Journal of Computational Physics 372 (2018) 236-255

Contents lists available at ScienceDirect Fﬂ;"s':""““"""
CS,

Journal of Computational Physics

www.elsevier.com/locate/jcp

KIOPS: A fast adaptive Krylov subspace solver for exponential n

Check for

integrators

Stéphane Gaudreault®*, Greg Rainwater”, Mayya Tokman"”

4 Recherche en prévision numérique atmosphérique, Environnement et Changement climatique Canada, 2121 Route Transcanadienne, Dorval,
Québec, HIP 1J3, Canada
b School of Natural Sciences, University of California, 5200 N. Lake Road, Merced, CA 95343, United States

ARTICLE INFO ABSTRACT

Article history: This paper presents a new algorithm KIOPS for computing linear combinations of
Received 9 November 2017 @-functions that appear in exponential integrators. This algorithm is suitable for large-
Received in revised form 7 June 2018 scale problems in computational physics where little or no information about the spectrum

Accepted 8 June 2018

Available online 15 June 2018 or norm of the Jacobian matrix is known a priori. We first show that such problems can

be solved efficiently by computing a single exponential of a modified matrix. Then our
approach is to compute an appropriate basis for the Krylov subspace using the incomplete

ﬁgj;v;;:,des'mylov subspace methods orthogonalization procedure and project the matrix exponential on this subspace. We also
Incomplete orthogonalization present a novel adaptive procedure that significantly reduces the computational complexity
Time integration of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms
Exponential integrators the current state-of-the-art adaptive Krylov algorithm phipm.

¢-functions Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under

Matrix exponential the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Exponential integration received increased attention recently as an efficient alternative strategy to standard methods for
solving systems of ordinary differential equations (ODE). Exponential integrators have the advantage of being accurate and,
similarly to implicit methods, possess good stability properties, allowing integration with large time steps. These methods
involve computation of an exponential or an exponential-like function of a Jacobian matrix or an approximation to it (e.g.
see review articles [1,2]). Approximation of such matrix functions or their products with vectors constitutes the main com-
putational cost of an exponential integrator. Typically it is the latter approximation, i.e. product of exponential-like matrix
functions with vectors, that is required for an implementation of an exponential method.

A number of methods have been proposed to calculate the exponential or the exponential-like functions of a matrix or
their product with a given vector (see [3] for a review). Most of them, however, are of little practical use for large-scale
stiff matrices due either to high computational cost or numerical stability issues. These challenges are described in review
papers of Moler and Van Loan [4,5]. Other algorithms that are more suitable for large stiff matrices [6,7] require some
information about the norm or the spectrum of a matrix. It is common, however, that the matrix in question is not given
in the explicit form and only matrix-vector products can be calculated. This is the case, for instance, when the matrix is a
Jacobian that results from a complicated spatial discretization of a system of partial differential equations (PDE). As a result
of these considerations, a conclusion can be drawn that the Krylov subspace projection-based techniques are among the

* Corresponding author.
E-mail addresses: stephane.gaudreault2@canada.ca (S. Gaudreault), grainwater@ucmerced.edu (G. Rainwater), mtokman@ucmerced.edu (M. Tokman).

https://doi.org/10.1016/j.jcp.2018.06.026
0021-9991/Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2018.06.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://creativecommons.org/licenses/by/4.0/
mailto:stephane.gaudreault2@canada.ca
mailto:grainwater@ucmerced.edu
mailto:mtokman@ucmerced.edu
https://doi.org/10.1016/j.jcp.2018.06.026
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.06.026&domain=pdf

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 237

most promising methods for problems where exponential or exponential-like functions of a large stiff matrix have to be
computed and little or no information can be elicited about this matrix a priori.

The basic idea of the Krylov subspace approach is to project the exponential of a large matrix onto a relatively small
Krylov subspace where calculating the exponential is significantly less computationally expensive. Recent progress in com-
putational linear algebra has led to efficient Krylov subspace algorithms such as the EXPOKIT software of Sidje [8], restarted
Krylov methods [9-12], block Krylov subspaces [13-16], time-parallel methods [17,15], the shift-and-invert acceleration
[18-20] and the adaptive methods [21,22]. The phipm adaptive method of Niesen and Wright [21] has been shown to be
the most efficient option for the problems under consideration [23].

For the large scale geophysical fluid dynamics problems that motivate our study, it was found by Clancy and Pudykiewicz
[24] that semi-implicit predictor-corrector schemes [25] where still more efficient. Gaudreault and Pudykiewicz [26] further
analyzed these results and concluded that the computational cost of the Arnoldi procedure [27] was the origin of the issue.
The performance was then improved by using an incomplete orthogonalization instead of the Arnoldi procedure based on
full orthogonalization. This technique has been successfully used for the simulation of the shallow water equations on the
sphere with second and third order exponential propagation iterative (EPI) schemes [28].

The incomplete orthogonalization procedure (hereafter denoted as IOP) was originally proposed by Saad as an eigenvalue
algorithm for general non-symmetric matrices [29] and to solve systems of linear equations [30]. The application of IOP to
approximating the matrix exponential was studied recently by Koskela [31] and by Vo and Sidje [32].

The aim of this article is to explore this technique further with a particular focus on the efficient calculation of
@-functions within exponential integrators. We call the resulting algorithm the Krylov with Incomplete Orthogonalization
Procedure Solver (KIOPS). This new method has been carefully designed to allow for an efficient implementation of single
or multi-stage exponential integrators, such as those recently proposed by Rainwater and Tokman [33].

The paper is organized as follows. In Section 2 we describe the main application of KIOPS method, i.e. evaluation of linear
combinations of ¢ functions within exponential integrators. Section 3.1 presents a theorem that shows a way to evaluate
a linear combination of the ¢-functions used in our KIOPS algorithm. The KIOPS algorithm is presented in Sections 3.2-3.7
where we describe how the method uses Krylov subspace projection with incomplete orthogonalization and a new adaptiv-
ity procedure. Our numerical experiments in Section 4 validate the performance of the proposed solver and demonstrate its
relative efficiency compared to phipm. Conclusions are presented in Section 5.

2. Approximating ¢-functions within exponential integrators

The main application of KIOPS and other algorithms that approximate products of ¢-functions and vectors is their use
within an exponential integrator designed to solve initial value problems for large scale stiff systems of ordinary differential
equations (ODE) of the form

d
1O = Fue), (1)
uto) =up, telto,tenal, U, f(u) e RN,

Differential equations of this form arise in many contexts in the natural and social sciences and engineering disciplines.
In most applications, the independent variable t usually represents time, N is the number of degrees of freedom, the
vector-valued function u(t) represents some unknown dynamical quantities and f is a vector-valued function describing all
forces driving the system.

Exponential integrators gained much interest in recent years as an efficient alternative to implicit schemes in integrating
stiff systems and a number of exponential methods have been introduced (e.g. [34-40,28,41], see also review [2]). When
any exponential integrator is applied to a complex nonlinear problem its main computational cost is the evaluation of the
exponential matrix-functions vectors products. The new KIOPS technique applies to any exponential integrator that employs
approximation of these products. To make the computational savings of KIOPS concrete, however, in this paper we will
focus on a class of exponential propagation iterative methods of Runge-Kutta-type (EPIRK). These schemes are particularly
designed to gain efficiency by exploiting the properties of an algorithm used for the evaluation of ¢-functions [23,33].
Specifically, EPIRK schemes proposed in [23,33] are particularly efficient when used with an adaptive Krylov method [42,43].

To illustrate what are the computational costs associated with approximating ¢-functions within an exponential integra-
tor we consider a three-stage EPIRK method that can be written as

Un2 = tn + o11¥11(g11hn Jn)hn f (un)
Un3 = un + 021¥21(&21hn Jn)hn f (Un) + 2222(822h0n Jn)hnr (Un2)
Unt1 = Un + B1Y¥31(831hn Jn)hn f (Un) + B2v32(8320n Jn)hnt (Un2)
+ B3Yr33(833hn Jn)hn (=21 (Un2) +71(Un3))

where hy =tp1 —tg, 1(w) = f(u) — f(uy) — Jn(u — uy) is the nonlinear remainder of the second order Taylor expansion of
f(u) and ;j(2) are linear combinations of exponential-like functions defined as

(2)

238 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

1

K k-1
_g) 0
Y= 2 puea) o =[G 3)
= 0

Constant coefficients «j, fi; and pjj, can be derived using either classical or stiff order conditions and methods of up to
order five have been proposed in [44,33]. Note that since we are interested in problems where J, € RNN with N >> 1,
the largest per-time step computational cost of (2) lies in evaluating the matrix function-vector products ;;(gA)b (g € R,
A € RN*N b e RN) for different vectors b (e.g. b = hn f (), b = hyr(Uny), etc.). Thus the most efficient methods should
have coefficients pjjk, oj; and B; that both reduce the number of ;;(gA)b terms required as well as make each of these
evaluations as computationally cheap as possible. A strategy to achieve this goal was proposed in previous publications
[23,33] and involves exploiting the structure of the adaptive Krylov projection algorithm phipm [21].
The phipm algorithm evaluates linear combinations

w(t) = @o(tA)bo + T1(TA)b1 + ngoz(rA)b2 +...+ rpgop(tA)bp, (4)

where 7 € R, A € RV*N and by, by, ..., by e RN. The phipm algorithm proceeds by considering (4) as a solution to the initial
value problem
/ Tpi]

