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ABSTRACT

The resilience of a system is related to its ability to withstand stressors, adapt, and rapidly recover
from disruptions. Two significant challenges of resilience analysis are to (1) quantify the resilience
associated with a given recovery curve; and (2) develop a rigorous mathematical model of the
recovery process. To quantify resilience, a mathematical approach is proposed that systematically
describes the recovery curve in terms of partial descriptors, called resilience metrics. The proposed
resilience metrics have simple and clear interpretations, and their definitions are general so that
they can characterize the resilience associated with any recovery curve. This paper also introduces a
reliability-based definition of damage levels which is well-suited for probabilistic resilience analysis.
For the recovery modeling, a stochastic formulation is proposed that models the impact of recovery
activities and potential disrupting shocks, which could happen during the recovery, on the system
state. For illustration, the proposed formulation is used for the resilience analysis of a reinforced
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concrete (RC) bridge repaired with fiber-reinforced polymer.

1. Introduction

The prosperity of modern societies relies on the ability of
infrastructure systems to deliver services and resources
to human communities (Corotis, 2009; Ellingwood
etal.,, 2016; Gardoni, Murphy, & Rowell, 2016). The safety
assessment of such systems has been subject of much
research (see, for example, Gardoni & LaFave, 2016).
The resilience of infrastructure systems is another cru-
cial attribute that has gained much attention within the
engineering discipline over the past 10-15 years (Bruneau
et al., 2003; Ellingwood et al., 2016; Guidotti, Gardoni, &
Chen, 2017; Guidotti et al., 2016; McAllister, 2013). The
resilience of a system integrates the system state in the
immediate aftermath of a disruption, which is typically
related to the system safety, with the recovery process
to achieve a desirable system state (Mieler, Stojadinovic,
Budnitz, Comerio, & Mahin, 2015). The challenges at the
core of resilience analysis are to (1) quantify the resilience
associated with a given system state and a selected recov-
ery strategy (which together shape its recovery curve);
and (2) develop a rigorous mathematical model of the
recovery process.

We can determine the system state at any time in terms
of quantities such as the instantaneous reliability or system
functionality. A recovery curve represents the path of such
quantities over the recovery duration. The recovery curve
of a system is typically a non-decreasing function of time
that can be continuous, discrete, or piecewise continuous.
However, the occurrence of disrupting shocks at discrete
points in time during the recovery can cause sudden drops
in the recovery curve. Besides the potential disrupting
shocks, there are other influencing factors such as the
availability of resources for repair and weather conditions,
which can affect the actual recovery.

Once properly defined, the recovery curve of a system
provides the complete information about its resilience.
Thus, to accurately quantify the resilience of the system,
resilience metric(s) must capture all the relevant charac-
teristics of the recovery curve. Mathematically, it follows
that a single metric cannot generally replace a curve and
capture all of its characteristics.

A number of studies have attempted to quantify the
resilience of physical and organizational systems. Among
the first contributions, Bruneau et al. (2003) quantified
the resilience of a system as the integral of the recovery
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curve over time. Chang and Shinozuka (2004) quantified
resilience in terms of the probability that a system’s perfor-
mance loss, right after a disruption, and the corresponding
recovery time would be less than some thresholds. Several
variants of the initial resilience metrics can be found in
more recent studies, as in Deco, Bocchini, and Frangopol
(2013) and Ayyub (2014). The significance of these initial
contributions is to quantify the resilience of a system with
a simple metric. However, as mentioned earlier, a single
metric can only provide partial information about actual
resilience. Furthermore, one cannot expand the existing
resilience metrics in a systematic way, to provide the full
description of the resilience of a system. As a result, the
existing metrics do not fully characterize the recovery
curves with different shapes and might not be able to
distinguish among the different resilience levels.

For modeling the recovery process, Cimellaro,
Reinhorn, and Bruneau (2010a) and Deco et al. (2013)
proposed parametric functions for the recovery curves,
the shapes of which are selected based on qualitative
explanations of the recovery situation, such as the severity
of the initial damage and preparedness of a system/society
in responding to a disruptive event. To account for the
uncertainty in the recovery modeling, probability distri-
butions are assigned to the parameters of the functions.
The analytical modeling of the recovery process facili-
tates the calculation of resilience, while incorporating the
uncertainty. However, there remain questions regarding
the accuracy of the parametric functions in replicating the
actual situation of the recovery. In particular, due to the
lack of explicit relation between the shape of the recov-
ery curve and its influencing factors, it is not clear how
new information such as ongoing progress of the work or
increased resource availability may reduce the uncertainty
involved in the recovery modeling (e.g. uncertainty in the
choice of the parametric function for the recovery curve
and statistical uncertainty in the estimate of the unknown
model parameters). Furthermore, because the recovery
modeling is at the system level, it is not generally possible
to use the information (e.g. time and expenditure) gained
from the recovery of one system to model the recovery
of another system. Finally, these approaches cannot take
advantage of the information available at the level of indi-
vidual recovery activities (which collectively determine
the scope of work at the system level).

This paper proposes a rigorous mathematical formula-
tion for resilience analysis. In this formulation, we charac-
terize the resilience associated with a given system state, in
the immediate aftermath of a disruption, and for a selected
recovery strategy by proposing resilience metrics, which
form a complete set of partial descriptors of the recovery
curve. Such metrics have two desirable properties: (1)
they are simple and have clear interpretations, and (2)

it is possible to expand a given (sub-)set of metrics with
additional ones in a systematic way to provide further
information about system resilience up to capturing the
entire information in the recovery curve. The first prop-
erty facilitates the understanding and communication
of the level of resilience of a system to the public and
increases the public involvement in the decision-making
process. The second property enables the formulation to
characterize the resilience associated with any given sys-
tem state and a selected recovery strategy with the desired
level of accuracy.

