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Abstract

In this paper, we investigate the sample size requirement for a general class of

nuclear norm minimization methods for higher order tensor completion. We introduce

a class of tensor norms by allowing for different levels of coherence, which allows

us to leverage the incoherence of a tensor. In particular, we show that a kth order

tensor of rank r and dimension d × · · · × d can be recovered perfectly from as few as

O((r(k−1)/2d3/2 + rk−1d)(log(d))2) uniformly sampled entries through an appropriate

incoherent nuclear norm minimization. Our results demonstrate some key differences

between completing a matrix and a higher order tensor: They not only point to

potential room for improvement over the usual nuclear norm minimization but also

highlight the importance of explicitly accounting for incoherence, when dealing with

higher order tensors.
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1 Introduction

Data in the format of tensors, or multilinear arrays, arise naturally in many modern

applications. A kth order hypercubic tensor of dimension d× · · ·× d has dk entries so that

these datasets typically are of fairly large size even for moderate d and small k. Therefore, it

is oftentimes impractical to observe or store the entire tensor, which naturally brings about

the question of tensor completion: How to reconstruct a kth order tensor T ∈ Rd1×···×dk from

observations {T (ω) : ω ∈ Ω} where Ω is a uniformly sampled subset from [d1] × · · ·× [dk]?

Here [d] = {1, . . . , d}. The goal of this paper is to study in its full generality a class of

tensor completion methods via nuclear norm minimization focusing on higher order tensors

(k ≥ 3).

1.1 Tensor completion

Obviously, for reconstructing T from a subset of its entries to be possible at all, T needs to

have some sort of low dimensional structure which is often characterized by certain notion of

low-rankness. In particular, let Lj(X) be the linear subspace of Rdj spanned by the mode-j

fibers:
{
X(a1, . . . , aj−1, ·, aj+1, . . . , ak) ∈ R

dj : a1 ∈ [d1], . . . , ak ∈ [dk]
}
.

Denote by rj(X) the dimension of Lj(X). The tuplet {r1(X), . . . , rk(X)} is the so-called

Tucker ranks of X. It is not hard to see that there are a total of O(rk−1d) free parameters

in specifying a kth order hypercubic tensor of dimension d× · · ·× d whose Tucker ranks are

upper bounded by r, which suggests the possibility of recovering a large tensor of low rank

from a fairly small fraction of the entries.

In addition to low-rankness, it is also essential to tensor completion that every entry of

T contains similar amount of information about the entire tensor so that missing any of

them would not stop us from being able to reconstruct it – a property that can be formally

characterized through the coherence of the linear subspace Lj(T ). See, e.g, Candès and

Recht (2008). More specifically, the coherence of an r dimensional linear subspace U of Rd
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is defined as

µ(U) =
d

r
max
1≤i≤d

∥P Uei∥2ℓ2 =
max1≤i≤d ∥P Uei∥2ℓ2
d−1

∑d
i=1 ∥P Uei∥2ℓ2

,

where P U is the orthogonal projection onto U and ei’s are the canonical basis for Rd. We

call a tensor X µ∗-incoherent if

µj(X) := µ(Lj(X)) ≤ µ∗.

An especially popular class of techniques to tensor completion is based on nuclear norm

minimization where we seek among all tensors that agree with T on all observed entries the

one with the smallest nuclear norm.

1.2 Nuclear norm minimization

Recall that the spectral and nuclear norms of a tensor X ∈ Rd1×···×dk are defined as

∥X∥ = sup
uj∈Rdk :∥uj∥ℓ2≤1

⟨X,u1 ⊗ · · ·⊗ uk⟩

and

∥X∥∗ = sup
Y ∈Rd1×···×dk :∥Y ∥≤1

⟨X,Y ⟩,

respectively, where ⟨·, ·⟩ is the usual vectorized inner product, and ∥ ·∥ℓp stands for the usual

ℓp norm in a vector space. The usual nuclear norm minimization proceeds by solving the

following convex optimization problem:

min
X∈Rd1×···×dk

∥X∥∗ subject to PΩX = PΩT , (1)

where PΩ : Rd1×···×dk → Rd1×···×dk is a linear operator such that

PΩX(ω) =

⎧
⎨

⎩
X(ω) if ω ∈ Ω

0 otherwise
.

The solution to (1) is our reconstruction of T . This approach was first introduced for

matrices, that is k = 2, by Candès and Recht (2008) and Candès and Tao (2009). Similar

approaches have also been adopted later for higher order tensors. See, e.g., Liu et al. (2009),

Signoretto, Lathauwer and Suykens (2010), Gandy et al. (2011), Tomioka, Hayashi and
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Kashima (2010), Tomioka et al. (2011), Mu et al. (2013), Jain and Oh (2014), and Yuan

and Zhang (2014), among many others.

Of particular interest here is the requirement on the cardinality |Ω|, which we shall refer

to as the sample size, to ensure that T can be reconstructed perfectly (with high probability)

via nuclear norm minimization (1). It is now well understood that in the case of matrices

(k = 2), a d × d incoherent matrix of rank r can be recovered with high probability if

|Ω| ! rd · polylog(d) under suitable conditions, where a ! b means that a > Cb for some

constant C > 0 independent of r and d, and polylog(d) stands for a certain polynomial of

log(d). See, e.g., Recht (2010), and Gross (2011) among many others. It is clear that this

sample size requirement is nearly optimal since the number of free parameters needed to

specify a d× d rank r matrix is of the order O(rd).

The situation for higher order tensors is more complicated as there are multiple ways to

generalize the matrix style nuclear norm. A common practice is to first reshape a high order

tensor to a matrix and then apply the techniques such as (1) to the unfolded matrix. In doing

so, one recasts the problem of completing a kth order tensor, say of dimension d × · · ·× d,

as a problem of completing a d⌊k/2⌋×d⌈k/2⌉ matrix. Following the results for matrices, it can

be shown that the sample size requirement for recovering a kth order hypercubic tensor of

dimension d× · · ·× d and whose Tucker ranks are bounded by r in this fashion is

|Ω| ! r⌊k/2⌋d⌈k/2⌉polylog(d).

However, as Yuan and Zhang (2014) recently pointed out, this strategy is often suboptimal

and direct minimization of the tensor nuclear norm yields a tighter sample size requirement

at least when k = 3. In particular they show that, under suitable conditions, a d × d × d

tensor whose Tucker ranks are bounded by r can be recovered perfectly with high probability

if

|Ω| ! (r1/2d3/2 + r2d)polylog(d).

Following their argument, it is also possible to show that, when k > 3, the sample size

required for exact recovery via tensor nuclear norm minimization is

|Ω| ! dk/2poly(r, log(d)),
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where poly(·, ·) is a certain polynomial in both arguments. However, it remains unknown

to what extent such a sample size requirement is tight for nuclear norm minimization based

approaches. The main goal of this paper is to address this question. Indeed, we show that

this sample size condition for higher order tensor can be much improved.

1.3 Incoherent nuclear norm minimization

The key ingredient of our approach is to define a new class of tensor nuclear norms that

explicitly account for the incoherence of the linear subspaces spanned by the fibers of a

tensor in defining its nuclear norm. More specifically, for a δ = (δ1, . . . , δk) ∈ (0, 1]k, let

Uj1j2(δ) = {u1 ⊗ · · ·⊗ uk : ∥uj∥ℓ2 ≤ 1, ∀j; ∥uj∥ℓ∞ ≤ δj , ∀j ≠ j1, j2}

be the set of all rank-one tensors satisfying incoherent conditions in “directions” other than

j1 and j2. Then

U (δ) =
⋃

1≤j1<j2≤k

Uj1j2(δ)

is the collection of all rank-one tensors satisfying certain incoherence conditions in all but

two directions. For a kth order tensor X ∈ Rd1×···×dk , define a norm

∥X∥◦,δ = sup
Y ∈U (δ)

⟨Y ,X⟩.