The algorithm evaluates solution to (5) over k subintervals 0 <71 < (11 + 7)) < ... < Z;‘zl T; = T using a substepping proce-
dure. Each substep i is comprised of two main parts. The first part consists of computing the approximation

p—1 _j
p ~ i ~
w(tis1) =T 9p(TA)W) +ZT‘!WJ-, (6)
j=0
where ti1 = Zf:1 7; and the vectors w; are calculated recursively from the relation
p—j ¢
Wwo = w(t;) and \7Vj=A\/~Vj,1+Ze—l'bj+g, j=1,...,p. (7)
=0 "

The second part of each substep is the adaptive algorithm that selects the substep size ;41 and the dimension m; 1 of the
Krylov projection to be used for the next substep. To approximate

@o(A)bo + @1(A)b1 + 2(A)bz + ... + @p(A)bp, (8)

the substepping procedure should be performed over the whole interval 7 € [0, 1].

Note that if only a single ¢q(T A)bg is involved in the linear combination (4) (i.e. b; =0 for j # q) then the substepping
procedure can be modified to compute several terms of type ¢4 (T;A)by for several values of T; simultaneously. This is
accomplished by ensuring that the stops at each t = T; are made and the result is recorded and scaled by 1/ Tlg .

Efficient EPIRK method (2) is derived when the terms ;j(gA)v can be combined into a minimum number of groups so
that all such terms in each group are evaluated using only one execution of the adaptive Krylov projection algorithm. For
example, a stiffly accurate fourth-order scheme EPIRK4s3 [45,43]

1 1
Up=u,+ §§01 <§hn]n> hn f (un),

1 1
Up=u,+ §(P1 <§hn]n> hn f (un),

Un+1 = Up + @1 (hn Jn) hn f (Un)
+ (189293 (hn Jn) — 423364 (hn Jn)) har (Un2)
+ (1458¢3(hn Jn) — 349924 (hn Jn))
~hn (r(Un3) — 2r(Un2)) (9)

requires only two calls to phipm. One call is used to evaluate both terms @1 (3hnJn)hnf(un) and @1 (§hnJn) ha f (un). Note
that for this approximation we need to only substep solution (4) over the interval t € [0, %]. The phipm approximation
allows us to compute the linear combination (4) which involves coefficients t'. The terms we need in (9) do not have these
coefficients. Since the terms in (9) involve only single ¢; term with all other b; =0 (i # 1), this problem can be easily
remedied by multiplying the results of phipm by factors 1/t'. Such fix would not work if several ¢;’s were involved unless

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 239

we need the final value of t be 1. This is precisely the case for the second call to phipm to evaluate the linear combination
in the last stage of (9).
The second and last call to phipm is used to evaluate the linear combination

@o(Thn Jn)bo + T¢1(Thn Jn)b1 + 1202 (Thy Jn)b2 + T3@3(Thy Jn)bs + T4 @a(Thy Jn)ba (10)
with

b1 =hu f (un),

b, =0,

b3 =1892hur(Unz) + 1458h,, (r(Up3) — 2r(Unz))
bsy = —42336h,r(Un2) — 34992h, (r(Up3) — 2r(Un2)) (11)

for T = 1. This linear combination involves all exponential terms involved in approximating u,y1. Clearly the factors 1/t
do not pose a difficulty in evaluation of this linear combination since we substep phipm over t € [0, 1].
Thus the structure of this exponential integrator utilizes phipm for two types of tasks:

(I) Computing several terms of type @i (t A)by involving a single function ¢, and a vector by, for several values of 7;
(II) Approximating linear combinations (4) with 7 =1.

Both higher-order higher-stage-number EPIRK schemes as well as other exponential integrators like exponential Rosenbrock
methods [41] utilize similar structural properties to construct and implement exponential time integrators efficiently.

We have modified the original version of the phipm to enable these two options of computing either a single ¢q4(7 A)bg
or the whole linear combination (4) for multiple values of T = T;. In the modified phipm, we use the Algorithm 3 described
in section 3.3.1 to keep track of intermediate solutions and we scale the final results by 1/t whenever task I is executed.
The rest of the procedure is identical to the one described in [21]. In the subsequent text every mention of phipm refers to
this slightly modified version of the original phipm algorithm.

For general problems where matrix A is not explicitly available and little is known about its spectrum, phipm has
been demonstrated to be the most efficient algorithm to date for the implementation of exponential integrators [23]. This
algorithm has, however, significant drawbacks and the following three considerations were the main driving force behind
our search of alternative techniques.

e The convergence of the phipm algorithm is often inconsistent. For example, it may happen that computing a solution
with a small error is significatively faster than computing a solution with a lower accuracy. We also noticed that this
behavior may occur alternately when more and more accurate solutions are being calculated. As we will see later in
the section presenting our numerical experiments, this results in zig-zags in a precision diagram.

e The substepping of equation (5) requires several explicit multiplication by the matrix A in Eq. (7). As discussed in [21],
[22] and [26], this is not only costly, but the procedure might also become increasingly sensitive to rounding errors as p
increases. Since the last stage of a high-order EPIRK scheme often involve multiplications by relatively large coefficients,
this sensitivity to rounding errors could be worrying if ||A| is large.

e The adaptive procedure of phipm is based on somewhat rough estimates of the floating point operations count on a
single processor machine. Important details related to a specific computer architecture are not taken into account.

3. The KIOPS algorithm

The KIOPS algorithm, outlined in Algorithm 1, builds on the ideas of phipm, but modifies both the substepping procedure
and the adaptive algorithm to significantly improve efficiency and accuracy of approximating (4). Specifically:

e Instead of substepping equation (5) we extend theoretical result of Sidjie [8] to linear combinations of ¢-functions
(4) and use exponential of an augmented matrix to compute all terms T¢;(TA)b; simultaneously using one Krylov
projection.

o We use incomplete rather than full orthogonalization procedure for Krylov projections.

e We propose a different adaptivity method to select 7; and Krylov subspace sizes m; which brings more efficiency to the
overall approximation of (4).

Below we provide a detailed description of the KIOPS algorithm and demonstrate its efficiency and accuracy within expo-
nential integrators compared to phipm using a set of numerical examples.

240 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255
3.1. Computing linear combinations of ¢-functions

As mentioned before, the phipm requires several explicit multiplications by A in Eq. (7). Hence, it becomes increasingly
sensitive to round off errors as p increases. The alternative approach presented in this section allows to evaluate all terms
of the linear combination (4) simultaneously and thus completely replaces the substepping of (5).

Once again consider the task of approximating

@o(TA)bo + T@1(TA)b1 + T2 @a(TA)ba + ... + TPy (TA)b) (12)

where 7 € R, A e RN*N and by, by, .. ., by € RN. In a typical application, the matrix A is large and sparse. Exact evaluation
of individual g-functions and vector products is then prohibitively computationally expensive. We choose a more efficient
method to compute the linear combination (12) using a single exponential of a slightly larger matrix [8,6,22]. The following
theorem is an extension of the result obtained in [8] for the case b;j =c for i =0, ..., p. Theorem 1 shows how the problem
of computing (12) can be solved by computing a single exponential of a matrix. Hereafter, we denote by I; the [x | identity
matrix, e, = (0,...,0,1)T € R? is the last canonical basis vector in RP. The colon operator “a:b” is an operation that
generates the indices ranging from a to b. This operator is used to represent a subset of the elements from a vector or a
matrix and it has the lowest priority.

Theorem 1.Let A € RN*N B =[b,,... by, b1] e RN*P, K = [8 1p0—1] eRP*P, v =[bl, e}]" € RN*P and T € R. We define

the augmented matrix

~ A B
_ (N+p)x (N+p)
A= [0 K] eR (13)

and let w = e7Av. Then, the first N elements of the vector w are given by

p
w(1:N)=> tlgj(tA)b; (14)
j=0

and the rest of the vector is
.[pfl T
wiN+1:N+p)=|—,..., 7,1 (15)
(p—1!