Developing the recovery strategy and modeling the
recovery process begins with determining the damage
level. We propose a reliability-based definition of dam-
age levels, which accounts for safety considerations and is
ideally suited for the probabilistic resilience analysis. For
the recovery modeling, we develop a stochastic formu-
lation that models the impact of recovery activities and
disrupting shocks (which could happen during the recov-
ery) on the system state. The key elements of the proposed
formulation are: (1) modeling the completion time of the
recovery steps (a group of recovery activities that improve
the reliability of the system), and the occurrence time of
disrupting shocks, and (2) predicting the system state after
the completion of each recovery step or the occurrence of
a disrupting shock. We model the completion times of the
recovery steps as a general Poisson process with a mean
function that accounts for the recovery condition (e.g.
required recovery activities, the availability of resources,
weather condition). The occurrence times of disrupting
shocks generally depend on the type of hazard consid-
ered in the formulation. The proposed formulation can
employ hazard specific predictive models for this purpose
(e.g. a Poisson or Renewal process to model the occur-
rence of seismic shocks). When planning the recovery, the
desired values of variables that define a system, also called
state variables, such as material properties, are specified
after the completion of each recovery step. We use such
state variables in existing capacity and demand models
to determine the corresponding system state after each
recovery step. To model the impact of disrupting shocks,
we use the models proposed by Jia and Gardoni (2017a)
to determine the impact on the state variables. As in the
case of the recovery steps, we use the predicted values
of the state variables in existing capacity and demand
models to determine the system state. We illustrate the
proposed formulation, considering the resilience analysis
of a reinforced concrete (RC) bridge, repaired with Fiber
Reinforced Polymer (FRP) composites.

The rest of the paper is organized into seven sections.
The next section presents the proposed mathematical for-
mulation of resilience analysis and the proposed resilience
metrics. Section 3 illustrates the phases of the recovery



process and their role in resilience quantification. Section
4 describes the definition and role of instantaneous reli-
ability, and its relation with system functionality. Section
5 explains the proposed stochastic formulation to model
the recovery process. Section 6 discusses the solutions of
quantities of interest. Section 7 presents a numerical exam-
ple to illustrate the proposed formulations. Finally, we
summarize the contributions and draw some conclusions.

2. Proposed resilience metrics and
mathematical formulation for resilience analysis

Assessing the resilience of engineering systems is crucial
both for pre-disruption effective mitigation planning and
post-disruption optimal resource allocation. There are
many factors that influence the resilience of engineering
systems, including the design specifications, the availabil-
ity of resources needed for the repairs (e.g. funding and
materials), the accessibility of damaged components, pre-
paredness of recovery plans, and environmental condition
during the recovery.

In this section, we first review the current practice
of resilience quantification, the available metrics and
their limitations. Then, we propose a new mathematical
formulation for resilience analysis based on which we
develop new resilience metrics that overcome the cur-
rent limitations.

Figure 1 shows a typical recovery curve used in the
literature to quantify resilience (Bocchini, Deco, &
Frangopol, 2012; Bonstrom & Corotis, 2016; Cimellaro,
Reinhorn, & Bruneau, 2010b). An external shock (e.g.
an earthquake) at time ¢, causes an instantaneous reduc-
tion in the system state, represented by an indicator,
Q(1), (e.g. the system functionality). The residual system
state, Q,,,, depends on the intensity of the shock, design
specifications, and the system state before the shock.

System State Indicator, @ (t)

Related to
resilience

Qrcs - -

Time, t

Figure 1. A typical recovery curve used in the literature to quantify
resilience.
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Subsequently, the system undergoes a recovery process
to achieve a desired Q(t) (e.g. the original functionality
or a higher one, if desired). After meeting the desired
requirements, the recovery process terminates at time ¢,.
The impact of resilience influencing factors, listed earlier,
would be reflected in the shape of the recovery curve
and the recovery time, T,: = t, - t,. The resilience of the
system is typically quantified as a function of the shaded
area in Figure 1.

Mathematically, the typical resilience metric (see, for
example, Bonstrom & Corotis, 2016; Bruneau & Reinhorn,
2007; Cimellaro et al., 2010b) is defined as

(1)

. Jy Qdt [T Qoyde
o TR B TR ’

where we use the change of variable 7 = ¢ - ¢, and define
Q (7): = Q(¢t). The limitation of the resilience metric, R, is
that it gives the same value of resilience for different com-
binations of Q(z) and T,. We explain this limitation with
the following example. Consider the three possible recov-
ery curves in Figure 2. Table 1 summarizes the mathemat-
ical expressions for the three recovery curves and their
T,s. The three different recovery curves correspond to
different levels of resilience (e.g. the curve Linear I might
be considered the most desirable recovery). However, as
shown in Table 1, the values of R for the three recovery
curves are the same (i.e. all equal to 0.75).

System State Indicator, @ (7)

Linear 1

=] Linear 2
i @229 S-shaped ;
O 8 OIS
0 1 2
Recovery Time, 7

Figure 2. The current resilience metrics cannot differentiate the
resilience associated with the three different recovery curves.

Table 1. The mathematical expressions of the recovery curves in
Figure 2 and the associated resilience metric R.

Description Ty Recovery function R R(tH =2) R(tH =3)
Linear 1 1 05+0.5t 0.75 0.87 0.92
Linear 2 2 05+0.25t 0.75 0.75 0.83
S-shaped 2 0.75-0.25cos(mt/2) 0.75 0.75 0.83
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To distinguish the resilience associated with the recov-
ery curves having different T,’s (e.g. recovery curves Linear
1 and Linear 2 in Figure 2), Reed, Kapur, and Christie
(2009) proposed a different definition of R by replacing
t, in Equation (1) with a fixed time horizon t,, (the same
formulation was also used in Cimellaro et al., 2010a; Deco
etal., 2013). Let us denote the metric in Reed et al. (2009)
as R(t,)). The value of R(t,)) for a given system and a fixed
t, can change with ¢,, though the ability of the system to
recover (i.e. its resilience) may remain unchanged. The
last two columns of Table 1 summarize the values of R(t,,)
associated with the three recovery curves in Figure 2, con-
sidering t,, = 2 and t,, = 3 (both with ¢, = 0). The values of
R(t,,) for each of the three recovery curves increase as t,,
increases; however, the ability of the system to recover (i.e.
the recovery curve) remains unchanged. Furthermore,
R(t,,), for the selected values of ¢, does not distinguish the
resilience associated with the recovery curves having dif-
ferent trends (i.e. recovery curves Linear 2 and S-shaped).

We propose a new resilience analysis that quantifies
the resilience associated with a given recovery curve in
terms of the partial descriptors of Q(z). The proposed
partial descriptors are inspired by those in probability
theory and mechanics. The analogy between the pro-
posed resilience metrics and those in probability theory
and mechanics is described later in this section after the
proposed resilience metrics are defined. To explain the
proposed resilience analysis, we first develop the tools
for describing the recovery process and then derive the
partial descriptors. The recovery curve Q(z) that we term
the Cumulative Resilience Function (CRF), hereafter, rep-
resents the overall recovery progress by time 7. Once Q(z)
is specified, we can obtain the Instantaneous Rate of the
Recovery Progress according to the following three math-
ematical formulations.