Note that when δ = 1 := (1, . . . , 1)⊤, the ℓ∞ constraint in defining ∥X∥◦,δ becomes inactive

so that ∥X∥◦,1 = ∥X∥, the usual tensor spectral norm. We can view ∥ · ∥◦,δ as a incoherent

spectral norm. We can also define the incoherence nuclear norm as the dual of the incoherence

spectral norm:

∥X∥⋆,δ = sup
∥Y ∥◦,δ≤1

⟨Y ,X⟩,

so that ∥X∥⋆,1 reduces to the usual tensor nuclear norm.

Instead of minimizing the usual tensor nuclear norm, we now consider recovering T via

the following nuclear norm minimization problem:

min
X∈Rd1×···×dk

∥X∥⋆,δ subject to PΩX = PΩT . (2)
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It is clear that (2) reduces to the usual nuclear norm minimization (1) if δ = 1. But as

we shall see later, it could be extremely beneficial to take smaller values for δjs. Our goal

is to investigate the appropriate choices of δ, and when T can be recovered through the

incoherent nuclear norm minimization (2).

1.4 Outline

Our main result provides a sample size requirement for recovering an incoherent and low rank

tensor T ∈ Rd1×···×dk via (2). In particular, our result implies that a kth order hypercubic

tensor of dimension d× · · ·× d whose Tucker ranks are bounded by r can be reconstructed

perfectly by the solution of (2) with appropriate choices of δ, as long as

|Ω| ! (r(k−1)/2d3/2 + rk−1d)(log(d))2.

This represents a drastic improvement over the requirement for the usual nuclear norm

minimization. It is especially worth noting that, perhaps somewhat surprisingly, the sample

size given above depends on the order k only through the rank r which, in most situations

of interest, is small. It is also instructive to look at the case when a tensor is of finite rank,

that is r = O(1). The sample size requirement in such cases becomes O(d3/2(log(d))2) for

any fixed order k, which suggests the possibility of a tremendous amount of data reduction

even for moderate ks.

In establishing the sample size requirement for the proposed incoherent nuclear norm

minimization approach, we developed various algebraic properties of incoherent tensor norms

including a characterization of the subdifferential of the incoherent tensor nuclear norm which

generalizes earlier results for matrices (Watson, 1992) and for the usual nuclear norm with

third order tensors (Yuan and Zhang, 2014).

Also essential to our analysis are large deviation bounds under the incoherent spectral

norm we derived for randomly sampled tensors, which may be of independent interest.

These probabilistic bounds show a tighter concentration behavior of random tensors under

incoherent norm than under the usual spectral norm, an observation we exploited to

establish tighter sample size requirement for tensor completion. We note that concentration
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inequalities such as the ones presented here are the basis for many problems beyond tensor

completion. For examples, it is plausible that these bounds could prove useful in developing

improved sampling schemes for higher order tensor sparsification. See, e.g., Nguyen, Drineas

and Tran (2015). These applications are beyond the scope of the current paper and we shall

leave them for future studies.

The rest of the paper is organized as follows. In the next section, we introduce the

notion of incoherent tensor norms and establish some algebraic properties of these norms

useful for our analysis. In Section 3, we derive large deviation bounds for randomly sampled

tensors. Building on the tool developed in Sections 2 and 3, we provide the sample size

requirement for the incoherent nuclear norm minimization in Section 4. We conclude with

some discussions and remarks in Section 5

2 Subdifferential of Incoherent Tensor Nuclear Norm

Note that the optimization problem (2) is convex. In order to show that T can be recovered

via (2), it suffices to find a member from the subdifferential of ∥ · ∥⋆,δ at T that can certify

it as the unique solution to (2). To this end, we need to characterize the subdifferential of

∥ · ∥⋆,δ, which we shall do in this section.

We first note several immediate yet useful observations of the incoherent spectral and

nuclear norms. We shall make repeated use of these simple properties without mentioning

in the rest of paper.

Proposition 1. For any tensor X ∈ Rd1×···×dk and δ ∈ (0, 1]k,

∥X∥2HS := ⟨X,X⟩ ≤ ∥X∥◦,δ∥X∥⋆,δ,

and

∥X∥◦,δ ≤ ∥X∥ ≤ ∥X∥HS ≤ ∥X∥∗ ≤ ∥X∥⋆,δ.

Recall that, for a tensor X, Lj(X) is the linear subspace of Rdj spanned by the mode-j

fibers of X. Denote by P j(X) the orthogonal projection to Lj(X). For brevity, we omit
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the dependence of P j and Lj on X hereafter when no confusion occurs. Write

Q0
X = P 1 ⊗ · · ·⊗ P k.

It is clear that for any uj ∈ Rdj , we have

⟨u1 ⊗ · · ·⊗ uk,X⟩ = ⟨P 1u1 ⊗ · · ·⊗ P kuk,X⟩,

This immediately implies that

Proposition 2. Let δj ≥ max∥u∥ℓ2≤1 ∥P j(X)u∥ℓ∞, for j = 1, . . . , k. Then, for any tensor

W ∈ Rd1×···×dk ,

∥Q0
XW ∥◦,δ = ∥Q0

XW ∥ ≤ ∥W ∥◦,δ.

Consequently, ∥X∥⋆,δ = ∥X∥∗.

Propositions 1 indicates that the incoherent nuclear norm is greater than the usual nuclear

norm in general. But Proposition 2 shows that the two norms are equal if a tensor is indeed

incoherent. This gives some intuition on the potential benefits of minimizing the incoherent

instead of the usual nuclear norm. Because more penalty is levied on tensors that are not

incoherent, compared with the usual nuclear norm minimization (1), it is more plausible that

the solution of (2) is incoherent. Given that the truth is known apriori to be incoherent, it is

more likely that incoherent tensor nuclear norm minimization produces exact recovery. This

advantage will be more precisely quantified by the much refined sample size requirement we

shall establish later.

We are now in position to describe a characterization of the subdifferential of ∥ ·∥⋆,δ. Let

P
⊥
j = I − P j be the projection to the orthogonal complement L⊥

j of Lj in Rdj . Write

QX = Q0
X +

k∑

j=1

P 1 ⊗ · · ·⊗ P j−1 ⊗ P
⊥
j ⊗ P j+1 ⊗ · · ·⊗ P k.

It is easy to see that

Q⊥
X := I −QX =

∑

1≤j1<j2≤k

Q⊥
X,j1,j2,
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where I is the identity operator on the appropriate space, and

Q⊥
X,j1,j2 = P 1 ⊗ · · ·⊗ P j1−1 ⊗ P

⊥
j1 ⊗ P j1+1 ⊗ · · ·⊗ P j2−1 ⊗ P

⊥
j2 ⊗ I ⊗ · · ·⊗ I.

We note that Q⊥
j1,j2 is the orthogonal projection to the linear space of all u1 ⊗ · · ·⊗uk such

that uj is in either Lj or L⊥
j for 1 ≤ j ≤ j2 and that j1 and j2 are the only indices with

uj ∈ L⊥
j .

Theorem 1. Let δj ≥ max∥u∥ℓ2≤1 ∥P j(X)u∥ℓ∞, for j = 1, . . . , k. Then there exists an

W 0 ∈ Rd1×···×dk such that

Q0
XW 0 = W 0, ∥W 0∥◦,δ = 1, and ∥X∥⋆,δ = ⟨W 0,X⟩.

Moreover, for any Y ∈ Rd1×···×dk

∥Y ∥⋆,δ ≥ ∥X∥⋆,δ +
2

k(k − 1)
∥Q⊥

XY ∥⋆,δ + ⟨W 0,Y −X⟩.