Proof. Since A is block upper triangular, its exponential has the form
- e‘[A E]Z
oTA =[0 otk |- (16)

From [8], we have

'1 T P2 -1 7
m - (p=2) (p-1!
o1 . P2
=21
oK _ | <P:) (17)
1 T
0 ... 0 1

and the columns of Eq, are given by the Theorem 2.1 of Al-Mohy and Higham [6], with ¢ =0, as

i
Eia(1:N,N+j) =) g (tA)by, for j=1top. (18)
k=1

Inserting Eqgs. (17) and (18) into Eq. (16), we obtain the following matrix

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 241

p
e te1(tA)b1 TE1(TA)Db1 +1202(tAby ... Y Tre(TA)by
k=1
p—1
0 1 Ti =T
etA — (19)
1 T
Lo 0 1]

It only remains to multiply (19) by v =[bo.ep] to obtain the vector w. O

Now we will use this result inside an iterative procedure to evaluate eth,
3.2. Krylov adaptive method

The KIOPS algorithm is structured around the idea of utilizing Theorem 1 to approximate

p
w(t)=Y tlgj(tA)bj (20)
j=0

using the exponential of an augmented matrix. This matrix exponential can be computed using a polynomial approximation
of the form

w(t) = eAy & Pm_1(t AV, (21)

where Pp,_1 is a polynomial of degree m — 1. There are a number of methods that employ a polynomial approximation of
the form of Eq. (21) including truncated Taylor series approximation, Leja interpolation, and Chebyshev polynomials-based
algorithms. The disadvantage of most of these methods is that they require information about the spectrum or norm of the
matrix. As mentioned earlier obtaining this extra information about the matrix can be impossible or prohibitively expensive
computationally especially for problems where the action of the matrix-vector product is given by an external “matvec”
subroutine. In this work, we consider only approaches that do not require any knowledge about the norm or spectrum of
the matrix. We also avoid methods that require inversion of A because this matrix is singular.
Since the approximation (21) is an element of the m-dimensional Krylov subspace

Km(A, v) =span{v, Av, ..., A" v}, (22)

the problem can be recast into the search for an element of K;; that approximates w(t) [46]. The approximation of the
vector w(t) by an element of a Krylov subspace is made up of two important steps. The first step is the computation of an
appropriate basis for the Krylov subspace and of a smaller matrix that represents the projection of the action of A on this
subspace. Then, in the second step, the matrix exponential of the smaller matrix is computed using a standard technique
and the result is projected back onto the original large space. Notice that the definition (22) does not include the factor t
since the Krylov subspace associated with A and tA are the same for any 7 € R.

We will see in section 3.4 that if we want to obtain good accuracy, then the size of the Krylov space m has to be
large when |[TA| is large. This is worrying because it may indicate that an impractical amount of memory storage and
computational cost could be necessary to obtain a sufficiently small error. A more efficient approach is to apply the Krylov
subspace method iteratively as in the work of Sidje [8]. The key idea is that computing the action of the matrix exponential
is equivalent to solving a linear ODE to split T into a sum of smaller intervals, such that

eTAy — p(m+T2+.+TA, (23)
—e™A(.. 2 e Av))). (24)

Thus, the problem of computing the matrix exponential

w(t)=e"v (25)
is equivalent to finding a solution for the initial value problem

d -

EW(T) =Aw(T), w(0) =v. (26)

From this viewpoint, one could iteratively solve the recurrence

242 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

w()=v (27)
w(Ti1) = e Aw(r) (28)

and use an adaptive procedure in order to control the errors of the method.
Given a function that computes the product Av of a matrix A € R¥N*N and a vector v € RN each substep 7; the KIOPS
algorithm proceeds according to the following steps:

(i) Given current substep size 7; and the size of the Krylov subspace m; an incomplete orthogonalization-based Krylov
projection algorithm is executed to compute e@4 defined in (19) (this step is described in detail in sections 3.3 and
3.3.1).

(ii) The local error estimate is computed and the approximation from step (i) is accepted for the current interval only if
the error is within user-specified tolerance (see sections 3.4, 3.5).

(iii) If the approximation in step (ii) is accepted, the adaptive algorithm then determines whether it is more cost efficient
to compute the approximation at the next substep with a larger value of 77 or a smaller Krylov subspace size mj;q. If
the approximation in step (ii) was rejected, the adaptive algorithm decides whether it is more cost efficient to obtain a
better estimate by reducing the substep size 7; or increasing the Krylov subspace size m; (see sections 3.6.1 and 3.6.2).

As seen in the previous section, an exponential integrator typically requires either evaluation of w at several values of
T =gjj=T; <1 (Task I, usually in cases of w composed of a single ¢;-function) or over the interval [0, T = 1] (Task II).
When several values of Tt are needed, they are provided as an argument to Algorithm 1 in the array T =[Tq,..., Tend]-
Algorithm 1 then returns several linear combinations of the form

@o(T1A)bo + @1(T1A)b1 + @2(T1A)ba + ... + @p(T1A)bp

@o(TendA)bo + @1 (TendA)b1 + @2(TendA)ba + ... 4+ @p(Tend A)bp.

Algorithm 1 KIOPS: Evaluate linear combination (12).

1: input: T =[Tq,..., Tenal. A€RVN U =Tbp, ..., by, b1, bo], tol (default 1e — 7), mini¢ (default 10), Mpmin (default 10), Mpmax (default 128), Task (I or 1)
2: T =Tena,
3: m = max(Mm;n, Min(Mipjt, Mmax))
4: Thow=0
5: j=0
6: £=0
7: ngteps = length(T)
8: w(1:N,1)=bg
9: while Tpow < Teng do
10: if j == 0 then
11: {Compute the first Krylov basis vector}
12: H=0
13: w(N+1,N+p,Z)=[‘me)”",.,.,T,mw,1]T
(p—D!
14: v<:,1)=mw(:,m
15: end if

16: V. H, j = Algorithm 2 (A, [bp. ..., by.b1]. V., j, m) {section 3.3}
17 H(1,j+1D=1

18: F=exp(tH(1:j+1,1:j+1)) {section 3.3.1}

19: Compute the local error estimate as in section 3.4.

20: Calculate suggested Tpew and mpey as in section 3.6.

21: Choose to change m for mpew or T for Tpew.

22: if Acceptance criterion described in section 3.5 is satisfied then

23: w, ¢ = Algorithm 3 (T, H, w, £) { Update the w vector }
24: Tnow = Tnow + T

25: j=0

26: else

27: H(1, j+ 1) =0 { Restore the original matrix }

28: continue

29: end if

30: end while
31: if TASKI then
32: forl=1 to ngeps do

33: w(, D =w(,)« (1/TD)P
34: end for
35: end if

36: return wy(1:N)= eT'Av, for all 1 <¢ <end, and m.

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 243

To simplify the notation in the subsequent sections we will refer to the substep size 1; as simply T and the Krylov
substep size m; as m. Keep in mind, however, that these values change over each substep .

3.3. Building a basis for the Krylov subspace

The first part of the Krylov subspace method consists of computing a set of basis vectors {vi,...,vn} for the
m-dimensional Krylov subspace Ky,. This is equivalent to finding a matrix

Vim=1[V1,..., Vm] (29)

whose column space is Kp. In a typical implementation, the Arnoldi procedure is used to compute this matrix. As discussed
in [26], performing the Arnoldi procedure takes O(m? - [N + p]) operations and constitutes the primary computational cost
of the Krylov subspace projection technique. For this reason we turn to the incomplete orthogonalization procedure of
length 2 whose time complexity is O(m - [N + p]).

Starting with the vector vi = v/||v||, the incomplete orthogonalization procedure (Algorithm 2) produces the factoriza-
tion

A Vin =V Hn 4+ hmi1,m Vg1 er1;1» (30)

where e; = (0,...0,1)T € R™ denotes the last canonical basis vector in R™. The most important by-products of this fac-
torization are the matrix V,, € RN*P)Xm and H,, € R™*M The matrix Hn has a banded structure and it can be seen as
an oblique projection of the action of the matrix A on the Krylov subspace. The entry hm+1.m € R can be interpreted as
a kind of residual of the projection onto the Krylov subspace and it will enter into the formulation of an error estimate
in section 3.4. Although we want to generate a basis of an m-dimensional space, the algorithm produces m 4 1 vectors in
general. The last vector vp1 € RN+P) will not be used in our approximation scheme. There exists alternative corrected
scheme [46] that makes use of this vector, but our experiments showed that it has slightly slower convergence than the
standard scheme when used in this solver.

The main difference between Algorithm 2 and an equivalent algorithm based on Arnoldi procedure is that each new
vector is orthogonalized only against the two previous ones instead of all of them. Hence, the matrix V;, obtained after
Algorithm 2 has rank m and its columns span Ky, but they do not form an orthonormal basis in general.

Algorithm 2 Incomplete orthogonalization procedure of length 2.

