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Abstract

In this paper, we investigate the sample size requirement for a general class of
nuclear norm minimization methods for higher order tensor completion. We introduce
a class of tensor norms by allowing for different levels of coherence, which allows
us to leverage the incoherence of a tensor. In particular, we show that a kth order
tensor of rank 7 and dimension d X --- X d can be recovered perfectly from as few as
O((r=/2¢3/2 4 rk=14d)(log(d))?) uniformly sampled entries through an appropriate
incoherent nuclear norm minimization. Our results demonstrate some key differences
between completing a matrix and a higher order tensor: They not only point to

potential room for improvement over the usual nuclear norm minimization but also
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highlight the importance of explicitly accounting for incoherence, when dealing with

higher order tensors.
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1 Introduction

Data in the format of tensors, or multilinear arrays, arise naturally in many modern
applications. A kth order hypercubic tensor of dimension d x --- x d has d* entries so that
these datasets typically are of fairly large size even for moderate d and small k. Therefore, it
is oftentimes impractical to observe or store the entire tensor, which naturally brings about
the question of tensor completion: How to reconstruct a kth order tensor T' € R %4 from
observations {T'(w) : w € Q} where  is a uniformly sampled subset from [d;] x - - X [dy]?
Here [d] = {1,...,d}. The goal of this paper is to study in its full generality a class of
tensor completion methods via nuclear norm minimization focusing on higher order tensors

(k > 3).

1.1 Tensor completion

Obviously, for reconstructing T' from a subset of its entries to be possible at all, T needs to
have some sort of low dimensional structure which is often characterized by certain notion of
low-rankness. In particular, let £;(X) be the linear subspace of R% spanned by the mode-j
fibers:

{X(ar,...,a5-1, aj1,. .., ax) € RY :ay € [dy],...,ax € [dy]}

Denote by r;(X) the dimension of £;(X). The tuplet {r(X),...,7(X)} is the so-called
Tucker ranks of X. It is not hard to see that there are a total of O(r*~!d) free parameters
in specifying a kth order hypercubic tensor of dimension d x - - - x d whose Tucker ranks are
upper bounded by r, which suggests the possibility of recovering a large tensor of low rank
from a fairly small fraction of the entries.

In addition to low-rankness, it is also essential to tensor completion that every entry of
T contains similar amount of information about the entire tensor so that missing any of
them would not stop us from being able to reconstruct it — a property that can be formally
characterized through the coherence of the linear subspace L£;(T'). See, e.g, Candes and

Recht (2008). More specifically, the coherence of an r dimensional linear subspace U of R?



is defined as
max;<i<q | Preill7,

d
U) = — max | Pye;||2 = ’
n(U) = - max |[Pueill;, 1T |Pyes?

where Py is the orthogonal projection onto U and e;’s are the canonical basis for RY. We

call a tensor X p,-incoherent if

An especially popular class of techniques to tensor completion is based on nuclear norm
minimization where we seek among all tensors that agree with T" on all observed entries the

one with the smallest nuclear norm.

1.2 Nuclear norm minimization

Recall that the spectral and nuclear norms of a tensor X € R%**% are defined as
IX[[= sup (X u® - Qu)
uj €R:[|ujlgy <1
and

1 X1 = sup (X,Y),

Y eRAX x|y ||<1
respectively, where (-, ) is the usual vectorized inner product, and || - [|;, stands for the usual
¢, norm in a vector space. The usual nuclear norm minimization proceeds by solving the

following convex optimization problem:

min || X« subject to Po X = PoT, (1)

XeRdIX---Xdk

where Pq : RAxxde _ RAxxdk g g linear operator such that

Xw) fwe
PoX(w) =

0 otherwise

The solution to (1) is our reconstruction of T'. This approach was first introduced for
matrices, that is &k = 2, by Candes and Recht (2008) and Candes and Tao (2009). Similar
approaches have also been adopted later for higher order tensors. See, e.g., Liu et al. (2009),
Signoretto, Lathauwer and Suykens (2010), Gandy et al. (2011), Tomioka, Hayashi and
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Kashima (2010), Tomioka et al. (2011), Mu et al. (2013), Jain and Oh (2014), and Yuan
and Zhang (2014), among many others.

Of particular interest here is the requirement on the cardinality |€2|, which we shall refer
to as the sample size, to ensure that T' can be reconstructed perfectly (with high probability)
via nuclear norm minimization (1). It is now well understood that in the case of matrices
(k = 2), a d x d incoherent matrix of rank r can be recovered with high probability if
|?| 2 rd - polylog(d) under suitable conditions, where a 2 b means that a > Cb for some
constant C' > 0 independent of r and d, and polylog(d) stands for a certain polynomial of
log(d). See, e.g., Recht (2010), and Gross (2011) among many others. It is clear that this
sample size requirement is nearly optimal since the number of free parameters needed to
specify a d x d rank r matrix is of the order O(rd).

The situation for higher order tensors is more complicated as there are multiple ways to
generalize the matrix style nuclear norm. A common practice is to first reshape a high order
tensor to a matrix and then apply the techniques such as (1) to the unfolded matrix. In doing
S0, one recasts the problem of completing a kth order tensor, say of dimension d X --- X d,
as a problem of completing a d*/2) x d/¥/21 matrix. Following the results for matrices, it can
be shown that the sample size requirement for recovering a kth order hypercubic tensor of

dimension d x - -- x d and whose Tucker ranks are bounded by r in this fashion is
Q| > r#21 gk 2 polylog(d).