Definition 1: When the CRF is a continuous function
of time, the instantaneous rate of recovery progress is the
time derivative of the CRE. Mathematically, we can write
itasq(r) = dé/dr for all 7 € [0, Ty], which we call the
Resilience Density Function (RDF). The RDF is undefined
at a possible finite set of points where the derivative of the
CRF does not exist (i.e. CRF is a continuous function of
class C?). We can obtain the recovery progress over any
time interval (7, 7,] C [0, T;]as follows:

TV

Q(’ru <7< TV) = J q(z)dr. (2)

Tu

_ [ q,(®)log, [4,()/ 3(®)]dz + [, g,(x) log, [4,(x)/ 4(x)] d=

Definition 2: When the CRF is a step function, we can
no longer define the RDF because of the discontinuity
in the CREF. In such cases, we define the Resilience Mass
Function (RMF) as q(z) = Yy AQ(7,)8(z — 1), for all
7 € [0, T;] where AQ(Tk): = Q(Tk) — Q(T,:) is the size of
the jump in CRF at the discontinuity point 7 = 7, (where
7,: = 0); 7, is the time instant immediately before 7,; and
4(*) is the Dirac delta function. Similar to the continuous
case, we can obtain the recovery progress over any time
interval (z,, 7,] C [0, T;] as

N 3)
(e
= AQ(Tk)l{T <Tk<'r}’
k=0
where 1, << 18 an indicator function such that
L, ooy =1 whent, € (7, 7,]and 1, ooy, =0 other-

wise. To reflect that at 7, the CRF is equal to Q. (typically
non-zero), we define AQ(0): = Q...

Definition 3: In general, the CRF might be a combi-
nation of the previous two cases (i.e. Q) is a piecewise
continuous function). In this case, we write the instanta-
neous rate of recovery progress as

q(r) = g(r) + kz AQ(Tk)é(T - ’l'k), T E [0, TR] , (4)
—0

where §(7) is the RDE corresponding to the continuous
part of the CRE, and AQ(Tk)é(T — 7, )is the RMF, account-
ing for the discontinuities of the CRFE. Accordingly, we
can write the recovery progress over (7, 7,] C [0, Tz] as

TV

Q(Tu <7< ‘L'V) = Jq(r)dr + Z AQ(Tk)l{ru«ks@}' (5)
k=0

TM

The CRF or RDF/RMF of a system provides complete
information about its residual state, the recovery process
and, thus, its resilience. To help in the interpretation of
the CRE RDE and RME one can see the analogy between
their definitions and those of the Cumulative Distribution
Function (CDF), Probability Density Function (PDF) and
Probability Mass Function (PMF) that are used to describe
random variables in probability theory.

To capture the degree of disparity between any pairs
of recovery curves, we define the measure of Resilience
Disparity, A(q,,q, ), as follows:

A(%)‘]Z): =

o () +ou(n,) -



where T, and T, are the recovery durations cor-
respondmg to g, and g; Ty =max(T,, T, ) and
q(): = [gq,(7) + q,(v)]/2. The resﬂlence disparity is
bounded between 0 and 1 such that A(q;,q,) = 0, when
q,(7) = q,(z) for every = €[0,T,] and A(ql,qz) =1
when g, (7) = 0 corresponds to g,(z) > 0and, conversely,
q,(7) = 0 corresponds to q,(z) > 0, for every z € [0, T}].
The proposed resilience disparity measure is analogous
to divergence measures in probability theory. Specifically,
when the CRFs are replaced with CDFs, A(q,, g,) corre-
sponds to the Jensen—Shannon entropy (Lin, 1991).

Besides the resilience disparity, which gives a general
comparison of g(7)’s, partial descriptors can be defined to
capture specific characteristics of the resilience. First, we
can define the central measures of resilience. We define
the Center of Resilience, p, as

. J-OTR Tq(T)dT _ Qresp n %
¢ IOTR q(’l’)dT Qtar Qres Q

tar
where Q,../Q,, is the contribution of the residual
state to p,, in which Q,:= Q(Ty); Pores: = T 15 the
center of resilience, when considering only the resid-
ual state; Q,../Q,, is the contribution of the recov-
ery process to p,, in which Q.;: = Q,, — Q. and the

[IO Tq(T)dT + Zk:l TkAQ(Tk)l{OgrkgTR}:l /Qres is

the center of resilience, when considering only the recov-
ery process. Because 7, = 0, Equation (7) simplifies into

pQ,res’ (7)

p Q,res -

Qres
Qtar

pQ = pQ,res‘ (8)

The proposed expression for p, distinguishes between
the role of the residual system state (which affects Q)
the recovery process (which affects py .., in the quantifi-
cation of resilience. Being able to decouple the two contri-
butions facilitates the determination of the acceptable level
of resilience in terms of a balance between the residual
system state and the corresponding recovery duration.
We also note that the value of p, depends on the choice
for Q(z) (e. g. functionality or instantaneous reliability).
Specifically, the different choices of Q(z) affect the scale of
variation, Q,../Q,,» in Equation (8). As a result, the inter-
pretation of the obtained results for p,and decisions about
the acceptable level of resilience depend on the choice of
Q).

Two other central measures are the Median of Resilience
and the Mode of Resilience. The Median of Resilience, p, y 5,
is the time instant at which the CRF is equal to Q(T )/2.
The Mode of Resilience is the time instant correspond-
ing to the maximum value of the instantaneous rate of
recovery progress. Mathematically, we can write it as

PQmax = ATEMAX o6 7 | q(7).
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We extend our definitions of the partial descriptors and
introduce the measures of dispersion of the recovery pro-
cess. We define the Resilience Quantile, p, ,, which is the
time instant corresponding to the wth (0 < w < 1) quan-
tile of the CRE. Mathematically, we write the resilience
quantile as p, , = min{z € [0, T]:w < [Q(T)/Q(TR)] |2
The median of resilience, p, 5, is a special case for which
w = 0.5. Using p,, ,» we can define different measures of
dispersion as the length of the intervals[p, > Paw, ], where
0<w,<w, <1. Wealso define an alternative smgle meas-
ure to capture the dispersion that we call the Resilience
Bandwidth, Xo and mathematically, we write it as

72 _IoTR (z- /’Q)zq(f)df
N IOTR q(r)dr

) (1 )“ (e o) o ©)

Q
Z PQ AQ(Tk>1{O<Tk<T }]
k=0

The small values of y,, represent a situation in which a
large percentage of the recovery process is completed over
a short period of time around po- In contrast, the large
values of y,, describe a situation in which the recovery
process is spread over a long period of time. We can also
define the Relative Resilience Bandwidth as y, /Ty, which
describes the spread of the recovery process with respect
to the total recovery time, and the Bandwidth Coefficient
as x,/po which describes the spread of the recovery pro-
cess with respect to the center of resilience.

