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ABSTRACT

The problem of estimating the mean of a normal vector with known but unequal variances introduces sub-
stantial difficulties that impair the adequacy of traditional empirical Bayes estimators. By taking a different
approach that treats the known variances as part of the random observations, we restore symmetry and
thus the effectiveness of such methods. We suggest a group-linear empirical Bayes estimator, which col-
lects observations with similar variances and applies a spherically symmetric estimator to each group sep-
arately. The proposed estimator is motivated by a new oracle rule which is stronger than the best linear
rule, and thus provides a more ambitious benchmark than that considered in the previous literature. Our
estimator asymptotically achieves the new oracle risk (under appropriate conditions) and at the same time
is minimax. The group-linear estimator is particularly advantageous in situations where the true means and
observed variances are empirically dependent. To demonstrate the merits of the proposed methods in real
applications, we analyze the baseball data used by Brown (2008), where the group-linear methods achieved
the prediction error of the best nonparametric estimates that have been applied to the dataset, and signif-
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icantly lower error than other parametric and semiparametric empirical Bayes estimators.

1. Introduction

Let X=X, ....X)5, 0=(01,....,0)T and V = (W, ...,
V,)T, and suppose that
Xil (0, Vi) ~ N(0;, Vi) 1)

independently for 1 < i < n, where  and V are deterministic.
In the heteroscedastic normal mean problem, the goal is to esti-
mate the vector @ based on X and V under the (normalized)
sum-of-squares loss

L@.0)=n' 100" =n"' Y G:~6). ()
i=1

Hence, we assume that in addition to the random observations
Xi, ..., Xy, the variances Vi, ..., V, are available. Allowing
the values of V; to be different from each other extends the
applicability of the Gaussian mean problem to many realistic
situations. A trivial but common example is the design corre-
sponding to a one-way analysis of variance with unequal cell
counts; here, X; represents the mean of the n; iid N(6;, o)
observations for the ith subpopulation, hence V; = o /n;. More
generally, if Y ~ N, (AB, o) with a known design matrix A,
then estimating B under sum-of-squares loss is equivalent to
estimating @ in (1) where n = rank(A) and X; and V;/o? are
determined by A (see, e.g., Johnstone 2011, , Section 2.9). In
both cases, V; are typically known only up to a proportionality
constant which can be substituted by a consistent estimator.

The heteroscedastic normal mean problem has been studied
extensively for both the special case of equal variances, V; = 02,
and the more general case above. Alternative estimators to the
usual minimax estimator # = X have been suggested that per-
form better, for fixed n or only asymptotically (under some con-
ditions), in terms of the risk R,, (0, ) = Eq[L, (0, 0)] regardless
of 0. Here and elsewhere, we suppress in notation the depen-
dence of the risk function on V.

In the homoscedastic case, V; = o2, such shrinkage estima-

. . ~Js
tors go back, of course, to the James-Stein estimator, =

1 - (”‘&ZH)ZG : )X which, for n > 3, has strictly smaller risk than
the usual estimator for any . This estimator can be derived
as an empirical Bayes estimator under a model that puts  ~
N, (0, yI), where y is unspecified and “estimated” from the data
X. Equivalently, as observed by Efron and Morris (1973b), the
James-Stein estimator is an empirical version of the linear Bayes
rule (that is, the linear estimator with smallest Bayes risk) when
0 is only assumed to have iid components, not necessarily nor-
mally distributed. Therefore, the James-Stein estimator also per-
forms well with respect to the usual estimator in terms of the
Bayes risk when 6 is truly random with iid components. Efron
and Morris (1973b, Section 9) analyze and quantify relative sav-
ings in Bayes risk when using the James-Stein estimator versus
the usual estimator.

In addition to being minimax and exhibiting good Bayes
performance, the James-Stein estimator in fact has attractive

asymptotic optimality properties uniformly in . Denote § =
(1 —b)X for some nonnegative b € R. Then, it holds that
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for any @ (with a mild restriction on the sequence 6;, i=
1,2,...,n),

R,0,8°) =R, (0,8™) + o(1) (3)

where b}, = argmin,_,{R, (0,/0\}})}. The striking fact that the
oracle performance in (3) is achievable without knowing 6,
a target of the kind set up and pursued by Herbert Robbins,
can be intuitively understood from the connection between
the original n-dimensional estimation problem with fixed 6
and a one-dimensional Bayesian estimation problem. We say
that an estimator 8 is separable if 9, = t(X;) for some function
t : R — R. Then, as presented, for example, by Jiang and Zhang
(2009), for a separable estimator with @ =t(X;),

n

1
D =Eqlt(X) — 6
n

i=1

R,(0,8) = =E[t(Y)— £ (4)

where the expectation in the last term is taken over the pair
(Y, &) of random variables jointly distributed according to

IS - 2
£~ =) Ho<E) YIE~NE o)

i=1
Hence, the pointwise risk of a separable estimator is precisely
the Bayes risk in a single copy of the original compound
problem, where the prior is the empirical distribution of the

(unknown) 6;. Since ?’ = (1 — b)X is a separable rule, it fol-
lows that the optimal estimator of this form has b, such that
(1 = b})Y is the linear Bayes rule for predicting £ from Y,
namely, b* = 0?/Ey(Y?). The constant b* depends on the
unknown vector @, but only through 1/Ey(Y?), which for large
n is well approximated by (n —2)/||Y||*> (this estimator is
exactly unbiased for 1/E¢(Y?) under 6 = 0).

In the heteroscedastic case, there is no such agreement as in
the homoscedastic case between minimax estimators and exist-
ing empirical Bayes estimators regarding how the components of
X should be shrunk relative to their individual variances. Exist-
ing parametric empirical Bayes estimators, which usually start
by putting again an iid normal prior on the elements of # and
therefore shrink X; in proportion to V;, are in general not mini-
max. And vice versa, minimax estimators do not provide sub-
stantial reduction in the Bayes risk under such priors, essen-
tially under-shrinking the components with larger variances,
and in some constructions (e.g., Berger 1976) even shrink X;
inversely in proportion to V;. Nontrivial spherically symmetric
shrinkage estimators that have been suggested, that is, estima-
tors that shrink all components by the same factor regardless of
Vi, exist only when the V; satisfy certain conditions that restrict
how much they can be spread out. See Tan (2015) for a con-
cise review of some existing estimators and references therein for
related literature. Before proceeding, we remark that it is tempt-
ing to scale X; by 1/4/V; to make all variances equal; however,
after applying this non-orthogonal transformation the loss need
be changed accordingly (to a weighted loss) to maintain equiva-
lence between the problems. Hence the heteroscedastic problem
cannot be exactly reduced to the equal variances case: the poten-
tial gains from shrinking differently on coordinates with different
V;, remain after normalization.