However, as Yuan and Zhang (2014) recently pointed out, this strategy is often suboptimal
and direct minimization of the tensor nuclear norm yields a tighter sample size requirement
at least when k& = 3. In particular they show that, under suitable conditions, a d x d x d
tensor whose Tucker ranks are bounded by r can be recovered perfectly with high probability
if

Q| > (rY2d3? + r2d)polylog(d).
Following their argument, it is also possible to show that, when k& > 3, the sample size

required for exact recovery via tensor nuclear norm minimization is

Q| = d**poly(r,log(d)),
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where poly(-,-) is a certain polynomial in both arguments. However, it remains unknown
to what extent such a sample size requirement is tight for nuclear norm minimization based
approaches. The main goal of this paper is to address this question. Indeed, we show that

this sample size condition for higher order tensor can be much improved.

1.3 Incoherent nuclear norm minimization

The key ingredient of our approach is to define a new class of tensor nuclear norms that
explicitly account for the incoherence of the linear subspaces spanned by the fibers of a

tensor in defining its nuclear norm. More specifically, for a § = (d;, ..., ;) € (0,1]%, let

Uj,5,(6) = {u1 @ - - @y : ||luylle, <1, V5 [|w;lle, < 65,V5 # J1,j2}

be the set of all rank-one tensors satisfying incoherent conditions in “directions” other than
71 and jo. Then
%6)= U %.0)
1<j1<j2<k
is the collection of all rank-one tensors satisfying certain incoherence conditions in all but

two directions. For a kth order tensor X € R% > define a norm

| Xlos = sup (Y, X).

Y e ()
Note that when § =1 := (1,...,1)7, the £, constraint in defining || X ||, 5 becomes inactive
so that || X||o1 = || X ||, the usual tensor spectral norm. We can view || - |[o s as a incoherent

spectral norm. We can also define the incoherence nuclear norm as the dual of the incoherence
spectral norm:
[ X5 = sup (Y, X),
1Y lo,s<1
so that || X ||«1 reduces to the usual tensor nuclear norm.
Instead of minimizing the usual tensor nuclear norm, we now consider recovering T' via

the following nuclear norm minimization problem:

min || X||,s subject to Po X = PoT. (2)

XGRdlx---Xdk



It is clear that (2) reduces to the usual nuclear norm minimization (1) if § = 1. But as
we shall see later, it could be extremely beneficial to take smaller values for d;s. Our goal
is to investigate the appropriate choices of §, and when T can be recovered through the

incoherent nuclear norm minimization (2).

1.4 Outline

Our main result provides a sample size requirement for recovering an incoherent and low rank
tensor T' € R4>**dk via (2). In particular, our result implies that a kth order hypercubic
tensor of dimension d x --- X d whose Tucker ranks are bounded by r can be reconstructed

perfectly by the solution of (2) with appropriate choices of 4, as long as
Q| Z (r*=D2d2 4 1) (1og(d))*.

This represents a drastic improvement over the requirement for the usual nuclear norm
minimization. It is especially worth noting that, perhaps somewhat surprisingly, the sample
size given above depends on the order k£ only through the rank r which, in most situations
of interest, is small. It is also instructive to look at the case when a tensor is of finite rank,
that is r = O(1). The sample size requirement in such cases becomes O(d*?(log(d))?) for
any fixed order k, which suggests the possibility of a tremendous amount of data reduction
even for moderate ks.

In establishing the sample size requirement for the proposed incoherent nuclear norm
minimization approach, we developed various algebraic properties of incoherent tensor norms
including a characterization of the subdifferential of the incoherent tensor nuclear norm which
generalizes earlier results for matrices (Watson, 1992) and for the usual nuclear norm with
third order tensors (Yuan and Zhang, 2014).

Also essential to our analysis are large deviation bounds under the incoherent spectral
norm we derived for randomly sampled tensors, which may be of independent interest.
These probabilistic bounds show a tighter concentration behavior of random tensors under
incoherent norm than under the usual spectral norm, an observation we exploited to

establish tighter sample size requirement for tensor completion. We note that concentration



inequalities such as the ones presented here are the basis for many problems beyond tensor
completion. For examples, it is plausible that these bounds could prove useful in developing
improved sampling schemes for higher order tensor sparsification. See, e.g., Nguyen, Drineas
and Tran (2015). These applications are beyond the scope of the current paper and we shall
leave them for future studies.

The rest of the paper is organized as follows. In the next section, we introduce the
notion of incoherent tensor norms and establish some algebraic properties of these norms
useful for our analysis. In Section 3, we derive large deviation bounds for randomly sampled
tensors. Building on the tool developed in Sections 2 and 3, we provide the sample size
requirement for the incoherent nuclear norm minimization in Section 4. We conclude with

some discussions and remarks in Section 5

2 Subdifferential of Incoherent Tensor Nuclear Norm

Note that the optimization problem (2) is convex. In order to show that T' can be recovered
via (2), it suffices to find a member from the subdifferential of || - ||,5 at T" that can certify
it as the unique solution to (2). To this end, we need to characterize the subdifferential of
|| - |6, which we shall do in this section.

We first note several immediate yet useful observations of the incoherent spectral and
nuclear norms. We shall make repeated use of these simple properties without mentioning

in the rest of paper.
Proposition 1. For any tensor X € R®"**d qnd § € (0,1]%,
1X I == (X, X) < 1 X [lo.6]1X .

and

[ Xos < I1XI < 1 X[as < [[ Xl < | X[l

Recall that, for a tensor X, £;(X) is the linear subspace of R% spanned by the mode-j
fibers of X. Denote by P;(X) the orthogonal projection to £;(X). For brevity, we omit



the dependence of P; and £; on X hereafter when no confusion occurs. Write
x=P1® QP
It is clear that for any u; € R%, we have
(1 @ Q@ug, X) = (Piug @ -+ @ Pruy, X),
This immediately implies that

Proposition 2. Let §; > maxq, <1 [|P;(X)ulle,, for j =1,....k. Then, for any tensor
W e Rdlxmxdk;

1Q%Wllos = Q5 WII < [Wlo.
Consequently, || X |5 = || X|]+.