Another useful measure is the skewness of the recov-
ery process. Mathematically, we can write the Resilience
Skewness, y,, as

T, 3
Jo" (7 = po) a(r)de
TR
I, “q()dr
1 TI{
= — T— g(r)dr
i, = 10
+ 2 (@
=0
The magnitude of the resilience skewness determines
the degree of asymmetry of the recovery with respect to p,,.
Its algebraic sign defines the direction of the skewness.
From Equation (10), we can see thaty, = Owhen the RDF
and RMF are symmetric with respect to Po Furthermore,
¥, > 0 when the RDF and RMF have longer tails to the
right of p; and y, < 0 when the left tails of the RDF and
RMF are longer. We can interpret y, = 0 as the condition
in which the progress in a recovery process has the same

pace before and after p,, Wheny, < 0, the progress is slow
during the interval [0, p,] and then it becomes faster over

Vot =

pQ AQ( ) {ose<1, } |-
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the next period, (p, Tl This is the most typical case for
recovery processes that include a lengthy planning phase in
the post-disruption period. If the planning is done ahead of
the disruptive event as a pre-disruption planning and prepa-
ration, then we can have y, > 0in which the progress picks
up quickly and the relative most time-consuming portion
is the actual repair/reconstruction (faster in interval [0, Pob
and it slows down over the next interval, (p,, Tz]). We
can also define the Relative Resilience Skewness as y, / TS,
which describes the skewness of the recovery process
with respect to the total recovery time, and the Skewness
Coefficient as v, / )(é, which describes the skewness of the
recovery process with respect to the recovery bandwidth.

As a generalization, we can define the nth Resilience
Moment as follows:

Qres (n)

T, _
n ! an(T)dT Qres n
<>_=Io = Sres 0w o0 g

Q- T Q
IO : q(T)dT Qtar ' Q Q res’
where pg')m: =17, and
P = == | Iy "a(dz
Q,res” 0
I'CS

+k2 7 AQ(Tk)IKOSTkSTR}
=1

] (12)

The resilience associated with a given system state and
a recovery strategy can be completely defined in terms
of all its p(")s However, in practice, p,, and Xo might be
sufficient to characterize the associated resilience. We can
define p, and y,, as functions of the first two resilience

moments as p, = pQ ;and y, = \/pg) - pQ

As mentioned earlier, there is an analogy between the
proposed resilience metrics and equivalent ones in prob-
ability theory and mechanics. In particular, p, y,and y,,
correspond to the mean, standard deviation, and skewness
of a random variable when the CRF is replaced with a
CDE. Similarly, p, and y,, are analogous to the centroid
and the radius of gyration of the area under g(7). Note
that, though the proposed resilience analysis is general,
the above analogies hold for a non-decreasing CRE.

A closer look to the definitions of R and p,, shows that
there are similarities in the way the two metrics quantify
resilience. In particular, the following equation shows that
P, is an affine function of R:

Q(T) - R
po=—F—XT, 13
= TRy R (13)

Hence, for a given recovery process (i.e. given Q(TR)
and TR), the information that R provides about resilience is
equivalently captured by p,. However, p, can differentiate

Table 2. The proposed resilience metrics, calculated for the recov-
ery curves in Figure 2.

Description Pq Xo
Linear 1 0.25 0.32
Linear 2 0.50 0.65
S-shaped 0.50 0.59

between recovery curves with the same Q( T,) but differ-
ent T’s. In addition, R lacks the extra information that
the other resilience metrics (e.g. ¥, and ) prov1de
Toillustratethispoint,wecalculate(p, 1) forthe threeQ(z)s
in Figure 2. The results in Table 2 shows that, in contrast
to R, the pair (p, 1) can characterize the three dlfferent
Q(z)s. Furthermore, a decision-maker can use the Pows
and/or combine p, and y, (and, if desired, the higher
order moments) to create composite resilience metrics
(e.g-py + ¥ when the two values are in the range [0, T,]).

In practice, the recovery process might be disrupted by
shocks at different time instants (see Figure 3). Each shock
might cause a sudden reduction in Q(7). The formulation
of the resilience moments in Equation (11) accounts for
this situation by letting AQ(z,) < 0 when a shock occurs
at7 = 7, < T,. Alternatively, we can rearrange the terms
in Equation (11) to write the overall resilience moments
in terms of the set of resilience moments (p(l) o pQ)) S
derived for each segment j of Q(7) (see Flgure 3), that
follows the jth shock and before the (j + 1)th shock. Note
that we consider 7, as the reference of the time axis in cal-
culating (p(Q1 s pQ)) The derived mathematical expres-
sion for the overall resilience moments is

i) s i)
(") tC n—i (1) n ,
ZZ T ) & )

where iCn: = n!/[i!(n — i)!]; m is the total number of dis-
rupting shocks; and T, .= Ty

+1

§_________________
3

Figure 3. The recovery process might be repeatedly disrupted by
shocks.



3. Phases of the recovery process and their role
in resilience quantification

In this section, we argue that the different activities in the
recovery of engineering systems can generally be grouped
into three phases, which we call (1) recovery planning,
(2) recovery execution, and (3) recovery closure. Next,
we explain how the system state indicators (e.g. reliability
and functionality) are affected by the recovery activities
and the proposed phases.

3.1. Phases of recovery process

The scope of a recovery process is defined by the magni-
tude and the nature of the damage sustained by the sys-
tem. The corresponding recovery process can typically be
decomposed into three phases (shown in Figure 4) that
we call (1) recovery planning, (2) recovery execution, and
(3) recovery closure. These phases can be sequential or
overlapping. The recovery planning phase includes the
following activities: identification of the objectives of the
recovery (i.e. where we want to be at the end of the recov-
ery), development of the recovery strategies (i.e. definition
of the activities that will need to take place in order to
reach the desired objectives), and securing the required
resources for the recovery. The recovery execution phase
includes activities where physical progress is made toward
achieving the objectives, developed in the recovery plan-
ning phase. This phase consumes the majority of the
resources (i.e. time, material, and labor). The recovery
closure phase involves quality control activities to ensure
the recovery completion criteria are met and the system
is ready to be put back into operation.