There have been attempts to moderate the respective dis-
advantages of estimators resulting from either of the two
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approaches mentioned above. For example, Xie, Kou, and Brown
(2012) considered the family of Bayes estimators arising from
the usual hierarchical model

iid ind

0i ~ N(u,y) X0y ~ N(6;, V) l<i<n (5

and indexed by u and y. They suggested to plug into the Bayes
rule,

Vi
oL = By 01X) = X = g (K= ), (6)

R(u,v; X), where R(u, y; X) is
an unbiased estimator of the risk of 6. This reduces the
sensitivity of the estimator to how appropriate model (5) is,
as compared to the usual empirical Bayes estimators, that use
maximum likelihood or method-of-moments estimates of 1, y
under (5). On the other hand, Berger (1982) suggested a mod-
ification of his own minimax estimator (Berger 1976), inspired
by an approximate robust Bayes estimator (Berger 1980), that
improves Bayesian performance while retaining minimaxity.
Tan (2015) recently suggested a minimax estimator with simi-
lar properties that has a simpler form.

While empirical Bayes estimators based on (5) can be con-
structed so they asymptotically dominate the usual estimator
(Xie, Kou, and Brown 2012), the modeling of 6; as identically
distributed random variables is not as well motivated as in the
homoscedastic case. The assumption that 6; are iid reflects, as
commented by Efron and Morris (1973b, Section 8), a “Bayesian
statement of belief that the 6; are of comparable magnitude”
But this assumption is not always appropriate. For example, in
a one-way ANOVA there are situations where the cell counts #;,
and hence the variances V; = 0% /n;, are clearly associated with
the effect size. There are other examples where an association
between the V; and the 6; is expected: in Section 5, we consider
batting records for Major League baseball players, where better
performing players tend to also have larger numbers of at-bats
(affecting the sampling variances of the observations). In situa-
tions where the true means and the V; are associated, modeling
the 6; as iid is not adequate. Also from a non-Bayesian perspec-
tive, note that while (4) justifies modeling 6; as exchangeable in
the homoscedastic case, the same calculation will not go through
when V; are unequal (in that case X; — 6; do not have the same
distribution). Nevertheless, we show that symmetry can be
restored in the heteroscedastic case to produce a counterpart
of (4), which, in turn, gives rise to a useful (oracle) benchmark
for the performance of rules of the form é: = t(X;, V;) where
t is linear in the first component. This observation leads us to
develop a block-linear empirical Bayes estimator that groups
together observations with similar variances and applies a
spherically symmetric minimax estimator to each group sep-
arately. Importantly, for n > 4 the risk of our estimator never
exceeds Y ", V;, hence from a minimax point of view there is
no cost to using it as compared to the usual estimator.

The rest of the article is organized as follows. Section 2
presents the estimation of a heteroscedastic mean as a com-
pound decision problem. This motivates the construction of a
group-linear empirical Bayes estimator in Section 3; we discuss
the properties of the proposed estimator and prove two oracle
inequalities, which establish a sense of asymptotic optimality
with respect to the class of estimators that are “conditionally”

values (12, y) = argmin, ,
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linear. Simulation results are reported in Section 4. In Section 5,
we apply our estimator to the baseball data by Brown (2008) and
compare it to some of the best-performing estimators that have
been tested on this dataset. Proofs appear in the Appendix.

2. A Compound Decision Problem for the
Heteroscedastic Case

Let X, 0 and V be as in (1). In the homoscedastic case, a sep-
arable rule uses only X; to estimate 6;; in the heteroscedastic
case it is natural to allow 6, for a separable rule to also depend
on | Vi. Hence, in the following we refer to a rule 9 as separable
if 9 (X, V) = t(X;, V;) for some function ¢ : R? — _R. Denote
by Dy the set of all separable rules. If 0c Ds with 9 X,vV)=
t(X;, Vi), then

n

=> %Ee,,[t(x,-, Vi) — 6,> = E[t(Y, A) — £, (7)

i=1

R,(6,0)

where the expectation in the last term is taken over the random
vector (Y, &, A, )T distributed according to

PU=i)=1/n, (Y,§ AU =1~ (X, 6,V)

1<i<n.
(8)

Above, the symbol “~” stands for “equal in distribution” In
words, (8) says that (£, A) have the empirical joint distribution
of the pairs (6;, V;); and Y|(§, A) ~ N(&, A). Throughout the
article, when we refer to the random triple (Y, &, A), its relation
to (X;, 0, Vi), 1 <i<mn,is given by (8). The identity (7) is
easily verified by calculating the expectation on the right-hand
side by first conditioning on I, and says that for a separable
estimator, the risk is again equivalent to the Bayes risk in a
one-dimensional estimation problem. Note that (7) can be
interpreted as an application of (4) to a compound decision
problem as originally intended by Robbins—consisting of n
symmetric copies of a univariate decision problem—except that
the data associated with the unknown parameter 6; is now the
pair (X;, V3). R

Now consider @ € D with ¢ linear (affine, in point of fact, but
with a slight abuse of terminology we use the former for conve-
nience) in its first argument, that is,

0P (X, V) = X — bVDIX: — a(V))]

1<i<n

)

for some functions a, b. The corresponding Bayes risk in the last
expression of (7) is

ra(a, b) = E{Y — b(A)[Y — a(A)] - §*. (10)
Since

Y[(§,A) ~N(,A), (11)

the minimizers of
ra(a, b)) == E{(Y — b(A)[Y — a(A)] — 0)*|A = v}, (12)

and hence also of (10), are

aiw)=EYA=v), b)) = (13)

)
Var(Y|A =)

and the minimum Bayes risk is

R,(0.8") = r(a) b)) = E[A{1 - b,(A)).  (14)

Therefore, (14) is a lower bound on the risk achievable by any

estimator of the form (9), and /O\u:'bf’ is the optimal such deci-
sion rule. Note that any estimator of the form (6) is also of the
form (9), hence the risk of the best (oracle) rule of the form (9)
is no greater than the risk of the best rule of the form (6). If &
and A are independent, a},(v) = E(Y|[A =0v) = E(§|A =v) =
E(), bi(v) =v/(v+ Var(§)), and the oracles of the forms
(6) and (9) coincide.

Finally, we note that existing nonparametric empirical Bayes
estimators, such as the semiparametric estimator by Xie, Kou,
and Brown (2012) and the nonparametric method by Jiang and
Zhang (2010), target the best predictor g(Y, A) of & where g
is restricted to some nonparametric class of functions. While
the optimal ¢ may indeed be a nonlinear function of Y, these
methods implicitly assume independence between £ and A,
and might still suffer from the gap between the optimal pre-
dictor g(Y, A) assuming independence, and the true Bayes
rule, namely, E(§|Y, A). Therefore, in some cases the oracle
rule of the form (9) might still have smaller risk than the ora-
cle choice of g computed assuming independence between &
and A.