1: Input: A e RNXN, B e RN*P | v e RN*P>XMmaxt1 - j

2: while j<m do

3 j=j+1

4. V(@:N,j+1)=A-VA:N,j)+B-V(N+1:N+p,)
5: VIN+1:N+p—-1,j+1)=V(N+2:N+p, j)
6:

7

8

VIN+p,j+1)=0
for i=max(1,j—1) to j do
: HG,)=VE DT Ve j+1)
9: Ve j+1D) =V, j+1)—H3, j)- V(i)
10: end for
11: s=|VCG i+ DI
12: if s~0 then

13: happy_breakdown = true
14: break
15: end if

16: H(Gi+1,j)=s

17 Ve j+D=1vej+D
18: end while

19: return V, H, j

It is worth noting that Algorithm 2 does not require the assembly of the augmented matrix A. In effect, the product
Av j is formulated, at the lines 4 to 6, using block multiplication involving only the action of A and the matrix B. This
formulation allows the action of the matrix A, or some approximation of it, to be provided by an external subroutine.
Typically, such subroutine tries to exploit the sparsity patterns of A to reduce the computational cost associated with the
matrix-vector product.

3.3.1. Approximation of the exponential in the Krylov subspace

Since columns of V; obtained using IOP do not form an orthonormal basis, VnT., Vm is not an identity matrix as is the
case for the Arnoldi procedure. We can nevertheless use arguments similar to those presented by Saad [46] and by Higham
[3] to obtain a theorem that will justify our approximation scheme.

244 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

Theorem 2. Let A € RNtPX(N+P) y ¢ RIN+D) gnd et V,, € RNEPXM H e RMXM pe the result of m steps of Algorithm 2. Then
for any polynomial P; of degree j <m — 1 we have

Pij(A)V = |[v| Vi Pj(Hm)e1 (31)

Proof. Without loss 9f generality, the proof can be done by induction on j for the polynomials of the form P j(;\) = AJ. For
j =0, we have that A°v =v = ||v|| Vi H,% ey since Vi, eq = vq. Assume that (31) is true for all j <m — 2, then

Aty = A Alv = AV HL (v er)
= (VimHm + hmi1.mVm11 eq) Hn(lvile1)
= IV VimHi' " e1 4 Rt m Vi1 emHy (V] €1)

and using the fact that hm+1,mvm+1e,TnH,{1(||v||el) =0 whenever j <m — 2, we obtain that A/*lv = ||v| VmH,J;r1 e1, as
required. 0O

This theorem, combined with the Taylor series definition of the exponential
- > 1
TA _ ~ (+ Ak
erh=%" o (TA (32)
k=0
suggests the use of the following approximation scheme for the matrix exponential:

e" v | v|| Vietme,. (33)
Since in general m <« (N + p), the matrix exponential e?"m can be computed using any standard method with dense
output [4,5]. In this work, we use a diagonal Padé approximation combined with a scaling and squaring algorithm [47].
Algorithm 3 presents the procedure to calculate the solution for multiple stepsizes.

Algorithm 3 Update the solution using Eq. (33).
1: input: T =[Ty,..., Tendl, H, w, €
2: n;=0
3! Thext = Thow + T
4: if TASK1 then
5: for k=/{ to nseps do
6
7
8
9

if |T()]| <Tnext|l then

ne=ng+1
end if
end for
10: if ny >0 then
11: w(:, £+ng)=w(,£) { Copy current w to w we continue with. }
12: fork=0ton, —1 do
13: T=T{+k) — Thow
14: F2=exp(TH(1:j,1:j))
15: WG, €4k = w0« V(1 :N,1:j)%F2(1:j,1) { Using Eq. (33) }
16: end for
17: £ =1{+n; { Advance ¢. }
18: end if
19: end if

w0 =|wCO|«*VA:N,1:j)xF(1:j,1) { Using Eq. (33) }
20: return w, ¢

3.4. Error estimates

The approximation error for the exponential of a negative semidefinite matrix is bounded as in the following equa-
tion [31] (see also [32] for a comprehensive analysis of the convergence of I0P)

XA T A" 4 e i) | i |

le"Av — BVimetimes || <
m!

B (34)

where «(A) = max{Re(%;)} denotes the spectral abscissa of A (i.e. the supremum among the real part of the eigenvalues
of A), m is the size of the Krylov subspace, 8 =||v|| and A is the matrix 2-norm. This a priori estimate is useful to gain
insight on the convergence of the approximation scheme, but it cannot be used in practical calculations because it requires
knowledge about the spectrum of 7 A.

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 245

A more practical a posteriori estimate can be derived analogously to the Theorem 5.1 of Saad [46]. This error estimate
will be useful to formulate an acceptance criterion in section 3.5. The basic idea is that the error of the scheme (33) satisfies
the expansion

o
e v —BVmetner = BT hmi1m Y el @j(tHm)er (TA) ™ vinys. (35)
j=1

If we assume that the magnitude of the terms of the series decreases rapidly as the solution converges, then the absolute
value of the first term

€ém =T hm+1men @1 (THm)B el (36)

can be used as an estimate of the error. This estimate can be computed with little extra cost. Invoking Theorem 1 again,
the Tel,¢1(Hp)e, term can be obtained along with e*Hm in a single matrix exponential. To do that, we define the following
(m+1) x (m+ 1) matrix

= | Hm e1
and evaluate its exponential

erﬁlm _ |:er(l)-lm 4% (f]Hm)el j|] (38)

The term te,@1(Hpm)eq corresponds to the entry (m, m+ 1) of the resulting matrix. It remains only to multiply by 8 hpi1.m
to obtain the estimate (36).

Although no serious problems were found in this study, we note that this error estimate is less accurate when m is large
(see also the discussions [46] and [8]). Using a sharper error estimate or an appropriate residual notion (see e.g. [8,12,48])
could lead to better performance and accuracy. We intend to analyze this in detail in future studies.

3.5. Acceptance criterion

For an iteration to be accepted, it must satisfy a user defined tolerance. To verify this, we compute the scaled error

w= Tend€m (39)
T Tol

as in Niesen and Wright [21]. The step is accepted if w <=4, where § = 1.4 is a criterion intended to reduce the risk of
rejection of the step. Since the adaptive procedure described in section 3.6.1 seeks to get a solution with a value of w less
than 0.9, there is little to no risk to allow the tolerance to be slightly exceeded occasionally. An iteration is rejected if w > 4.
The adaptive procedure can then extend the existing Krylov subspace basis with more vectors or use a smaller stepsize to
improve the current solution. This flexibility to improve a missed iteration is an important difference with Krylov solvers
for linear systems and eigenvalue problems where a bad iteration can wreak havoc.

3.6. Selection of parameters

The accuracy and the efficiency of our algorithm depend on the two important parameters: the size of the Krylov space
m; and the substep size 7;. Thus their values must be chosen with care.

To start the algorithm, we use a somewhat optimistic first guess of T = Tepq and a user provided estimate m = mjpjt.
A default value of mj,i = 10 is used if no other value has been specified. However, experiments have indicated that a good
estimate of the Krylov subspace size can drastically improve the performance of the method [26]. When the solver is used
repetitively to integrate an ODE over many time steps, a possible strategy is to use the final value of m; from the previous
time step as a first guess for the next one. This heuristic is justified when the nature of the problem to be solved in a
particular time step resembles closely that from the previous step. Hence, the algorithm also returns the size of the Krylov
subspace m; used in the last iteration as an output parameter. A solution is then produced with these parameters. If the
acceptance criterion is satisfied, then our adaptive procedure will determine if m or T could be enlarged safely for the next
substep. If, on the contrary, the acceptance criterion is not satisfied, then we must choose different parameters m or t and
try again. The challenge is then to find optimal parameters to avoid step rejection and for quick convergence.

After each iteration (accepted or rejected), the adaptive procedure suggests a stepsize Thew and a dimension of the Krylov
subspace mpew as in Algorithm 4. Two scenarios can then be considered and the most economical is selected:

(A) keeping m constant and changing 7 to Tpew,
(B) keeping T constant and changing m to mpew.

246 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

Starting at a given substep and assuming that the new choice of parameter leads to acceptance for all of the subsequent
steps we can see that the cost to complete the remaining steps of Algorithm 1 is bounded below by

fend —
C(r,m)= [M-‘ <C05tiop(m) +C05texp(Nmult,m)>~ (40)

In (40) costjop(m) is the cost of making m steps of the Algorithm 2 (the incomplete orthogonalization procedure) that can
be estimated as

costjop(m) =m[(2 - nz(A) + @p—-1N+p)+8(N+p)]—4(N+p)+3(N+pm (41)

and costexp (Nmyie, m) is the cost of computing the dense matrix exponential given in [47] as

€oStexp (Nmuit, M) = Nyt [2(m + p) — 1]1(m + P)Zv (42)

where nz(A) denotes the number of nonzero elements in A and Npuie is the number of multiplications required for the
scaling and squaring and Padé algorithms [47] that was selected for this study.

