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ABSTRACT
The resilience of a system is related to its ability to withstand stressors, adapt, and rapidly recover 
from disruptions. Two significant challenges of resilience analysis are to (1) quantify the resilience 
associated with a given recovery curve; and (2) develop a rigorous mathematical model of the 
recovery process. To quantify resilience, a mathematical approach is proposed that systematically 
describes the recovery curve in terms of partial descriptors, called resilience metrics. The proposed 
resilience metrics have simple and clear interpretations, and their definitions are general so that 
they can characterize the resilience associated with any recovery curve. This paper also introduces a 
reliability-based definition of damage levels which is well-suited for probabilistic resilience analysis. 
For the recovery modeling, a stochastic formulation is proposed that models the impact of recovery 
activities and potential disrupting shocks, which could happen during the recovery, on the system 
state. For illustration, the proposed formulation is used for the resilience analysis of a reinforced 
concrete (RC) bridge repaired with fiber-reinforced polymer.

1.  Introduction

The prosperity of modern societies relies on the ability of 
infrastructure systems to deliver services and resources 
to human communities (Corotis, 2009; Ellingwood  
et al., 2016; Gardoni, Murphy, & Rowell, 2016). The safety 
assessment of such systems has been subject of much 
research (see, for example, Gardoni & LaFave, 2016). 
The resilience of infrastructure systems is another cru-
cial attribute that has gained much attention within the 
engineering discipline over the past 10–15 years (Bruneau 
et al., 2003; Ellingwood et al., 2016; Guidotti, Gardoni, & 
Chen, 2017; Guidotti et al., 2016; McAllister, 2013). The 
resilience of a system integrates the system state in the 
immediate aftermath of a disruption, which is typically 
related to the system safety, with the recovery process 
to achieve a desirable system state (Mieler, Stojadinovic, 
Budnitz, Comerio, & Mahin, 2015). The challenges at the 
core of resilience analysis are to (1) quantify the resilience 
associated with a given system state and a selected recov-
ery strategy (which together shape its recovery curve); 
and (2) develop a rigorous mathematical model of the 
recovery process.

We can determine the system state at any time in terms 
of quantities such as the instantaneous reliability or system 
functionality. A recovery curve represents the path of such 
quantities over the recovery duration. The recovery curve 
of a system is typically a non-decreasing function of time 
that can be continuous, discrete, or piecewise continuous. 
However, the occurrence of disrupting shocks at discrete 
points in time during the recovery can cause sudden drops 
in the recovery curve. Besides the potential disrupting 
shocks, there are other influencing factors such as the 
availability of resources for repair and weather conditions, 
which can affect the actual recovery.

Once properly defined, the recovery curve of a system 
provides the complete information about its resilience. 
Thus, to accurately quantify the resilience of the system, 
resilience metric(s) must capture all the relevant charac-
teristics of the recovery curve. Mathematically, it follows 
that a single metric cannot generally replace a curve and 
capture all of its characteristics.

A number of studies have attempted to quantify the 
resilience of physical and organizational systems. Among 
the first contributions, Bruneau et al. (2003) quantified 
the resilience of a system as the integral of the recovery 
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it is possible to expand a given (sub-)set of metrics with 
additional ones in a systematic way to provide further 
information about system resilience up to capturing the 
entire information in the recovery curve. The first prop-
erty facilitates the understanding and communication 
of the level of resilience of a system to the public and 
increases the public involvement in the decision-making 
process. The second property enables the formulation to 
characterize the resilience associated with any given sys-
tem state and a selected recovery strategy with the desired 
level of accuracy.

Developing the recovery strategy and modeling the 
recovery process begins with determining the damage 
level. We propose a reliability-based definition of dam-
age levels, which accounts for safety considerations and is 
ideally suited for the probabilistic resilience analysis. For 
the recovery modeling, we develop a stochastic formu-
lation that models the impact of recovery activities and 
disrupting shocks (which could happen during the recov-
ery) on the system state. The key elements of the proposed 
formulation are: (1) modeling the completion time of the 
recovery steps (a group of recovery activities that improve 
the reliability of the system), and the occurrence time of 
disrupting shocks, and (2) predicting the system state after 
the completion of each recovery step or the occurrence of 
a disrupting shock. We model the completion times of the 
recovery steps as a general Poisson process with a mean 
function that accounts for the recovery condition (e.g. 
required recovery activities, the availability of resources, 
weather condition). The occurrence times of disrupting 
shocks generally depend on the type of hazard consid-
ered in the formulation. The proposed formulation can 
employ hazard specific predictive models for this purpose 
(e.g. a Poisson or Renewal process to model the occur-
rence of seismic shocks). When planning the recovery, the 
desired values of variables that define a system, also called 
state variables, such as material properties, are specified 
after the completion of each recovery step. We use such 
state variables in existing capacity and demand models 
to determine the corresponding system state after each 
recovery step. To model the impact of disrupting shocks, 
we use the models proposed by Jia and Gardoni (2017a) 
to determine the impact on the state variables. As in the 
case of the recovery steps, we use the predicted values 
of the state variables in existing capacity and demand 
models to determine the system state. We illustrate the 
proposed formulation, considering the resilience analysis 
of a reinforced concrete (RC) bridge, repaired with Fiber 
Reinforced Polymer (FRP) composites.

The rest of the paper is organized into seven sections. 
The next section presents the proposed mathematical for-
mulation of resilience analysis and the proposed resilience 
metrics. Section 3 illustrates the phases of the recovery 

curve over time. Chang and Shinozuka (2004) quantified 
resilience in terms of the probability that a system’s perfor-
mance loss, right after a disruption, and the corresponding 
recovery time would be less than some thresholds. Several 
variants of the initial resilience metrics can be found in 
more recent studies, as in Decò, Bocchini, and Frangopol 
(2013) and Ayyub (2014). The significance of these initial 
contributions is to quantify the resilience of a system with 
a simple metric. However, as mentioned earlier, a single 
metric can only provide partial information about actual 
resilience. Furthermore, one cannot expand the existing 
resilience metrics in a systematic way, to provide the full 
description of the resilience of a system. As a result, the 
existing metrics do not fully characterize the recovery 
curves with different shapes and might not be able to 
distinguish among the different resilience levels.

For modeling the recovery process, Cimellaro, 
Reinhorn, and Bruneau (2010a) and Decò et al. (2013) 
proposed parametric functions for the recovery curves, 
the shapes of which are selected based on qualitative 
explanations of the recovery situation, such as the severity 
of the initial damage and preparedness of a system/society 
in responding to a disruptive event. To account for the 
uncertainty in the recovery modeling, probability distri-
butions are assigned to the parameters of the functions. 
The analytical modeling of the recovery process facili-
tates the calculation of resilience, while incorporating the 
uncertainty. However, there remain questions regarding 
the accuracy of the parametric functions in replicating the 
actual situation of the recovery. In particular, due to the 
lack of explicit relation between the shape of the recov-
ery curve and its influencing factors, it is not clear how 
new information such as ongoing progress of the work or 
increased resource availability may reduce the uncertainty 
involved in the recovery modeling (e.g. uncertainty in the 
choice of the parametric function for the recovery curve 
and statistical uncertainty in the estimate of the unknown 
model parameters). Furthermore, because the recovery 
modeling is at the system level, it is not generally possible 
to use the information (e.g. time and expenditure) gained 
from the recovery of one system to model the recovery 
of another system. Finally, these approaches cannot take 
advantage of the information available at the level of indi-
vidual recovery activities (which collectively determine 
the scope of work at the system level).

This paper proposes a rigorous mathematical formula-
tion for resilience analysis. In this formulation, we charac-
terize the resilience associated with a given system state, in 
the immediate aftermath of a disruption, and for a selected 
recovery strategy by proposing resilience metrics, which 
form a complete set of partial descriptors of the recovery 
curve. Such metrics have two desirable properties: (1) 
they are simple and have clear interpretations, and (2) 
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process and their role in resilience quantification. Section 
4 describes the definition and role of instantaneous reli-
ability, and its relation with system functionality. Section 
5 explains the proposed stochastic formulation to model 
the recovery process. Section 6 discusses the solutions of 
quantities of interest. Section 7 presents a numerical exam-
ple to illustrate the proposed formulations. Finally, we 
summarize the contributions and draw some conclusions.

2.  Proposed resilience metrics and 
mathematical formulation for resilience analysis

Assessing the resilience of engineering systems is crucial 
both for pre-disruption effective mitigation planning and 
post-disruption optimal resource allocation. There are 
many factors that influence the resilience of engineering 
systems, including the design specifications, the availabil-
ity of resources needed for the repairs (e.g. funding and 
materials), the accessibility of damaged components, pre-
paredness of recovery plans, and environmental condition 
during the recovery.

In this section, we first review the current practice 
of resilience quantification, the available metrics and 
their limitations. Then, we propose a new mathematical 
formulation for resilience analysis based on which we 
develop new resilience metrics that overcome the cur-
rent limitations.

Figure 1 shows a typical recovery curve used in the 
literature to quantify resilience (Bocchini, Decò, & 
Frangopol, 2012; Bonstrom & Corotis, 2016; Cimellaro, 
Reinhorn, & Bruneau, 2010b). An external shock (e.g. 
an earthquake) at time tI causes an instantaneous reduc-
tion in the system state, represented by an indicator, 
Q(t), (e.g. the system functionality). The residual system 
state, Qres, depends on the intensity of the shock, design 
specifications, and the system state before the shock. 

Subsequently, the system undergoes a recovery process 
to achieve a desired Q(t) (e.g. the original functionality 
or a higher one, if desired). After meeting the desired 
requirements, the recovery process terminates at time tL. 
The impact of resilience influencing factors, listed earlier, 
would be reflected in the shape of the recovery curve 
and the recovery time, TR: = tL – tI. The resilience of the 
system is typically quantified as a function of the shaded 
area in Figure 1.