3. Group-linear Shrinkage Methods

Let X, 0 and V be as in (1). The spherically symmetric esti-
mator in the following lemma will serve as a building block
for our group-linear estimator. We remark that a version
of the estimator in the lemma below that shrinks toward
a known mean, and sufficient conditions for its minimax-
ity, appear, in a slightly more general form, in Lehmann
and Casella (1998, Theorem 5.7; although there are some
typos) and reviewed by Tan (2015). Bock (1975) and Brown
(1975, Theorem 3) independently obtained these condi-
tions earlier as sufficient for the existence of a minimax
estimator.

Lemma 1. Let 8 be an estimator given by ’Q\f =X;ifn=1,and
otherwise

é}:Xi—/I;(Xi—)_(), b = min (I,CnV/Si), (15)
where X =" Xi/n, V=Y1L Vi/n =31 (-

X)? /(n — 1) and ¢, is a positive constant. Let Vi, = max;<, V;
and

¢t =1{[(n—=3) = 2(Viax/V — D]/ (n — D)}
= {1 = 2(Vinax/V)/(n — D)} 4.

Then for 0 < ¢, < 2},

e~ —
=Y BB —6) <V[1-(1—1/n)
n

i=1

x B{(2¢; — )b+ (2 = 265+ ¢ — 2 /Do jp)}] < V.

(16)



Remarks:

1. The main reason for using X is analytical simplic-
ity. When 6; are all equal, the MLE of the com-
mon mean is the weighted least-squares estimate
iy Xi/ V) | (i, 1/ V). R

2. In (16) note that when §*/V >c¢,, (2ct—c,)b=
2 — cn)ch/sﬁ attains maximum at ¢, = ¢}. In the
homoscedastic case Vi = V and g =m-=3)/(n—
1) is the usual constant for the James-Stein estimator that
shrinks toward the sample mean. In the heteroscedastic
case, for a version of the estimator above that shrinks
toward zero, a sufficient condition for minimaxity
appears in Tan (2015) as 0 < ¢, < 2{1 — 2(Vinax/V)/n}.
This is consistent with Lemma 1.

3. For one-way unbalanced ANOVA, V; = 0% /n; where o2
is the error variance and #; is the number of observations
for the ith subpopulation. Suppose that 62 is unknown
and that we have an unbiased estimator 62 = Sy/k of
o? independent of the observations, where Sx/o? ~ xZ.
Then if we replace the V; in the lemma with the corre-
sponding estimates Vi = 52/n;, the same conclusion still
holds with 0 < ¢, (1 +2/k) < 2c.

We are now ready to introduce an empirical Bayes estimator,
which employs the spherlcally symmetric estimator of Lemma 1

to mimic the oracle rule 8° . When the number of distinct val-
ues V; is very small compared to #, a natural competitor of 6 """
is obtained by applying a James—Stein estimator separately to
each group of homoscedastic observations. Under appropriate
conditions, this estimator asymptotically approaches the oracle
risk (14). The situation in the general heteroscedastic problem,
when the number of distinct values V; is not very small com-
pared to n, is not as obvious; still, the expression for the optimal
function a* and b* in (13) suggests grouping together observa-
tions with similar variances V;, and then applying a spherically
symmetric estimator separately to each group.

Block-linear shrinkage has been suggested before for the
homoscedastic case by Cai (1999) in the context of wavelet esti-
mation. However, the estimator by Cai (1999) is motivated from
an entirely different perspective, and addresses a very different
oracle rule (itself a blockwise rule) from the oracle associated
with our procedure. Still for homoscedastic observations, Ma,
Foster, and Stine (2015) proposed a block-linear empirical Bayes
estimator with shrinkage factors that are increasing in magni-
tude, when the order of the variances of 9; is assumed to be
known. For the heteroscedastic case, Tan (2014) commented
briefly that block shrinkage methods building on a minimax
estimator can be considered to allow different shrinkage patterns
for observations with different sampling variances; this is very
much in line with the approach pursued in the current article.

Definition 1 (Group-linear Empirical Bayes Estimator for a Het-
eroscedastic Mean). Let J1, ..., ], be disjoint intervals. For k =
1, ..., mdenote

Iy ={i:V; € i},

(Xi — Xi)?
Z_’ "_anvz—l

1eZk lEIk

ne =T, Vi= Z—

IEIk
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. . . ~GL
Define a corresponding group-linear estimator

componen-
twise by
2GL X; — min (1, cka/si) X; — )_(k), i€l
07" = . (17)
: Xi, otherwise

and note that é: = X; when V; ¢ UL | Jx or V; € Ji for some k
with ¢, = 0.

Theorem 1. For = EGL in Definition 1 with ¢ =
2(max;cz, Vi/Vi)/(nx — 1)}, the following holds:
1. Under the Gaussian model (1) with deterministic
(0, Vi), i < n, the risk of 6 is no greater than that of the
naive estimator X and therefore 6 is minimax

1 —
w2 Vi=

(18)

{1-

1 o 1 o
=Y B —6) <~y EX—6) =
n i=1 n i=1

2. Let (X;,6;,V;),i=1,...,n, be iid vectors from any
fixed (with respect to n) population satisfying (1). Let
(Y, &, A) be defined by (8); r(a, b) as defined in (10); and
a* and b* as defined in (13). Then

1 é o 1 é * 1ok
;;E[wi —0)V] < ;;rm L b*IVi) 4 o(1)
(19)

with V = (V;, ..., V,) and for any sequence V;, V5, . ..
such that the following holds:
With |]| being the length of interval J,

max |Jx| — 0, n}cm ne — 00,

1<k<m
a*(v), b* (v) are uniformly continuous
n

< 00, limsup
n— 00 n

lim sup =0

n—o0

(20)

Remarks on the second part of the theorem:

1. Note that when (X;, 6;, V;) are iid, then each triple is
distributed as (Y, &, A). We assumed that the “pop-
ulation” distribution (Y, &, A) itself does not depend
on n (in which case r(a, b) and a*, b* indeed do not
depend on ). A similar statement would still hold
when the distribution of (Y, &, A) depends on n, under
the conditions that {a}}, {b}} are equicontinuous and
{a}} is uniformly bounded for any given finite interval.
Although not considered here, an analog of the second
part of the theorem could be stated for the nonran-
dom situation, X;|(6;, V;) ~ N(6;,V;),1 <i <n with
deterministic 6; and V;. In this case, suppose that the
empirical joint distribution G, of {(6;, V;) : 1 <i < n}
has a limiting distribution G. Then, if we define the
risk for candidates a,, b, to be computed with respect
to G, our estimator enjoys r(a,, by) — r(a*, b*) under
appropriate conditions on a*, b*.
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2. The continuity of shrinkage factor and location
b*(v), a*(v) allows to borrow strength from neigh-
boring observations with similar variances. To asymp-
totically mimic the performance of the oracle rule,
max)<k<m |[Ji| = 0, minj<k<p, 1 — 00 are neces-
sary wherever shrinkage is needed. The only intrinsic
assumption is limsup, . > i, Vi/n < oo, essen-
tially “equivalent” to bounded expectation of A. It
ensures that max;<x<s [Jk| = 0, min;<x<, nx — 00
are satisfied when U]’ J; are chosen to cover
most of the observations, and at the same time
limsup, ., > Viligur jy/n=0, which takes
care of the remaining observations (large or isolated
Vi), and guarantees that their contribution to the risk is
negligible.

