�(k)r(Yi) = r(Yi+k) +
k−1∑

l=1

(−1)l
(
k

l

)
r(Yi+k−l) + (−1)kr(Yi)

= (−1)0
(
k

0

)
r(Yi+k) +

k−1∑

l=1

(−1)l
(
k

l

)
r(Yi+k−l) + (−1)k

(
k

k

)
r(Yi)

=
k∑

l=0

(−1)l
(
k

l

)
r(Yi+k−l). (53)

�

123

J Sci Comput

Lemma 5 Given

�(j−1)r(yn) = Vd(j−1) + r̃⊥
(j−1), (54)

we need to prove

d(j−1) =
j−1∑

k=0

(
(−1)k

(
j − 1

k

)
η j−1−k − H

(
(−1)k

(
j − 1

k

)
λ j−1−k

))
, (55)

r̃⊥
(j−1) =

j−1∑

k=0

(
(−1)k

(
j − 1

k

)
f⊥j−1−k

)
. (56)

Proof We start with Lemma 4 where we have proven that

�(j)r(Yi) =
j∑

k=0

(−1)k
(
j

k

)
r(Yi+ j−k).

We plugin the value i = 0 which corresponds to �(j)r(Y0) ≡ �(j)r(yn) and we get,

�(j)r(yn) =
j∑

k=0

(−1)k
(
j

k

)
r(Y j−k).

WLOG replacing j by j − 1 yields

�(j−1)r(yn) =
j−1∑

k=0

(−1)k
(
j − 1

k

)
r(Y j−1−k). (57)

Since the left-hand side of Eq. (57) can be written as

�(j−1)r(yn) = Vd(j−1) + r̃⊥
(j−1),

we have the following result

Vd(j−1) + r̃⊥
(j−1) =

j−1∑

k=0

(−1)k
(
j − 1

k

)
r(Y j−1−k). (58)

The remainder function r(Yi) is defined as

r(Yi) = f(Yi) − f(yn) − An ∗ (Yi − yn).

Plugging in the definition of remainder function in (58) and observing that r(yn) = 0, we
get

Vd(j−1) + r̃⊥
(j−1) =

j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − f(yn) − An ∗

(
Y j−1−k − yn

))

=
j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − An ∗ Y j−1−k

)

−
j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(yn) − An ∗ yn

)
. (59)

123

J Sci Comput

Consider the identity involving alternating sum and difference of binomial coefficients,

k∑

i=0

(−1)i
(
k

i

)
= 0. (60)

Applying (60) to (59) we get,

Vd(j−1) + r̃⊥
(j−1) =

j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − f(yn) − An ∗

(
Y j−1−k − yn

))

=
j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − An ∗ Y j−1−k

)

− (−(−1)(j−1))

(
f(yn) − An ∗ yn

)

=
j−2∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − An ∗ Y j−1−k

)

+ (−1)(j−1)
(
j − 1

j − 1

)(
f(yn) − An ∗ yn

)

=
j−1∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − An ∗ Y j−1−k

)
. (61)

Additionally, since we are replacing the Jacobian by the approximation in the Krylov-
subspace, i.e. An = VHVT we have

Vd(j−1) + r̃⊥
(j−1) =

j−1∑

k=0

(−1)k
(
j − 1

k

)(
f(Y j−1−k) − VHVT ∗ Y j−1−k

)
. (62)

We get the expression for d(j−1) by multiplying Eq. (62) from the left by V T and that for
r̃⊥
(j−1) by multiplying by (I − VVT). �

References

1. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to
exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979). https://doi.org/10.1016/0001-
6160(79)90196-2

3. Berland, H., Owren, B., Skaflestad, B.: B-series and order conditions for exponential integrators. SIAM
J. Numer. Anal. 43(4), 1715–1727 (2005)

4. Berland, H., Skaflestad, B., Wright, W.M.: Expint—a matlab package for exponential integrators. ACM
Trans. Math. Softw. (TOMS) 33(1), 4 (2007)

5. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008).
https://doi.org/10.1002/9780470753767

6. Butcher, J.: Trees, B-series and exponential integrators. IMA J. Numer. Anal. 30, 131–140 (2010)
7. Caliari, M., Ostermann, A.: Implementation of exponential rosenbrock-type integrators. Appl. Numer.

Math. 59(3–4), 568–581 (2009)
8. D’Augustine,A.F.:MATLODE:AMATLABODEsolver and sensitivity analysis toolbox.MastersThesis,

Virginia Tech (2018)

123

https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1002/9780470753767

J Sci Comput

9. Hairer, E., Norsett, S.,Wanner, G.: SolvingOrdinaryDifferential Equations I: Nonstiff Problems. Springer
Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Prob-
lems. Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)

11. Heineken, W., Warnecke, G.: Partitioning methods for reaction–diffusion problems. Appl. Numer. Math.
56(7), 981–1000 (2006)

12. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

13. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equa-
tions. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)

14. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic
problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)

15. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2012)
16. Loffeld, J., Tokman, M.: Comparative performance of exponential, implicit, and explicit integrators for

stiff systems of odes. J. Comput. Appl. Math. 241, 45–67 (2013)
17. Lorenz, E.N.: Predictability—a problem partly solved. In: Palmer, T., Hagedorn, R. (eds.) Predictability

of Weather and Climate, pp. 40–58. Cambridge University Press (CUP), Cambridge (1996). https://doi.
org/10.1017/cbo9780511617652.004

18. Lu, Y.Y.: Computing a matrix function for exponential integrators. J. Comput. Appl. Math. 161(1), 203–
216 (2003)

19. Minchev, B.V., Wright, W.: A review of exponential integrators for first order semi-linear problems.
Technical report (2005)

20. Niesen, J., Wright, W.M.: Algorithm 919: a krylov subspace algorithm for evaluating the ϕ-functions
appearing in exponential integrators. ACM Trans. Math. Softw. 38(3), 22:1–22:19 (2012). https://doi.
org/10.1145/2168773.2168781

21. Rainwater, G., Tokman, M.: A new approach to constructing efficient stiffly accurate Epirk methods. J.
Comput. Phys. 323, 283–309 (2016). https://doi.org/10.1016/j.jcp.2016.07.026

22. Roberts, S., Popov, A., Sandu, A.: ODE Test Problems. https://sibiu.cs.vt.edu/ode-test-problems/index.
html. Accessed 16 Dec 2017

23. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
24. Schulze, J.C., Schmid, P.J., Sesterhenn, J.L.: Exponential time integration using Krylov subspaces. Int. J.

Numer. Meth. Fluids 60(6), 561–609 (2008)
25. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw.

24(1), 130–156 (1998). https://doi.org/10.1145/285861.285868
26. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical

solution of stiff differential equations. Math. Comput. 33(146), 521–521 (1979). https://doi.org/10.1090/
s0025-5718-1979-0521273-8

27. Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative
(EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006)

28. Tokman, M.: A new class of exponential propagation iterative methods of Runge–Kutta type (EPIRK).
J. Comput. Phys. 230, 8762–8778 (2011)

29. Tokman,M., Loffeld, J., Tranquilli, P.: New adaptive exponential propagation iterativemethods of Runge–
Kutta type. SIAM J. Sci. Comput. 34(5), A2650–A2669 (2012)

30. Tranquilli, P., Glandon, S.R., Sarshar, A., Sandu, A.: Analytical Jacobian-vector products for the matrix-
free time integration of partial differential equations. J. Comput. Appl. Math. (2016). https://doi.org/10.
1016/j.cam.2016.05.002

31. Tranquilli, P., Sandu, A.: Exponential–Krylov methods for ordinary differential equations. J. Comput.
Phys. 278, 31–46 (2014). https://doi.org/10.1016/j.jcp.2014.08.013

32. Tranquilli, P., Sandu, A.: Rosenbrock–Krylov methods for large systems of differential equations. SIAM
J. Sci. Comput. 36(3), A1313–A1338 (2014). https://doi.org/10.1137/130923336

33. Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approx-
imation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)

34. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order rosenbrock method applied to
photochemical dispersion problems. SIAM J. Sci. Comput. 20(4), 1456–1480 (1999)

35. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press,
Cambridge (2003). https://doi.org/10.1017/cbo9780511615115

123

https://doi.org/10.1017/cbo9780511617652.004
https://doi.org/10.1017/cbo9780511617652.004
https://doi.org/10.1145/2168773.2168781
https://doi.org/10.1145/2168773.2168781
https://doi.org/10.1016/j.jcp.2016.07.026
https://sibiu.cs.vt.edu/ode-test-problems/index.html
https://sibiu.cs.vt.edu/ode-test-problems/index.html
https://doi.org/10.1145/285861.285868
https://doi.org/10.1090/s0025-5718-1979-0521273-8
https://doi.org/10.1090/s0025-5718-1979-0521273-8
https://doi.org/10.1016/j.cam.2016.05.002
https://doi.org/10.1016/j.cam.2016.05.002
https://doi.org/10.1016/j.jcp.2014.08.013
https://doi.org/10.1137/130923336
https://doi.org/10.1017/cbo9780511615115

	EPIRK-W and EPIRK-K Time Discretization Methods
	Abstract
	1 Introduction
	2 Exponential Propagation Iterative Methods of Runge–Kutta Type
	3 EPIRK-W Methods
	3.1 Order Conditions Theory for EPIRK-W Methods
	3.2 Construction of Practical EPIRK-W Integrators

	4 EPIRK-K Methods
	4.1 Krylov-Subspace Approximation of Jacobian
	4.2 Formulation of EPIRK-K Methods
	4.3 Order Conditions Theory for EPIRK-K Methods
	4.4 Construction of Practical EPIRK-K Integrators

	5 Implementation Strategies for Exponential Integrators
	5.1 Evaluation of k and ψ Products
	5.2 Building Krylov-Subspaces

	6 Numerical Results
	6.1 Lorenz-96 System
	6.2 The Allen–Cahn Problem
	6.2.1 Observations

	6.3 BSVD: Bistable Equation with Space-Dependent Diffusion
	6.3.1 Observations

	7 Conclusions
	Acknowledgements
	A Derivation of K-Methods
	B Proofs
	References