Mathematically, the typical resilience metric (see, for 
example, Bonstrom & Corotis, 2016; Bruneau & Reinhorn, 
2007; Cimellaro et al., 2010b) is defined as

 

where we use the change of variable τ = t – tI and define 
Q̆ (𝜏): = Q (t). The limitation of the resilience metric, R, is 
that it gives the same value of resilience for different com-
binations of Q̆(𝜏) and TR. We explain this limitation with 
the following example. Consider the three possible recov-
ery curves in Figure 2. Table 1 summarizes the mathemat-
ical expressions for the three recovery curves and their 
TR’s. The three different recovery curves correspond to 
different levels of resilience (e.g. the curve Linear 1 might 
be considered the most desirable recovery). However, as 
shown in Table 1, the values of R for the three recovery 
curves are the same (i.e. all equal to 0.75).

(1)R: =
∫ tL
tI
Q(t)dt

TR

=
∫ TR

0
Q̆(𝜏)d𝜏

TR

,

Figure 1. A typical recovery curve used in the literature to quantify 
resilience.

Figure 2. The current resilience metrics cannot differentiate the 
resilience associated with the three different recovery curves.

Table 1. The mathematical expressions of the recovery curves in 
Figure 2 and the associated resilience metric R.

Description TR Recovery function R R(tH = 2) R(tH = 3)
Linear 1 1 0.5 + 0.5 t 0.75 0.87 0.92
Linear 2 2 0.5 + 0.25 t 0.75 0.75 0.83
S-shaped 2 0.75 – 0.25 cos(π t/2) 0.75 0.75 0.83
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Definition 2: When the CRF is a step function, we can 
no longer define the RDF because of the discontinuity 
in the CRF. In such cases, we define the Resilience Mass 
Function (RMF) as q(𝜏) =

∑∞

k=0 ΔQ̆(𝜏k)𝛿(𝜏 − 𝜏k), for all 
� ∈ [0,TR] where ΔQ̆(𝜏k): = Q̆(𝜏k) − Q̆(𝜏−k ) is the size of 
the jump in CRF at the discontinuity point � = �k (where 
�0: = 0); �−k  is the time instant immediately before τk; and 
δ(⋅) is the Dirac delta function. Similar to the continuous 
case, we can obtain the recovery progress over any time 
interval (𝜏u, 𝜏v] ⊆ [0,TR] as
 

where �{𝜏u<𝜏k≤𝜏v} is an indicator function such that 
�{𝜏u<𝜏k≤𝜏v} = 1, when �k ∈ (�u, �v] and �{𝜏u<𝜏k≤𝜏v} = 0, other-
wise. To reflect that at �0 the CRF is equal to Qres (typically 
non-zero), we define ΔQ̆(0): = Qres.

Definition 3: In general, the CRF might be a combi-
nation of the previous two cases (i.e. Q̆(𝜏) is a piecewise 
continuous function). In this case, we write the instanta-
neous rate of recovery progress as

 

where q̃(𝜏) is the RDF, corresponding to the continuous 
part of the CRF, and ΔQ̃(𝜏k)𝛿(𝜏 − 𝜏k) is the RMF, account-
ing for the discontinuities of the CRF. Accordingly, we 
can write the recovery progress over (𝜏u, 𝜏v] ⊆ [0,TR] as
 

The CRF or RDF/RMF of a system provides complete 
information about its residual state, the recovery process 
and, thus, its resilience. To help in the interpretation of 
the CRF, RDF, and RMF, one can see the analogy between 
their definitions and those of the Cumulative Distribution 
Function (CDF), Probability Density Function (PDF) and 
Probability Mass Function (PMF) that are used to describe 
random variables in probability theory.

To capture the degree of disparity between any pairs 
of recovery curves, we define the measure of Resilience 
Disparity, Δ

(
q1, q2

)
, as follows:

 

(3)

Q̆
(
𝜏u < 𝜏 ≤ 𝜏v

)
=

𝜏v

�
𝜏u

∞∑
k=0

ΔQ̆
(
𝜏k
)
𝛿
(
𝜏 − 𝜏k

)
d𝜏

=

∞∑
k=0

ΔQ̆
(
𝜏k
)
�{𝜏u<𝜏k≤𝜏v},

(4)q(𝜏) = q̃(𝜏) +
∞∑
k=0

ΔQ̃
�
𝜏k
�
𝛿
�
𝜏 − 𝜏k

�
, 𝜏 ∈

�
0,TR

�
,

(5)Q̆
(
𝜏u < 𝜏 ≤ 𝜏v

)
=

𝜏v

�
𝜏u

q̃(𝜏)d𝜏 +

∞∑
k=0

ΔQ̃
(
𝜏k
)
�{𝜏u<𝜏k≤𝜏v}.

(6)Δ
(
q1, q2

)
: =

∫ TR

0
q1(𝜏) log2

[
q1(𝜏)

/
q̄(𝜏)

]
d𝜏 + ∫ TR

0
q2(𝜏) log2

[
q2(𝜏)

/
q̄(𝜏)

]
d𝜏

Q̆1

(
TR1

)
+ Q̆2

(
TR2

) ,

To distinguish the resilience associated with the recov-
ery curves having different TR’s (e.g. recovery curves Linear 
1 and Linear 2 in Figure 2), Reed, Kapur, and Christie 
(2009) proposed a different definition of R by replacing 
tL in Equation (1) with a fixed time horizon tH (the same 
formulation was also used in Cimellaro et al., 2010a; Decò 
et al., 2013). Let us denote the metric in Reed et al. (2009) 
as R(tH). The value of R(tH) for a given system and a fixed 
tI can change with tH though the ability of the system to 
recover (i.e. its resilience) may remain unchanged. The 
last two columns of Table 1 summarize the values of R(tH) 
associated with the three recovery curves in Figure 2, con-
sidering tH = 2 and tH = 3 (both with tI = 0). The values of 
R(tH) for each of the three recovery curves increase as tH 
increases; however, the ability of the system to recover (i.e. 
the recovery curve) remains unchanged. Furthermore, 
R(tH), for the selected values of tH, does not distinguish the 
resilience associated with the recovery curves having dif-
ferent trends (i.e. recovery curves Linear 2 and S-shaped).

We propose a new resilience analysis that quantifies 
the resilience associated with a given recovery curve in 
terms of the partial descriptors of Q̆(𝜏). The proposed 
partial descriptors are inspired by those in probability 
theory and mechanics. The analogy between the pro-
posed resilience metrics and those in probability theory 
and mechanics is described later in this section after the 
proposed resilience metrics are defined. To explain the 
proposed resilience analysis, we first develop the tools 
for describing the recovery process and then derive the 
partial descriptors. The recovery curve Q̆(𝜏) that we term 
the Cumulative Resilience Function (CRF), hereafter, rep-
resents the overall recovery progress by time �. Once Q̆(𝜏) 
is specified, we can obtain the Instantaneous Rate of the 
Recovery Progress according to the following three math-
ematical formulations.

Definition 1: When the CRF is a continuous function 
of time, the instantaneous rate of recovery progress is the 
time derivative of the CRF. Mathematically, we can write 
it as q (𝜏) = dQ̆∕d𝜏 for all � ∈ [0,TR], which we call the 
Resilience Density Function (RDF). The RDF is undefined 
at a possible finite set of points where the derivative of the 
CRF does not exist (i.e. CRF is a continuous function of 
class C0). We can obtain the recovery progress over any 
time interval (𝜏u, 𝜏v] ⊆ [0,TR] as follows:

 

(2)Q̆
(
𝜏u < 𝜏 ≤ 𝜏v

)
=

𝜏v

�
𝜏u

q(𝜏)d𝜏 .
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We extend our definitions of the partial descriptors and 
introduce the measures of dispersion of the recovery pro-
cess. We define the Resilience Quantile, �Q,w, which is the 
time instant corresponding to the wth (0 ≤ w ≤ 1) quan-
tile of the CRF. Mathematically, we write the resilience 
quantile as 𝜌Q,w = min{𝜏 ∈ [0,TR]:w ≤ [Q̆(𝜏)∕Q̆(TR)]}. 
The median of resilience, �Q,0.5, is a special case for which 
w = 0.5. Using �Q,w, we can define different measures of 
dispersion as the length of the intervals [�Q,wi

, �Q,wj
] , where 

0 ≤ wi < wj ≤ 1. We also define an alternative single meas-
ure to capture the dispersion that we call the Resilience 
Bandwidth, �Q, and mathematically, we write it as

The small values of �Q represent a situation in which a 
large percentage of the recovery process is completed over 
a short period of time around �Q. In contrast, the large 
values of �Q describe a situation in which the recovery 
process is spread over a long period of time. We can also 
define the Relative Resilience Bandwidth as �Q∕TR, which 
describes the spread of the recovery process with respect 
to the total recovery time, and the Bandwidth Coefficient 
as �Q∕�Q, which describes the spread of the recovery pro-
cess with respect to the center of resilience.

Another useful measure is the skewness of the recov-
ery process. Mathematically, we can write the Resilience 
Skewness, �Q, as

The magnitude of the resilience skewness determines 
the degree of asymmetry of the recovery with respect to �Q.  
Its algebraic sign defines the direction of the skewness. 
From Equation (10), we can see that �Q = 0 when the RDF 
and RMF are symmetric with respect to �Q. Furthermore, 
𝜓Q > 0 when the RDF and RMF have longer tails to the 
right of �Q; and 𝜓Q < 0 when the left tails of the RDF and 
RMF are longer. We can interpret �Q = 0 as the condition 
in which the progress in a recovery process has the same 
pace before and after �Q. When 𝜓Q < 0, the progress is slow 
during the interval [0, �Q] and then it becomes faster over 

(9)

𝜒2

Q: =
� TR

0

(
𝜏 − 𝜌Q

)2
q(𝜏)d𝜏

� TR

0
q(𝜏)d𝜏

=
1

Q̆
(
TR

)
[
�
TR

0

(
𝜏 − 𝜌Q

)2
q̃(𝜏)d𝜏

+

∞∑
k=0

(
𝜏k − 𝜌Q

)2
ΔQ̃

(
𝜏k
)
�{0≤𝜏k≤TR}

]
.