3. A statement on Bayes risk, when expectation is taken
over V in (19), can be obtained in a similar way by replac-
ing the conditions on V with bounded expectation of the
random variable A. We skip this for simplicity.

For the iid situation of the second part of Theorem 1, the
case r(a*, b*) = 0 corresponds to £ = a*(A), a deterministic
function of A (equivalently, b*(A) = 1). In this case, the pre-
cision in estimating the function a* is crucial, and calls for a
sharper result than (19) regarding the rate of convergence of
the excess risk. Noting that, trivially, £ = a*(A) implies that
EIA =0v) =a*(v),

Xi|Vi ~ N(a*(Vi), Vi)

is a nonparametric regression model, that is, 6; is a deterministic
measurable function of V;. In this case, the rate of convergence
in (19) depends primarily on the smoothness of the function
a*(v). In the homoscedastic case, the smoothing feature of the
James—Stein estimator was studied by Li and Hwang (1984). The
following theorem states that the group-linear estimator attains
the optimal convergence rate under a Lipschitz condition, at
least when A is bounded.

Theorem 2. Let (X;,6;,V;),i=1,...,n, be iid vectors from
a population satisfying (1). If r(a*, b*) =0 and a*(.) is
L-Lipschitz continuous, then the group linear estimator in
2
Definition 1 with equal block size |Ji| = |J| = (10:2'“)% and
¢, = c, attains the optimal nonparametric rate of convergence

: .
=Y (@ - 01V) <2 (M) 1)

i=1

for any deterministic sequence V. = (Vi, ..., V,).

For the asymptotic results in Theorems 1 and 2 to hold, it is
enough to choose bins Ji of equal length |J| = (%)%. How-
ever, in realistic situations, where # is some fixed number, other
strategies for binning observations according to the V; might be
more sensible. For example, by Lemma 1 and the first remark
that follows it, bins that keep (max{V,- ti € ]k}) /V i (rather than
max{V; : i € i} — min{V; : i € Ji}) approximately fixed may be
more appropriate. Hence, we propose to bin observations to
windows of equal lengths in log(V;) instead of V;. Furthermore,
instead of the constant multiplying n~/3 in |J|, which may be
suitable when the V; € (0, 1], we suggest in general to fix the

number of bins to n'/3, that is, divide log(V;) to bins of equal

length [max;(log V;) — min;(log V;)]/n'/3. On a finer scale, for

a given choice of {Ji}, there is also the question whether any two
groups should be combined together, and the shrinkage factors
adjusted accordingly; this issue arises even in the homoscedastic
case (Efron and Morris 1973a). Note that, trivially, minimaxity
is preserved when the values of V;, but not X;, are used to choose
the bins Ji.

As for performance of the group-linear estimator for fixed
n, some situations are certainly harder than others. In the best
scenario where the variances are clustered at a fixed finite set of
possible values, the method is expected to work very well with
fast convergence in (19). Otherwise, the method is expected to
work reasonably well in the sense of (19) when max V;/ minV;
is not too large, whether the distribution of V; is continuous or
not, because the large clusters will benefit from shrinkage and
small clusters will have small total contribution to the risk due to
minimaxity within each group. Still, the difference between the
two cases could be nontrivial in finite samples. In the third and
worst-case scenario, the sequence of variances is rapidly increas-
ing so that the benefit of grouping is small for a large fraction of
relatively large variances. This could also happen when the vari-
ances are small, as the risk ratio between the group and naive
estimators depends only on the ratio V;/Viy,x.

4. Simulation Study

In this section, we carry out a simulation study using the exam-
ples by Xie, Kou, and Brown (2012), and compare the perfor-
mance of our group-linear estimator to the methods proposed in
their work. In each example, we draw # iid triples (X;, 6;, Vi) ~
(Y, &, A) such that Y|(§, A) ~ N(&, A); the last example is the
only exception, with Y|(§, A) = N(§, A), to assess the sen-
sitivity to departures from normality. Various estimators are
then applied to the data (X;, V;), 1 <i < n, and the normal-
ized sum of squared error is computed. For each value of # in
{20, 40, 60, ..., 500}, this process is repeated N = 10,000 times
to obtain a good estimate of the (Bayes) risk for each method.
Among the empirical Bayes estimators proposed by Xie, Kou,
and Brown (2012), we consider the parametric SURE estimator
given by

V; .
M =X, — ——(X; — 1),

1<i<mn,
Vity

where 7 and I minimize an unbiased estimator of the risk
(SURE) for estimators of the form é?"y =X;— [Vi/ (Vi +
vY)1(X; — ) over w and y. We also consider the semiparametric
SURE estimator by Xie, Kou, and Brown (2012) with shrinkage
toward the grand mean, defined by
=X —bi(X;—X), l<i<n (22)
where b = (/Z;l, ... ,/b\n) minimize an unbiased estimator of the
risk for estimators of the form 5}”“ =X; — bi(X; — X) withb =
(b1, ..., b,) restricted to satisfy b; < b; whenever V; < V;. The

group-linear estimator 8" of Definition 1 is applied here with
the bins J, formed by dividing the range of log(V;) into |n'/3]
equal length intervals, per the discussion concluding Section 3.
As benchmarks, in each example we also compute the two oracle
risks
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Figure 1. Estimated risk for various estimators vs. number of observations.
A 2 Figure 1 shows the average loss across the N = 10,000 repe-
i E { [Y - m Y —pn)—¢§ :| } titions for the parametric SURE, semiparametric SURE and the
- group-linear estimators, plotted against the different values of
(23) 4. The horizontal line corresponds to r(u*, y*). The general
picture arising from the simulation examples is consistent with
and our expectation that the limiting risk of the group-linear estima-
r(a*, b*) = E{[Y — b(A)(Y — a(A)) — £]?) tor is smaller than that of both the pa.rametric SURE estim.ator,
asr(a*, b*) < r(u*, y*),and the semiparametric SURE estima-
(24) torasr(a*, b*) < inf{r(a, b) : b(v) monotone increasing in v}.
For moderate n, whenever & and A are independent, the SURE
estimators are appropriate and achieve smaller risk. By contrast,
the situations where £ and A are dependent are handled best by
the group-linear estimator, which indeed achieves significantly

smaller risk than both SURE estimators.