We notice that the cost of completing the algorithm with scenario (B), C(t,mMpew), is almost always cheaper than
C(Tpew,m), the cost of scenario (A). Whenever possible, our basic strategy is therefore to keep 7 constant and use the
method described in section 3.6.2 to let m vary up to convergence or to mmax. It is only when mmax has been reached that
we should consider varying the stepsize to avoid using excessive amount of memory. In the case where mpax is reached,
we check if the step is going to be accepted. If it does not satisfy the acceptance criterion, then the procedure given in
section 3.6.1 will suggest a new stepsize that is more likely to satisfy the error tolerance. In this case, we use a safety factor
y = 0.6 to reduce the risk of another rejection. If the tolerance is satisfied, then the stepsize is changed using the default
value of y = 0.9 to give the possibility to use either a smaller or a larger size in the next step.

Our approach to adaptively propose new stepsize and the dimension is largely inspired by the work of Niesen and Wright
[21,22] and it is to be outlined in the next subsection.

Algorithm 4 Krylov adaptivity.

1: input: A, (bo, b1, ..., bp), Tol, m
2! Ymax=0.6, y =0.9
3:17=1,6=14
4: if happy_breakdown
5. w=0
6: Tnew = min(T, Tend — Tnow)
7: Mpew=m
8: happy_breakdown = false
9: else if j == mpax
10: fw>$§
11: Mpew = J .
12: Tnew =7 (Z22) 3T
13: Tnew = MiN(Tend — Tnow, Max(T /5, Tnew))
14: else
15: Keep m constant and vary 7 as in section 3.6.1
16: endif
17: else
18: Vary m as in section 3.6.2 and keep T constant

19: return Tpey and Mpeyw

3.6.1. Variable stepsize

Each interval must be small enough to reduce the norm of the matrix to a level where the problem could be solved
with a reasonably large Krylov subspace. On the other hand, it should not be too small because this would necessitate a
large number of iterations. The challenge is therefore to find an optimal partition of the interval [0,] into k subintervals t;
(I=1,...,k) without any a priori knowledge of the matrix characteristics.

The procedure to determine the stepsize is similar to the adaptive strategy used in many ODE solvers. We assume that
the error is approximately Ct9+!, for some constants g, C € R. The order q is set to g = % — 1 for the first step as in [21]
and if a previously suggested stepsize is rejected, then we use the following estimate to obtain a new order estimate

q= log(T /Tola) B
log(ll€ml/11(€m)olall)

where the “old” subscript denotes the rejected estimates.

1, (43)

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 247
The suggested stepsize is then given by

Y\aH
q+
Tnew =T <—) (44)
w
where @ = Tepgem /(7 tol) denotes the scaled error and y is a safety factor. Following [8], we chose a value of y =0.9,
except when the size of the Krylov subspace m reaches a certain limit mmp,x in which case we use y = 0.6 to avoid step
rejections. The suggested stepsize is always clipped to restrict its variation around the current stepsize between % and 5t

and to make sure it does not exceed the final value of tenq.

3.6.2. Variable dimension of the Krylov subspace

As mentioned before, a rapid convergence could be obtained if we choose a large value of m when ITA] is large. Since
we do not know the norm of T A, we can use the a posteriori estimate to increase m if the estimated error is too large or to
reduce it if the error can be kept small enough [21]. In practical applications, it may also be judicious to select a minimum
and maximum size mpyi, and mmpax to cap the memory requirements and to make efficient use of the CPU cache memory.
The default values, used in our numerical experiments, are mpi, = 10 and mmax = 128.

The estimate (34) suggests that the error is about Cx ~™ for some constants C, k € R. For the first suggestion of a step,
a default value k¥ =2 is used. When an iteration is rejected, the value of « is estimated as a function of the error estimate
from the current and the previously rejected error estimates (again denoted with a “old” subscript) by

1/(mgjg—m)
w
‘= () (45)
Wold
Given this estimate, we obtain the suggested dimension size with
log(w
Mpew =M + M (46)
log k

The dimension of the Krylov space is constrained to vary upward or downward in the user specified interval [mmin, Mmax].
Similarly to what we did for the stepsize, the dimension is clipped to avoid variation larger than 25% below the previous
value of m or 33% above.

As an aside, we note that there is a small inconsistency in the methodology to limit the evolution of m and t in phipm.
This algorithm uses maximum and minimum thresholds to avoid large variations of the parameters, but the clipping of the
values is done at the end of an iteration. The consequence is that an optimal decision taken on the basis of the cost function
may be affected later, leading to suboptimal adaptivity. This is in contrast with KIOPS where the clipping of the suggested
values is always done during the adaptive procedure.

3.7. Avoiding rounding errors

We close this section with a remark about implementation details that could help to reduce the impact of the rounding
errors due to finite precision arithmetic. As shown in Theorem 1, the exact value of v for entries N+ 1 to N + p is given by

(Trow + T)p_]
(p—1!
We can also follow the suggestion of Al-Mohy and Higham [6] and normalize the B matrix. To do so, we substitute B by

v - B and change entries N +1 to N + p of the starting vector v to - v(N +1:N + p) before applying Algorithm 2. The
normalization constants

;
v(N+1:N+p):[,...,(Tnow+T),1] . (47)

b = 2o (1Bl (48)
(1 = 2M10g2(IBIDT (49)

are defined as a power of 2 to avoid the introduction of rounding errors and has no effect on the solution in exact arithmetic.
Our experiments have shown that the normalization of the B matrix leads to slightly faster convergence on most problems.

4. Numerical experiments

We evaluate the performance of the KIOPS algorithm in the context of the following fourth- and fifth-order EPIRK expo-
nential methods since these schemes were shown to provide most efficiency in previous studies [33,45,43]. The numerical
experiments presented below both validate the performance of the KIOPS algorithm and demonstrate how this algorithm
can improve both efficiency and accuracy of the EPIRK and other exponential schemes compared to the adaptive Krylov
algorithm phipm from [21].

248 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

Table 1
Coefficients of EPIRK5P1.
o1 0.3512959269505819
o1 o = | 0.8440547201165712 1.690589160956896
B B2 B3 1.0 1.272712731735689 2.271459926542262
g1 0.3512959269505819
821 822 = | 0.8440547201165712 1.0
g31 €32 £33 1.0 0.7111109536436687 0.6237811195337149

We choose the following four exponential schemes for our numerical experiments:

e EPIRK4s3 [45,43] - stiffly accurate fourth-order integrator:

1 1
Upp=up+ gfpl (g’%]n) hn f (up),

1 1
Ups=uy + §(ﬂl (ghn1n> hn f (up),

Unt1 = Un + @1 (hn Jn) hn f (un)
+ (189203 (hy Jn) — 42336¢4(hn Jn)) hnt (Un2)
+ (145893 (hn Jn) — 34992¢4(hn Jn))
“hy (r(Un3) — 2r(Un2)) . (50)

e EPIRK4s3A [33] - stiffly accurate fourth-order integrator:

1 1
Uz =un+ iq’l (ihnfn) hn f (un)

2 2
Unz=up+ §¢1 <§hn1n) ha f (un)

51
Ung1 = Up + @1(hn Jn)hn f (un) 51
+ (32¢3(hn Jn) — 144¢4(hy Jn)) hnr (Unz)
27
+ <_7fp3(hn]n) + 81(/)4(hn]n)> hnr(Un3).
e EPIRK5P1 [23] - classical (non-stiffly accurate) fifth-order integrator:
Un2 = tn + 1191(g11hn Jn)hn f (un)
Unz = Un + a2191(821hn Jn)hn f (Un) + 22 (52)

Unt1 = Un + B191(g31hn Jn)hn f (Un) + B2901(832hn Jn)hnr (Un2)
+ B3¢3(g33hn Jn)hn (=2r(Unz) 4+ 1(Un3))

with coefficients given in Table 1.
o EXPRB5s3 [49] - stiffly accurate fifth-order method that was originally derived as exponential Rosenbrock integrator
and can also be written as an EPIRK scheme [33]:

Un2 =up+ %(ﬁ(%hn]n)hnf(un)
Unz =up+ i(Pl(ihn]n)hnf(un)
10 10
27 1 729 9
+ (E‘PB(Ehn]n)'FE%(Ehn]n)) hnr(Un2) (53)

Unt1 = Un + @1(hn Jn)hn f (un)
+ (183 (hn Jn) — 60¢@4(hy Jn)) hnr (Un2)

250 500
+ <_8—1(/)3 (hnJn) + ?‘/M(hn]n)) har(Up3).

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 249

Advection-Diffusion-Reaction 2d, N = 400 x 400 AllenCahn2d, N = 500x500

10 s 102
EPIRK4s3
107 0% EPIRK4s3 (KIOPS;
108 10
8 409 8108
& 10 210
10710 10
10" 107
1072 108
20 40 60 80 100 120 0 50 100 150 200
CPU time in seconds CPU time in seconds
(a) (b)
Br N =300x300 GrayScott2d, N = 400x400
107 10
EPIRK4s3 (KIOPS EPIRK4s3 (KIOPS;
102 10
102 10
5 10 8 107
5 10 5 10
10 108
10 10°
3
107 1071
10 20 30 40 50 60 70 0 20 40 60 80 100 120 140 160 180
CPU time in seconds CPU time in seconds
(c) (d)
106 1D ili Parabolic ion with n=1000
-¥-EPIRK4s3
EPIRK4s3 (KIOPS
107
108
g g0
5 10
1010
101
1012
10 20 30 40 50
CPU time in seconds
(e)

Fig. 1. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3 method.