Proof of Theorem 1. Let W̃ 0 be the dual of X satisfying ∥W̃ 0∥◦,δ = 1 and ⟨W̃ 0,X⟩ =

∥X∥⋆,δ. Set W 0 = Q0
XW̃ 0. Since X = Q0

XX and Q0
X is an orthogonal projection, we have

Q0
XW 0 = W 0, Q⊥

XX = 0 and ∥X∥⋆,δ = ⟨W 0,X⟩ ≤ ∥W 0∥◦,δ∥X∥⋆,δ . This, along with

Proposition 2, proves the first statement.

To prove the second statement, we first show that for any W 1 ∈ Rd1×···×dk such that

∥W 1∥◦,δ ≤ 2/{k(k − 1)}, we have

∥W 0 +Q⊥
XW 1∥◦,δ ≤ 1. (3)

To this end, note first that

∥W 0 +Q⊥
XW 1∥◦,δ = sup

u1⊗···⊗uk∈U (δ)
⟨u1 ⊗ · · ·⊗ uk,W 0 +Q⊥

XW 1⟩

= max
1≤j1<j2≤k

{

sup
u1⊗···⊗uk∈Uj1j2

(δ)
⟨u1 ⊗ · · ·⊗ uk,W 0 +Q⊥

XW 1⟩
}

.

It then suffices to show that for any 1 ≤ j1 < j2 ≤ k, and u1 ⊗ · · ·⊗ uk ∈ Uj1,j2(δ),

⟨u1 ⊗ · · ·⊗ uk,W 0 +Q⊥
XW 1⟩ ≤ 1.

9



As the statement is not specific to the index label, we assume without loss of generality that

j1 = 1 and j2 = 2; Otherwise, a different decomposition of Q⊥
X is needed beginning with the

projection I ⊗ · · ·⊗ I ⊗ P
⊥
j1 ⊗ I ⊗ · · ·⊗ I ⊗ P

⊥
j2 ⊗ I ⊗ · · ·⊗ I. Recall that

⟨u1 ⊗ · · ·⊗ uk,Q⊥
TW 1⟩ ≤

∑

1≤j3<j4≤k

⟨u1 ⊗ · · ·⊗ uk,Q⊥
j3,j4W 1⟩

≤ 1

2
k(k − 1) max

1≤j3<j4≤k
⟨u1 ⊗ · · ·⊗ uk,Q⊥

j3,j4W 1⟩.

By definition,

⟨u1 ⊗ · · ·⊗ uk,Q⊥
j3,j4W 1⟩

= ⟨P 1u1 ⊗ · · ·⊗ P j3−1uj3−1 ⊗ P
⊥
j3uj3 ⊗ · · ·⊗ P j4−1uj4−1 ⊗ P

⊥
j4uj4 ⊗ · · ·⊗ uk,W 1⟩.

Because ∥u∥ℓ∞ ≤ δj for all j ≥ 2 and ∥P ju∥ℓ∞ ≤ δj ≤ δj for all u ∈ Rdk with ∥u∥ℓ2 ≤ 1,

we have

⟨u1 ⊗ · · ·⊗ uk,Q⊥
j3,j4W 1⟩

≤ ∥P⊥
j3uj3∥ℓ2∥P⊥

j4uj4∥ℓ2 sup
u1⊗···⊗uk∈Uj3j4

(δ)
⟨u1 ⊗ · · ·⊗ uk,W 1⟩

≤ ∥P⊥
j3uj3∥ℓ2∥P⊥

j4uj4∥ℓ2∥W 1∥◦,δ

≤ 2

k(k − 1)
∥P⊥

j3uj3∥ℓ2∥P⊥
j4uj4∥ℓ2.

Together with the fact that

⟨u1 ⊗ · · ·⊗ uk,Q0
XW 0⟩ = ⟨P 1u1 ⊗ · · ·⊗ P kuk,W 0⟩

≤ ∥W 0∥◦,1
k∏

j=1

∥P juj∥ℓ2,

we get, for any u1 ⊗ · · ·⊗ uk ∈ Uj1j2(δ),

⟨u1 ⊗ · · ·⊗ uk,Q0
XW 0 +Q⊥

XW 1⟩

≤
k∏

j=1

∥P juj∥ℓ2 + max
1≤j3<j4≤k

∥P⊥
j3uj3∥ℓ2∥P⊥

j4uj4∥ℓ2

≤ max
1≤j3<j4≤k

{
∥P j3uj3∥ℓ2∥P j4uj4∥ℓ2 + ∥P⊥

j3uj3∥ℓ2∥P⊥
j4uj4∥ℓ2

}

≤ max
1≤j3<j4≤k

{(
∥P j3uj3∥2ℓ2 + ∥P⊥

j3uj3∥2ℓ2
)1/2 (∥P j4uj4∥2ℓ2 + ∥P⊥

j4uj4∥2ℓ2
)1/2}

= 1.
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It then follows that

∥Y ∥⋆,δ − ∥X∥⋆,δ ≥ max
∥W 1∥◦,δ≤2/{k(k−1)}

⟨W 0 +Q⊥
TW 1,Y −X⟩

=
∥Q⊥

XY ∥⋆,δ
k(k − 1)/2

+ ⟨W 0,Y −X⟩.

This completes the proof.

Theorem 1 provides a sufficient condition for a tensor to be in the subdifferential ∂∥X∥⋆,δ.

More specifically, it states that there exists aW 0 so that for anyW 1 such thatW 1 = Q⊥
XW 1

and ∥W 1∥◦,δ ≤ 2/{k(k − 1)},

W 0 +W 1 ∈ ∂∥X∥⋆,δ.

This characterization generalizes the earlier result by Yuan and Zhang (2014) for the special

case when k = 3 and δ = 1.

3 Concentration under Incoherent Spectral Norm

A main technical tool for many tensor related problems is the large deviation bounds for the

spectral norm of a random tensor. We shall use such bounds, in particular, to construct a

dual certificate for (2) later on.

Let A ∈ Rd1×···×dk be an arbitrary but fixed tensor. We are interested in the behavior of

randomly sampled tensors

X i = (d1 · · · dk)Pωi
A, i = 1, . . . , n,

where ωis are iid uniform random variables on [d1]× · · ·× [dk]. Write

X̄ =
1

n
(X1 + · · ·+Xn) .

It is clear that EX̄ = A. We are interested in bounding the incoherent spectral norm of its

deviation from the mean ∥X̄ −A∥◦,δ.

Denote by

∥A∥max = max
ω∈[d1]×···×[dk]

|A(ω)|.

11



For brevity, write

d =
1

k

∑

1≤j≤k

dj, and d∗ = (d1 · · · dk)1/k,

and

δ∗ = (δ1 · · · δk)1/k, and δ∗∗ = min
1≤j1<j2≤k

√
δj1δj2 .

We first give a general concentration bound.

Theorem 2. Suppose that d is sufficiently large such that

8e

9 log 2
k2(log d)3 ≤ d.

For any α > 0 and

t ≥ 160(3α+ 7)
k

n

√
d log d∗(2δ∗d∗)

k∥A∥max max
1≤j1<j2≤k

{(
n

δ2j1dj1δ
2
j2dj2

+
log d

δ2j1δ
2
j2

)}1/2

,

then

P

{∥∥X̄ −A
∥∥
◦,δ

≥ t
}
≤ 1

2
k2d−α +

1

4(log 2)2
k2(log d)2 ×

×
{
exp

(
− 9nt2

64kdk∗∥A∥2max log d∗

)
+ exp

(
− 9nt

32kδk∗δ
−2
∗∗ dk∗∥A∥max log d∗

)}
.

The proof relies on the following result which is an extension of Lemma 9 of Yuan and

Zhang (2015) to accommodate an ℓ∞ bound.