In example (a) (7.1 of Xie, Kou, and Brown 2012)
A ~ Unif(0.1,1) and & ~ N(0, 1), independently. In this
case, the linear Bayes rule is of the form (6) and, in particular,
the functions a* and b* are constant in v. The parametric SURE

r(',y") = min

min
a(-),b(-) : a(v)>0 Vo

corresponding to the optimal rule in the parametric family of
estimators considered by Xie, Kou, and Brown (2012, labeled
“XKB oracle” in the legend of Figure 1), and to the optimal
linear-in-x rule of Section 2, respectively. Note that u* and
y* are numbers, whereas a* and b* are functions. Table 1 dis-
plays the oracle shrinkage locations and shrinkage factors cor-
responding to (23) and (24); note that v/(v + y*) is strictly
increasing in v, while b*(v) is not necessarily.
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Table 1. Oracle shrinkage locations and shrinkage factors, u*, v /(v + y*) and a* (v), b*(v), corresponding to the family of estimators by Xie, Kou, and Brown (equation
(23)) and to the family of estimators that are linear in Y (equation (24) ). Columns correspond to simulation examples (a)- (f). Values of u*, y* for each example are from

Xie, Kou, and Brown (2012).

(a)

(d) (e)

i o1 "+ .083 "0 +0.078
v v
a* (), b* 0, 0, .0
©) @) v+1 v+1 v

v ) v
013, ———— 015, ————
v 4 0.0032 v+ 0.84

0,0 28, _4)(v).05

estimator is therefore appropriate, and it performs best, requir-
ing estimation of only two hyperparameters. The group-linear
estimator and the semiparametric SURE perform comparably
across values of n. Here, r(u*, y*), r(a*, b*) and the limiting
risks of the parametric SURE and the group-linear estimator, are
all equal (& 0.3357). In example (b), (7.2 of Xie, Kou, and Brown
2012), A ~ Unif(0.1, 1) and & ~ N(0, 1), independently. This
situation is not very different from the first example when it
comes to comparing the SURE estimators to the group-linear,
since the functions a* and b* are constant in v as long as £ and
A are independent. The risk of the group-linear approaches the
oracle risk (& 0.0697), but here the semiparametric SURE esti-
mator seems to do a little better, perhaps in part because it (cor-
rectly) shrinks all data points toward exactly the same location.

The third example (c) (7.3 of Xie, Kou, and Brown 2012)
takes A ~ Unif(0.1, 1), £ = A. Here, £ and A are strongly
dependent, and indeed the gap between the two oracle risks,
r(u*, y*) ~ 0.0540 and r(a*, b*) = 0, is material. The advan-
tage of the group-linear estimator over the SURE estimators is
seen already for moderate values of n. Although it is hard to tell
from the figure, the limiting risk of the semiparametric SURE
is slightly smaller than that of the parametric SURE, because of
the improved capability of the semiparametric oracle to accom-
modate the dependence between & and A. In the fourth case (d)
(7.3 of Xie, Kou, and Brown 2012), we take A ~ Inv-x3, & = A.
& is still a deterministic function of A, but it takes larger val-
ues of n for the group-linear estimator to outperform the SURE
estimators. This is not seen before n = 500, which seems to be a

0.6
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1 - (Shrinkage factor)
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Figure 2. Shrinkage factors vs. at-bats (all players). Vertical axis shows 1—
shrinkage factor. For the parametric SURE estimator 9" thisis V/01/(4N;) + V1 for
semiparametric SURE 536 and for group-linear, thisis 1 — B(1/(4Ni1)) with b of (22)
or (17), respectively. The curves for both SURE estimators (dotted and broken lines)

are non-decreasing in N;; by construction. Shrinkage factors are not constrained to
be monotone for the group-linear.

consequence of the non-uniform distribution of the V;, and only
partially mitigated by binning according to log(V;).

Example (e) (7.5 of Xie, Kou, and Brown 2012) reflects group-
ing: A equals 0.1 or 0.5 with equal probability; £|(A = 0.1) ~
N(2,0.1)and &£|(A = 0.5) ~ N(0, 0.5). In each of the two vari-
ance groups, the group-linear estimator reduces to a (positive-
part) James-Stein estimator, and performs significantly better
than the SURE estimators. While not plotted in the figure, the
other semiparametric SURE estimator by Xie, Kou, and Brown
(2012), which uses a SURE criterion to choose also the shrink-
age location, achieves significantly smaller risk than the SURE
estimators considered here; still, its limiting risk is 16% higher
than that of the group-linear.

Finally, in (f) (7.6 of Xie, Kou, and Brown 2012) A ~
Unif(0.1,1), € =A and Y|A ~ Unif(§ — +/34, & + +/34),
violating the normality assumption for the data. The group-
linear estimator is again seen to outperform the SURE estimators
starting at relatively small values of n, and its risk still tends
to the oracle risk r(a*, b*) = 0. By contrast, the risk of the
parametric SURE estimator approaches r(i*, y*) = 0.054. The
semiparametric SURE estimator does just a little better, its risk
approaching ~ 0.0423.

5. Real-Data Example

We now turn to a real-data example to test our group-linear
methods. We use the popular baseball dataset from Brown
(2008), which contains batting records for all Major League
baseball players in the 2005 season. As in Brown (2008), the
entire season is split into two periods, and the task is to pre-
dict the batting averages of individual players in the second half-
season based on records from the first half-season. Denoting by
Hj; the number of hits and by N; the number of at-bats for player
i in period j of the season, it is assumed that

Hji~Bin(Nj,»,p,»), ]: 1,2, i= 1,...,7)]‘. (25)
As suggested in Brown (2008), a variance-stabilizing trans-
formation is first applied, X;; = arcsin{(H;; + 1/4)"/?/(Nj; +
1/2)!/2}, resulting in

Xji ~N(0;,1/(4Nj)), 0; = arcsin(p;)
and {(Xy;, Ni;) :i=1,..., P} are then used to estimate the
means 6;. We should remark that there is no reason for using this
transformation, and for focusing on estimating 6; instead of p;,
other than making the data (approximately) fit the heteroscedas-
tic normal model (note that the variance of the obvious statistic
H;i/Nj; depends explicitly on p;, and therefore is not suitable).
Indeed, one might object to analyzing the baseball data using a
normal model instead of using the binomial model (25) directly



Table 2. Prediction errors of transformed batting averages. For the five estimators
at the bottom of the table, numbers in parentheses are estimated TSE for permuted
data.

All Pitchers Non-pitchers

Naive 1 1 1
Grand mean 0.852 0.127 0.378
Nonparametric EB 0.508 0.212 0.372
Binomial mixture 0.588 0.156 0.314
Weighted Least Squares 1.07 0.127 0.468
Weighted nonparametric 0.306 0.173 0.326

MLE
Weighted Least Squares (AB) 0.537 0.087 0.290
Weighted nonparametric 0.301 0.141 0.261

MLE (AB)
James-Stein 0.535 (0.543) 0.165 (0.239) 0348  (0.234)
SURE 9™ 0421 (0.484) 0.123 (0.211) 0289  (0.265)
SURE §G 0.408 (0.468) 0.091(0.169) 0.261 (0.219)
Group-linear §¢ 0302 (0.280) 0.178 (0.244) 0325 (0.175)
Group-linear (dynamic) 0.288 (0.276) 0.168 (0.283) 0349 (0.175)

(as in Muralidharan 2010). Our only response is that the purpose
of our analysis is primarily to illustrate the possible advantages
of the group-linear estimator—and more generally, of meth-
ods that can accommodate statistical dependence between the
means and the known variances—in the heteroscedastic normal
problem.