In the specific case of the recovery of a civil structure
(e.g. building or bridge) or system/network (e.g. trans-
portation, water, or power network), the three phases
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Figure 4. The three phases of the recovery process in the
aftermath of a disruption are the (1) recovery planning, (2)
recovery execution, and (3) recovery closure.
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of the recovery process correspond to what is known
in construction management as (1) pre-construction,
(2) construction, and (3) post-construction (Klinger &
Susong, 2006). The pre-construction phase includes plan-
ning, designing, deciding on repair strategies, budgeting
financial and other resources, and obtaining work per-
mits from relevant authorities. The construction phase
involves physical onsite activities required to repair or
replace damaged components. Inspection, quality assur-
ance, safety management, cost and schedule control, and
field engineering functions (e.g. onsite decisions) are
also activities in this phase. The post-construction phase
involves closing activities like the final inspection, hand-
ing over, and certification. In mechanical engineering
applications such as installation of a new equipment (e.g.
a boiler, compressor, or pump), the above three phases
correspond to (1) design and planning, (2) mechanical
erection, and (3) commissioning. Likewise, when the
equipment undergoes a reactive maintenance, the three
phases correspond to (1) fault detection, (2) system
repairs, and (3) recommissioning.

The duration of each recovery phase depends on the
level of damage, the preparedness of the recovery plan,
the repairability of the system, and the accessibility of the
damaged components. The estimation of the absolute and
relative duration of each recovery phase can guide how
to expedite the recovery process and improve resilience.
For instance, a disaster response plan prepared before a
disrupting event strikes can improve resilience by saving
valuable time in the recovery planning phase. There might
be updates in the planning as new information becomes
available during the post-disruption reconnaissance; how-
ever, a general planning can be developed ahead of time.
Similarly, a well-designed system could favor repairability
over constructability to save time in the recovery execu-
tion phase.

3.2. Tracking performance indicators during
recovery

The phases of the recovery process can be divided into a
hierarchy of activities. A work breakdown structure can
be designed where activities are further divided up to a
required level of detail, based on the functional require-
ment or available data. The lowest level of activities is
where standardized crews, equipment, means, and meth-
ods are defined and relevant data are readily available
(see, for example, RS Means database (Means, 2008)).
Activities in a recovery process have precedence, con-
straints, and tentative durations associated with them
which collectively create a network of activities. Figure 5
shows an example of such a network of recovery activities
that is developed for the repair of a damaged RC bridge
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Figure 5. A network of recovery activities developed for the repair of a damaged one single-column bent RC bridge with FRP composites.

with FRP composites. In a typical construction project,
the number of activities in the network can be as large as
several thousands. Typically, the progress in a construc-
tion project is slower at the beginning and toward the end
of the project. This is because typically a few activities
need to be completed at the beginning before a larger
number of activities can be performed in parallel. Toward
the end of the project, most of the planned work is com-
pleted and only a few activities remain, which might not
all be performed in parallel. As a result, the overall work
progress gradually decreases until the final completion
is achieved.

In a recovery process, work on individual activities
might continuously progress over time; however, the
changes in the system state occur only at discrete points
in time when a group of activities (i.e. a recovery step) is
completed. For example, in Figure 5, we consider FRP
application (or minor repairs in the case of insignificant
damage) as the sole recovery step. The completion time
of activities and the corresponding contributions to the
system state depend on the activity network, the types of
activities, and the metric a decision-maker uses to meas-
ure the work progress. For example, one might measure
the progress in terms of the expenditure incurred in
completing each activity with respect to the total project

expenditure or in terms of activities’ contribution to the
reliability or functionality of the system. Figure 6 shows
a schematic comparison between the work progress in a
recovery process and the changes in the reliability and the
functionality of a system. The figure illustrates that the
work progress might be near-continuous; however, it is
only the completion of a group of activities that contrib-
utes to the increments in the reliability and in the func-
tionality of the system. The completion of the recovery
activities in a group changes both the capacity and the
imposed demand on the system and, hence, the reliability
(as described in Section 5). Functionality typically has
discrete increments when the work completion and the
associated reliability reach specific milestones.

We can obtain the initial estimates of the durations
of individual activities from available databases and past
projects. The initial general estimates might need to be
updated and tailored to incorporate the effects of influ-
encing factors in a given project such as specific weather
conditions, system characteristics, and resource availa-
bility. For example, Moselhi, Gong, and El-Rayes (1997)
developed a model to estimate the durations of activi-
ties, accounting for the impact of weather conditions
(temperature, precipitation, wind speed, and humid-
ity). Sukumaran, Bayraktar, Hong, and Hastak (2006)

g

& g c
= -2 ) ° % .
3 - = 2 ‘

=, - ! 2 — R
5] . | ) | - —

= Q—) =
Q I Q I = I
O = 1 f‘; 1 o !
+ = I o I © &0 !
Q = ! c | 2 I
= -0 I Eoy *—0 | = I
= =0 | = I = |
Z I < S I

8 - = ‘ g
;5 ps : E h—C) | g o} :

[at = ! =)
3> I I P I
1 Il Il

Recovery time, 7 Tr Recovery time, 7 Tr Recovery time, 7 Tr

Figure 6. Different performance indicators quantify the recovery progress in dissimilar ways.



identified an extensive list of influencing factors in the
case of highway projects and estimated their impact on the
durations of activities. Gardoni, Reinschmidt, and Kumar
(2007) developed a Bayesian formulation to update the
estimate of the future work progress as a function of the
work completed up-to-date. While, using more refined
models and larger sample sizes can reduce the statistical
uncertainty in the estimate of the duration of each individ-
ual activity, there remain uncertainties in their values due
to the epistemic uncertainty, arising from simplifications
in the mathematical models, and aleatory uncertainty,
arising from the variability in future conditions (Gardoni,
Der Kiureghian, & Mosalam, 2002; Gardoni et al., 2007;
Murphy, Gardoni, & Harris, 2011).

For a given system state, we can develop a stochastic
network of activities that accounts for the uncertainties
in the durations of the individual activities. The stochas-
tic network of activities can then be used to identify the
milestones corresponding to the changes in the reliabil-
ity and functionality of the system and their associated
uncertainties.