Lemma 1. Let δ ∈ [1/
√
d, 1] and m be an integer with 2m/2 < δ

√
d ≤ 2(m+1)/2. Then,

max
∥u∥ℓ2≤1,∥u∥ℓ∞≤δ

u
⊤
a ≤ (2/c)max

{
w

⊤
a : ∥w∥ℓ2 ≤ c,w ∈ {±c2j/2/

√
2d, j = 0, . . . , m}d

}

for all 0 < c ≤ 1. Moreover,

∣∣∣
{
w : ∥w∥ℓ2 ≤ c,w ∈ {±c2j/2/

√
2d, j = 0, . . . , m}d

}∣∣∣ ≤ exp
(
1.344 + 3.082× d

)
.

For brevity, the proof of Lemma 1 is deferred to the Appendix. We now present the proof

of Theorem 2.
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Proof of Theorem 2. The standard symmetrization argument gives

P

{∥∥X̄ −A
∥∥
◦,δ

≥ 3t
}

≤ max
u1⊗···⊗uk∈U (δ)

P
{〈

X̄ −A,u1 ⊗ · · ·⊗ uk

〉
≥ t

}

+4P

⎧
⎨

⎩

∥∥∥∥∥
1

n

n∑

i=1

ϵiX i

∥∥∥∥∥
◦,δ

≥ t

⎫
⎬

⎭ .

See, e.g., Giné and Zinn (1984). For any fixed u1 ⊗ · · ·⊗ uk ∈ U (δ), we have

E ⟨X i,u1 ⊗ · · ·⊗ uk⟩ = ⟨A,u1 ⊗ · · ·⊗ uk⟩ ,

| ⟨X i,u1 ⊗ · · ·⊗ uk⟩ | ≤ (d1 · · · dk) (∥u1∥ℓ∞ · · · ∥uk∥ℓ∞) ∥A∥max

≤ (d1 · · · dk)(δ1 · · · δk)∥A∥max/δ
2
∗∗,

and

var(⟨X i,u1 ⊗ · · ·⊗ uk⟩) ≤ E ⟨X i,u1 ⊗ · · ·⊗ uk⟩2 ≤ (d1 · · · dk)∥A∥2max.

Therefore, by the Bernstein inequality,

P

{∥∥X̄ −A
∥∥
◦,δ

≥ 3t
}

≤ exp

(
− nt2

4dk∗∥A∥2max

)
+ exp

(
− (3/4)δ2∗∗nt

dk∗δ
k
∗∥A∥max

)

+4P

⎧
⎨

⎩

∥∥∥∥∥
1

n

n∑

i=1

ϵiX i

∥∥∥∥∥
◦,δ

≥ t

⎫
⎬

⎭

We now proceed to bound the last term on the right hand side.

For brevity, write Y i = ϵiX i and

Ȳ =
1

n

n∑

i=1

ϵiX i.

Recall that

∥Ȳ ∥◦,δ = max
1≤j1<j2≤k

max
u1⊗···⊗uk∈Uj1j2

(δ)
⟨Ȳ ,u1 ⊗ · · ·⊗ uk⟩.

Hence,

P
{
∥Ȳ ∥◦,δ ≥ t

}
≤

∑

1≤j1<j2≤k

P

{
max

u1⊗···⊗uk∈Uj1j2
(δ)
⟨Ȳ ,u1 ⊗ · · ·⊗ uk⟩ ≥ t

}
.

We now bound each of the summands on the right hand side. To fix ideas, we shall treat

only the case when j1 = 1 and j2 = 2 without loss of generality.
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It follows from Lemma 1 that

max
u1⊗···⊗uk∈U1,2(δ)

〈
Ȳ ,u1 ⊗ · · ·⊗ uk

〉
≤ 2k+1 max

u1⊗···⊗uk∈U ∗
1,2(δ)

⟨Ȳ ,u1 ⊗ · · ·⊗ uk⟩.

where

U
∗
1,2(δ) =

{
u1 ⊗ · · ·⊗ uk ∈ U1,2(δ) : ∥uj∥ℓ2 ≤ cj,uj ∈ {±2j/2cj/

√
2dj, j = 0, . . . , mj}dj

}

with mj = ⌈log2(dj) − 1⌉ for j = 1, 2, and mj = ⌈log2(δ2jdj) − 1⌉ for j > 2. We choose

1/
√
2 ≤ cj ≤ 1 such that {±2j/2cj/

√
2dj, j = 0, . . . , mj} = {±2−j/2, j = 2, . . . , mj + 2} for

j = 1, 2, and cj = 1 for j > 2. As d1 + · · ·+ dk = kd and d ≥ 2,

|U ∗
1,2(δ)| ≤ exp

(
4kd

)
.

For U = u1 ⊗ · · ·⊗ uk ∈ U ∗
1,2(δ), define

Am = {(a1, a2) : |u1(a1)u2(a2)| = 2−m/2},

Bm = {(a3, . . . , ak) : (a1, a2) ∈ Am, (a1, . . . , ak) ∈ Ω},

and

U 1,2 = u1 ⊗ u2, U 3,...,k = u3 ⊗ · · ·⊗ uk.

Here and in the sequel, we omit the dependence of {Am, Bm,U 1,2,U 3,...,k} on U and Bm on

Ω when no confusion occurs. For U ∈ U ∗
1,2(δ) and any integer m1,2 ≥ 0,

⟨Ȳ ,U⟩ = ⟨Ȳ , (PC1,2U 1,2)⊗U 3,...,k⟩+
∑

4≤m≤m1,2

⟨Ȳ , (PAmU 1,2)⊗ (PBmU 3,...,k)⟩,

where

C1,2 = {(a1, a2) : |U1,2(a1, a2)| ≤ 2−m1,2/2−1/2}.

We note that Am = ∅ for m ≤ 3.

Write

ν1,2(Ȳ ) = max
a1∈[d1],a2∈[d2]

∣∣{(a1, . . . , ak) ∈ supp(Ȳ ) : aj ∈ [dj ], j ≥ 3
}∣∣ .

We argue that

P

{
ν1,2(Ȳ ) ≤ (3α + 7)

(
n

d1d2
+ log d

)}
≤ d−α. (4)
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When n/(d1d2) ≥ log d, we can apply Chernoff bound to get, for any fixed a1 ∈ [d1] and

a2 ∈ [d2]

P

{∣∣{(a1, . . . , ak) ∈ supp(Ȳ ) : aj ∈ [dj], j ≥ 3
}∣∣ ≥ (3α + 7)

n

d1d2

}

≤ exp[−(α + 2)n/(d1d2)] ≤ d−(α+2).

Similarly, when n/(d1d2) < log d, we can also apply Chernoff bound to get

P
{∣∣{(a1, . . . , ak) ∈ supp(Ȳ ) : aj ∈ [dj], j ≥ 3

}∣∣ ≥ (3α+ 7) log d
}
≤ d−(α+2).

Equation (4) then follows from an application of the union bound.

We shall now proceed conditional on the event that

ν1,2(Ȳ ) ≤ ν∗ := (3α + 7)

(
n

d1d2
+ log d

)
.

Under this event,

|Bm| ≤ ν∗|Am|.

Observe that for any U = u1 ⊗ · · ·⊗ uk ∈ U ∗
1,2(δ),

|Am| ≤ 2m, ∥U 3,...,k∥max = ∥u3 ⊗ · · ·⊗ uk∥max ≤ δ3,...,k.

with δ3,...,k = δ3 · · · δk. For integers 0 ≤ ℓ ≤ m ≤ m1,2 define,

B1,2(m, ℓ) =
{
V = (PAmU 1,2)⊗ (PBU 3,...,k) : |Am| ≤ 2m−ℓ,

|B| ≤ ν∗|Am|,U 1,2 ⊗U 3,...,k ∈ U
∗
1,2(δ)

}
.

It follows that for U ∈ U ∗
1,2(δ) and integers am ≥ 0 with 2m−am−1 ≤ |Am| ≤ 2m−am ,

(PAmU 1,2)⊗ (PBmU 3,...,k) ∈ B1,2(m, ℓ), am ≤ ℓ.