(10)

𝜓Q: =
� TR

0

(
𝜏 − 𝜌Q

)3
q(𝜏)d𝜏

� TR

0
q(𝜏)d𝜏

=
1

Q̆
(
TR

)
[
�
TR

0

(
𝜏 − 𝜌Q

)3
q̃(𝜏)d𝜏

+

∞∑
k=0

(
𝜏k − 𝜌Q

)3
ΔQ̃

(
𝜏k
)
�{0≤𝜏k≤TR}

]
.

where TR1
 and TR2

 are the recovery durations cor-
responding to q1 and q2; TR = max(TR1

,TR2
); and 

q̄(𝜏): = [q1(𝜏) + q2(𝜏)]∕2. The resilience disparity is 
bounded between 0 and 1 such that Δ

(
q1, q2

)
= 0, when 

q1(�) = q2(�) for every � ∈ [0,TR] and Δ
(
q1, q2

)
= 1, 

when q1(�) = 0 corresponds to q2(𝜏) > 0 and, conversely, 
q2(�) = 0 corresponds to q1(𝜏) > 0, for every � ∈ [0,TR] .  
The proposed resilience disparity measure is analogous 
to divergence measures in probability theory. Specifically, 
when the CRFs are replaced with CDFs, Δ(q1, q2) corre-
sponds to the Jensen–Shannon entropy (Lin, 1991).

Besides the resilience disparity, which gives a general 
comparison of q(�)’s, partial descriptors can be defined to 
capture specific characteristics of the resilience. First, we 
can define the central measures of resilience. We define 
the Center of Resilience, �Q, as

 

where Qres∕Qtar is the contribution of the residual 
state to �Q, in which Qtar: = Q̆(TR); �Q,res: = �0 is the 
center of resilience, when considering only the resid-
ual state; Q̄res∕Qtar is the contribution of the recov-
ery process to �Q, in which Q̄res: = Qtar − Qres; and the 
𝜌Q̄,res: =

�� TR

0
𝜏q̃(𝜏)d𝜏 +

∑∞

k=1 𝜏kΔQ̃(𝜏k)�{0≤𝜏k≤TR}

�
∕Q̄res is 

the center of resilience, when considering only the recov-
ery process. Because �0 = 0, Equation (7) simplifies into
 

The proposed expression for �Q distinguishes between 
the role of the residual system state (which affects Q̄res)  
 the recovery process (which affects 𝜌Q̄,res) in the quantifi-
cation of resilience. Being able to decouple the two contri-
butions facilitates the determination of the acceptable level 
of resilience in terms of a balance between the residual 
system state and the corresponding recovery duration. 
We also note that the value of �Q depends on the choice 
for Q̆(𝜏) (e.g. functionality or instantaneous reliability). 
Specifically, the different choices of Q̆(𝜏) affect the scale of 
variation, Q̄res∕Qtar, in Equation (8). As a result, the inter-
pretation of the obtained results for �Q and decisions about 
the acceptable level of resilience depend on the choice of 
Q̆(𝜏).

Two other central measures are the Median of Resilience 
and the Mode of Resilience. The Median of Resilience, �Q,0.5 ,  
is the time instant at which the CRF is equal to Q̆(TR)∕2.  
The Mode of Resilience is the time instant correspond-
ing to the maximum value of the instantaneous rate of 
recovery progress. Mathematically, we can write it as 
�Q,max = argmax�∈[0,TR]

q(�).

(7)𝜌Q: =
∫ TR

0
𝜏q(𝜏)d𝜏

∫ TR

0
q(𝜏)d𝜏

=
Qres

Qtar

𝜌Q,res +
Q̄res

Qtar

𝜌Q̄,res,

(8)𝜌Q =
Q̄res

Qtar

𝜌Q̄,res.
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between recovery curves with the same Q̆(TR) but differ-
ent TR’s. In addition, R lacks the extra information that 
the other resilience metrics (e.g. �Q and �Q) provide.  
To illustrate this point, we calculate (�Q, �Q) for the three Q̆(𝜏)’s  
in Figure 2. The results in Table 2 shows that, in contrast 
to R, the pair (�Q, �Q) can characterize the three different 
Q̆(𝜏)’s. Furthermore, a decision-maker can use the �Q,w’s  
and/or combine �Q and �Q (and, if desired, the higher 
order moments) to create composite resilience metrics 
(e.g. �Q ± �Q, when the two values are in the range [0, TR]).

In practice, the recovery process might be disrupted by 
shocks at different time instants (see Figure 3). Each shock 
might cause a sudden reduction in Q̆(𝜏). The formulation 
of the resilience moments in Equation (11) accounts for 
this situation by letting ΔQ̃(𝜏k) < 0 when a shock occurs 
at 𝜏 = 𝜏K < TR. Alternatively, we can rearrange the terms 
in Equation (11) to write the overall resilience moments 
in terms of the set of resilience moments (�(1)

Q
,… , �(n)

Q
)j,  

derived for each segment j of Q̆(𝜏) (see Figure 3), that 
follows the jth shock and before the (j + 1)th shock. Note 
that we consider �j as the reference of the time axis in cal-
culating (�(1)

Q
, ..., �(n)

Q
)j. The derived mathematical expres-

sion for the overall resilience moments is
 

where iCn: = n!∕[i!(n − i)!]; m is the total number of dis-
rupting shocks; and τm + 1: = TR.

(14)

𝜌
(n)

Q
=

m∑
j=0

n∑
i=0

iCn𝜏
n−i
j 𝜌

(i)

Q,j
×
Q̆
(
𝜏−j+1

)

Q̆
(
TR

) +

m∑
j=0

𝜏nj

ΔQ̆
(
𝜏j

)

Q̆
(
TR

) ,

the next period, (�Q,TR]. This is the most typical case for 
recovery processes that include a lengthy planning phase in 
the post-disruption period. If the planning is done ahead of 
the disruptive event as a pre-disruption planning and prepa-
ration, then we can have 𝜓Q > 0 in which the progress picks 
up quickly and the relative most time-consuming portion 
is the actual repair/reconstruction (faster in interval [0, �Q],  
and it slows down over the next interval, (�Q,TR]). We 
can also define the Relative Resilience Skewness as �Q∕T

3
R,  

which describes the skewness of the recovery process 
with respect to the total recovery time, and the Skewness 
Coefficient as �Q∕�

3
Q, which describes the skewness of the 

recovery process with respect to the recovery bandwidth.
As a generalization, we can define the nth Resilience 

Moment as follows:
 

where �(n)
Q,res

: = �n0  and 

The resilience associated with a given system state and 
a recovery strategy can be completely defined in terms 
of all its �(n)

Q
’s. However, in practice, �Q and �Q might be 

sufficient to characterize the associated resilience. We can 
define �Q and �Q as functions of the first two resilience 
moments as �Q = �

(1)

Q
, and �Q =

√
�
(2)

Q
− �2Q.

As mentioned earlier, there is an analogy between the 
proposed resilience metrics and equivalent ones in prob-
ability theory and mechanics. In particular, �Q, �Q and �Q 
correspond to the mean, standard deviation, and skewness 
of a random variable when the CRF is replaced with a 
CDF. Similarly, �Q and �Q are analogous to the centroid 
and the radius of gyration of the area under q(τ). Note 
that, though the proposed resilience analysis is general, 
the above analogies hold for a non-decreasing CRF.

A closer look to the definitions of R and �Q shows that 
there are similarities in the way the two metrics quantify 
resilience. In particular, the following equation shows that 
�Q is an affine function of R:

 

Hence, for a given recovery process (i.e. given Q̆(TR) 
and TR), the information that R provides about resilience is 
equivalently captured by �Q. However, �Q can differentiate 

(11)𝜌
(n)

Q
: =

∫ TR

0
𝜏nq(𝜏)d𝜏

∫ TR

0
q(𝜏)d𝜏

=
Qres

Qtar

𝜌
(n)

Q,res
+

Q̄res

Qtar

𝜌
(n)

Q̄,res
,

(12)

𝜌
(n)

Q̄,res
: =

1

Q̄
res

�
� TR

0
𝜏nq̃(𝜏)d𝜏

+
∞∑
k=1

𝜏nkΔQ̃(𝜏k)�{0≤𝜏k≤TR}

�

(13)𝜌Q =
Q̆(TR) − R

Q̆(TR)
× TR.

Table 2. The proposed resilience metrics, calculated for the recov-
ery curves in Figure 2.

Description ρQ χQ

Linear 1 0.25 0.32
Linear 2 0.50 0.65
S-shaped 0.50 0.59

Figure 3. The recovery process might be repeatedly disrupted by 
shocks.
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of the recovery process correspond to what is known 
in construction management as (1) pre-construction, 
(2) construction, and (3) post-construction (Klinger & 
Susong, 2006). The pre-construction phase includes plan-
ning, designing, deciding on repair strategies, budgeting 
financial and other resources, and obtaining work per-
mits from relevant authorities. The construction phase 
involves physical onsite activities required to repair or 
replace damaged components. Inspection, quality assur-
ance, safety management, cost and schedule control, and 
field engineering functions (e.g. onsite decisions) are 
also activities in this phase. The post-construction phase 
involves closing activities like the final inspection, hand-
ing over, and certification. In mechanical engineering 
applications such as installation of a new equipment (e.g. 
a boiler, compressor, or pump), the above three phases 
correspond to (1) design and planning, (2) mechanical 
erection, and (3) commissioning. Likewise, when the 
equipment undergoes a reactive maintenance, the three 
phases correspond to (1) fault detection, (2) system 
repairs, and (3) recommissioning.