All of these methods are implemented as described in section 2 in a way that groups terms to minimize the number of
KIOPS calls needed with each call optimized. A more detailed description of this so-called mixed implementation technique
to optimize performance can be found in [33]. With the mixed implementation the fourth-order methods require only two
calls to KIOPS or phipm routines per time step, while fifth-order methods require only three calls. This is accomplished by
simultaneously evaluating the second terms in the right-hand side of equations for U, and Up3 using a single call to KIOPS
or phipm. For fourth-order methods the second call to KIOPS or phipm evaluates the full linear combination of ¢-functions
in evaluation of u,y1. The fifth-order methods require the third call to KIOPS or phipm to approximate the third term in
the right-hand side of Uj,s. All schemes are implemented with constant time step integration. The phipm algorithm used in
our experiments allows for simultaneous evaluation of linear combinations of ¢’s at values T =[T1, ..., Tepq]. Further details
and information on our phipm implementation can be found in [21,23,33].

As in previous publications [33], we choose the following test problems routinely used to study the performance of
stiff integrators. In all of the problems presented below the V2 term is discretized using the standard second order finite
differences.

Allen-Cahn 2D. Two-dimensional Allen-Cahn equation [50]:

ur=aViu+u—ul x,ye[-1,1],t €[0,1.0]

with o = 0.1, using no-flow boundary conditions and initial conditions given by u = 0.1 4 0.1 cos(2wx) cos(2m y).
Advection-Diffusion-Reaction (ADR) 2D. Two-dimensional advection-diffusion-reaction equation [51]:

U =€V2u — oy +uy) +yu — 51—, x,y€[0,1],t [0,0.1],

250 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

AllenCahn2d, N = 500x500

102 Advection-Diffusion-Reaction 2d, N = 400x 102
¥ EPIRK4s3A ¥-EPIRK4s3A
EPIRK4s3A (KIOPS; EPIRK4s3A (KIOPS;
10 10
105
10
2 806k
& a0
10®
107
107
108
10-1 2 L L L L L L L 10»9 L L L L L
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120
CPU time in seconds CPU time in seconds
(a) (b)
10 Br N= 300)(:}90 104 GrayScott2d, N = 400x400
K EPIRKasaA ¥ EPIRK4s3A
) EPIRK4s3A (KIOPS; 1080 EPIRK4S3A (KIOPS;
10~
s 10
10”
- = 10'7 3
104 e
&0 &
108k
10°
109k
10 10710k
107 1071
0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160
CPU time in seconds CPU time in seconds
(c) (d)
102 1D ilinear Parabolic ion with n=1000
¥ EPIRK4s3A
EPIRK4s3A (KIOPS|
10
10
8
I
108
1070
10712
0 5 10 15 20 25 30
CPU time in seconds

(e)
Fig. 2. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3A method.
where € =1/100, « = —10, and y = 100. Homogeneous Neumann boundary conditions were used and the initial conditions

were given by u = 256(xy(1 — x)(1 — y))2 + 0.3.
Brusselator 2D. Two-dimensional Brusselator [52,53]

ur=1+u?v —4u + aViu, x,y €[0,1]
ve=3u—ulv+avv
o =0.02

with homogeneous Neumann boundary conditions, t € [0, 1], and initial values

u=2+0.25y
v=1+40.8x

Gray-Scott 2D. Two-dimensional Gray-Scott [54] with periodic boundary conditions:
ur =d, V3u — uv? +a(l—u), x,y €[0,1]
vi=d,V?v 4+ uv? — (a+b)v,

and d, =0.2,dy, =0.1,a=0.04, b = 0.06. Initial conditions given by

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 251

Advection-Diffusion-Reaction 2d, N = 400x400 102 AllenCahn2d, N = 500x500

10-2 T T T T
EPIRK5P1 (KIOPS; EPIRKSP1 (KIOPS
10 10 1
10 10]
8 g
i i
10 10
0-10 0710
012 ; : . ; . . o012
20 40 60 80 100 120 140 0 50 100 150 200 250 300 350 400 450
CPU time in seconds CPU time in seconds
(a) (®)
100 Brusselator2d, N = 300x300 104 GrayScott2d, N = 400x400
—-EPIRK5P1
EPIRK5P1 (KIOPS;
102 10
10 10
8 8
w w
10 10710
108 10712
¥-EPIRK5P1
EPIRK5P1 (KIOPS;
10'10 10—14
0 50 100 150 200 250 0 100 200 300 400 500
CPU time in seconds CPU time in seconds
(c) (d)
1D ilinear Parabolic ion with n=1000
102 T T T T T T T
¥ EPIRK5P1
EPIRK5P1 (KIOPS;
10
8 o6
& 10
10
10-10
0 20 40 60 80 100 120 140 160

CPU time in seconds

(e)
Fig. 3. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK5P1 method.

u=1—e 150[6=5+y-p?

v = o~ 150[(x—=3)*+2(y—1)*1

1D Semilinear Parabolic. One-dimensional semilinear parabolic problem [55]:

8U(x t) 82U(x t)—/U(x t)dx + d(x,t)
at axz ' ’
0
with homogeneous Dirichlet boundary conditions and for x € [0, 1] and t € [0, 1]. The source function @ is chosen such that
U(x,t) =x(1 —x)e’ is the exact solution.
Figs. 1-4 show precision diagrams (CPU time vs. error) for each of the exponential schemes and all of the test problems
comparing the performance of KIOPS and phipm versions of the exponential integrators. The following time step sizes and

spatial discretizations were used in these simulations

ADR: N = 4002 with h =0.01, 0.005, 0.0025, 0.00125, 6.25 - 10~4,
Allen-Cahn: N = 5002 with h = 0.5, 0.25,0.1250, 0.0625, 0.03125,

Semilinear Parabolic: N = 1000 with h = 0.1, 0.05, 0.0250, 0.0125, 6.25 - 103,
Gray-Scott: N = 400% with h = 0.01, 0.005, 0.0025, 0.00125, 6.25 - 10~4,
Brusselator: N =300% with h =0.25,0.1250, 0.0625, 0.03125, 0.015625,

252 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

Advection-Diffusion-Reaction 2d, N = 400x400 AllenCahn2d, N = 500x500

10 10
EXPRB5s3 (KIOPS; EXPRB5s3 (KIOPS
10
10
107
108
8 8 08
5 5 10
10'10
10
-12
10 ¥ 10710
107 10"
0 10 20 30 40 50 60 0 50 100 150 200 250 300 350 400
CPU time in seconds CPU time in seconds
(a) (b)
109 N =300x300 106 GrayScott2d, N = 400x400
104 107
10%
10°
N _ 10
210 I3
g0 &
10-10
107
101
108 2 ¥ EXPRB5s3
10 EXPRBS5s3 (KIOPS
109 107
0 20 40 60 80 100 120 140 0 50 100 150 200 250 300
CPU time in seconds CPU time in seconds
(c) (d)
104 1D ilinear Parabolic ion with n=1000
--EXPRB5s3
107 EXPRB5s3 (KIOPS
10
_ 10°
g
]
10710
101
1072
-13
10 20 40 60 80 100

CPU time in seconds

(e)

Fig. 4. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EXPRB5S3 method.

where N and h correspond to the number of spatial discretization nodes and the time step size respectively. The tolerance
is set to 10~14 for KIOPS and phipm. The error is defined as the discrete infinity (maximum) norm of the difference between
the approximation to the solution and the reference solution computed using MATLAB'’s ode15s integrator with absolute and
relative tolerances set to 1014,

First, it is important to note that KIOPS outperforms phipm in all of the simulations delivering both better efficiency and
accuracy. For a given tolerance the speedup of simulations can be a factor of 5 or 7 (e.g. Fig. 4(e), Fig. 3(e)). It is interesting to
observe that while comparatively EPIRK4s3 is more accurate than EPIRK4s3A and EXPRB5s3 is more accurate than EPIRK5P1
for the phipm implementation, KIOPS makes these schemes on par with each other. In other words, a KIOPS EPIRK4s3A
implementation is as efficient and accurate as EPIRK4s3, and similar conclusion holds for EXPRB5s3 and EPIRK5P1. It is
particularly notable that this phenomenon occurs even between a classically (non-stiffly) accurate EPIRK5P1 and the stiffly
accurate method EXPRB5s3. Practice shows that stiff order conditions on exponential integrators can sometimes be unnec-
essarily strict for some problems [33]. This result raises a question of whether improvements in approximating ¢-vector
products can allow for easing strict stiff order conditions and enable derivation of more efficient methods.