As
m1,2∑

m=4

2−(am∧(m−3)) ≤ 1 + 2

m1,2∑

m=4

|Am|/2m ≤ 1 + 2∥U 1,2∥2F ≤ 3

for all U ∈ U ∗
1,2(δ),

∑

4≤m≤m1,2

⟨Ȳ , (PAmU 1,2)⊗ (PBmU 3,...,k)⟩
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≤
∑

4≤m≤m1,2

2−(am∧(m−3))/2−ℓm/2 max
V ∈B1,2(m,am∧(m−3))

2(am∧(m−3))/2+ℓm/2⟨Ȳ ,V ⟩

≤
(

3

m1,2∑

m=4

2−ℓm

)1/2

max
4≤m≤m1,2

max
0≤ℓ≤m−3

max
V ∈B1,2(m,ℓ)

2ℓ/2+ℓm/2⟨Ȳ ,V ⟩

for any nonnegative integers ℓm. Here a ∧ b = min{a, b}. It follows that if
(

3

m1,2∑

m=4

2−ℓm

)1/2

≤ 4,

then

⟨Ȳ ,U⟩ ≤ max
U∈U ∗

1,2(δ)
⟨Ȳ , (PC1,2U 1,2)⊗U 3,...,k⟩

+4 max
4≤m≤m1,2

max
0≤ℓ≤m−3

max
V ∈B1,2(m,ℓ)

2ℓ/2+ℓm/2⟨Ȳ ,V ⟩. (5)

We note that PC1,2 = I when m1,2 ≤ 3.

We have |U ∗
1,2(δ)| ≤ e4kd. To bound the cardinality of B1,2(m, ℓ), we pick

m1,2 = max {⌊log2(4d/(ν∗ log d∗))⌋, 0} ,

so that

ν∗2
m1,2 log d∗ ≤ 4d ≤ ν∗2

m1,2+1 log d∗

if ν∗ log d∗ ≤ 4d and m1,2 = 0 otherwise. Moreover, for 4 ≤ m ≤ m1,2, we pick integers ℓm

satisfying

max

{
2m−m1,2 ,

9

8k log d∗

}
≤ 2−ℓm < max

{
2m−m1,2 ,

9

4k log d∗

}
.

As

m1,2 ≤ log2 d ≤ k log(d∗)/ log 2,

we have

(

3

m1,2∑

m=4

2−ℓm

)1/2

≤
(
27(1 +m1,2 − 3)

4k log d∗

)1/2

≤
(

27

4 log 2

)1/2

≤ 3.121.

We note that U 1,2 takes value ±2−m/2 on Am and U 3,...,k takes value in ±2j/2/(
∏k

j=3

√
2dj)

for j = 0, . . . , m3 + . . . + mk. Let m∗∗ = k log2(δ
2
∗d∗). As mj = ⌈log2(δ2j dj) − 1⌉ for j > 2,
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each element of U 3,...,k has at most 2m∗∗ + 2 possible values. It follows that

log |B1,2(m, ℓ)| ≤ log

⎛

⎝
2m−ℓ∑

j=1

(
d1d2
j

)(
d3 · · ·dk
⌊ν∗j⌋

)
2j(2m∗∗ + 2)⌊ν∗j⌋

⎞

⎠

≤ ν∗2
m−ℓ

{
log

(
ed3 . . . dk
ν∗2m−ℓ

)
+ log(2m∗∗ + 2)

}

+2m−ℓ

{
log

(
ed1d2
2m−ℓ

)
+ log 2

}
+ log 2.

As x log(y/x2) is increasing in x for 0 < x ≤ √
y/e and 4 ≤ m ≤ m1,2 − ℓm,

2−(m−ℓ)/2 log |B1,2(m, ℓ)|

≤ ν∗2
(m1,2−ℓm)/2

{
log

(
ed3 . . . dk
ν∗2m1,2−ℓm

)
+ log(2m∗∗ + 2)

}

+2(m1,2−ℓm)/2

{
log

(
ed1d2

2m1,2−ℓm

)
+ 2 log 2

}

≤ ν∗2
(m1,2−ℓm)/2

{
log

(
e(d1d2)1/ν∗d3 . . . dk

ν∗2m1,2−ℓm

)
+ log(2m∗∗ + 2)

}

≤ ν∗2
−ℓm/2

(
4d

ν∗ log d∗

)1/2

log

(
dk∗e(d1d2)

1/ν∗2ℓm(2m∗∗ + 2)

d1d24d/ log d∗

)
.

Note that

e(d1d2)
1/ν∗2ℓm(2m∗∗ + 2) log d∗

≤ (d1d2)
1/{(1+α) log d}(8e/9)k(log d∗)

2{2k log2(δ2∗d∗) + 2}

≤ 4d1d2d,

where the last inequality follows from the fact that d∗ < d and the assumption that d is

sufficiently large. Thus,

2−(m−ℓ)/2 log |B1,2(m, ℓ)| ≤ 2−ℓm/2k
√

4ν∗d log d∗.

It follows that

log |B1,2(m, ℓ)| ≤ 2(m−ℓ−ℓm)/2k
√

4ν∗d log d∗ ≤ 4kd, ∀ 0 ≤ ℓ ≤ m ≤ m1,2.

For any fixed V ∈ B1,2(m, ℓ), write Zi = ⟨Y i,V ⟩. Then

〈
Ȳ ,V

〉
=

1

n
(Z1 + · · ·+ Zn).
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We have

∥V ∥max ≤ 2−m/2δ3,...,k and ∥V ∥2HS ≤ 2−ℓ.

Thus, as Y i = ϵiX i and X i = (d1 · · · dk)Pωi
A, we have

|Zi| ≤ dk∗∥A∥max∥V ∥max ≤ 2−m/2δ3,...,kd
k
∗∥A∥max

and

var(Zi) ≤ E(Z2
i ) ≤ dk∗∥A∥2max∥V ∥2HS ≤ 2−ℓdk∗∥A∥2max.

It follows from the Bernstein inequality and the union bound that

P

{
max

V ∈B1,2(m,ℓ)

〈
Ȳ ,V

〉
≥ 2−(ℓ+ℓm)/2t

}

≤ |B1,2(m, ℓ)| exp
(
− n2−ℓ−ℓmt2

21−ℓdk∗∥A∥2max + (2/3)2−m/2δ3,...,kdk∗∥A∥max2−(ℓ+ℓm)/2t

)

≤ exp

(
4kd− n2−ℓmt2

4dk∗∥A∥2max

)
+ exp

(
2(m−ℓ−ℓm)/2k

√
4ν∗d log d∗ −

(3/4)2(m−ℓ−ℓm)/2nt

δ3,...,kdk∗∥A∥max

)
.

The condition on t implies that

t ≥ 8

3n
(δ3,...,kd

k
∗∥A∥max)k

√
4ν∗d log d∗.

Together with the fact that 2−ℓm ≥ (9/8)/(k log d∗), we get

n2−ℓmt2

4dk∗∥A∥2max

≥
2δ23,...,kd

k
∗k

2(4ν∗d log d∗)

nk log d∗
≥ (d1d2ν∗/n)8kd ≥ 8kd.

Therefore,

exp

(
4kd− n2−ℓmt2

4dk∗∥A∥2max

)
≤ exp

(
− n2−ℓmt2

8dk∗∥A∥2max

)
≤ exp

(
− 9nt2

64kdk∗∥A∥2max log d∗

)
.