The duration of each recovery phase depends on the 
level of damage, the preparedness of the recovery plan, 
the repairability of the system, and the accessibility of the 
damaged components. The estimation of the absolute and 
relative duration of each recovery phase can guide how 
to expedite the recovery process and improve resilience. 
For instance, a disaster response plan prepared before a 
disrupting event strikes can improve resilience by saving 
valuable time in the recovery planning phase. There might 
be updates in the planning as new information becomes 
available during the post-disruption reconnaissance; how-
ever, a general planning can be developed ahead of time. 
Similarly, a well-designed system could favor repairability 
over constructability to save time in the recovery execu-
tion phase.

3.2.  Tracking performance indicators during 
recovery

The phases of the recovery process can be divided into a 
hierarchy of activities. A work breakdown structure can 
be designed where activities are further divided up to a 
required level of detail, based on the functional require-
ment or available data. The lowest level of activities is 
where standardized crews, equipment, means, and meth-
ods are defined and relevant data are readily available 
(see, for example, RS Means database (Means, 2008)). 
Activities in a recovery process have precedence, con-
straints, and tentative durations associated with them 
which collectively create a network of activities. Figure 5 
shows an example of such a network of recovery activities 
that is developed for the repair of a damaged RC bridge 

3.  Phases of the recovery process and their role 
in resilience quantification

In this section, we argue that the different activities in the 
recovery of engineering systems can generally be grouped 
into three phases, which we call (1) recovery planning, 
(2) recovery execution, and (3) recovery closure. Next, 
we explain how the system state indicators (e.g. reliability 
and functionality) are affected by the recovery activities 
and the proposed phases.

3.1.  Phases of recovery process

The scope of a recovery process is defined by the magni-
tude and the nature of the damage sustained by the sys-
tem. The corresponding recovery process can typically be 
decomposed into three phases (shown in Figure 4) that 
we call (1) recovery planning, (2) recovery execution, and 
(3) recovery closure. These phases can be sequential or 
overlapping. The recovery planning phase includes the 
following activities: identification of the objectives of the 
recovery (i.e. where we want to be at the end of the recov-
ery), development of the recovery strategies (i.e. definition 
of the activities that will need to take place in order to 
reach the desired objectives), and securing the required 
resources for the recovery. The recovery execution phase 
includes activities where physical progress is made toward 
achieving the objectives, developed in the recovery plan-
ning phase. This phase consumes the majority of the 
resources (i.e. time, material, and labor). The recovery 
closure phase involves quality control activities to ensure 
the recovery completion criteria are met and the system 
is ready to be put back into operation.

In the specific case of the recovery of a civil structure 
(e.g. building or bridge) or system/network (e.g. trans-
portation, water, or power network), the three phases 

Figure 4.  The three phases of the recovery process in the 
aftermath of a disruption are the (1) recovery planning, (2) 
recovery execution, and (3) recovery closure.
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expenditure or in terms of activities’ contribution to the 
reliability or functionality of the system. Figure 6 shows 
a schematic comparison between the work progress in a 
recovery process and the changes in the reliability and the 
functionality of a system. The figure illustrates that the 
work progress might be near-continuous; however, it is 
only the completion of a group of activities that contrib-
utes to the increments in the reliability and in the func-
tionality of the system. The completion of the recovery 
activities in a group changes both the capacity and the 
imposed demand on the system and, hence, the reliability 
(as described in Section 5). Functionality typically has 
discrete increments when the work completion and the 
associated reliability reach specific milestones.

We can obtain the initial estimates of the durations 
of individual activities from available databases and past 
projects. The initial general estimates might need to be 
updated and tailored to incorporate the effects of influ-
encing factors in a given project such as specific weather 
conditions, system characteristics, and resource availa-
bility. For example, Moselhi, Gong, and El-Rayes (1997) 
developed a model to estimate the durations of activi-
ties, accounting for the impact of weather conditions 
(temperature, precipitation, wind speed, and humid-
ity). Sukumaran, Bayraktar, Hong, and Hastak (2006) 

with FRP composites. In a typical construction project, 
the number of activities in the network can be as large as 
several thousands. Typically, the progress in a construc-
tion project is slower at the beginning and toward the end 
of the project. This is because typically a few activities 
need to be completed at the beginning before a larger 
number of activities can be performed in parallel. Toward 
the end of the project, most of the planned work is com-
pleted and only a few activities remain, which might not 
all be performed in parallel. As a result, the overall work 
progress gradually decreases until the final completion 
is achieved.

In a recovery process, work on individual activities 
might continuously progress over time; however, the 
changes in the system state occur only at discrete points 
in time when a group of activities (i.e. a recovery step) is 
completed. For example, in Figure 5, we consider FRP 
application (or minor repairs in the case of insignificant 
damage) as the sole recovery step. The completion time 
of activities and the corresponding contributions to the 
system state depend on the activity network, the types of 
activities, and the metric a decision-maker uses to meas-
ure the work progress. For example, one might measure 
the progress in terms of the expenditure incurred in 
completing each activity with respect to the total project 

Figure 5. A network of recovery activities developed for the repair of a damaged one single-column bent RC bridge with FRP composites.

Figure 6. Different performance indicators quantify the recovery progress in dissimilar ways.
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4.1.  Definition of damage levels in terms of 
instantaneous reliability

As discussed in Section 3, to develop the recovery strategy, 
we need to estimate the extent of damage. Also, when 
the occurrence of a shock during the recovery disrupts 
the recovery process, we need to revise the network of 
recovery activities, based on the new level of damage. 
The accurate estimation of damage level is particularly 
important for systems that require a minimum level of 
safety to resume operation. We define the damage level 
in terms of the instantaneous reliability of the system to 
account for the safety considerations and also develop a 
fully probabilistic formulation for the resilience analysis.

ATC-38 (ATC, 2000) and Bai, Hueste, and Gardoni 
(2009) define four damage levels based on a qualitative 
description of the physical damage to a system. Table 3 
shows the four damage levels in ATC-38 and the corre-
sponding qualitative descriptions for each damage level. 
We propose to use definitions of damage levels that are 
not directly based on the physical damage but based on 
the implications of such damage on the reliability of the 
system. The right column of Table 3 provides the defini-
tions of the four damage levels in terms of the reliability 
of the system. The right column of the table shows that in 
the proposed reliability-based definition, the four damage 
levels are delimited by means of three thresholds (i.e. �0,  
�acc, and �tol). The specification of these thresholds is a 
system-specific problem. A discussion on the considera-
tions to specify the values of the threshold can be found 
in Gardoni and Murphy (2014) and Briaud, Gardoni, and 
Yao (2014).

4.2.  Recovery strategy as a function of 
instantaneous reliability

As shown in Figure 5, in developing the recovery strat-
egy, post-disruption inspection is the first recovery 

identified an extensive list of influencing factors in the 
case of highway projects and estimated their impact on the 
durations of activities. Gardoni, Reinschmidt, and Kumar 
(2007) developed a Bayesian formulation to update the 
estimate of the future work progress as a function of the 
work completed up-to-date. While, using more refined 
models and larger sample sizes can reduce the statistical 
uncertainty in the estimate of the duration of each individ-
ual activity, there remain uncertainties in their values due 
to the epistemic uncertainty, arising from simplifications 
in the mathematical models, and aleatory uncertainty, 
arising from the variability in future conditions (Gardoni, 
Der Kiureghian, & Mosalam, 2002; Gardoni et al., 2007; 
Murphy, Gardoni, & Harris, 2011).

For a given system state, we can develop a stochastic 
network of activities that accounts for the uncertainties 
in the durations of the individual activities. The stochas-
tic network of activities can then be used to identify the 
milestones corresponding to the changes in the reliabil-
ity and functionality of the system and their associated 
uncertainties.

4.  Definition and role of instantaneous 
reliability

We define the instantaneous reliability as the probability 
that the system meets a specified performance level at a 
given time of interest. The higher values of reliability indi-
cate that it is more likely that the system meets the speci-
fied performance level. The reliability depends on the state 
of the system at the considered time and therefore, on the 
system damage level. Once we obtain the instantaneous 
reliability of the system, we can find the values of other 
performance indicators such as damage level and func-
tionality as well as the recovery strategy, which depend on 
the reliability, as discussed next.

Table 3. The four damage levels of a system and their descriptions in ATC-38 and the proposed reliability-based definitions.

Damage levels (DLs) ATC-38 definitions Proposed reliability-based definitions
None (N) No damage is visible, either structural or non-structural The reliability of the system does not change with respect to 

the reliability of the original system (i.e. β ≥ β0)
Insignificant (I) Damage requires no more than cosmetic repair. No structural 

repairs are necessary. For non-structural elements this would 
include spackling, partition cracks, picking up spilled contents, 
putting back fallen ceiling tiles, and righting equipment

The reliability of the system decreases but remains above the 
acceptable threshold (i.e. 𝛽

acc
≤ 𝛽 < 𝛽

0
). The visible damage 

to some components triggers the post-disruption inspection

Moderate (M) Repairable structural damage has occurred. The existing 
elements can be repaired in place, without substantial demo-
lition or replacement of elements. For non-structural elements 
this would include minor replacement of damaged partitions, 
ceilings, contents, or equipment

The reliability of the system decreases below the acceptable 
threshold but it would be still above a minimum tolerable 
threshold (i.e. 𝛽

tol
≤ 𝛽 < 𝛽

acc
). While, the system does not 

need to be completely closed, its safety is compromised and 
the functionality is reduced

Heavy (H) Damage is so extensive that repair of elements is either not 
feasible or requires major demolition or replacement. For 
non-structural elements this would include major or complete 
replacement of damaged partitions, ceilings, contents, or 
equipment

The reliability of the system significantly decreases and falls 
below a minimum tolerable threshold (i.e. 𝛽 < 𝛽

tol
). So, the 

damaged components of the system need major repair or 
complete replacement
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5.  Proposed stochastic formulation of the 
recovery process

This section explains the proposed formulation for mod-
eling the recovery process, described conceptually in 
Sections 3 and 4. We model the system state and the cor-
responding functionality in terms of its instantaneous reli-
ability and as a function of the state variables. The values of 
the state variables vary with time due to the completion of 
the recovery steps or the occurrence of disrupting shocks 
that might occur during the recovery.