4. Definition and role of instantaneous
reliability

We define the instantaneous reliability as the probability
that the system meets a specified performance level at a
given time of interest. The higher values of reliability indi-
cate that it is more likely that the system meets the speci-
fied performance level. The reliability depends on the state
of the system at the considered time and therefore, on the
system damage level. Once we obtain the instantaneous
reliability of the system, we can find the values of other
performance indicators such as damage level and func-
tionality as well as the recovery strategy, which depend on
the reliability, as discussed next.
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4.1. Definition of damage levels in terms of
instantaneous reliability

As discussed in Section 3, to develop the recovery strategy,
we need to estimate the extent of damage. Also, when
the occurrence of a shock during the recovery disrupts
the recovery process, we need to revise the network of
recovery activities, based on the new level of damage.
The accurate estimation of damage level is particularly
important for systems that require a minimum level of
safety to resume operation. We define the damage level
in terms of the instantaneous reliability of the system to
account for the safety considerations and also develop a
fully probabilistic formulation for the resilience analysis.

ATC-38 (ATC, 2000) and Bai, Hueste, and Gardoni
(2009) define four damage levels based on a qualitative
description of the physical damage to a system. Table 3
shows the four damage levels in ATC-38 and the corre-
sponding qualitative descriptions for each damage level.
We propose to use definitions of damage levels that are
not directly based on the physical damage but based on
the implications of such damage on the reliability of the
system. The right column of Table 3 provides the defini-
tions of the four damage levels in terms of the reliability
of the system. The right column of the table shows that in
the proposed reliability-based definition, the four damage
levels are delimited by means of three thresholds (i.e. §,,
f..o and B, ). The specification of these thresholds is a
system-specific problem. A discussion on the considera-
tions to specify the values of the threshold can be found
in Gardoni and Murphy (2014) and Briaud, Gardoni, and
Yao (2014).

4.2. Recovery strategy as a function of
instantaneous reliability

As shown in Figure 5, in developing the recovery strat-
egy, post-disruption inspection is the first recovery

Table 3. The four damage levels of a system and their descriptions in ATC-38 and the proposed reliability-based definitions.

Damage levels (DLs) ATC-38 definitions

Proposed reliability-based definitions

None (N)

Insignificant (1)

Moderate (M)

Heavy (H)

No damage is visible, either structural or non-structural

Damage requires no more than cosmetic repair. No structural
repairs are necessary. For non-structural elements this would
include spackling, partition cracks, picking up spilled contents,
putting back fallen ceiling tiles, and righting equipment

Repairable structural damage has occurred. The existing
elements can be repaired in place, without substantial demo-
lition or replacement of elements. For non-structural elements
this would include minor replacement of damaged partitions,
ceilings, contents, or equipment

Damage is so extensive that repair of elements is either not
feasible or requires major demolition or replacement. For
non-structural elements this would include major or complete
replacement of damaged partitions, ceilings, contents, or
equipment

The reliability of the system does not change with respect to
the reliability of the original system (i.e. 8 > )

The reliability of the system decreases but remains above the
acceptable threshold (i.e. ,.. < f# < f,). The visible damage

to some components triggers the post-disruption inspection

The reliability of the system decreases below the acceptable
threshold but it would be still above a minimum tolerable
threshold (i.e. ,, < f < f,.)- While, the system does not
need to be completely closed, its safety is compromised and
the functionality is reduced

The reliability of the system significantly decreases and falls
below a minimum tolerable threshold (i.e. § < §,). So, the
damaged components of the system need major repair or
complete replacement
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activity to determine the extent of damage. The subse-
quent recovery activities, which are required to achieve
a (new) desired system state, are developed in the
recovery network based on the assessed damage level.
For example, when the inspection results indicate that
damage level is insignificant, minor repairs might suf-
fice to achieve the desired state. Alternatively, when the
system is moderately damaged, there might be no bid-
ding because the regular maintenance contract of the
department of transportation is likely to cover this level
of damage. For a heavy damage level, all the recovery
activities in the network are needed in order to restore
the desired state.

In order to determine the damage level, for devel-
oping the network of recovery activities, we use the
proposed reliability-based definitions. Furthermore, to
incorporate the impact of potential disrupting shocks
that might occur during the recovery process, we first
determine the new damage level after the occurrence
of the shock based on the proposed reliability-based
definitions. According to the new damage level, we
select a network of recovery activities among the set of
networks which are developed a priori for each possible
damage level.

4.3. Relation between functionality and
instantaneous reliability

There is a relation between the instantaneous reliability of
a system and its functionality, as they are both (direct or
indirect) functions of the system state. In general, we can
distinguish between two cases. In one case, the functional-
ity is defined directly as a function of the system state. So,
in this case both the instantaneous reliability of the system
and its functionality depend directly on the system state.
Water distribution networks are typically analyzed con-
sidering this type of dependency (Guidotti et al., 2016).
On the other hand, in a fully probabilistic formulation, the
functionality is defined by the level of reliability instead
of by the level of damage. So, in this case, the instanta-
neous reliability of the system depends directly on the
system state, while the functionality (understood as the
functionality of the system on a typical day not consider-
ing interruptions due to non-structural reasons) depends
on the reliability. This type of dependency is well-suited,
for example, when the system requires a minimum level
of safety to function (e.g. in the case of buildings and
bridges). This type of dependency requires a definition
of the damage levels in terms of reliability, as proposed
in Table 3.

5. Proposed stochastic formulation of the
recovery process

This section explains the proposed formulation for mod-
eling the recovery process, described conceptually in
Sections 3 and 4. We model the system state and the cor-
responding functionality in terms of its instantaneous reli-
ability and as a function of the state variables. The values of
the state variables vary with time due to the completion of
the recovery steps or the occurrence of disrupting shocks
that might occur during the recovery.

5.1. Modeling of the state variables

According to the discussion in Section 3.2, we model the
duration of each individual recovery activity as a random
variable to account for the uncertainty in their estimates.
As a result, the completion times of the #n recovery steps,
{r,;}i.) form a sequence of random variables. To generate
realizations of {7,;}/_, one can use simulation techniques
(e.g. Ditlevsen & Madsen, 1996). The simulation techniques
are simple and straightforward but they have three impor-
tant limitations: (1) as the activity network becomes com-
plex, the number of simulations to capture the uncertainty
in {z,;}"_; increases rapidly and the required simulations
become computationally too expensive; (2) the simulation
techniques require to repeat the entire set of simulations at
future times in order to incorporate any new information,
for example, from the completion of some recovery activities
or the occurrence of disruptions to the recovery process;
and (3) the simulation techniques, in general, do not allow
to transfer the information gained from the simulations for
one recovery project to other projects.