Similarly, we have

(3/4)2(m−ℓ−ℓm)/2nt

δ3,...,kdk∗∥A∥max
≥ 2 · 2(m−ℓ−ℓm)/2k

√
4ν∗d log d∗,

which implies that

exp

(
2(m−ℓ−ℓm)/2k

√
4ν∗d log d∗ −

(3/4)2(m−ℓ−ℓm)/2nt

δ3,...,kdk∗∥A∥max

)

≤ exp

(
−3

8
· 2(m−ℓ−ℓm)/2nt

δ3,...,kdk∗∥A∥max

)

≤ exp

(
− 9

32
· nt

(k log d∗)1/2δ3,...,kdk∗∥A∥max

)
.
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For m1,2 ≥ 1, we have

2−(m1,2+1)/2 ≤
√

(ν∗ log d∗)/(4d),

so that

3

4
nt2(m1,2+1)/2/(δ3,...,kd

k
∗∥A∥max) ≥ 2k

√
4ν∗d log d∗

√
4d/(ν∗ log d∗) = 8kd.

As

|⟨ϵiX i, (PC1,2U 1,2)⊗U 3,...,k⟩| ≤ 2−(m1,2+1)/2δ3,...,kd
k
∗∥A∥max,

we have

P

{
max

U∈U ∗
1,2(δ)

⟨Ȳ , (PC1,2U 1,2)⊗U 3,...,k⟩ ≥ t

}

≤ |U ∗
1,2(δ)| max

U∈U ∗
1,2(δ)

P
{
⟨Ȳ , (PC1,2U 1,2)⊗U 3,...,k⟩ ≥ t

}

≤ exp

(
4kd− nt2

2dk∗∥A∥2max + 21−(m1,2+1)/2δ3,...,kdk∗∥A∥maxt/3

)

≤ exp

(
− nt2

4dk∗∥A∥2max

)
+ exp

(
− 3d1/2nt

2δ3,...,kdk∗∥A∥max(ν∗ log d∗)1/2

)
.

Finally, for m1,2 = 0, we have ν∗ > 4d/ log d∗, so that the condition on t still implies

(3/4)nt

δ3,...,kdk∗∥A∥max
≥ 2k

√
4ν∗d log d∗ ≥ 8kd.

Putting the above probability bounds together via (5), we find that

P

{
max

U∈U1,2(δ)
⟨Ȳ ,U⟩ ≥ 2k+15t

}

≤ P

{
max

U∈U ∗
1,2(δ)

⟨Ȳ ,U⟩ ≥ 5t

}

≤
(
1 + 2 + . . .+ (m1,2 − 2)

)
×

×
{
exp

(
− 9nt2

64kdk∗∥A∥2max log d∗

)
+ exp

(
− 9

32
· nt

(k log d∗)1/2δ3,...,kdk∗∥A∥max

)}
.

As m1,2 ≤ log2 d, the proof is then completed in the light of (4).

It is instructive to examine the case of hypercubic tensors where d1 = · · · = dk = d and

we take δ1 = · · · = δk = δ∗. The following is an immediate consequence of Theorem 2.
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Corollary 1. Let A ∈ Rd×···×d be a kth order tensor, and δ1 = · · · = δk = δ ∈ (0, 1], then

there exists constant c1, c2 > 0 depending on k only such that, for any β > 0,

∥∥X̄ −A
∥∥
◦,δ

≤ c1(1 + β)max

{(
log d

n

)1/2

δk−2dk−1/2,

(
log d

n

)
δk−2dk+1/2

}

∥A∥max, (6)

with probability at least 1− c2d−β.

Note that the second term on the right hand side of (6) decreases with δ, indicating

a tighter concentration bound for X̄ − A when it dominates the first term. The bound

(6) immediately suggests an effective sampling scheme to approximate incoherent tensors in

terms of the usual spectral norm. Suppose that A is µ-incoherent so that

max
∥u∥ℓ2≤1

∥P j(A)u∥ℓ∞ ≤
√

µrj(A)/d, j = 1, . . . , k.

Then we can take δ = 2
√
µr/d where r = maxj rj(A). Equation (6) now becomes

∥∥X̄ −A
∥∥
◦,δ

" (µr)k/2−1max

{(
log d

n

)1/2

d(k+1)/2,

(
log d

n

)
d(k+3)/2

}

∥A∥max.

Let Â be the projection of X̄ onto the space Tµ of µ-incoherent tensors:

Â = argmin
Y ∈Tµ

∥X̄ − Y ∥◦,δ.

By triangular inequality, ∥Â−A∥◦,δ ≤ 2
∥∥X̄ −A

∥∥
◦,δ
, so that

∥Â−A∥◦,δ " (µr)k/2−1max

{(
log d

n

)1/2

d(k+1)/2,

(
log d

n

)
d(k+3)/2

}

∥A∥max.

Because both Â and A are µ-coherent. Their difference Â −A must be
√
2µ-coherent. In

the light of Proposition 2, we know ∥Â−A∥ = ∥Â−A∥◦,δ, so that

∥Â−A∥ " (µr)k/2−1max

{(
log d

n

)1/2

d(k+1)/2,

(
log d

n

)
d(k+3)/2

}

∥A∥max. (7)

In other words, we can approximate A up to the same error bound given by (6), but in terms

of the usual spectral norm.
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For illustration purposes, consider a more specific case when A admits an orthogonal

decomposition

A =
r∑

i=1

u
(i)
1 ⊗ · · ·⊗ u

(i)
k ,

for some u
(i)
j ∈ Rd such that

⟨u(i1)
j ,u(i2)

j ⟩ =

⎧
⎨

⎩
1 if i1 = i2

0 otherwise
.

If A is µ-incoherent in that

∥u(i)
j ∥ℓ∞ ≤

√
µ

d
, j = 1, . . . , k, i = 1, . . . , r.

then

∥A∥max ≤ µk/2rd−k/2.

The approximation error bound given by (7) can now be further simplified as

∥Â−A∥ " µk−1rk/2max

{(
d log d

n

)1/2

,
d3/2 log d

n

}

.

In other words, when µk−1 = O(1), we can approximate A up to an error of ϵ, in terms of

the usual spectral norm, based on observations from

n ≥ Ck max

(
rkd log d

ϵ2
,
rk/2d3/2 log d

ϵ

)

entries for some constant Ck. If the condition on A is strengthened to ∥A∥max "

µk/2r1/2d−k/2, then the sample size requirement becomes

n ≥ Ck max

(
rk−1d log d

ϵ2
,
r(k−1)/2d3/2 log d

ϵ

)
.

This example shows the importance of leveraging the information that a tensor is incoherent.

4 Tensor Completion

We now turn our attention back to tensor completion through incoherent nuclear norm

minimization:

min
X

∥X∥⋆,δ subject to PΩX = PΩT . (8)
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Denote by T̂ the solution to the above convex optimization problem. We shall utilize the

results from the previous sections to establish the requirement on the sample size n := |Ω| so

that T̂ = T with high probability when Ω is a uniformly sampled subset of [d1]× · · ·× [dk].

Recall that rj(T )s are the Tucker ranks of T . For brevity, we shall omit the dependence

of rjs on T for the rest of the section. Denote by

r∗ =

[
1

kd

k∑

j=1

(
dj
rj

k∏

ℓ=1

rℓ

)]1/(k−1)

,

µ∗ =
dk∗

krk−1
∗ d

max
i1,...,ik

∥QT (ei1 ⊗ · · ·⊗ eik)∥2HS, (9)

and

α∗ = (dk∗/r∗)
1/2∥W 0∥max, (10)

where as before, d and d∗ are the arithmetic and geometric averages of djs, and W 0 ∈

Rd1×···×dk is the dual of T as specified in Theorem 1. We are now in position to state our

main result.