To measure the performance of an estimator 9, we use the
total squared error,

TSE(B) = Y [(Xai — 6% — 1/(4Nay)].

i

proposed by Brown (2008) as an (approximately) unbiased
estimator of the risk of 6. Following Brown (2008), only players
with at least 11 at-bats in the first half-season are considered in
the estimation process, and only players with at least 11 at-bats
in both half-seasons are considered in the validation process,
namely, when evaluating the TSE. To support our comparison,
in addition to the analysis for the original data, we present an
analysis under a permutation of the order in which successful
hits appear throughout the entire season: for each player we
draw the number of hits in the Ny; at-bats of the first period from
a hypergeometric distribution, HG (Ny; + Ny, Hy; + Hai, Nij).
Under the binomial model (25), this amounts to resampling
(Hy;, Hy;) conditional on the sufficient statistic Hy; + Hy;. In
the permutation analysis, we concentrate on the two SURE
methods of Xie, Kou, and Brown (2012), which we consider as
the main competitors of our method; the extended James—Stein
estimator; and the group-linear estimators.

Table 2 shows TSE for various estimators reported in Table 2
of Xie, Kou, and Brown (2012), when applied separately to all
players, pitchers only, and non-pitchers only. The values dis-
played are fractions of the TSE of the naive estimator, which, in
each of the cases (i)-(iii), simply predicts X,; by X;;. Numbers in
parentheses correspond to permuted data, and were computed
as the average of the relative TSE over 1000 rounds of shuffling as
described above. In the table, the Grand mean estimator uses the
simple average of all Xl,, the extended positive- part James-Stein
estimator is given by 9 = s+ + (1 — Z (x ms+) )+ (X

Qys+) where fiys. = (O, Xi/Vi) /(3 1/Vi); 9" is the paramet-
ric empirical Bayes estimator by Xie, Kou, and Brown (2012)
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using the SURE criterion to choose both the shrinkage and the

location parameter; and 656 is the semiparametric SURE esti-
mator by Xie, Kou, and Brown (2012) that shrinks toward the
grand mean. Also included in the table are the nonparamet-
ric shrinkage methods of Brown and Greenshtein (2009); the
weighted least-squares estimator; the nonparametric maximum
likelihood estimators of Jiang and Zhang (2009, 2010) (with and
without number of at-bats as covariate) and the binomial mix-
ture estimator of Muralidharan (2010).

For the group-linear estimator, in addition to the plain esti-

mator ﬁGL that uses k = [n'/?] equal length bins on log(wlh)
(as in the simulation study), we considered a data-dependent
strategy for binning. The estimator labeled “dynamic” in Table 2
chooses, among all partitions of the data into contiguous bins
containing no more than |[n*?] observations each, the parti-
tion which minimizes an unbiased estimate of the risk of the
corresponding group-linear estimator. This can be viewed as an
extension of the plain version, which for uniformly spaced data
would put ~ n*? observations in each of | n'/ | bins. Our imple-
mentation uses dynamic programming (code available online
at https://github.com/MaZhuang/grouplinear). We remark that
using the observed data in forming the bins may lead to loss of
minimaxity of the group-linear estimator. Nevertheless, we find
it appropriate to explore such strategies when applying the esti-
mator to real data.

Both versions of the group-linear estimator perform well in
predicting batting averages for all players relative to the other
estimators. As discussed by Brown (2008), nonconformity to
the hierarchical normal-normal model on which most paramet-
ric empirical Bayes estimators are based, is evident in the data:
first of all, non-pitchers tend to have better batting averages than
pitchers, hence, it is more plausible that the 6; come from a mix-
ture of two distributions. Second, players with higher batting
averages tend to play more, suggesting that there is statistical
dependence between the true means, ¢;, and the sampling vari-
ances of Xj; (o< 1/Nj;). While the nonparametric MLE method
handles well nonnormality in the “prior” distribution of the 6;,
its derivation still assumes statistical independence between the
true means and the sampling variances. The group-linear esti-
mator achieves good performance in this situation because it is
able to accommodate this dependence between the true means
and the sampling variances.

When analyzing pitchers and non-pitchers separately on the
original data, the SURE methods achieve dramatic improvement
and outperform the group-linear estimators by a significant
amount. However, the results are quite different for shuffled
data. The difference is seen most prominently for non-pitchers:
when actual second half records are used, the group-linear
incurs higher prediction error as compared to the semipara-
metric SURE estimator (0.325 vs. 0.261); but the opposite
emerges for shuffled data (0.175 vs. 0.219). For pitchers only,
the estimators by Xie, Kou, and Brown (2012) outperformed the
group-linear in both the standard analysis and the permutation
analysis. This is reasonable as the association between the
number of at-bats and the true ability is expected to be weaker
than within non-pitchers.

Figure 2 displays shrinkage factors (in fact, 1-—
shrinkage factor) versus number of at-bats (all players) for
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the group-linear estimator and the two SURE estimators of
Xie, Kou, and Brown (2012), in some sense the two immediate
competitors to the group-linear method.

6. Conclusion and Directions for Further Investigation

For a heteroscedastic normal vector, empirical Bayes estimators
that have been suggested, both parametric and nonparametric,
usually rely on a hierarchical model in which the parameter
0; has a prior distribution unrelated to the observed sampling
variance V; = var(X;|0;). If separable estimators are considered,
representing the heteroscedastic normal mean estimation prob-
lem as a compound decision problem, reveals that this model is
generally inadequate to achieve risk reduction as compared to
the naive estimator. Group-linear methods, on the other hand,
are capable of capturing dependency between 6; and V;, and
therefore are more appropriate for problems where it exists.
There is certainly room for further research. We point out a
few possible directions for extending Theorems 1 and 2, that are
outside the scope of the current work:
1. In the iid case, the distribution of the population
(Y, £, A) may be allowed to depend on # in such a way
thatr,(a;, b)) — 0asn — oo.In this case, the criterion
(19) should be strengthened to the asymptotic ratio opti-
mality criterion

—ZE(@ —0)* < (1 +o(1)ry(al, b))

i=1

(26)

as n — 00. As (26) does not hold uniformly for all joint
distributions of (Y, &, A), areasonable target would be to
prove (26) when r, (a*, b*) > n, for small n,, under suit-
able side conditions on the joint distribution of (Y, &, A).
This theory should include (19) as a special case and still
maintain the property (18).