5.1.  Modeling of the state variables

According to the discussion in Section 3.2, we model the 
duration of each individual recovery activity as a random 
variable to account for the uncertainty in their estimates. 
As a result, the completion times of the n recovery steps, 
{�r,i}

n
i=1, form a sequence of random variables. To generate 

realizations of {�r,i}
n
i=1, one can use simulation techniques 

(e.g. Ditlevsen & Madsen, 1996). The simulation techniques 
are simple and straightforward but they have three impor-
tant limitations: (1) as the activity network becomes com-
plex, the number of simulations to capture the uncertainty 
in {�r,i}

n
i=1 increases rapidly and the required simulations 

become computationally too expensive; (2) the simulation 
techniques require to repeat the entire set of simulations at 
future times in order to incorporate any new information, 
for example, from the completion of some recovery activities 
or the occurrence of disruptions to the recovery process; 
and (3) the simulation techniques, in general, do not allow 
to transfer the information gained from the simulations for 
one recovery project to other projects.

To address the above limitations, we propose a probabil-
istic predictive model for the number of completed recovery 
steps by any time � ∈ [0,TR]. Following the general formula-
tion in Gardoni et al. (2002) for probabilistic models, we write

 

where  (⋅) is a transformation function; Λr(� , �;�r) is the 
predicted number of completed recovery steps by time 
τ; � is the set of influencing factors (e.g. weather condi-
tions and resource availability); �r = (�r , �r) is a set of 
unknown model parameters that need to be estimated, in 
which �r = (�r,1, ..., �r,nd

);  hr,d(� , �)’s are a set of explana-
tory functions; and σrɛr is an additive model error term 
(additivity assumption), in which σr is the standard devia-
tion of the model error that is assumed to be independent 
of τ (homoskedasticity assumption) and ɛr is a standard 
normal random variable (normality assumption). The 

(15) [
Λr

(
� , �;�r

)]
=
∑nd

d=1
�r,dhr,d(� , �) + �r�r ,

activity to determine the extent of damage. The subse-
quent recovery activities, which are required to achieve 
a (new) desired system state, are developed in the 
recovery network based on the assessed damage level. 
For example, when the inspection results indicate that 
damage level is insignificant, minor repairs might suf-
fice to achieve the desired state. Alternatively, when the 
system is moderately damaged, there might be no bid-
ding because the regular maintenance contract of the 
department of transportation is likely to cover this level 
of damage. For a heavy damage level, all the recovery 
activities in the network are needed in order to restore 
the desired state.

In order to determine the damage level, for devel-
oping the network of recovery activities, we use the 
proposed reliability-based definitions. Furthermore, to 
incorporate the impact of potential disrupting shocks 
that might occur during the recovery process, we first 
determine the new damage level after the occurrence 
of the shock based on the proposed reliability-based 
definitions. According to the new damage level, we 
select a network of recovery activities among the set of 
networks which are developed a priori for each possible 
damage level.

4.3.  Relation between functionality and 
instantaneous reliability

There is a relation between the instantaneous reliability of 
a system and its functionality, as they are both (direct or 
indirect) functions of the system state. In general, we can 
distinguish between two cases. In one case, the functional-
ity is defined directly as a function of the system state. So, 
in this case both the instantaneous reliability of the system 
and its functionality depend directly on the system state. 
Water distribution networks are typically analyzed con-
sidering this type of dependency (Guidotti et al., 2016). 
On the other hand, in a fully probabilistic formulation, the 
functionality is defined by the level of reliability instead 
of by the level of damage. So, in this case, the instanta-
neous reliability of the system depends directly on the 
system state, while the functionality (understood as the 
functionality of the system on a typical day not consider-
ing interruptions due to non-structural reasons) depends 
on the reliability. This type of dependency is well-suited, 
for example, when the system requires a minimum level 
of safety to function (e.g. in the case of buildings and 
bridges). This type of dependency requires a definition 
of the damage levels in terms of reliability, as proposed 
in Table 3.
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need to determine the impact of the shock on the state 
variables.

The occurrence of disrupting shocks is typically mod-
eled as a Poisson or a renewal process. For example, to 
model the occurrence of earthquake mainshocks, it is 
common to use a homogeneous Poisson process or, more 
generally, a renewal process (Takahashi, Der Kiureghian, 
& Ang, 2004; Yeo & Cornell 2009a). The occurrence of 
earthquake aftershocks is typically modeled as a non-ho-
mogeneous Poisson process (Jia, Tabandeh, & Gardoni, 
2017; Kumar & Gardoni, 2014a).

Given the occurrence of a disrupting shock, we use the 
general formulation proposed by Jia and Gardoni (2017a) 
to model the impact on the state variables. We write the 
vector of state variables as �(�s,j) = �(�−s,j) + Δ�(�s,j), 
where �(�−s,j) is the vector of state variables immediately 
before the occurrence of the jth shock and Δ�(�s,j) is the 
change in the state variables due to the jth shock. In gen-
eral, Δ�(�s,j) is a function of �(�−s,j) and the intensity of 
the shock, �(�s,j). To account for such dependence, one 
can develop/adopt probabilistic predictive models for 
Δ�(�s,j) (see Jia & Gardoni, 2017b; Kumar & Gardoni, 
2012, 2014b). We denote the set of parameters of such 
models as �

�
. Note that the inclusion of �(�−s,j) in predict-

ing Δ�(�s,j) accounts for the fact that the imposed changes 
are state-dependent (i.e. the impact of a given shock on 
the state variables depends on the most recent values of 
the state variable).

Combining the effects of the recovery process and dis-
rupting shocks, we can write the state variables at any time 
� ∈ [0,TR] as

 

The probability distributions of the state variables at the 
beginning of the recovery process (� = 0) can be obtained 
from the deterioration modeling (Iervolino, Giorgio, & 
Polidoro, 2015; Jia & Gardoni, 2017a; Jia et al., 2017). For 
the subset of state variables which are new or replaced 
during the recovery process, the initial probability dis-
tributions are determined in compliance with the objec-
tive(s) of the recovery (e.g. to restore the original reliability 
or functionality of the system or achieve a higher one, if 
desired).

5.2.  Stochastic capacity and demand models

To model the capacity and demand of the system, we 
use the predicted value of �(�) in existing capacity and 

(17)
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�
(
𝜏
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)
�{𝜏r,i−1≤𝜏<𝜏r,i}
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(
𝜏s,j

)
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choice of  (⋅) should be on the basis of satisfying the 
additivity, homoskedasticity, and normality assumptions 
as well as increasing the accuracy of the model (i.e. reduc-
ing the value of σr).

To calibrate the predictive model of Λr(⋅), one can use 
an experimental design (Huang, Gardoni, & Hurlebaus, 
2010; Tabandeh & Gardoni, 2015) to generate a limited 
number of samples for Λr(⋅) and � that cover realizations of 
recovery processes with different topologies of the recov-
ery network and subject to various influencing factors �. A 
Bayesian updating approach (Box & Tiao, 1992; Gardoni 
et al., 2002) can then be used to estimate �r, based on 
the generated samples. The developed predictive model of 
Λr(⋅) is applicable to other recovery projects given that the 
corresponding topology of the recovery activity network 
is similar, and the influencing factors are within the range 
considered in the experimental design.

To model the realizations of {�r,i}
n
i=1, we pro-

pose a Poisson process with a mean function equal 
to Λ̄r(𝜏 , �;�r): = �[Λr(𝜏 , �;�r)], where �[⋅] is the 
expected value operator. This is equivalent to mod-
eling the time between the completion of any suc-
cessive recovery steps, i  –  1 and i, with the CDF 
F(𝜐) = 1 − exp{−[Λ̄r(𝜐 + 𝜏r,i−1) − Λ̄r(𝜏r,i−1)]}, for υ > 0.

In this model, we can write the PMF of the number of 
completed recovery steps by any time � ∈ [0,TR] as

 

where n is the total number of recovery steps.
The completion of each recovery step corresponds 

to reaching a milestone for which the desired values 
of the state variables, �(�r,i), are known (typically, in a 
probabilistic sense). Note that the recovery process may 
introduce new variables to �(�r,i) or replace a subset of 
variables in �(�r,i) with new ones. For example, if a ret-
rofit is implemented using FRP composites, �(�r,i) will 
include new variables that define the FRP and/or its 
properties.

The recovery process ends when all the steps in the 
original recovery network are completed (i.e. NR(TR) = n), 
given that no disrupting shock occurs. When the occur-
rence of a shock disrupts the recovery process, we have to 
re-estimate the number of remaining recovery steps, their 
completion times, and the values of the state variables 
after each of the remaining recovery steps. As described 
conceptually in Section 4, we have to first determine 
the damage level based on the reliability of the system. 
Because the reliability is a function of state variables, we 

(16)
ℙ
[
NR(𝜏) = i

]
=

[
Λ̄

r

(
𝜏 , �;�r

)]i
i!

exp
[
−Λ̄r

(
𝜏 , �;�r

)]
,

for i ∈ {0, 1, ⋅ ⋅ ⋅, n},
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�(�) = Φ−1[(�)], where Φ(⋅) is the standard normal 
CDF. Similarly, we can define �(� ,�) = Φ−1{[�(�)]}, 
where [�(�)] = 1 −  [�(�)].