Theorem 3. Let Ω be a uniformly sampled subset of [d1]× · · ·× [dk] and T̂ be the solution

to (8) with δj =
√
λ∗r∗/dj. There exists a constant ck > 0 depending on k only so that

P{T̂ = T } ≥ 1− d−β if

λ∗ ≥
1

r∗
max
1≤j≤k

{µj(T )rj(T )},

and

n := |Ω| ≥ ck(1 + β)
(
(µ∗ + α2

∗λ
k−2
∗ )rk−1

∗ d(log d)2 + α∗λ
k/2−1
∗ r(k−1)/2

∗ d3/2(log d)2
)

Proof of Theorem 3. The main steps of the proof is analogous to those from Yuan and Zhang

(2014). We shall outline below these steps while highlighting the key differences moving from

third order tensors to higher order tensors, and from usual tensor nuclear norm to incoherent

tensor nuclear norm. We begin with a lemma that reduces the problem to finding a dual

certificate.
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Lemma 2. Suppose there exists a tensor G̃ ∈ Rd1×···×dk such that G̃ = PΩG̃,

∥QT G̃−W 0∥HS <

√
n/(2dk∗)

k(k − 1)
(11)

and

max
∥Q⊥

T
X∥⋆,δ=1

⟨G̃,Q⊥
TX⟩ < 1

k(k − 1)
. (12)

If in addition,

∥∥PΩ|range(QT )

∥∥
HS→HS

:= inf {∥PΩQTX∥HS : ∥QTX∥HS = 1} ≥
√

n

2dk∗
, (13)

then T̂ = T .

The proof of Lemma 2 is relegated to the proof. In the light of Lemma 2, it now suffices

to verify condition (13) and construct a dual certificate G̃ that satisfies conditions (11) and

(12). We first verify condition (13).

Recall that for a linear operator R : Rd1×···×dk → Rd1×···×dk ,

∥R∥HS→HS = max
{
∥RX∥HS : X ∈ R

d1×···×dk , ∥X∥HS ≤ 1
}
.

Here we prove that under the Hilbert-Schmidt norm in the range of QT ,

∥∥∥QT

(
(dk∗/n)PΩ − I

)
QT

∥∥∥
HS→HS

≤ 1/2 (14)

with large probability. This implies that as an operator in the range of QT , the spectrum of

(dk∗/n)QTPΩQT is contained in [1/2, 3/2]. Consequently, (13) holds via

(dk∗/n)∥PΩQTX∥2HS =
〈
QTX, (dk∗/n)QTPΩQTX

〉
≥ 1

2
∥QTX∥2HS.

This goal can be achieved by invoking the following result.

Lemma 3. Let Ω be a uniformly sampled subset from [d1]× · · ·× [dk] without replacement.

Then,

P

{∥∥∥∥QT

(
dk∗
n
PΩ − I

)
QT

∥∥∥∥
HS→HS

≥ τ

}
≤ 2krk−1

∗ d exp

(
− τ 2/2

1 + 2τ/3

(
n

kµ∗r
k−1
∗ d

))
.
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Lemma 3 can be proved using the same argument from Yuan and Zhang (2014) in treating

low-rank tensors, noting that

rank(QT ) = dim
(
range(QT )

)
≤

k∑

j=1

dj
∏

ℓ≠j

rℓ = rk−1
∗ d.

The details are omitted for brevity.

Equation (14) follows immediately from Lemma 3 as soon as

n ≥ ck(β + 1)µ∗r
k−1
∗ d log(d).

It now remains to show that there exists a dual certificate G̃ that satisfies conditions

(11) and (12). To this end, we apply the now standard “Golfing scheme”. See, e.g., Gross

(2011) and Recht (2011). As argued by Yuan and Zhang (2014), we can construct a sequence

{ωi : 1 ≤ i ≤ n} of iid uniform vectors from [d1]×· · ·×[dk] such that ωi ∈ Ω for all 1 ≤ i ≤ n.

Let n1 and n2 be two natural numbers to be specified later so that n1n2 ≤ n. Write

Ωj = {ωi : (j − 1)n1 < i ≤ jn1} ,

for j = 1, 2, . . . , n2. Define

Rj = I − 1

n1

jn1∑

i=(j−1)n1+1

dk∗ Pωi
(15)

and

G̃j =
j∑

ℓ=1

(
I −Rℓ

)
QTRℓ−1QT · · ·QTR1QTW 0, G̃ = G̃n2

. (16)

Since ωi ∈ Ω,

PΩ(I −Rj) = I −Rj ,

so that PΩG̃ = G̃. It follows from the definition of G̃j that

QT G̃j =
j∑

ℓ=1

(QT −QTRℓQT )(QTRℓ−1QT ) · · · (QTR1QTW 0)

= W 0 − (QTRjQT ) · · · (QTR1QT )W 0
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and for any X ∈ Rd1×···×dk ,

⟨G̃j ,Q⊥
TX⟩ = −

〈 j∑

ℓ=1

Rℓ(QTRℓ−1QT ) · · · (QTR1QT )W 0,Q⊥
TX

〉
.

Thus, conditions (11) and (12) hold if

∥(QTRn2
) · · · (QTR1)W 0∥HS <

√
n/(2dk∗)

k(k − 1)
(17)

and
∥∥∥∥∥

n2∑

ℓ=1

Rℓ(QTRℓ−1QT ) · · · (QTR1QT )W 0

∥∥∥∥∥
◦,δ

<
1

k(k − 1)
. (18)

We still need to prove that (17) and (18) hold with high probability. For this purpose,

we need large deviation bounds for the average of certain iid tensors under the operator,

maximum and spectrum norms. The large deviation bounds for the operator and maximum

norms are presented in the following lemma.

Lemma 4. Let ωi, i = 1, . . . , n1 be iid uniformly sampled from [d1]× · · ·× [dk], and

Di = QT (d
k
∗Pωi

)QT −QT .

Then, for all τ > 0,

P

{∥∥∥∥∥
1

n1

n1∑

i=1

Di

∥∥∥∥∥
HS→HS

> τ

}

≤ 2(rk−1
∗ d) exp

(
− τ 2/2

1 + 2τ/3

(
n1

µ∗r
k−1
∗ d

))
. (19)

Moreover, for any deterministic X ∈ Rd1×···×dk with ∥X∥max ≤ 1,

P

{∥∥∥∥∥
1

n1

n1∑

i=1

DiX

∥∥∥∥∥
max

≥ τ

}

≤ 2dk∗ exp

(
− τ 2/2

1 + 2τ/3

(
n1

µ∗r
k−1
∗ d

))
. (20)

Lemma 4 again follows from identical arguments used by Yuan and Zhang (2014) and

the details are omitted for brevity.

Let

W j = (QTRjQT ) · · · (QTR1QT )W

with W 0 = W . Since Rjs are iid operators with

QTR1QT = −(1/n1)
n1∑

i=1

Di,
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Equation (19) yields

P
{
∥W j∥HS ≤ τ j1∥W ∥HS, 1 ≤ j ≤ n2

}

= P
{
∥(QTRjQT ) · · · (QTR1QT )W ∥HS ≤ τ j1∥W ∥HS, 1 ≤ j ≤ n2

}

≥ 1− n22(r
k−1
∗ d) exp

(
− τ 21 /2

1 + 2τ1/3

(
n1

µ∗r
k−1
∗ d

))
.

This can be used to verify (17) with certain τ1 satisfying

τn2

1 ∥W ∥HS ≤
√

n/(2dk∗)

k(k − 1)
,

by taking

n ≥ n1n2 ≥ ck(β + 1)µ∗r
k−1
∗ d log2(d).

Finally, we prove (18). It follows from (20) that

P
{
∥W j∥max = ∥(QTRjQT ) · · · (QTR1QT )W ∥max ≤ τ j∥W ∥max, 1 ≤ j ≤ n2

}

≥ 1− 2n2d
k
∗ exp

(
− τ 2/2

1 + 2τ/3

(
n1

µ∗r
k−1
∗ d

))
. (21)

It follows from the definition of Rj in (15) that for any X with QTX = X,

RjX = − 1

n1

jn1∑

i=(j−1)n1+1

(
(dk∗)Pωi

− I
)
X.

Recall that

∥W ∥max = α∗(r∗/d
k
∗)

1/2.