2. When a*(v) satisfies an order @ smoothness condition
with o > 1, a higher-order estimate of a* (V;) needs to be
used to achieve the optimal rate n~%/?*+1) in the non-
parametric regression case, r(a*, b*) = 0, for example,
a(V;) with an estimated polynomial a(v) for each J. We
speculate that such a group-polynomial estimator might
still always outperform the naive estimator 6; = X; under
a somewhat stronger minimum sample size requirement.

Appendix: Proofs

Proof of Lemma 1. It suffices to consider 0 < ¢, < 2c;. Let b(x) =
min(l, ¢,V /x) such that b= b(s ). Noting that (3/8X )s =
2(X; — X)/(n — 1), Stein’s lemma yields

E(X; — 6)(X; — X)b
=V;E{(1 — 1/m)b(s}) + 2(X; = X)*¥ (s3)/(n — D}

By definition, 2V;/(n—1) < V(1 —c*) and xb'(x)
{b(x) < 1},

= —bx)I

X —X)b—6,)°

1 n
" ;E(Xi -

= % > | Vi EX = X)%(s)) — zv,-u-z{ (1—1/n)b(s;)

i=1

2(X; — X)?0'(2) }
+ e S
n—1
V4 (1= mE[28(s) - 27b(s3)
+VQa- C:)zb(si)l(sﬁ>ch}}
V40 -1/n)EVb(s})

{mm s2/V,cn) —24+2(1 = )152>5V}
=V — (1-1/n)EVb(s2)
)({(ZQ__COQﬁ>%V]+(2——i/V74ﬁswVJ
- V[1 —(1- 1/n)1E{b(sz)(2C: — <)
+@2-25+cw—s/V)] sZ/V<fn}”'

O

For the rest of this section, we define €;; = maxy, v,¢/{la* (V1) —
a*(Vo)l, 16" (V1) = b*(Vp)1}, g(v) = Var(§|A =v) and h(v) =
E(£%|A = v). Unless otherwise stated, all the expectations and
variances in this section are conditional on V.

Lemma 2 (Analysis within each block). Let (X;, 6;, Vi)IL, be iid
vectors drawn from some population (Y, &, A) satisfying (11).
If Vi,...,V, €] for some interval J and min;<;<, b*(V;) >
e, b*(V) > ¢ for some & > 0. Then, the spherically symmetric
shrinkage estimator defined in (17) with ¢, = ¢ satisfies

I~ ~
=Y B[ —6:)*IV]
n i=1

1 « 7Vin &2 +
sEEZAfJﬂW)+;————+wvw_Hn) +q”
i=1
2
7}1”_1 ZV +2Z(V+V)h(V)+V (27)

where Vipax = max{Vi, ..., V,}and V. =Y Vi/n.

Proof of Lemma 2. As in the proof of Lemma 1 with ¢, = ¢},
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By definition, r(a*, b*|V;) = V;(1 — b*(V;)) and min(s?/V, ) <
¢ < 1. Then,

n
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Observing that 0 <b<1 and V(1 — ¢}) < 2Vpax/(nV 2 — 1),
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where the last inequality is due to the uniformly continuity of b* (v).
Next we will bound V (b*(V) — Eb). Following the definition of
b*(v) and b,

V(b* (V) — Eb) = VE{V /var(Y|A = V) — min (1, ¢V /s2)}
and because V/var(YIA =V) =V /(V +var(]A =V)) < 1,
V(b*(V) — Eb)
< VIE{(V/Var(YlA —V) - C:V/Sfl)l{c;vgsi}}

<VE{(1—cvar(Y|A=V)/s}) I{CWSSﬁ}}

_ c* _
EV {(1 — ) eveg) + S—;[si —var(Y|A = V)]I{CWSSﬁ}}

n

Also, noting that 1 — ¢} > 0 and CETVI{C:VS%‘} <1,

V(b*(V) — Eb)
<V -c)+E|s; —var(Y|[A=V)|

2V, v
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2Vmax Vv
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oy Tl O]} + (B - var(v]a = V)|
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where the last two inequalities are due to Jensen’s inequality.
Conditionally on V = (Vy,...,V;,) and 0 = (61,...,6,), X ~
NOL, 6i/n, > 1, Vi/n?), and therefore
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On the other hand, var(Y|[A=V) =V +var(€|[A=V) =V +
g(V). Hence,
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The uniform continuity of a*(v) implies that |a*(V;) — Z?:l
a*(Vj)/n| < (n —1)/ney. By definition, b*(v) =v/(v +g(v)),

then g(v) = v/b*(v) — v and therefore

Vib* (V) = Vb (V)

80D~ sl = | = T T i)
_ Vil ) — bl |V = VBV
b (V)b (V) b (V)b (V)
+1Vi=V|

< (Viey + 1IN/e* + 1]l

where the last inequality is due to the assumption that
min; <<, b*(V;) > €, b*(V) > &. Combining the two inequali-
ties above,

[E(s;) —var(Y|A = V)| < (Vey +1D/e* + | + € (29)
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Finally, we will control E{var(s2]9)}. X|V,0 ~

N, 60i/n, > Vi/n?), hence

Again,

E {var(s;|0)}

1 “ 5 —2
= mﬂi Var(ZXi —nX |0)}

i=1

2 ‘ 2 —2
S m]E VM‘(ZX,— |0> +Var(nX |0)}

i=1

n

2z 2\ 4Py
- (nv2—1)2E ;(ZV + 40; )+n(2V /n + 46 V/n)}

By definition, h(v) = E(¢§%|A =v), and, noting that o’ <

Z:’:l 912’

E{var(s;6)}

4 2 .
S(”\/Z_l)z{;v’ +2§Vih(vi)+V +2V;h(vi)}

4 2 B B
SW—DZ{;V" “;(VﬁV)h(Vi)Jrv} (30)

Combining (29), (30), we have

V(b* (V) — Eb)
2Vmax VE\H + |]| 2
Snv2—1 g2 —|—|]|+em
- V242 Vi+ (V) +V
v Z +Z( +V)h(V) + }
and therefore,

1 « ~
=Y B —6)*IV]
n i=1

1 — . 7Vinax 2+
s;;rm,bwwn”_ + (Vey + 1N —5— + €}
S Vi+2 Vit MKV +V°
n\/2—lz +Z(+)()+
O

Proof of Theorem 1. The first part of Theorem 1 is trivial from
Lemma 1. For the second part, it suffices to prove that for all ¢ >
0, the excess risk is O(¢e) for large enough n. Because the con-
tribution to the normalized risk for observations outside U] Ji
is )iy Vilvigur jy/n = o(1), we only need to consider the case
where V1 < i < n, V; € Ul Ji. Without loss of generality, we can
assume V1 < k < m, either Jy C [0, &) or Jx C (g, +00) because
we can always reduce ¢ such that this happens. Due to the assump-
tion that limsup, ., > i, Vi/n < 00, we can also choose M,
large enough such that > 1, Viljyi>a,)/n < & and Yk with J C
(g, +00), either J, C (g, M) or Jy C (Mg, +00).