5.4.  System functionality

When the system functionality is directly defined in the 
terms of the system state, system functionality can be 
calculated in parallel with the instantaneous reliability, 
by taking into account any recovery steps or disrupting 
events, which may affect the system state. Such a proce-
dure is similar to the one we described in Section 5.3.

When the functionality is defined by the level of relia-
bility (like for buildings and bridges) the different states 
of functionality are typically specified according to the 
requirements of stakeholders or community to meet dif-
ferent operation levels. In such a case, we need to develop 
a mapping function :[0, 1] × � ↦ [0, 100] which deter-
mines the system functionality at any time instant � ∈ �  
in terms of (�) ∈ [0, 1]. The properties of  such as 
being continuous or discrete and the number of possible 
states in the case of discrete functionality need to be 
defined for the specific system under study. For example, 
in a bridge system when 𝛽tol ≤ 𝛽(𝜏) < 𝛽acc, the traffic load 
might need to be reduced which means reduction in the 
functionality with respect to the intact system. The amount 
of reduction in the functionality of an interstate bridge 
could be specified by the department of transportation. 
Also, when 𝛽(𝜏) < 𝛽tol, the bridge need to be closed to the 
traffic because of safety considerations and, thus, the sys-
tem functionality becomes zero.

6.  Estimation of recovery quantifiers

Various quantities can be defined to describe the recovery 
process (which we call recovery quantifiers). Such recov-
ery quantifiers can be used in life-cycle analysis (Jia et al., 
2017; Kumar & Gardoni, 2014a). The recovery quantifiers 
can also serve as basis to predict and compare the system 
performance for different design and operation strategies. 
Some of the useful recovery quantifiers that can be derived 
from the proposed formulation are (1) the amount of pro-
gress by any given time, in terms of the instantaneous 
reliability and system functionality; (2) the amount of 
required work, in terms of the number of recovery steps; 
(3) the level of risk involved, in terms of the number of 
shocks that might occur during the recovery process; (4) 
the system down/partial functionality time, in terms of the 
recovery duration; and (5) the resilience of the system, in 
terms of the proposed resilience metrics.

The instantaneous reliability is the recovery quantifier 
which is also used to compute the other recovery quan-
tifiers. To calculate the instantaneous reliability, we solve 

Algorithm 2 Simulation of the occurrence times of disrupting 
shocks 

 1: set �s,0 = 0

 2: while 𝜏s,j < 𝜏H do
 3:  draw a sample for the interarrival time ds,j ∼ Exp(�s,ub)
 4:  set �s,j = �s,j−1 + ds,j
 5:  draw a random number u ∼ U(0, 1)
 6:  if 𝜆s(𝜏) < 𝜆s,ub

 7:    reject �s,j and go to step 3
 8:  else
 9:    accept �s,j

10: end

Algorithm 1 Simulation of the completion times of the recovery 
steps 

1: draw n independent copies of �
�(i) ∼ Λr (⋅;�r )∕n

2: set (�r,1,… , �r,n) = sort(�r,�(1) ,… , �r,�(n))
3: set k = max {i:�r,i ≤ �H}
4: accept (�r,1,… , �r,k)

demand models. The general expression for the capacity 
of a system can be written as
 

where C[�(�);�C] is the predicted capacity of the system 
at time � ∈ [0,TR] and �C is a set of parameters of the 
capacity model. Similarly, we can write the following gen-
eral expression for the demand that a shock with intensity 
measure(s) �(�) can impose on the system:
 

where D[�(�), �(�);�D] is the predicted demand on the 
system at time � ∈ [0,TR] and �D is a set of parameters of 
the demand model. For example, one can use the capacity 
models in Gardoni et al. (2002) and the demand models in 
Gardoni, Mosalam, and Der Kiureghian (2003) or Huang 
et al. (2010) for RC bridges. Also, Tabandeh and Gardoni 
(2014, 2015) developed probabilistic capacity and demand 
models for RC bridges, retrofitted with FRP composites.

5.3.  Instantaneous reliability

Using the capacity and demand models in Equations 
(18) and (19), we can write the limit-state func-
tion as g(�) = C(�) − D(�), where the event 
{[�(�), �(�)]:g(�) ≤ 0} defines the failure to meet a 
specified performance level. We can write the con-
ditional failure probability (i.e. fragility) at any time 
� ∈ [0,TR] given the occurrence of a shock with an 
intensity �(�) as  [�(�);�]: = ℙ[g(�) ≤ 0|�(�)], where 
� = (�

�
,�r ,�C ,�D). According to Gardoni et al. (2002), 

there are two possible ways to incorporate the uncertainty 
in � when computing  [�(�);�]. First, we may ignore 
the uncertainty in � and obtain a point estimate of the 
fragility as ̂ [�(𝜏)]: =  [�(𝜏);�̂], where �̂ is a fixed value 
of � (e.g. the mean value). Alternatively, we can account 
for the uncertainty in � to obtain a predictive estimate 
of the fragility as ̃ [�(𝜏)] = �  [�(𝜏);�]f (�)d�, where 
f (�) is the PDF of �.

Given the fragility function at �,  [�(�)] (i.e. ̂ [�(𝜏)] 
or ̃ [�(𝜏)]), we can write the instantaneous failure prob-
ability, f (�), as

 

where f [�(�)] is the PDF of �(�). Using ̂ [�(𝜏)] in Equation 
(20), we obtain a point estimate of the failure probabil-
ity (i.e. ̂f (𝜏)). Alternatively, using ̃ [�(𝜏)], we obtain a 
predictive estimate of the failure probability (i.e. ̃f (𝜏)). 
The instantaneous reliability is simply (�) = 1 − f (�) 
and the corresponding instantaneous reliability index is 

(18)C(�): = C
[
� (�) ;�C

]
,

(19)D(�): = D
[
�(�) , � (�) ;�D

]
,

(20)f (�) = �  [�(�)]f [�(�)]d�(�),
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ends before the occurrence of any disrupting shocks. As 
a result, we can solve Equation (20) as k time-invariant 
reliability problems, using the common approaches of reli-
ability analysis (see, for example, Ditlevsen & Madsen, 
1996; Gardoni, 2017). In the second case, only a subset 
(possibly empty) of the recovery steps is completed before 
the occurrence of the first disrupting shock at �s,1. Now, we 
calculate the reliability of the system in the same way as 
explained for the first case but considering only the subset 
of recovery steps. For the subset of recovery steps which 
are not completed by �s,1, we have to revise the original 
network of recovery activities based on the new damage 
level at �s,1. To determine the new damage level according 
to the proposed reliability-based definition, we have to 
obtain �(�s,1). To this end, we draw a sample from the 
probability distribution of �(�s,1) and use it together with 
�(�−s,1) in the probabilistic predictive models of Δ�(�s,1).  
Next, we estimate the state variables at time τs,1, �(�s,1), 
according to Equation (17). Using the estimated �(�s,1), 
we can write the limit-state function and solve Equation 
(20) to obtain (�s,1). Using �(�s,1) = Φ−1[(�s,1)], we 
can determine the new damage level according to Table 
3. Finally, we select the corresponding network of recovery 
activities, developed a priori for the new damage level. The 
calculation of the instantaneous reliability continues in 
the same way, until either the recovery process ends (i.e. 
all the determined recovery steps all completed). In this 
algorithm �H should be sufficiently big so that the recovery 
process ends before � reaches �H.

The above two steps explain the simulation of the 
instantaneous reliability at any time � conditional on 
{�r,i}

n
i=1, {�s,j}

m
j=1, and {�(�s,j)}

m
j=1. To obtain the uncon-

ditional instantaneous reliability, we need to repeat the 
above two steps for different realizations of {�r,i}

n
i=1,  

{�s,j}
m
j=1, and {�(�s,j)}

m
j=1. We can use the statistical average 

of the simulated instantaneous reliabilities as an estimator 
of the unconditional instantaneous reliability. The number 
of required simulations is determined such that the coef-
ficient of variations (COVs) of the calculated statistical 
averages at all times � ∈ [0, �H] are less than a prescribed 
threshold (e.g. COV = 0.05).

The computational time of the simulations depends 
on the complexity of (1) the occurrence modeling of the 
recovery steps and disrupting shocks, and (2) the resultant 
impact on the state variables. Using the analytical predic-
tive models as proposed in Equations (15)–(19), a naïve 
implementation of the formulation is efficient enough to 
run on a typical personal computer.

We use the simulated realizations of the instantaneous 
reliability to estimate the other recovery quantifiers: NR, 
NS, TR, and the resilience metrics. In each realization of the 
instantaneous reliability, the corresponding total number 
of completed recovery steps, n, the number of disrupting 

Equation (20) at time instants at which changes occur in 
the reliability of the system (Figure 6). We follow two main 
steps: (1) we simulate the occurrence time of the events 
that affect the reliability of the system (i.e. recovery steps 
and disrupting shocks), and (2) we calculate the reliability 
of the system after each event.

To simulate the occurrence times, we first set a time 
horizon, �H, over which we perform the calculations. Next, 
we simulate the completion times of the recovery steps 
using a general non-homogeneous Poisson process with 
a mean function given in Equation (15) and conditioned 
on the event NR(TR) = n. We use the following algorithm 
to simulate {�r,i}

n
i=1:

where π(⋅) is a permutation operator such that 
π(1), …, π(n) is a reordering of 1, …, n; Λr(⋅;�r)∕n is the 
conditional CDF of the completion times of the recovery 
steps; and k ∈ 0, 1,… , n is the total number of recovery 
steps that are completed within the specified time horizon.