Propositions 1 indicates that the incoherent nuclear norm is greater than the usual nuclear
norm in general. But Proposition 2 shows that the two norms are equal if a tensor is indeed
incoherent. This gives some intuition on the potential benefits of minimizing the incoherent
instead of the usual nuclear norm. Because more penalty is levied on tensors that are not
incoherent, compared with the usual nuclear norm minimization (1), it is more plausible that
the solution of (2) is incoherent. Given that the truth is known apriori to be incoherent, it is
more likely that incoherent tensor nuclear norm minimization produces exact recovery. This
advantage will be more precisely quantified by the much refined sample size requirement we
shall establish later.

We are now in position to describe a characterization of the subdifferential of || - ||, 5. Let

le = I — P; be the projection to the orthogonal complement 5]* of £; in R%. Write

k
QX:QOX+ZP1®"'®Pj—1®PjL®Pj+1®"'®Pk'

j=1
It is easy to see that

Ox =I-9x= >  Qxjpm

1<j1<j2<k



where 7 is the identity operator on the appropriate space, and

Qxj1jp=P1® - @P; 1@P; ®P; 1 ® - QP;, 10P,0I® L

2

We note that Q]»LM-Z is the orthogonal projection to the linear space of all u; ® - - - ® u, such
that w,; is in either £; or ﬁj for 1 < j < jp and that j; and jy are the only indices with

u; € AC]L

Theorem 1. Let §; > maxy, <1 [|[P;(X)ulle., for j = 1,...,k. Then there exists an
W € Réxxdr gych that

QWo=W,,  [Wollos=1, and [ X]ls= (W X).

Moreover, for any Y € Rév<>dx

2

Yi|.s > || X« —_—
I¥lls 21X s+ 1=

19xY [l.s + (W0, Y — X).

Proof of Theorem 1. Let W be the dual of X satisfying ||W0Ho,5 =1 and (Wy, X) =
| X || 5. Set Wi = Qg(ﬁ;o. Since X = Q% X and Q% is an orthogonal projection, we have
%Wy =W, OxX =0 and | X w6 = (W, X) < [[Wollos|| X|+s - This, along with
Proposition 2, proves the first statement.

To prove the second statement, we first show that for any W, € R%>* guch that

|Willos <2/{k(k —1)}, we have
[Wo+ QxWilos < 1. (3)
To this end, note first that

[Wo+ QxWilos = sup (U1 ® -+ @ uy, Wo + Qx W)
u1Q--QuiEX (6)

=  max { sup (u1®-~®uk,W0+Q§W1>}.

1sji<jz<k U1Q - QuEEY)) j, ()

It then suffices to show that for any 1 < j; < jo <k, and u1 ® - - - ® uy, € %, ;,(9),

(U ®@ -+ @up, Wo+ Qx W) < 1.
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As the statement is not specific to the index label, we assume without loss of generality that
j1 =1 and jp = 2; Otherwise, a different decomposition of Qx is needed beginning with the
projection Z®---©I@ P;; ®I®---QI@ P, @T®---®Z. Recall that

(U @ @ug, QxW,) < Z (U1 ® - @ uy, Q5 ;, W)

73,74

1<js<ja<k
1

< Z _ ...

< 2k(k 1) 1g§?§ﬁgk<u1 ® - @uy, Q5 Wh).

By definition,
(U1 @ -+ @ug, Q5 ;, W)
= (Piu1® - @ Pj,_juj, 1 ® P U, @O Py qug, 1 ® P U, @ @ uy, W),

Because |lull,, < §; for all j > 2 and ||Pjull,, < §; < §; for all u € R%* with |lull, < 1,

we have

(U ® - @uy, QF, ; W)

73,74
< || u]3||£2||P u]4||f2 sup (u1®®uk,W1>
U1 @ @upE%jgj, ()
< 1P uglle | Pyl |Wills
2
< k’(T)HP u]s”bHP uJ4H€2

Together with the fact that

(U ®@ - @up, OxWo) = (Piuy @ -+ @ Prug, W)

N

k
< Wolloa [T 1Pl

j=1

we get, for any u; ® - - @ uy, € %jm(‘s),

<u1 ® - @ up, QxWo + Qx W)

< HIIP ey +_max_ P [P, e,

S 1§‘7H31?J)§<k {||P]3uJ3HZ2||P]4u]4HZ2 + HP u]3Hé2||P ,u’]4HZ2}

< P pt 20 p pl 1/2
< | Jmex (1P usllz, + 1Pyusllz,) " (1Pjwllz, + 1P wllz,)
= 1.
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It then follows that

Ylis— [ X|les > max Wo+ QWY — X
¥ lea =1 Xla 2 oy (Wot QeWh )
12xY |45
=X L (W, Y — X).
k=12 T Wo )
This completes the proof. O

Theorem 1 provides a sufficient condition for a tensor to be in the subdifferential 0|| X||, 5.
More specifically, it states that there exists a W so that for any W, such that W, = Qx W,
and [|[Wilos < 2/{k(k = 1)},

Wo+ Wi €| X|s.

This characterization generalizes the earlier result by Yuan and Zhang (2014) for the special

case when k =3 and 6 = 1.

3 Concentration under Incoherent Spectral Norm

A main technical tool for many tensor related problems is the large deviation bounds for the
spectral norm of a random tensor. We shall use such bounds, in particular, to construct a
dual certificate for (2) later on.

Let A € RU* %4 he an arbitrary but fixed tensor. We are interested in the behavior of

randomly sampled tensors

where w;s are iid uniform random variables on [d;]| X - - - X [d]. Write
- 1
X:ﬁ(XlJr--'Jan).