For the rest of the proof, we divide all the observations into four
ieT; Vi/nk
{kll =k =n,Ji
{k|]1 <k <n,
{kl1 <k

disjoint groups and handle them separately. Let V= >
and define S§; = {k|l <k=<n,J, C(0,8)},S, =
C (e, M,), miny.¢, b* (Vi) = &, b* (V") > 1.8 =
J C (8, M), miny,g;, b*(V;) < € or b*(V ) <e}, S =
<n,Ji C (M, +00)}.

Case i. For the small variance part, V; € (0, ¢), the contribution
to the risk is negligible. Because the group linear shrinkage estima-
tor dominate the MLE in each interval, then

LYY E@ -0V < Y Viin = Y e/

keS, i€y keS, i€y keS, i€y

Case ii. For moderate variance with large shrinkage factor, V; €
(&, M) and b* (V;), b* (V') > &, shrinkage is necessary to mimic the
performance of the oracle rule. Applying Lemma 2 to each interval
Ji such that k € S,,

1 ~
~> ) ElG:—0)IV]

keS, i€y
—k
<—ZZr(a bV + — an SV + D
keS, i€y
2
k e“+1 2 2
+ (Voen + ) —— + € + V21

S VE42Y (Vi VORW) + (V)

i€l i€Zy

Let |J|max = MaXj<k<m k|, €max = Maxj<x<m €)j,. Using the fact
N
that max; <<, P 2,

% >N EIG - 6)21V] < %Z Y@, bV

keS, i€Zy keS, i€Zy

g2 +1
+- Z 14V 4 lmax) + 1€+ 10V €max + linax) —5—

kESz

+4[ v 2 Y v+ VO + 7

i€ly i€ly

Vke Sy, iely, V V < M,. Because a*(v) is uniformly continu-
ous on [0, M,], there exists a constant C, depending only on ¢ such
that a*(V;) < C,. Then,

h(vi) = Var(ElA =Vi)+ (EG|A = Vi))2

< -V V))? < M. c?
_b*(V) + (@*(Vi))? +C;
Therefore,
1 ~
=3 > EI6: - 6)°IV]
n keS, i€y



2
max) + € nax

1 14S, |
<- UV,
== ZZr(a v+ —
keS, i€y
g2 +1
+ (Msemax + |]|max)72

4 1
+ ;\/2Mg(1 1)+ 2M.C, sz: n
€52

1
By the Cauchy Schwarz inequality: D ;¢ n; < \/IS2] D pcs, e <

A/ |Sz|n. Further observe that |S;| < m < , then

— mm|<k< ng

1 ~
=2 ElG: —6°V]

keS, i€l
< fZZr(a bV + (Mo i) + €
keS, i€Zy 1<k<m
&2 —|—1

(M emax + |]|m<1X)

+ 7\/2M§(1 +&71) +2M,C,
m n

mi k
\ 1<k<m

Since |J|max, €max — 0 and miny <x<,, 1y — +00, we obtain

LYY EI@ - 0V] = 2 30 Y B + ofe)

keS, i€y keS, i€y

Case iii. For moderate variance with negligible shrinkage factor,
V; € (¢, M,) and min;cz, b*(V;) or b*(V) < &. The uniform conti-
nuity of b*(-) implies that Vi € Zy, b*(V;) < € + €max. By definition
r(a*, b*|Vi) = Vi(1 — b*(V})), then

ED 3D UGHAIOEED B) I AE (D)

keS; i€y keS; i€y

1 —
=~ D Vi Vet ema)

keS; i€Zy

Since the proposed group linear shrinkage estimator dominates
MLE in each block,

1 ~ 1 —
=Y D EIG =00’V < =Y > (@, b Vi) + V(e + €ma)
n keS; i€y n keS; i€y

Case iv. For the large variance part, V; € (M., +00), the contri-
bution to the risk is also negligible. By definition of M,,

*ZZE [ — 6:)|V] <ZZV/n—ZVI{V>M}/n<8
keSy i€y keSy i€y

Summing up the inequalities of all four cases

LSRG - 021V] = = 3 0@, B V) + (7 + 206+ o(e)
n ol n

i=1

(31)
which completes the proof by the assumption that
limsup, , > o, Vi/n < o0 O

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 709

Lemma 3 (Analysis within each block). Let (X;, 0;, V;)!_, be iid vec-
tors from some population (Y, &, A) satisfying (11). If r(a*, b*) =
0, a*(-) is L-Lipschitz continuous and Vj,...,V, € ] for some
interval ], then the estimator defined in (17) with ¢, = ¢, satisfies

fZIE[(O — V] < LU +3V/n+ 4Vpae/(nV 2 — 1),

i=1

Proof of Lemma 3. As in the proof of Lemma 1 and substitute ¢, with

*

Sy

2N RIG - 61V
n i=1

1 n
;;Eo&—

V[1 - —1/mE{bc: - ¢)

+ (2 -26 4+ 6 = 53/V) g 7<cy ]

=V[1 = —1/mEfbe; + 2= —3/V)ligme}]
=VE i(l = b6) = 2= 26 7=y = (63 = /) I(sﬁ/Vscz}}

E {Ec: + (26— /M) e } V/n.

(X; — X)b— 6,|V)?

IA

Notice that 2 —2¢} > 0 and Zc: +@Q2-c
Therefore,

—5p/V)ig ey < 2.

LS RBIG - 092V
n

i=1

<VE{(1=0¢) = (& = 2/7) g ey} + 27/

< VE[c:(1 =B = (¢} = 2/V) g pacy | +2V/m + A=)V
-V _ _ —
< { (S < ) - (c;V—si)+} +2V/n+ (1 -V
+
< [s (CV ) ]+27/n+(1—cz)7
=E(s, — ¢ V)+2V/n+(l—c W.

Recall that Es2=V+ % S var(§|A=V;) + ﬁ >
[EGIA = Vi) — 3 X1 E(€IA = V)2 With var(5|A =) =0,

wehave B =V + 1= ™% [a(V)) — 1 T, a(vV))[ and

LS EI@ - 6)21V)
n i=1

<2(1—c)V+ 1; a(V)—f;a(Vj)
+2V/n
Vmax
< L|J)? +2V/n+2(1—c)V<L|]| +2V/H+T

O
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Proof of Theorem 2. Applying Lemma 3 to each interval and using
Ny < 2’

nv2—1 —

LS BI@ - 61V)
n

i=1

1 « —k g
<= LIkl + 2V + 4V —————
_n;(”k [Jel”+2V" + nkv2_1>
< LI + 10mVmax/n = LJI* + 10V / (nl]])
Letting |J| = (\%=)}, we have that 1 Y7 E[@ —6)2|V] <
2(710‘/"2’:*@)%. O
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