Next, we simulate the sequence {�s,j}
m
j=1 such that 

τs,m ≤ τH. Assuming that disrupting shocks are occurring 
according to a general non-homogeneous Poisson pro-
cess with a mean function Λs(�) = ∫ �

0
�s(�)d� such that 

�s(�) ≤ �s,ub for all � ∈ [0, �H], we use the following algo-
rithm to simulate {�s,j}

m
j=1:

In the above algorithm, ds,j is the interarrival time 
between subsequent shocks (j – 1) and j.

In the second step, to calculate the instantaneous reli-
ability of the system, we consider two cases: (1) 𝜏r,k < 𝜏s,1 
and (2) 𝜏r,k > 𝜏s,1. In the first case, the recovery process 

�(�) = Φ−1[(�)], where Φ(⋅) is the standard normal 
CDF. Similarly, we can define �(� ,�) = Φ−1{[�(�)]}, 
where [�(�)] = 1 −  [�(�)].

5.4.  System functionality

When the system functionality is directly defined in the 
terms of the system state, system functionality can be 
calculated in parallel with the instantaneous reliability, 
by taking into account any recovery steps or disrupting 
events, which may affect the system state. Such a proce-
dure is similar to the one we described in Section 5.3.

When the functionality is defined by the level of relia-
bility (like for buildings and bridges) the different states 
of functionality are typically specified according to the 
requirements of stakeholders or community to meet dif-
ferent operation levels. In such a case, we need to develop 
a mapping function :[0, 1] × � ↦ [0, 100] which deter-
mines the system functionality at any time instant � ∈ �  
in terms of (�) ∈ [0, 1]. The properties of  such as 
being continuous or discrete and the number of possible 
states in the case of discrete functionality need to be 
defined for the specific system under study. For example, 
in a bridge system when 𝛽tol ≤ 𝛽(𝜏) < 𝛽acc, the traffic load 
might need to be reduced which means reduction in the 
functionality with respect to the intact system. The amount 
of reduction in the functionality of an interstate bridge 
could be specified by the department of transportation. 
Also, when 𝛽(𝜏) < 𝛽tol, the bridge need to be closed to the 
traffic because of safety considerations and, thus, the sys-
tem functionality becomes zero.

6.  Estimation of recovery quantifiers

Various quantities can be defined to describe the recovery 
process (which we call recovery quantifiers). Such recov-
ery quantifiers can be used in life-cycle analysis (Jia et al., 
2017; Kumar & Gardoni, 2014a). The recovery quantifiers 
can also serve as basis to predict and compare the system 
performance for different design and operation strategies. 
Some of the useful recovery quantifiers that can be derived 
from the proposed formulation are (1) the amount of pro-
gress by any given time, in terms of the instantaneous 
reliability and system functionality; (2) the amount of 
required work, in terms of the number of recovery steps; 
(3) the level of risk involved, in terms of the number of 
shocks that might occur during the recovery process; (4) 
the system down/partial functionality time, in terms of the 
recovery duration; and (5) the resilience of the system, in 
terms of the proposed resilience metrics.

The instantaneous reliability is the recovery quantifier 
which is also used to compute the other recovery quan-
tifiers. To calculate the instantaneous reliability, we solve 

Algorithm 2 Simulation of the occurrence times of disrupting 
shocks 

 1: set �s,0 = 0

 2: while 𝜏s,j < 𝜏H do
 3:  draw a sample for the interarrival time ds,j ∼ Exp(�s,ub)
 4:  set �s,j = �s,j−1 + ds,j
 5:  draw a random number u ∼ U(0, 1)
 6:  if 𝜆s(𝜏) < 𝜆s,ub

 7:    reject �s,j and go to step 3
 8:  else
 9:    accept �s,j

10: end

Algorithm 1 Simulation of the completion times of the recovery 
steps 

1: draw n independent copies of �
�(i) ∼ Λr (⋅;�r )∕n

2: set (�r,1,… , �r,n) = sort(�r,�(1) ,… , �r,�(n))
3: set k = max {i:�r,i ≤ �H}
4: accept (�r,1,… , �r,k)
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tensile strength, and Young’s modulus. Furthermore, we 
consider the impact on the structural properties, includ-
ing the ultimate curvature capacity of the RC section, 
ϕu, the pre-yield lateral stiffness of the RC column, K,  
and the yield displacement of the RC column, Δy. Modeling 
the structural properties is convenient as we use them 
directly in the probabilistic capacity and demand models 
discussed later.

To determine the damage levels, we use the reliabil-
ity-based definitions in Table 3. For this example, we 
assume the following values for the reliability thresholds: 
�0 = 3.5, �acc = 2.5, �tol = 1.5. We also define the following 
mapping function  between the instantaneous reliabil-
ity and the system functionality:

 

7.1.  Recovery process and the impact on the system 
state

For this example, we use the network of recovery activities 
already shown in Figure 5. Table 4 shows the durations of 
the individual recovery activities, obtained from the RS 
Means database (Means, 2008) and similar projects (Saini 
& Saiidi, 2013). In addition to the most likely durations 
of the individual activities, the table reports the lower 
and upper bounds of the durations that represent the 
variability in their estimates. The table also shows the 
set of predecessors of each activity (recovery activities 
needed before a specific activity can start). We need the 
information on the predecessors to estimate the comple-
tion times of the recovery steps. In this example, because 
there is only one recovery step, the completion time of 
the recovery step is the completion time of the recovery 
process (i.e. �r,1 = TR).

(21) =

⎧
⎪⎪⎨⎪⎪⎩

0%, 𝛽 < 𝛽tol,

30%, 𝛽tol ≤ 𝛽 < 𝛽acc,

70%, 𝛽acc ≤ 𝛽 < 𝛽0,

100%, 𝛽 ≥ 𝛽0.

shocks, m, and the completion time of the last recovery 
step, �r,n, are realizations of NR, NS, and TR, respectively. 
We can use the obtained realizations of NR, NS, and TR to 
approximate the corresponding probability distributions, 
based on a probability estimation approach (e.g. Bishop, 
2006)

To quantify the system resilience, we can select a set 
of resilience metrics from the ones defined in Equations 
(7)–(11). We can use the realizations of the instantaneous 
reliability in the respective equations to obtain the cor-
responding realizations of the reliability-based resilience 
metrics. We can then use these realizations to obtain the 
respective statistics of the resilience metrics, similar to 
the other recovery quantifiers. When the resilience is in 
terms of the system functionality, we can obtain the func-
tionality-based resilience metrics by first obtaining the 
realizations of the system functionality by applying the 
mapping function  to the realizations of the instanta-
neous reliability and then proceeding as for the estimation 
of the reliability-based resilience metrics.

7.  Illustrative example

This section illustrates the proposed formulation con-
sidering the resilience analysis of an example RC bridge 
subject to seismic excitations. Figure 7 shows the con-
figuration of the considered (single column, single bent) 
bridge together with the schematic layout of the consid-
ered site. The details of the considered bridge can be found 
in Kumar and Gardoni (2014a) and Jia et al. (2017). For 
the purpose of the recovery of the example bridge, we 
consider a repair strategy with FRP composites based on 
Saini and Saiidi (2013).

To model the impact of the recovery process and dis-
rupting shocks on the system state, we consider both 
the impact on the state variables as well as the resulting 
impact on the structural properties. Specifically, the recov-
ery process introduces new state variables which are the 
properties of the FRP composites, including thickness, 

Figure 7. The considered RC bridge and layout of the hypothetical site (adapted from Jia et al., 2017).
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model {�s,j}
m
j=1, we use a homogeneous Poisson process 

for the occurrence of the earthquake mainshocks and a 
non-homogeneous Poisson process for the occurrence 
of the earthquake aftershocks. The details of modeling 
the occurrence of earthquake mainshock–aftershocks 
sequence can be found in Jia et al. (2017).

In order to determine the impact of a disrupting shock 
on the systems state, we need to estimate the intensity 
of the shock. In this example, we use the spectral accel-
eration, Sa, as the intensity measure. To obtain the PDF 
of Sa, we need to perform a probabilistic seismic hazard 
analysis for the mainshock–aftershocks sequence. The 
details of the seismic hazard analysis can be found in 
Kramer (1996) and Yeo and Cornell (2009b). For a given 
value of Sa, we use the probabilistic models developed 
by Kumar and Gardoni (2014b) to predict the degrada-
tion of ϕu, K, and Δy. The details on the state-dependent 
models can be found in Jia and Gardoni (2017b). Once 
we obtain the values of ϕu, K, and Δy, we use them in the 
probabilistic capacity model developed by Gardoni et al. 
(2002) and the demand model developed by Gardoni 
et al. (2003) to write the limit-state function and then 
calculate the instantaneous reliability, as explained in 
Section 6.

We model the duration of each individual recovery activ-
ity as a random variable with a Beta distribution, according 
to the information in Table 4. We then use stochastic activity 
network scheduling techniques (Duncan, 1996) to estimate 
�r,1, based on the samples of the durations of the individual 
recovery activities. Table 5 shows the estimated distribution 
parameters for �r,1 in different recovery projects correspond-
ing to the different levels of damage. As discussed in Section 
5.1, for the complex networks of recovery activities with large 
numbers of recovery steps (i.e. large n), it is more conven-
ient to first develop a model for Λr(⋅), following the general 
expression in Equation (15), and then use the Poisson pro-
cess as in Equation (16) to generate realizations of {�r,i}

n
i=1.