It is clear that EX = A. We are interested in bounding the incoherent spectral norm of its
deviation from the mean || X — Al
Denote by
[Al[max = max  [A(w)].

we€[d1] XX [dg]
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For brevity, write

1

1<j<k
and

8 = (61 01)Y", and  d.. = min 5: 0.
J1vJ2

1<ji<je<k

We first give a general concentration bound.

Theorem 2. Suppose that d is sufficiently large such that

8e :
k(1 3 <d.
9log 2 (logd)” < d

For any a > 0 and

1 d 1/2
1> 160030 + )5 /dTog du(26.d.) || Al max {(52617152(1 +5§g52 )} ,
70,0 ¥

<j1<ja< .
n 1<j1<j2<k 1951955 %g2 7152

then

P{|X-a|,,>t}< %/ﬁd—a + k2 (log d)? x

1
4(log 2)

" Int? Yo Int
€ — X — .
P\ 7 64kdt || A2, log d. P\ 7 32k65 6. 2dE | Al s log d.

The proof relies on the following result which is an extension of Lemma 9 of Yuan and

Zhang (2015) to accommodate an ¢, bound.

Lemma 1. Let § € [1/v/d, 1] and m be an integer with 2™/% < §v/d < 207+D/2 . Then,
max u'a < (2/c) max{'wTa, Nwlle, < e, w € {£c27/2/vV2d,5=0,.. .,m}d}

llwelley <1 llulleo, <6

for all 0 < ¢ < 1. Moreover,

Hw wllg, < ¢, w e {£c2772/V2d, =0, .. .,m}d}) < exp (1.344 + 3.082 x d).

For brevity, the proof of Lemma 1 is deferred to the Appendix. We now present the proof
of Theorem 2.

12



Proof of Theorem 2. The standard symmetrization argument gives

P{HX - AHO,(; > 3t} < m@.gﬁf{e%(a)PKX —Au ® - Quy) >t}

n

%ZQXZ'

i=1

+4P >t

0,8

See, e.g., Giné and Zinn (1984). For any fixed w1 ® - - - @ uy, € % (9), we have

E(X;u @@ uy) (A u @ @uy),
(di - i) (lwallew - [letille) | Allma

< (i) (010 | Allas /92

= Kk 9

|(Xi,u1®---®uk>|

IN

and
var((X;, w1 @ - @up)) <E(Xju @ - @ ug)® < (dy - - - dp)|| A2

max*

Therefore, by the Bernstein inequality,

f ut 3/t
P -l o) < o () oo (aang)

1 n
E;GiXi

We now proceed to bound the last term on the right hand side.

+4P >t

0,8

For brevity, write Y,; = ¢, X; and

Y:

S|

n
E ElXZ
i=1

Recall that

”YHOE = max max <Y,U1®'--®uk>.
1<51 <2<k w1 ®- QUi €%, jo (8)

Hence,

P{|Y|os >t} < Y 1@{ max <Y,u1®---®uk>2t}.

R QU EUjy i (O
\<frjask WO TOURE55(0)

We now bound each of the summands on the right hand side. To fix ideas, we shall treat

only the case when j; = 1 and j, = 2 without loss of generality.
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It follows from Lemma 1 that

max (YV,u; @ - @uy) < ok+1 max Y u, @ @ uy).
U1 ® - QuLE% ,2(8) U1 R @uREX 5 (9)

where
U5 (0) = {u1 ® - @uy € 2%2(8) : uglle, < cj,uy € {£277%¢;/\/2d;,5 =0, .,mj}dj}

with m; = [logy(d;) — 1] for j = 1,2, and m; = [log,(d7d;) — 1] for j > 2. We choose
1/v2 < ¢; < 1 such that {£27/2¢;/\/2d;,j = 0,...,m;} = {£279/2 j = 2,...,m; + 2} for
j=12and¢;=1forj>2. Asd, +---+dy = kd and d > 2,

|%5(8)] < exp (4kd).
For U =u; ® - @ uy € %%(5), define

A = {(a1,a2) ¢ Jug(ar)us(ag)] = 277723,
B, = {(as,...,ar) : (a1,a2) € Ay, (a1, ..., a;) € Q},

and

Upp=u1Quy, Us = u3® - @ uy.

7777

Here and in the sequel, we omit the dependence of {A,, By, U12,Us,. 1} on U and B, on

.....

2 when no confusion occurs. For U € %4*(8) and any integer m; 5 > 0,
4<m<m1 2
where

Ci2 = {(a1,a2) : [Ura(ar, az)| < 2722712}

We note that A,, = 0 for m < 3.
Write

2(Y) = max H(al, .yag) €supp(Y) 1 aj € [dy], 5 > 3}} .

ale[dl],aze[dg]

We argue that

P {ym(f/) < (Ba+7) (dﬁlZ +log d) } <de (4)

14



When n/(dids) > logd, we can apply Chernoff bound to get, for any fixed a; € [d;] and

o € [dg]

]P’{‘{(al, ..ya) €supp(Y) :a; € [dy],j > 3} > (3a+7)d?dz}

< exp[—(a+2)n/(dydy)] < d~@+2,
Similarly, when n/(d;ds) < logd, we can also apply Chernoff bound to get
P{[{(a1,...,ax) € supp(Y) : a; € [d;],j > 3}| > (3a + 7)logd} < d~*+?.

Equation (4) then follows from an application of the union bound.

We shall now proceed conditional on the event that

112(Y) <vei=(3a+7) <dnd + logd> .
102

Under this event,
| B < | Al
Observe that for any U = u; ® - - ® uy € %%(0),
[Am| < 2™, U3, kllmax = [[ts ® - -+ @ Wk [lmax < 03,1

k= 03 0. For integers 0 < ¢ < m < my 5 define,

.....