To address the above limitations, we propose a probabil-
istic predictive model for the number of completed recovery
steps by any timez € [0, T} Following the general formula-
tion in Gardoni et al. (2002) for probabilistic models, we write

T[A(7.£0,)] = Zd= O, b (5. &) + 0,6, (15)
where 7 (-)is a transformation function; A (7, &0, )is the
predicted number of completed recovery steps by time
7; € is the set of influencing factors (e.g. weather condi-
tions and resource availability); @, = (0,,0,) is a set of
unknown model parameters that need to be estimated, in
which 6, = (6, ,,...6,, ) h, 4(7,&)’s are a set of explana-
tory functions; and o ¢_is an additive model error term
(additivity assumption), in which ¢ is the standard devia-
tion of the model error that is assumed to be independent
of 7 (homoskedasticity assumption) and ¢, is a standard
normal random variable (normality assumption). The



choice of 7(-) should be on the basis of satistying the
additivity, homoskedasticity, and normality assumptions
as well as increasing the accuracy of the model (i.e. reduc-
ing the value of o).

To calibrate the predictive model of A (+), one can use
an experimental design (Huang, Gardoni, & Hurlebaus,
2010; Tabandeh & Gardoni, 2015) to generate a limited
number of samples for A () and & that cover realizations of
recovery processes with different topologies of the recov-
ery network and subject to various influencing factors &. A
Bayesian updating approach (Box & Tiao, 1992; Gardoni
et al., 2002) can then be used to estimate ®,, based on
the generated samples. The developed predictive model of
A (+) is applicable to other recovery projects given that the
corresponding topology of the recovery activity network
is similar, and the influencing factors are within the range
considered in the experimental design.

To model the realizations of {r,;}_;, we pro-
pose a Poisson process with a mean function equal
to A (7,&0,): = E[A(1,0,)], where E[-] is the
expected value operator. This is equivalent to mod-
eling the time between the completion of any suc-
cessive recovery steps, i — 1 and i, with the CDF
F(v) =1 —exp{—[A,(v+7,, ) — A (z,,_D]}, for v > 0.

In this model, we can write the PMF of the number of
completed recovery steps by any time 7 € [0, T;] as

[[_\r(r’ 5;@r)]i

il
exp [-A,(7,0,)],
fori e {0,1,---,n},

P[Ny(x) = i| = .
16

where # is the total number of recovery steps.

The completion of each recovery step corresponds
to reaching a milestone for which the desired values
of the state variables, X(z,,), are known (typically, in a
probabilistic sense). Note that the recovery process may
introduce new variables to X(z, ;) or replace a subset of
variables in X(z, ;) with new ones. For example, if a ret-
rofit is implemented using FRP composites, X(z, ;) will
include new variables that define the FRP and/or its
properties.

The recovery process ends when all the steps in the
original recovery network are completed (i.e. N (T,) = n),
given that no disrupting shock occurs. When the occur-
rence of a shock disrupts the recovery process, we have to
re-estimate the number of remaining recovery steps, their
completion times, and the values of the state variables
after each of the remaining recovery steps. As described
conceptually in Section 4, we have to first determine
the damage level based on the reliability of the system.
Because the reliability is a function of state variables, we
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need to determine the impact of the shock on the state
variables.

The occurrence of disrupting shocks is typically mod-
eled as a Poisson or a renewal process. For example, to
model the occurrence of earthquake mainshocks, it is
common to use a homogeneous Poisson process or, more
generally, a renewal process (Takahashi, Der Kiureghian,
& Ang, 2004; Yeo & Cornell 2009a). The occurrence of
earthquake aftershocks is typically modeled as a non-ho-
mogeneous Poisson process (Jia, Tabandeh, & Gardoni,
2017; Kumar & Gardoni, 2014a).

Given the occurrence of a disrupting shock, we use the
general formulation proposed by Jia and Gardoni (2017a)
to model the impact on the state variables. We write the
vector of state variables as X(z, J) = X(T;j) + AX(z, )j),
where X(T;j) is the vector of state variables immediately
before the occurrence of the jth shock and AX(z, J) is the
change in the state variables due to the jth shock. In gen-
eral, AX(z, J) is a function of X(rS_J) and the intensity of
the shock, S(Ts,j). To account for such dependence, one
can develop/adopt probabilistic predictive models for
AX(r, J) (see Jia & Gardoni, 2017b; Kumar & Gardoni,
2012, 2014b). We denote the set of parameters of such
models as @,. Note that the inclusion of X(ng) in predict-
ing AX(z, ;)accounts for the fact that the imposed changes
are state-dependent (i.e. the impact of a given shock on
the state variables depends on the most recent values of
the state variable).

Combining the effects of the recovery process and dis-
rupting shocks, we can write the state variables at any time
T € [0, T;]as

X(T) = Zl X(Tf,i—l)l{fr,,_157<fm
= (17)

+ Z AX<TS,]) 1 { 7, <T<T,;, Tr,,_1<fs,jgf} :

ij=1

The probability distributions of the state variables at the
beginning of the recovery process (z = 0) can be obtained
from the deterioration modeling (Iervolino, Giorgio, &
Polidoro, 2015; Jia & Gardoni, 2017a; Jia et al., 2017). For
the subset of state variables which are new or replaced
during the recovery process, the initial probability dis-
tributions are determined in compliance with the objec-
tive(s) of the recovery (e.g. to restore the original reliability
or functionality of the system or achieve a higher one, if
desired).

5.2. Stochastic capacity and demand models

To model the capacity and demand of the system, we
use the predicted value of X(7) in existing capacity and



60 N. SHARMA ET AL.

demand models. The general expression for the capacity
of a system can be written as

C(r): = C[X(2);0.], (18)

where C[X(7); ©_]is the predicted capacity of the system
at time 7 € [0, T;] and O, is a set of parameters of the
capacity model. Similarly, we can write the following gen-
eral expression for the demand that a shock with intensity
measure(s) S(z) can impose on the system:

D(r): = D[X(7), S(2);0,], (19)

where D[X(7), S(7); ©p] is the predicted demand on the
system at time 7 € [0, Tp]and @, is a set of parameters of
the demand model. For example, one can use the capacity
models in Gardoni et al. (2002) and the demand models in
Gardoni, Mosalam, and Der Kiureghian (2003) or Huang
etal. (2010) for RC bridges. Also, Tabandeh and Gardoni
(2014, 2015) developed probabilistic capacity and demand
models for RC bridges, retrofitted with FRP composites.