The recovery process affects the system state by adding 
the FRP properties (i.e. thickness, tensile strength, and 
Young’s modulus) to the set of state variables. The recov-
ery process also affects the structural properties ϕu and Δy 
(but not K), the extent of which depends on the properties 
of the FRP composites. The properties of FRP composites 
can be selected to achieve the desired state of the system 
(e.g. in terms of target reliability). In this example, we set 
the target reliability after the completion of the repair to 
be 10% higher than the reliability of the original as-built 
bridge. One can use the capacity model in Tabandeh and 
Gardoni (2014) and the demand model in Tabandeh and 
Gardoni (2015) to formulate a reliability-based search 
problem and obtain the values of the FRP properties.

7.2.  Disrupting shocks and the impact on the 
system state

In this example, we consider the earthquake mainshocks 
and the following aftershocks as the potential disrupting 
events that might occur during the recovery process. To 

Table 4. The time table of the recovery activities for the repair of the damaged RC bridge with FRP composites.

Number Activity

Duration (days)

Predecessor(s)Lower bound Most likely Upper bound
1 Inspection 2 3 5
2 Bidding 15 20 30 1
3 Mobilization 5 7 15 2
4 Erection of scaffold (abutment) 1 2 3 3
5 Erection of temporary support 1 2 3 3
6 Erection of scaffold (pier) 1 2 3 3
7 Concrete chipping (abutment) 1 2 3 4
8 Epoxy grouting (abutment) 1 2 3 7
9 Mortar patching (abutment) 1 2 3 8
10 Curing (abutment) 7 10 15 9
11 Removal of scaffold (abutment) 1 2 3 10
12 Concrete chipping (pier top) 1 2 3 4 and 5
13 Epoxy grouting (pier top) 2 3 3 12
14 Patching concrete (pier top) 1 2 3 13
15 Curing (pier top) 7 10 15 14
16 FRP surface prep (pier) 0.5 1 2 15
17 Apply FRP (pier) 0.5 1 2 16
18 Removal of scaffold (pier) 0.5 1 2 15 and 17
19 Minor repairs 3 4 5 11 and 18
20 Demobilization 0.5 1 2 19

Table 5.  The estimated parameters of Beta distributions for τr,1, 
corresponding to the three damage levels.

Damage Levels

Beta distribution  
parameters

Range of Beta dis-
tribution (days)� �

I 5.29 6.78 [5,10]
M 7.36 9.38 [19,34]
H 8.36 13.78 [40,77]
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the corresponding recovery time is longer than that for the 
small values of Sa, with a mean recovery time of �[TR] ≈ 26 
days. For large values of Sa (i.e. Sa ∈ [0.35 g , 1.5 g]), the ini-
tial damage level is heavy and the corresponding recovery 
time has the mean �[TR] ≈ 54 days. Having three discrete 
damage levels creates these three trends over time.

Figure 9 shows the recovery curve in terms of the pre-
dictive instantaneous reliability index, 𝛽(𝜏). The figure 
also shows the confidence band (between 𝛽(𝜏) − 𝜎𝛽(𝜏) 
and 𝛽(𝜏) + 𝜎𝛽(𝜏)) due to the statistical uncertainty in �. 
We can observe that most of the recovery progress occurs 
over two distinct intervals, � ∈ [5, 9] and � ∈ [21, 29].  
To explain this observation, we note that the initial dam-
age level is a function of 𝛽(𝜏 = 0) which is obtained using 
Equation (20) considering 𝛽(𝜏 = 0, Sa) instead of  [�(�)]. 
In this example, 𝛽(𝜏 = 0, Sa) is such that for the most likely 
values of Sa, the initial damage could be either insignificant 
or moderate. When the initial damage level is insignificant, 
the recovery time is in the first of the two intervals with 
probability ℙ(TR ∈ [5, 9]|DL = I) = 0.997. On the other 
hand, when the initial damage level is moderate, the prob-
ability that the recovery process ends within the second 
interval is ℙ(TR ∈ [21, 29]|DL = M) = 0.954. We can also 
observe that the confidence band is larger in the interval 
� ∈ [9, 21] due to the various possible recovery trends, 
which are highly sensitive to the initial damage level.

Figure 10 shows the PDF and PMF of the recovery 
quantifiers TR (Figure 10(a)), and NS (Figure 10(b)). In 
this example, because there is only one recovery step, 
ℙ(NR = 1) = 1. Figure 10(a) also shows the conditional 
PDFs of TR, fTR|DL(�|DL), for three different initial damage 
levels, considering that no disrupting shock occurs during 
the recovery (i.e. the PDFs in Table 5). We can observe 
that fTR

(�) in this example is bimodal. This is because, as 
explained earlier, the initial damage level of the exam-
ple bridge could be either insignificant or moderate with 

7.3.  Results and discussion

In this example, we used COV = 0.05 of the instantane-
ous reliability index as the convergence criterion, which 
required approximately 10,000 simulations of {�r,i}

n
i=1, 

{�s,j}
m
j=1, and {�(�s,j)}

m
j=1. The analysis took approximately 

10 min of runtime on a personal computer (Intel(R) 
core(TM) i5-4460 CPU @ 3.20 GHz with 8.00 GB RAM).

Figure 8(a) shows the recovery surface in terms of the 
predictive reliability index, 𝛽(𝜏 , Sa), and the PDF of Sa, 
f(Sa), where Sa is the intensity measure of the earthquake 
after which the recovery process starts. Furthermore, to 
explore the impact of Sa on the recovery process and the 
progress over time for a given Sa, Figure 8(b) shows the 
curves 𝛽(𝜏 = 50, Sa) and 𝛽(𝜏 , Sa = 0.5). The white lines 
indicate the locations of �tol = 1.5 and �acc = 2.5. For 
small values of Sa (i.e. Sa ∈ [0, 0.1]), the initial damage 
level of the system is insignificant and the system quickly 
recovers up to the desired value, with a mean recovery 
time of �[TR] ≈ 7 days. For intermediate values of Sa (i.e. 
Sa ∈ [0.1, 0.9]), the initial damage level is moderate and 

(b)(a)

Figure 8. The (a) recovery surface and (b) recovery curve of the example RC bridge in terms of predictive reliability index.

Figure 9. The recovery curve of the example RC bridge in terms of 
the predictive instantaneous reliability index.
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instantaneous reliability. For example, with reference to 
Equation (8), we note that in �Q the value of 𝜌Q̄,res(=16.5) 
is the same for the reliability- and functionality-based 
metrics. However, the value of Q̄res∕Qtar in the reliabili-
ty-based metric (=0.006) is significantly smaller than that 
of the functionality-based metric (=0.468). Furthermore, 
we observe that the differences among the reliability- and 
functionality-based metrics diminishes as the order of the 
metrics increases (e.g. the difference between the two �Q’s  
is less than that of �Q’s). This is because increasing the 
order of the resilience metric, increases the effect of the 
recovery trend (determined by the time instants when a 
change in the system state occurs) on the resilience metric, 
as compared to the effect of the scale of variation in the 
performance indicator. The recovery trend is similar for 
both the reliability- and functionality-based metrics; thus, 
the difference between the corresponding resilience met-
rics decreases with increase in the order of the resilience 
metric. These observations indicate (1) the importance 
of considering functionality in addition to reliability (i.e. 
considering functionality-based resilience metrics instead 
of only reliability-based resilience metrics); and (2) the 
importance of choosing the metrics of interest and inter-
preting/communicating the obtained results.

8.  Conclusion

This paper proposed a rigorous mathematical formula-
tion to quantify the resilience of engineering systems. 
Proposed resilience metrics can accurately quantify the 
resilience of a given engineering system and differenti-
ate between various resilient characteristics of any two 
systems. Resilience metrics constitute a systematically 
expandable set of partial descriptors, which can replace/
characterize the recovery curve of the system with the 
desired level of accuracy. The paper provided a general 
nomenclature for the resilience metrics and the effect of 
system properties (including physical characteristics) on 

comparable probabilities (while the probability of being 
heavy is negligible). Due to the occurrence of disrupting 
shocks, we also observe that the peaks of fTR

(�) for exam-
ple, bridge shift toward higher values of � with respect to 
the modes of fTR|DL(�|DL) for insignificant and moderate 
initial damage levels.

In Figure 10(b), we observe that ℙ(NS = m) is concen-
trated at m = 0, and decreases significantly for higher val-
ues of m. This is because the mean return period of seismic 
shocks (≈ 6 years) is significantly larger than the expected 
completion time of the recovery process (≈ 16 days); thus, 
it is unlikely that an earthquake would disrupt the recov-
ery process.

We use the instantaneous reliability and the system 
functionality as the performance indicators to estimate 
the reliability- and functionality-based resilience metrics 
of the example bridge. To obtain the system functional-
ity, we use the mapping function  defined in Equation 
(21). Table 6 summarizes the estimated statistics of the 
reliability- and functionality-based resilience metrics �Q,  
�Q, and �1∕3

Q
. The values of the standard deviations for 

�Q, �Q, and �1∕3

Q
 are large (with respect to the mean val-

ues). This is due to the effect of the initial damage level 
on the recovery process. Comparing the resilience met-
rics based on the two performance indicators, we observe 
that the mean values of the functionality-based resilience 
metrics are larger than the reliability-based metrics. This 
is because the scale of variation, as defined by Q̄res∕Qtar,  
of the system functionality is higher than that of the 

(a) (b)

Figure 10. The PDF and PMF of the (a) recovery time, and (b) number of disrupting shocks during the recovery process.

Table 6. The statistics of reliability- and functionality-based resil-
ience metrics.

Resilience 
metric

Reliability-based Functionality-based

Mean
Standard 
deviation Mean

Standard 
deviation

�Q 0.29 1.95 9.36 11.27
�Q 1.58 2.62 4.23 3.12
�

1∕3

Q
3.28 4.04 4.74 3.31
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