To demonstrate that the computational advantage of KIOPS compared to phipm is retained as the size of the problem and
consequently its stiffness increase we present numerical experiments for each of the problems with different values of the
problem size N in Fig. 5. It is expected that as N increases performance of both algorithms will suffer since Krylov subspace
projection is at the core of each of these methods and its performance is affected by the more spread out spectrum of
the Jacobian matrix. However, graphs in Fig. 5 indicate that the computational advantage of KIOPS compared to phipm is
retained and even improved as the problem size N increases.

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 253

Ad ion-Diffusion-Ri ion 2d, N =100 x 100 Ad ion-Diffusion-R ion 2d, N =200 x 200 Advection-Diffusion-Reaction 2d, N = 400 x 400

2 -2
10 : : 10
PIRK4sA -EPIRK4s3A
EPIRK4sA (KIOPS & EPIRK4s3A (KIOPS

-k EPIRK4s3A
<> EPIRK4s3A (KIOPS
Q (4% 10
101 10"
10°
5 5 4 5
= -6 | = - =
E 10 5 10 i
108
108 10®
10710

-10 -10 -12
10 1 15 2 25 3 10 2 4 6 8 10 12 10 0 10 20 30 40
CPU time in seconds CPU time in seconds CPU time in seconds
(2) (b) ()
. GrayScott2d, N = 100 x 100 . GrayScott2d, N = 200 x 200 . GrayScott2d, N = 400 x 400
10 10° 10"
HEPIRK4sA - EPIRK4SIA
k3
10 XEPIRKASBA o) 10 & EPIRK4sA (KIOPS) 108 EPIRK4s3A (KIOPS)
EPIRK4s3A (KIOP:
10° 10
. 107 _ 107
8 5
I i
10°® 108
10° 10
10-10 10-10
-11 -11 11
0 15 2 25 3 35 4 45 5 s 10 15 20 25 30 35 40 07 20 40 60 80 100 120 140 160
CPU time in seconds CPU time in seconds CPU time in seconds
(d) (e) ()

Brusselator2d, N = 300x300
Sk

Brusselator2d, N = 150 x 150 107! Brusselator 2d, N = 600 x 600
107 H T T T T EPIRK4s3A 1071 T . T % T
EPIRK4s3A (KIOPS
4 ¥ EPIRK4sA 102F
102 4> EPIRK4sA (KIOPS) 102
10'3 E
10':<> 103
¢ -
. 5 .
[510 L 04
E10 510
s
105§ 10 108
10°F 10°F 10°
-k-EPIRK4sA
QEPIRKASA (KIOPS)
107 107 107
4 5 6 7 8 9 10 0 10 20 30 40 50 60 300 400 500 600 700 800 900
CPU time in seconds CPU time in seconds CPU time in seconds
() (h) ()
) 1D Semilinear Parabolic Equation, N=500) 1D Semilinear Parabolic Equation, N=1000
10 10"
SEEPIRKAs3A “H-EPIRK4s3A
VAN
£ EPIRK4s3A (KIOPS) £ EPIRK4s3A (KIOPS)
10* 10
10° 10°
8 8
i i
10® 10°®
10-10 10-10
-12 -12
10 8 10 12 14 16 18 20 10 0 5 10 15 20 25 30
CPU time in seconds CPU time in seconds

@ (k)

Fig. 5. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3A method as the size of each of the
problems increases. Advection-Diffusion-Reaction 2D with (a) N = 1002, (b) N = 2002, (c) N = 400%; Gray-Scott 2D with (d) N = 1002, (e) N = 200?;
Brusselator 2D with (g) N = 1502, (h) N = 3002, (i) N = 600%; 1D Semilinear Parabolic equation with (j) N =500, (k) N = 1000. Note: Allen-Cahn problem
is omitted since the results for this problem are essentially the same as for other test problems but for clarity we wanted to keep all the graphs in one
figure.

254 S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255

5. Conclusions

We presented a new KIOPS algorithm for evaluating products of exponential and exponential-like ¢-functions of large
stiff matrices and vectors. To date, phipm was considered to be the most efficient algorithm for problems where no addi-
tional information about the spectrum or norm of the matrix is available. Our results demonstrated that the new KIOPS
algorithm outperforms phipm. The efficiency of the proposed algorithm is attributable to a combination of the incomplete
orthogonalization procedure, a better adaptivity procedure and a heuristic strategy to determine the initial size of the Krylov
space using information from previous time substeps. The new algorithm offers not only better computational efficiency but
new pathways to further improvements in making exponential and exponential-type integrators more computationally ap-
pealing. In particular, the adaptivity algorithms within the KIOPS method can be improved further if better error and cost
estimates are derived. We plan to pursue this line of research in our future work. We note that alternative techniques, like
restarted Krylov subspace or block Krylov subspace, could be combined with the adaptive method described in this paper.
We intend to study them in future work. We also plan to investigate effective ways to improve the performance of the
algorithm on parallel architectures.

6. Code availability

The EPIC package implements the exponential integrators used in our numerical experiments. It is available from
http://faculty.ucmerced.edu/mtokman/#software.

Acknowledgements

The origin of this study goes back to fruitful discussions with Michel Desgagné and Martin Charron. Stimulating discus-
sions with Janusz Pudykiewicz and Michel Valin are also acknowledged. Reviews by Christopher Subich, Rabah Aider, and
Nathalie Berger greatly improved the original manuscript. This work was in part supported by a grant no. 1115978 from the
National Science Foundation, Computational Mathematics Program.

References

[1] B.V. Minchev, W.M. Wright, A Review of Exponential Integrators for First Order Semi-Linear Problems, Tech. Rep. 2/05, Department of Mathematics,
Norwegian University of Science and Technology, 2005.
[2] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numer. 19 (2010) 209-286.
[3] NJ. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008.
[4] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (4) (1978) 801-836.
[5] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (1) (2003) 3-49.
[6] A.H. Al-Mohy, N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM]. Sci. Comput. 33 (2)
(2011) 488-511.
[7] M. Caliari, P. Kandolf, A. Ostermann, S. Rainer, The Leja method revisited: backward error analysis for the matrix exponential, SIAM]. Sci. Comput.
38 (3) (2016) A1639-A1661.
[8] R.B. Sidje, Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw. 24 (1) (1998) 130-156.
[9] H. Tal-Ezer, On restart and error estimation for Krylov approximation of w = f(A)v, SIAM]. Sci. Comput. 29 (6) (2007) 2426-2441.
[10] M. Afanasjew, M. Eiermann, O.G. Ernst, S. Giittel, Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear
Algebra Appl. 429 (10) (2008) 2293-2314.
[11] M. Eiermann, O.G. Ernst, S. Giittel, Deflated restarting for matrix functions, SIAM J. Matrix Anal. Appl. 32 (2) (2011) 621-641.
[12] M.A. Botchev, V. Grimm, M. Hochbruck, Residual, restarting, and Richardson iteration for the matrix exponential, SIAM]. Sci. Comput. 35 (3) (2013)
A1376-A1397.
[13] L. Lopez, V. Simoncini, Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT Numer. Math. 46 (4) (2006)
813-830.
[14] M.A. Botchev, A block Krylov subspace time-exact solution method for linear ordinary differential equation systems, Numer. Linear Algebra Appl. 20 (4)
(2013) 557-574.
[15] G.L. Kooij, M.A. Botchev, BJ. Geurts, A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear
partial differential equations, J. Comput. Appl. Math. 316 (2017) 229-246.
[16] A. Frommer, K. Lund, D.B. Szyld, Block Krylov subspace methods for functions of matrices, Electron. Trans. Numer. Anal. 47 (2017) 100-126.
[17] MJ. Gander, S. Giittel, PARAEXP: a parallel integrator for linear initial-value problems, SIAM J. Sci. Comput. 35 (2) (2013) C123-C142.
[18] 1. Moret, P. Novati, RD-rational approximations of the matrix exponential, BIT Numer. Math. 44 (3) (2004) 595-615.
[19] J. van den Eshof, M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput. 27 (4) (2006) 1438-1457.
[20] L. Moret, On RD-rational Krylov approximations to the core-functions of exponential integrators, Numer. Linear Algebra Appl. 14 (5) (2007) 445-457.
[21] J. Niesen, W.M. Wright, Algorithm 919: a Krylov subspace algorithm for evaluating the ¢-functions appearing in exponential integrators, ACM Trans.
Math. Softw. 38 (3) (2012) 22.
[22]]. Niesen, W.M. Wright, A Krylov subspace method for option pricing, SSRN 1799124 (2011), https://doi.org/10.2139/ssrn.1799124.
[23] M. Tokman, J. Loffeld, P. Tranquilli, New adaptive exponential propagation iterative methods of Runge-Kutta type, SIAM J. Sci. Comput. 34 (5) (2012)
A2650-A2669.
[24] C. Clancy, J.A. Pudykiewicz, On the use of exponential time integration methods in atmospheric models, Tellus, Ser. A Dyn. Meteorol. Oceanogr. 65 (1)
(2013).
[25] C. Clancy, J.A. Pudykiewicz, A class of semi-implicit predictor-corrector schemes for the time integration of atmospheric models,]. Comput. Phys. 250
(2013) 665-684.
[26] S. Gaudreault,]J.A. Pudykiewicz, An efficient exponential time integration method for the numerical solution of the shallow water equations
on the sphere,]. Comput. Phys. 322 (2016) 827-848, https://doi.org/10.1016/j.jcp.2016.07.012, https://www.sciencedirect.com/science/article/pii/
S0021999116302911.