,,,,,

PBr2(m, L) = {V = (P, U12) ® (PeUs_1) : [Am| <277,
|B| < | A, U12@Us . € %12(5)}-

11111

It follows that for U € %4%(d) and integers a,, > 0 with 2™t < [A,, [ < 2770,

(PAmUl,2) X (,PBmUS,..‘,k) S @172(771,5), am < L.

As
mi,2 mi,2
Z 9—(amA(m=3)) <142 Z ‘Am’/2m <1 +2||U172H127 <3
m=4 m=4

for all U € %%, (9),

> (Y (Pa,U12) @ (P5,Us..i)

4<m<my

15



< Z 27(a,n/\(m73))/27lm/2  max 2(am/\(m73))/2+2m/2<}_f7 V>
A<memy VeA 2(m,amN(m—3))

mi,2 1/2
(3 Z 2_£m> max  max max 2722y V)
m=4

IN

4<m<my1,2 0<I<m—3 V EB 2(m,L)

for any nonnegative integers ¢,,. Here a A b = min{a, b}. It follows that if

mi o 1/2
<3 > 2€m> < 4,

m=4

then

Y.U) < Y, (P, Uis) © U.
(Y,U) < ngl/?ﬁa)<  (Pey,Ur2) @Us )

+4 max max  max 222y V). (5)

4<m<mq,2 0<l<m—3 VeRi2 (m,0)

We note that Pc,, = Z when my 5 < 3.
We have |%%,(6)| < e**®. To bound the cardinality of %, ,(m, (), we pick

my 2 = max {|log,(4d/(v.logd.))|, 0},

so that
22 logd, < 4d < v, 2metl log d,

if v,logd, < 4d and m; 2 = 0 otherwise. Moreover, for 4 < m < m; 9, we pick integers /,,

satisfying
9 9
2m7m1,2 < 274.,,,, < 2m7m1,2 .
e { "8k log d. } - e { " 4klog d, }
As
my 2 < log,d < klog(d,)/log2,
we have

mi,2 1/2 1/2 1/2
_ 27(1+m12 —3) 27
9~ bm < , < < 3.121.
(3; ) - < 4k logd, — \4log2 =3

-----

for j =0,...,mg+ ...+ mg. Let m.. = klogy(d2d.). As m; = [log,(d7d;) — 1] for j > 2,
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¢ has at most 2m,, + 2 possible values. It follows that

77777

om—£

log[#15(m, 0)] < log [ )~ (dl,CiQ) <d3 - '.d’f> 29 (2110, + 2) 7]
j=1 j LV*]J
m—~t €d3 . dk;
< 2 {log ot ) + log(2m.. + 2)}

did
4om—t {log <62ri£2> + log 2} + log 2.
As zlog(y/x?) is increasing in x for 0 < z < Vy/eand 4 <m <myg — by,

9~ (m=0)/2 log | % 2(m, 0)]

ds...d
V*2(m1’2_€7n)/2 {log %) + log(Qm** + 2)}

dyd
+2(ma=bm)/2 {log <221i3m> +2log 2}

IA

e(dle)l/V*dg codg
V*2m112_em + 1Og(2m** + 2)

9—tm/? ad \'"? dbe(dydy) /720 (2m + 2)
v, — :
* d1d24d/ log d*

IN
N
*
N
E
o
L
3
<
%)
—N
09

IA

Note that

e(dydy)' /"2 (2m,, + 2) log d,
< (dydy)VAOF 08l (8¢ 19 k(log d, )2 {2k log, (62d,) + 2}
< Adydyd,

where the last inequality follows from the fact that d, < d and the assumption that d is

sufficiently large. Thus,
27" 10g |81 5(m, 0)] < 27 k\/Av,dlog d..
It follows that
log | B o(m, 0)] < 22\ [ay dlogd, < 4kd, Y0 <l <m <mi,.
For any fixed V' € %, 5(m, (), write Z; = (Y ;, V). Then

(Y, V)==(Zy+ -+ Zy).

1
n
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‘We have

||V||max S 2—m/253 ,,,,, k and ||VH%{S S 2_Z,

Thus, as Y, = ¢, X; and X; = (d; - - - di)P,, A, we have

|Zi] < dE)|Allimax |V llnax < 277285, 1l | Allmax

— < VYo,

and

var(Z;) < E(Z7) < d5)| Allpuc IV I[s < 27 5] Al
It follows from the Bernstein inequality and the union bound that

IE”{ max <Y,v>22<f+fm>/2t}
Ve@l,z(m,z)
n2=t=tn 2

21| Al + (2/3)27m265,. kdkllAllmax2<Wm)/2t>
n2=fmt? - (3/4)2(m—t=tm)/2p¢
exp <4k:d A2 > + exp <2( = &”)/Qk\/ély*dlogd / ) .

IN

| %1 2(m, £)| exp <

IN

max 3 kdEHAHmax

The condition on ¢ implies that

¢ > 33( ,,,,, o | Al )i/ Tog .

Together with the fact that 2= > (9/8)/(klogd.), we get

n2~fm¢? >25§ 77777 WAdFE* (4v,dlog d,)
Adg|| Al nklogd,

max

Therefore,

ded n2tm¢? < n2tm¢2 < Int?
—_— e _— ex .
“p 1Al ) = P\ TsaerAR,, ) T P U eakdr A2, Tog d.

Similarly, we have

(3/4)2(m=t=tm)/2y

JA] > 2. 9m=t=tm) 2[4y dlog d,,
kWy max

03,...

which implies that

3/4 (m— Efém)/2
exp (2(7” t=tm) /Qk,’\/ély*dlogd >
d3,..

kdkHAHmax
< < 3 2(7’7’1757[771)/2”1; )
eX S —
= PR 6 Al

-----

nt
< - _
= exp( 32 (klogd*>1/253,..‘,kdqu||m)
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For my 2 > 1, we have
9—(m1,2+1)/2 < (V* log d*)/(4 )7

so that

3
an(ml,z“)/? /(0. 1d¥|| Allmax) > 2k\/4v,dlog d.\/4d/ (v, 1ogd,) = 8kd.