Note that {ωi : (j − 1)n1 < i ≤ jn1} is independent of W j−1 and QTW j−1 = W j−1. By

Theorem 2, we have

P

{
∥RjW j−1∥◦,δ > τ j−1t, ∥W j−1∥max/τ

j−1 ≤ ∥W ∥max

}

≤ k2d−α/2 + (k2(log2 d)
2/4)

{
exp (−4kd) + exp

(
−
√

4kd(3α+ 7) log d
)}

=: pn1
(t).

We note that as δj =
√
λ∗r∗/dj and α∗ = (dk∗/r∗)

1/2∥W 0∥max,

t ≥ c′k
n1

(3α + 7)
√
d log d(λ∗r∗)

k/2α∗r
1/2
∗ max

1≤j1<j2≤k

{
(λ∗r∗)

−2(α + 1) (n1 + dj1dj2 log d)
}1/2
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=
c′k
n1

√
d log d∗(δ

k
∗d

k
∗∥W ∥max) max

1≤j1<j2≤k

{(
n1

δ2j1dj1δ
2
j2dj2

+
log d

δ2j1δ
2
j2

)}1/2

with c′k = 2k160. Together with (21), this yields

P

⎧
⎨

⎩

∥∥∥∥∥

n2∑

j=1

Rj(QTRj−1QT ) · · · (QTR1QT )W

∥∥∥∥∥
◦,δ

<
1

k(k − 1)

⎫
⎬

⎭

≥ P

{
∥RjW j−1∥◦,δ <

τ j−1 − τ j

k(k − 1)
, ∥W j−1∥max/τ

j−1 ≤ ∥W ∥max, j ≤ n2

}

≥ 1− n2pn1

(
1− τ

k(k − 1)

)
− 2n2d

k
∗ exp

(
− τ 2/2

1 + 2τ/3

(
n1

µ∗r
k−1
∗ d

))
,

which completes the proof.

5 Concluding Remarks

We introduce a general framework of nuclear norm minimization for tensor completion

and investigate the minimum sample size required to ensure prefect recovery. Our work

contributes to a fast-growing literature on higher order tensors, beyond matrices. In

particular, we argue that incoherence may play a more prominent role in higher order

tensor completion. We show that, by appropriately incorporating information about the

incoherence of a kth order tensor of rank r and dimension d× · · ·×d, we can complete it with

O((r(k−1)/2d3/2 + rk−1d)(log(d))2) uniformly sampled entries. This sample size requirement

agrees with existing results on recovering a third order tensor (see, e.g., Yuan and Zhang,

2014), and more interestingly, it depends on k(≥ 3) only through the O(1) factor for rank

one tensors (r = 1).

One of the chief challenges when dealing with higher order tensors is computation.

Although convex, nuclear norm minimization for higher order tensors is computationally

expensive in the worst case. See, e.g., Hillar and Lim (2013). Various relaxations and

approximate algorithms have been introduced in recent years to alleviate the computational

burden associated with evaluating tensor norms. See, e.g., Nie and Wang (2014), Jiang, Ma

and Zhang (2015) and references therein. It is of great interest to study how these techniques

can be adopted in the context of tensor completion in general, and nuclear norm minimization
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in particular. More detailed investigation along this direction is beyond the scope of the

current work and we hope to report our progress elsewhere in the near future. Nevertheless,

our results here may provide valuable guidance along this direction. For example, our analysis

suggests that when developing effective approximation algorithms for higher order tensor

completion, it could tremendously beneficial to explicitly take incoherence into account.
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A Proof of Lemma 1

It suffices to prove the lemma for c = 1. Consider without loss of generality a and u with

nonnegative components, ∥u∥ℓ2 = 1 and ∥u∥ℓ∞ ≤ δ. Let

v = (u1 ∨ d−1/2, . . . , ud ∨ d−1/2)⊤/
√
2,

where a ∨ b = max{a, b}. We have

∥v∥ℓ∞ ≤ δ/
√
2,

√
2v⊤

a ≥ u
⊤
a,

and

∥v∥2ℓ2 = 2−1
d∑

i=1

max(u2
i , 1/d) ≤ 1.

Let

w ∈ {2j/2/
√
2d, j = 0, . . . , m}d with wi ≤ vi ≤

√
2wi, ∀ i = 1, . . . , d.

This is possible as

∥v∥ℓ∞ ≤ δ/
√
2 ≤

√
2(2m/2/

√
2d).

We have

∥w∥ℓ2 ≤ ∥v∥ℓ2 ≤ 1 and 2w⊤
a ≥

√
2v⊤

a ≥ u
⊤
a.
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It remains to count the cardinality. Let ℓj = ⌊d/(2j − 1)⌋. For 1 ≤ j ≤ m,

(2j/(2d))
∣∣{i : w2

i = 2j/(2d)}
∣∣+ (2d)−1

[
d−

∣∣{i : w2
i = 2j/(2d)}

∣∣] ≤ 1,

so that

|{i : w2
i = 2j/(2d)}| ≤ ℓj.

As a choice of w can be made by first picking the sign of its elements, the cardinality of the

w-collection is no greater than

N = 2d
m∏

j=1

∑

0≤ℓ≤ℓj

(
d

ℓ

)
.

Moreover, for j ≥ 2, we have ℓj ≤ d/(2j − 1), so that

ℓj∑

ℓ=1

(
d

ℓ

)
≤

(
d

ℓj

) ℓj∑

ℓ=0

( 1/(2j − 1)

1− 1/(2j − 1)

)ℓj−ℓ

≤
(
d

ℓj

)(
1 +

1

2j − 3

)
.

It follows with an application of the Stirling formula that

N ≤ 4d exp

{
m∑

j=2

(
ℓj log(ed/ℓj) +

1

2j − 3

)}

.

Since x(1 + log(d/x)) is increasing in x for 0 ≤ x ≤ d and ℓj ≤ d/(2j − 1),

logN ≤ d log 4 + d
∞∑

j=2

1 + log(2j − 1)

2j − 1
+

∞∑

j=2

1

2j − 3
≤ 3.082× d+ 1.344.

The proof is now completed.

B Proof of Lemma 2

Let ∆ = T̂ − T . Then PΩ∆ = 0 and

∥T +∆∥⋆,δ ≤ ∥T ∥⋆,δ.

It follows from Theorem 2 that

∥T +∆∥⋆,δ ≥ ∥T ∥⋆,δ +
∥Q⊥

T∆∥⋆,δ
k(k − 1)/2

+ ⟨W 0,∆⟩.

31



Because QTW 0 = W 0 and

⟨G̃,∆⟩ = ⟨PΩG̃,∆⟩ = ⟨G̃,PΩ∆⟩ = 0

we get

− ∥Q⊥
T∆∥⋆,δ

k(k − 1)/2
≥ ⟨W 0 − G̃,∆⟩

= ⟨QT (W 0 − G̃),∆⟩ − ⟨G̃,Q⊥
T∆⟩

≥ −∥W 0 −QT G̃∥HS∥QT∆∥HS − ∥Q⊥
T∆∥⋆,δ/{k(k − 1)}.

It follows that

∥Q⊥
T∆∥⋆,δ/{k(k − 1)} ≤ ∥W 0 −QT G̃∥HS∥QT∆∥HS.

Recall that

PΩ∆ = PΩQ⊥
T∆+ PΩQT∆ = 0.

Thus, in view of (13) and Proposition 1

∥QT∆∥HS√
2dk∗/n

≤ ∥PΩQT∆∥HS = ∥PΩQ⊥
T∆∥HS ≤ ∥Q⊥

T∆∥HS ≤ ∥Q⊥
T∆∥⋆,δ. (22)

Consequently,
∥Q⊥

T∆∥⋆,δ
k(k − 1)

≤
√

2dk∗/n∥W 0 −QT G̃∥HS∥Q⊥
T∆∥⋆,δ.

Because of (11), we have ∥Q⊥
T∆∥⋆,δ = 0. Together with (22), we conclude that ∆ = 0, or

equivalently T̂ = T .
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