http://faculty.ucmerced.edu/mtokman/#software
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D696E6368657632303035526576696577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D696E6368657632303035526576696577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib686F6368627275636B323031306578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib68696768616D3230303866756E6374696F6E73s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D6F6C6572313937386E696E657465656Es1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D6F6C6572323030336E696E657465656Es1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib616C32303131636F6D707574696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib616C32303131636F6D707574696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib63616C69617269323031366C656A61s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib63616C69617269323031366C656A61s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7369646A65313939386578706F6B6974s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib74616C3230303772657374617274s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6166616E61736A657732303038696D706C656D656E746174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6166616E61736A657732303038696D706C656D656E746174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib656965726D616E6E323031316465666C61746564s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib626F746368657632303133726573696475616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib626F746368657632303133726573696475616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6C6F70657A3230303670726573657276696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6C6F70657A3230303670726573657276696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib626F746368657632303133626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib626F746368657632303133626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B6F6F696A32303137626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B6F6F696A32303137626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib66726F6D6D657232303137626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib67616E6465723230313370617261657870s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D6F726574323030347264s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib76616E32303036707265636F6E646974696F6E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D6F726574323030377264s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6E696573656E32303132616C676F726974686Ds1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6E696573656E32303132616C676F726974686Ds1
https://doi.org/10.2139/ssrn.1799124
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib746F6B6D616E323031326E6577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib746F6B6D616E323031326E6577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib636C616E637932303133757365s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib636C616E637932303133757365s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib636C616E637932303133636C617373s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib636C616E637932303133636C617373s1
https://doi.org/10.1016/j.jcp.2016.07.012
https://www.sciencedirect.com/science/article/pii/S0021999116302911
https://www.sciencedirect.com/science/article/pii/S0021999116302911

S. Gaudreault et al. / Journal of Computational Physics 372 (2018) 236-255 255

[27] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math. 9 (1) (1951) 17-29.

[28] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys. 213 (2) (2006)
748-776.

[29] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algebra Appl. 34 (1980) 269-295.

[30] Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM]. Numer. Anal.
19 (3) (1982) 485-506.

[31] A. Koskela, Approximating the Matrix Exponential of an Advection-Diffusion Operator Using the Incomplete Orthogonalization Method, Numerical
Mathematics and Advanced Applications—ENUMATH, vol. 2013, Springer, 2015, pp. 345-353.

[32] H.D. Vo, RB. Sidje, Approximating the large sparse matrix exponential using incomplete orthogonalization and Krylov subspaces of variable dimension,
Numer. Linear Algebra Appl. 24 (3) (2017) e2090.

[33] G. Rainwater, M. Tokman, A new approach to constructing efficient stiffly accurate EPIRK methods,]. Comput. Phys. 323 (2016) 283-309.

[34] R.A. Friesner, L.S. Tuckerman, B.C. Dornblaser, T.V. Russo, A method for exponential propagation of large systems of stiff nonlinear differential equations,
J. Sci. Comput. 4 (4) (1989) 327-354.

[35] G. Beylkin, J.M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (2) (1998)
362-387.

[36] E. Gallopoulos, Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13 (5) (1992) 1236-1264.

[37] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (5) (1998) 1552-1574.

[38] S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2) (2002) 430-455.

[39] A-K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4) (2005) 1214-1233.

[40] S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (1) (2005) 72-88.

[41] M. Hochbruck, A. Ostermann, Exponential integrators of Rosenbrock-type, Oberwolfach Rep. 3 (2006) 1107-1110.

[42] L. Einkemmer, M. Tokman,]. Loffeld, On the performance of exponential integrators for problems in magnetohydrodynamics, J. Comput. Phys. 330
(2017) 550-565.

[43] D.L. Michels, V.T. Luan, M. Tokman, A stiffly accurate integrator for elastodynamic problems, ACM Trans. Graph. 36 (4) (2017) 116:1-116:14.

[44] M. Tokman, A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK), J. Comput. Phys. 230 (24) (2011) 8762-8778,
https://doi.org/10.1016/j.jcp.2011.08.023, http://www.sciencedirect.com/science/article/pii/S0021999111005109.

[45] G. Rainwater, M. Tokman, Designing efficient exponential integrators with EPIRK framework, in: AIP Conference Proceedings, vol. 1863, AIP Publishing,
2017, p. 020007.

[46] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM]. Numer. Anal. 29 (1) (1992) 209-228.

[47] NJ. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179-1193.

[48] P. Kandolf, A. Ostermann, S. Rainer, A residual based error estimate for Leja interpolation of matrix functions, Linear Algebra Appl. 456 (2014) 157-173.

[49] V.T. Luan, A. Ostermann, Exponential Rosenbrock methods of order five—construction, analysis and numerical comparisons, J. Comput. Appl. Math. 255
(2014) 417-431.

[50] P.W. Bates, S. Brown,]. Han, Numerical analysis for a nonlocal Allen-Cahn equation, Int. J. Numer. Anal. Model. 6 (1) (2009) 33-49.

[51] M. Caliari, A. Ostermann, Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59 (3-4) (2009) 568-581.

[52] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edition, Springer-Verlag, Berlin, Heidel-
berg, 2004.

[53] R. Lefever, G. Nicolis, Chemical instabilities and sustained oscillations,]. Theor. Biol. 30 (2) (1971) 267-284.

[54] P. Gray, S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B — 3B;
B — C, Chem. Eng. Sci. 39 (6) (1984) 1087-1097.

[55] M. Hochbruck, A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM]. Numer. Anal. 43 (3) (2005)
1069-1090.

http://refhub.elsevier.com/S0021-9991(18)30404-2/bib61726E6F6C6469313935317072696E6369706C65s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib746F6B6D616E32303036656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib746F6B6D616E32303036656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7361616431393830766172696174696F6E73s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib73616164313938326C616E637A6F73s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib73616164313938326C616E637A6F73s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B6F736B656C6132303135617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B6F736B656C6132303135617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib766F32303137617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib766F32303137617070726F78696D6174696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7261696E7761746572323031366E6577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib66726965736E6572313938396D6574686F64s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib66726965736E6572313938396D6574686F64s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6265796C6B696E313939386E6577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6265796C6B696E313939386E6577s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib67616C6C6F706F756C6F7331393932656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib686F6368627275636B313939386578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib636F78323030326578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B617373616D32303035666F75727468s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B726F67737461643230303567656E6572616C697A6564s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib686F6368627275636B323030366578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib65696E6B656D6D65723137s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib65696E6B656D6D65723137s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6D696368656C733230313773746966666C79s1
https://doi.org/10.1016/j.jcp.2011.08.023
http://www.sciencedirect.com/science/article/pii/S0021999111005109
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7261696E77617465723230313764657369676E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7261696E77617465723230313764657369676E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib7361616431393932616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib68696768616D323030357363616C696E67s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6B616E646F6C6632303134726573696475616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6C75616E323031346578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6C75616E323031346578706F6E656E7469616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6261746573323030396E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib63616C6961726932303039696D706C656D656E746174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib68616972657232303034536F6C76696E6732s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib68616972657232303034536F6C76696E6732s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib6C656665766572313937316368656D6963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib67726179313938346175746F636174616C79746963s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib67726179313938346175746F636174616C79746963s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib686F6368627275636B323030356578706C69636974s1
http://refhub.elsevier.com/S0021-9991(18)30404-2/bib686F6368627275636B323030356578706C69636974s1

	KIOPS: A fast adaptive Krylov subspace solver for exponential integrators
	1 Introduction
	2 Approximating ϕ-functions within exponential integrators
	3 The KIOPS algorithm
	3.1 Computing linear combinations of ϕ-functions
	3.2 Krylov adaptive method
	3.3 Building a basis for the Krylov subspace
	3.3.1 Approximation of the exponential in the Krylov subspace

	3.4 Error estimates
	3.5 Acceptance criterion
	3.6 Selection of parameters
	3.6.1 Variable stepsize
	3.6.2 Variable dimension of the Krylov subspace

	3.7 Avoiding rounding errors

	4 Numerical experiments
	5 Conclusions
	6 Code availability
	Acknowledgements
	References