7777777777

we have

IP{ max (Y, (P, ,Ur2) @Us k) > t}

Ue5(5)
< |02/1*2(5) Uen?l/?fé)lp {<Y’ (7)01,2U172) @Us, k) = t}
nit?
< 4kd —
= o < 2AF| A2, + 2 (a2, kd':nAnmt/?))
nt2
<

o Lo 3dY/2nt
XP | = — Xp | —
P\ aar A2, P\ 205, o Al (v log d.) /2

-----

Finally, for m; 5 = 0, we have v, > 4d/logd., so that the condition on ¢ still implies

3/4)nt
_ (34t /k M ok /ivdlog d, > Skd.
53 kd ||A||max
Putting the above probability bounds together via (5), we find that
]P’{ max (Y ,U) > 2k+15t}
Uc? 2(9)

< ]P’{ max (Y,U>25t}
Ue'5(8)

< (1+2+...+(m1,2—2)) x

e Ont? Yo 9 nt
Xp | — Xp | —=z - .
P\ 6akdr A2, Tog d. P32 (Klogd.)7205. 4d¥|[Allmax

aaaaa

As my 5 <log, d, the proof is then completed in the light of (4). O
It is instructive to examine the case of hypercubic tensors where d; = --- = d;, = d and
we take 07 = --- = 0y = 6,. The following is an immediate consequence of Theorem 2.
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Corollary 1. Let A € RY>*4 pe q kth order tensor, and §; = - = 0, = 0 € (0,1], then

there exists constant c1,co > 0 depending on k only such that, for any g > 0,
S logd V2 k—2 jk—1/2 logd\ o, k+1/2
X - AHo,a < ei(1+ ) max - 0" d A\ 0" d | Al max,  (6)

with probability at least 1 — cod ™.

Note that the second term on the right hand side of (6) decreases with ¢, indicating
a tighter concentration bound for X — A when it dominates the first term. The bound
(6) immediately suggests an effective sampling scheme to approximate incoherent tensors in

terms of the usual spectral norm. Suppose that A is p-incoherent so that

P.(A < (A)/d, =1,... k.
s [Py (Aule. < \furs(4)/d. 5

Then we can take 6 = 2y/pur/d where r = max; r;j(A). Equation (6) now becomes

1/2
1X = A, < (ur)> max { (FE9) " aweore, (224 d(k+3)/2} Al
s n

n
Let A be the projection of X onto the space 7, of p-incoherent tensors:

A = argmin | X — Y|los-
YET,

By triangular inequality, ||;i —Allos <2 HX — AHO 5» S0 that

o 1 1/2 1
|4 = Allos < () max { ( Ogd) a2, (id) d<k+3>/2} 1Al
n

n

Because both A and A are p-coherent. Their difference A — A must be V2p-coherent. In
the light of Proposition 2, we know H:& —A| = H:& — Al|o.s, so that

R 1/2
||A—A||,s<w>k/2-1max{(@) a2 (M) d<k+3>/2}||A||max. )
n

n

In other words, we can approximate A up to the same error bound given by (6), but in terms

of the usual spectral norm.
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For illustration purposes, consider a more specific case when A admits an orthogonal

decomposition

A=Y ul o oul)
i=1

for some ugi) € R? such that

. . 1 ifi3 =1

(1) , (G2)\ _ 1 2

(™, uy™) = ,
0 otherwise

If A is p-incoherent in that
0 p _ o
T S R

||A||max < Nk/Zrd_k/2'

then

The approximation error bound given by (7) can now be further simplified as

. /2 3372
HA_AHSM,C1Tk/2max{<dlogd> K logd}.

n n

In other words, when p*~! = O(1), we can approximate A up to an error of €, in terms of

the usual spectral norm, based on observations from

rkdlogd r*/2d%?log d>

2 )

n > Ckmax<

€ €

entries for some constant Cj. If the condition on A is strengthened to [|Almax <

~

wF2rt2q=F/2 then the sample size requirement becomes

r*=1dlogd r*1/2¢3/21og d>
2 ’ :

n > C’kmax(

€ €

This example shows the importance of leveraging the information that a tensor is incoherent.

4 Tensor Completion

We now turn our attention back to tensor completion through incoherent nuclear norm

minimization:
rr%nHXH*,(s subject to PoX = PoT. (8)
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Denote by T the solution to the above convex optimization problem. We shall utilize the
results from the previous sections to establish the requirement on the sample size n := || so
that T = T with high probability when € is a uniformly sampled subset of [d;] x -+ X [dy].

Recall that r;(T")s are the Tucker ranks of T'. For brevity, we shall omit the dependence
of ;s on T for the rest of the section. Denote by

Lk gk 1/(k—1)
— | = nt]

J =1

k

dy
T g A 1Qr(ei, ® - @ e (9)

and

where as before, d and d, are the arithmetic and geometric averages of d;s, and Wy €
R¥>>dk jg the dual of T as specified in Theorem 1. We are now in position to state our

main result.

Theorem 3. Let 2 be a uniformly sampled subset of [dy] X -+ x [dy] and T' be the solution
to (8) with §; = \/Ar./d;. There exists a constant ¢, > 0 depending on k only so that
P{T=T}>1—d" if

A > max {51, (T)ry (1)}

Ty 1<5<k

and

ni=19] = (14 8) (1 + a2\ )t d(log d) + a A28V 2 (log d)?)

Proof of Theorem 8. The main steps of the proof is analogous to those from Yuan and Zhang
(2014). We shall outline below these steps while highlighting the key differences moving from
third order tensors to higher order tensors, and from usual tensor nuclear norm to incoherent
tensor nuclear norm. We begin with a lemma that reduces the problem to finding a dual

certificate.
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Lemma 2. Suppose there exists a tensor G € Rk gych that G = Pgé,

n/(2dY)

HQTé — Wollus < m (11)
and
max (G QLX) < T (12)
104X]) 1 5=1 k(k—1)
If in addition,
| Palrange(or) s s = I {I|PaQr X |lus : |Qr X [|us = 1} > \/%7 (13)

then T =T.

The proof of Lemma 2 is relegated to the proof. In the light of Lemma 2, it now suffices
to verify condition (13) and construct a dual certificate G that satisfies conditions (11) and
(12). We first verify condition (13).

Recall that for a linear operator R : R X de — Rk
HRHHSHHS = Imax {HRXHHS : X € RleNXdk, HXHHS S 1} .
Here we prove that under the Hilbert-Schmidt norm in the range of Qr,

|or(@mpa-1)or| <12 (14)

HS—HS

with large probability. This implies that as an operator in the range of Q, the spectrum of

(d*/n)QrPaqQr is contained in [1/2,3/2]. Consequently, (13) holds via
e 2 k 1 2
(d:/n)[PaQr X lizs = (Qr X, (dZ/n)QrPaQrX) > 5[ Qr X [is.

This goal can be achieved by invoking the following result.

Lemma 3. Let Q be a uniformly sampled subset from [dy] X - X [dy] without replacement.

Then,

dk
P{HQT <ﬁ7’§z —I> Or

2/2 n
>75 < 2krf‘1d exp <— T/ < )) )
HS+HS } 14 27/3 \ kpr¥1d
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Lemma 3 can be proved using the same argument from Yuan and Zhang (2014) in treating
low-rank tensors, noting that

k
rank(Qr) = dim (range(Qr)) < Zd H” = r¥

J=1 £
The details are omitted for brevity.

Equation (14) follows immediately from Lemma 3 as soon as
n > cp(B+ Dpary dlog(d).

It now remains to show that there exists a dual certificate G that satisfies conditions
(11) and (12). To this end, we apply the now standard “Golfing scheme”. See, e.g., Gross
(2011) and Recht (2011). As argued by Yuan and Zhang (2014), we can construct a sequence
{w; : 1 <i < n} ofiid uniform vectors from [d;] X - - - X [dy] such that w; € Q for all 1 < i < n.

Let n; and ny be two natural numbers to be specified later so that nins < n. Write
Qj:{wi:(j—l)nl <Z§]TL1},

for y =1,2,...,ns. Define

1 jni i
Ry=T— - ‘Z d; P, (15)
i=(j—1)n1+1
and
j ~ ~
Gi=Y (T-R)QrRi1Qr-- QrR1QrWo, G = Gh,. (16)
=1
Since w; € 2,

Po(Z —-R;)=TI—-TR,,
so that Pgé = G. Tt follows from the definition of éj that

J
QrG; = Y (Qr — QrRQr)(QrRi19r) - (QrR1Qr W)
(=1

= Wo - (QTRj QT) e (QTRl QT)WO
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and for any X € Ré<xdk

<.

(G, 05X) = —( D RuQrRe1Qr) -+ (QrR1 Qr)Wo, Q5 X ).

(=1

Thus, conditions (11) and (12) hold if

n/(2dk
I(QrR,.) -+ (QrR)Wallus < Y7 (1
and
no 1
;RE(QTRE—I Or)  (QrR.1Qr)W L < Wk —1) (18)

We still need to prove that (17) and (18) hold with high probability. For this purpose,
we need large deviation bounds for the average of certain iid tensors under the operator,
maximum and spectrum norms. The large deviation bounds for the operator and maximum

norms are presented in the following lemma.

Lemma 4. Let w;, i =1,...,n; be iid uniformly sampled from [di] X - -+ X [dy], and
D; = Qr(d}P.,)Qr — Qr.

Then, for all T > 0,

2/2 n
< o(rh __T/ ! . 1
= T} <2(r."d) exp( 1+27/3 \prkd (19)
HS—HS

Moreover, for any deterministic X € RIXdk qith || X || max < 1,

2/2 n
>\ <ok 7/ ! . P
= T} - exp< 1+27/3 (u*rfld (20

Lemma 4 again follows from identical arguments used by Yuan and Zhang (2014) and

max

the details are omitted for brevity.

Let
W; = (QrR;Qr) - (QrR1Qr)W

with W, = W. Since R;s are iid operators with

ni

OrR1Qr = —(1/n1) ZDi,

i=1

25



Equation (19) yields

P{|[W;llus < 7 [Wlus, 1 < j < no}

P{(QrR;Qr) - (QrR1Qr)W|lus < 71 |[Wlus, 1 < j < no}

B T2/2 n
1- 7122(7”5 1d) exXp <_1 +12/T1/3 <,U Tk1_1d>> :

This can be used to verify (17) with certain 7y satisfying

v

n/(2dy)

ng W <7
T || HHS— k(k—1)7

by taking
n>mning > (B + l)u*rf_ldlogg(d).

Finally, we prove (18). It follows from (20) that

P {||Wllmax = [(QrR;Q7) - - - (QrR1 Q)W |lmax < T/ |W |lmax, 1 < J <o}

72/2 ny
> 1 — 2nyd” exp (—1 o3 <M Tf_1d>> . (21)

It follows from the definition of R; in (15) that for any X with Qr X = X,

1 Jni
RiX =—- Z ()P, —I) X.
i=(j—1)n1+1

Recall that
W [[max = c(r./d5)">.

Note that {w; : (j — 1)ny < ¢ < jny} is independent of W,_; and QrW,_; = W;_,. By

Theorem 2, we have

PLIRW il s > 74 Wl /77 < Wl |

< K22+ (K2(logy d)2/4) {exp (—dkd) + exp (—\/4kd(3a 1 7)log d) }

= DPnm (t)

We note that as §; = \/A\.r./d; and o, = (d*/r.) Y2 | W | max,

/
t > E@Ba+7)V/dlogdMr)2a,r?  max  {(Ar) e+ 1) (ny + djydj,logd) )

ny 1<51<j2<k
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1/2
c;\/i Kk ny logd
= —\/dlogd,(6;d}||W ||max) max {( +
0% dj,0%,d 62 62

<j1<ja< .
m 1Sj1<s25k J1752702 J17J2

with ¢}, = 2¥160. Together with (21), this yields

na 1
P jzl Rj(QTRj—l QT) s (QTR1 QT)W < m
- 0d
It —7d i1 )
> P{HRJ‘leHO,a < GE=1) W i-tllmax/T ™ < [[Wllmax, J < 7%2}
1—171 " 72/2 n
> _ _ _
e 1 NoPn,y <k(l€ — 1)> 2n2d* exp < 1 T 27_/3 <M*T’f_1d>> )
which completes the proof. O

5 Concluding Remarks

We introduce a general framework of nuclear norm minimization for tensor completion
and investigate the minimum sample size required to ensure prefect recovery. Our work
contributes to a fast-growing literature on higher order tensors, beyond matrices. In
particular, we argue that incoherence may play a more prominent role in higher order
tensor completion. We show that, by appropriately incorporating information about the
incoherence of a kth order tensor of rank r and dimension d X - - - X d, we can complete it with
O((r*=072¢3/2 4 r*=1q)(log(d))?) uniformly sampled entries. This sample size requirement
agrees with existing results on recovering a third order tensor (see, e.g., Yuan and Zhang,
2014), and more interestingly, it depends on k(> 3) only through the O(1) factor for rank
one tensors (r = 1).

One of the chief challenges when dealing with higher order tensors is computation.
Although convex, nuclear norm minimization for higher order tensors is computationally
expensive in the worst case. See, e.g., Hillar and Lim (2013). Various relaxations and
approximate algorithms have been introduced in recent years to alleviate the computational
burden associated with evaluating tensor norms. See, e.g., Nie and Wang (2014), Jiang, Ma
and Zhang (2015) and references therein. It is of great interest to study how these techniques

can be adopted in the context of tensor completion in general, and nuclear norm minimization
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in particular. More detailed investigation along this direction is beyond the scope of the

current work and we hope to report our progress elsewhere in the near future. Nevertheless,

our results here may provide valuable guidance along this direction. For example, our analysis

suggests that when developing effective approximation algorithms for higher order tensor

completion, it could tremendously beneficial to explicitly take incoherence into account.
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A  Proof of Lemma 1

It suffices to prove the lemma for ¢ = 1. Consider without loss of generality a and u with

nonnegative components, ||ull, =1 and ||u||,, <. Let
v=(uVd V2. ugvd V)T V2,
where a V b = max{a, b}. We have
lvlle. <6/vV2,  Vw'a>wu'a,

and .
o], =271 Y max(u?, 1/d) < 1.
i=1
Let

we {2%/V2d,j=0,...,m} with w; <v; <V2w;, Vi=1,...,d.

This is possible as

[v]le., < 6/V2 < V2(2"2/V2d).

We have

lwlle, < ||vlle, <1 and 2w'a>V2v'a>u'a.
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It remains to count the cardinality. Let ¢; = |d/(27 — 1)]|. For 1 < j <m,
(27/(2d)) [{i - wi =27 /(2d)}| + (2d) 7" [d = |{i - wi =2/ (2d)}]] <1,
so that
{i:wi=2/2d)}| < ¢;.

As a choice of w can be made by first picking the sign of its elements, the cardinality of the

w-collection is no greater than
V=211 Y (¢
, t)
j=10<e<,
Moreover, for j > 2, we have ¢; < d/(2/ — 1), so that

(0= ()% ()™= () (o)

It follows with an application of the Stirling formula that

N < 4%exp {Zm: (ﬁj log(ed/(;) + 57 1_ 3>} :

Jj=2

Since x(1 + log(d/x)) is increasing in x for 0 <z < d and ¢; < d/(27 — 1),

l41og(2 —1) = 1
logN < dlogd+dy ——2" 2 , < 3.082 x d + 1.344.
og N < dlog4 + 251 +§2]_3 x d +

The proof is now completed.

B Proof of Lemma 2
Let A =T — T. Then PoA = 0 and
1T+ Alles < [|T]]s-

It follows from Theorem 2 that

197 A |15
T+ Al s> T, 0 (W, A).
1T+ Alls = | H’5+k(k—1)/2+< 0, A)
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Because QrW, = W, and

(G,A) = (PoG, A) = (G, PaA) =0

we get
197 A+ =
“kh—1)2 = (Wo -G, A)
= (Qr(Wy - G),A) — (G, QrA)
> —|Wy — QrGllus|| QrAllus — | QFA|l.s/{k(k —1)}.

It follows that
|Q5 Ao/ {k(k — 1)} < |[Wo — QrGllus|| QrAllus.

Recall that
PoA = PoQ7rA + PoQrA = 0.

Thus, in view of (13) and Proposition 1

OrA
% < [PaQrAllus = [PaQrAllus < | QrAllus < [|Q7A|4s. (22)
Consequently,
J_ ~
m? < V2 /n|Wo — QrGllus| Q7 All..s.

Because of (11), we have ||Q7A|,s = 0. Together with (22), we conclude that A = 0, or

equivalently T=T.
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