5.3. Instantaneous reliability

Using the capacity and demand models in Equations
(18) and (19), we can write the limit-state func-
tion as g(r)=C(r)—D(r), where the event
{[X(7),S(r)]:g(r) < 0} defines the failure to meet a
specified performance level. We can write the con-
ditional failure probability (i.e. fragility) at any time
7 € [0, T,] given the occurrence of a shock with an
intensity S(z) as F[S(7);0]: = P[g(z) < 0|S(r)], where
0=(0,,0,0.0,) According to Gardoni et al. (2002),
there are two possible ways to incorporate the uncertainty
in @ when computing F[S(7); ®]. First, we may ignore
the uncertainty in ® and obtain a point estimate of the
fragility as P[S(7)]: = F[S(7);@], where @ is a fixed value
of O (e.g. the mean value). Alternatively, we can account
for the uncertainty in @ to obtain a predictive estimate
of the fragility as FIS(7)] = j F[S(z);0]f (©)dO, where
f(O®)is the PDF of @.

Given the fragility function at 7, F[S(7)] (i.e. FIS(1)]
or F[S(1)]), we can write the instantaneous failure prob-
ability, Pf(f), as

P = | FBOUSOMESD, o

where f[S(z)]is the PDF of S(7). Using F[S(1)]in Equation
(20), we obtain a point estimate of the failure probabil-
ity (i.e. f)f(T)). Alternatively, using FIS(7)], we ObNtain a
predictive estimate of the failure probability (i.e. P/(7)).
The instantaneous reliability is simply R(z) = 1 — Pf(r)
and the corresponding instantaneous reliability index is

p(7) = ®'[R(z)], where ®(+) is the standard normal
CDF. Similarly, we can define f(z,S) = @' {R[S(z)]},
where R[S(7)] = 1 — F[S(2)].

5.4. System functionality

When the system functionality is directly defined in the
terms of the system state, system functionality can be
calculated in parallel with the instantaneous reliability,
by taking into account any recovery steps or disrupting
events, which may affect the system state. Such a proce-
dure is similar to the one we described in Section 5.3.

When the functionality is defined by the level of relia-
bility (like for buildings and bridges) the different states
of functionality are typically specified according to the
requirements of stakeholders or community to meet dif-
ferent operation levels. In such a case, we need to develop
a mapping function M:[0, 1] X T ~ [0, 100]which deter-
mines the system functionality at any time instant 7 € T
in terms of R(z) € [0, 1]. The properties of M such as
being continuous or discrete and the number of possible
states in the case of discrete functionality need to be
defined for the specific system under study. For example,
in a bridge system when g, ; < f(z) < p,_, the trafficload
might need to be reduced which means reduction in the
functionality with respect to the intact system. The amount
of reduction in the functionality of an interstate bridge
could be specified by the department of transportation.
Also, when f(7) < p,,, the bridge need to be closed to the
traffic because of safety considerations and, thus, the sys-
tem functionality becomes zero.

6. Estimation of recovery quantifiers

Various quantities can be defined to describe the recovery
process (which we call recovery quantifiers). Such recov-
ery quantifiers can be used in life-cycle analysis (Jia et al.,
2017; Kumar & Gardoni, 2014a). The recovery quantifiers
can also serve as basis to predict and compare the system
performance for different design and operation strategies.
Some of the useful recovery quantifiers that can be derived
from the proposed formulation are (1) the amount of pro-
gress by any given time, in terms of the instantaneous
reliability and system functionality; (2) the amount of
required work, in terms of the number of recovery steps;
(3) the level of risk involved, in terms of the number of
shocks that might occur during the recovery process; (4)
the system down/partial functionality time, in terms of the
recovery duration; and (5) the resilience of the system, in
terms of the proposed resilience metrics.

The instantaneous reliability is the recovery quantifier
which is also used to compute the other recovery quan-
tifiers. To calculate the instantaneous reliability, we solve



Equation (20) at time instants at which changes occur in
the reliability of the system (Figure 6). We follow two main
steps: (1) we simulate the occurrence time of the events
that affect the reliability of the system (i.e. recovery steps
and disrupting shocks), and (2) we calculate the reliability
of the system after each event.

To simulate the occurrence times, we first set a time
horizon, 7, over which we perform the calculations. Next,
we simulate the completion times of the recovery steps
using a general non-homogeneous Poisson process with
a mean function given in Equation (15) and conditioned
on the event N, (T}) = n. We use the following algorithm
to simulate {7, }'_:

Algorithm 1 Simulation of the completion times of the recovery
steps

1: draw n independent copies of 7., ~ A, (+©,)/n
2:set(z,,...,7,,) = SOM(T, 11 Ty 1)

3:set k = max {i:r,yi <7}

4:accept(z,,, ..., 7,;)

where 7(-) is a permutation operator such that
(1), ..., n(n) is a reordering of 1, ..., n; A (+;0,)/n is the
conditional CDF of the completion times of the recovery
steps; and k € 0, 1, ..., n is the total number of recovery
steps that are completed within the specified time horizon.

Next, we simulate the sequence {7;}}., such that
T,,, < Ty Assuming that disrupting shocks are occurring
according to a general non-homogeneous Poisson pro-
cess with a mean function A (z) = [, 4,(v)dv such that
A7) < A, forall T € [0, 7,;], we use the following algo-
rithm to simulate {7;}7",

Algorithm 2 Simulation of the occurrence times of disrupting
shocks

1:setz,, =0

2:whilez;; < 7,,do

3: draw asample for the interarrival time d;; ~ Exp(4; )
4 setr ;=7 +d;

5: draw a random number u~U@,1)

6: ifA,(7) < Ay

7 reject 7,;and go to step 3

8: else

9: acceptr;

10: end

In the above algorithm, d] is the interarrival time
between subsequent shocks (j - 1) and j.

In the second step, to calculate the instantaneous reli-
ability of the system, we consider two cases: (1) 7,, < 7
and (2) 7, > 7,,. In the first case, the recovery process
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ends before the occurrence of any disrupting shocks. As
a result, we can solve Equation (20) as k time-invariant
reliability problems, using the common approaches of reli-
ability analysis (see, for example, Ditlevsen & Madsen,
1996; Gardoni, 2017). In the second case, only a subset
(possibly empty) of the recovery steps is completed before
the occurrence of the first disrupting shock at 7, . Now, we
calculate the reliability of the system in the same way as
explained for the first case but considering only the subset
of recovery steps. For the subset of recovery steps which
are not completed by 7, we have to revise the original
network of recovery activities based on the new damage
level at 7_,. To determine the new damage level according
to the proposed reliability-based definition, we have to
obtain f(z,,). To this end, we draw a sample from the
probability distribution of S(z, ) and use it together with
X(z,,) in the probabilistic predictive models of AX(z, ,).
Next, we estimate the state variables at time 7_,, X(z, ),
according to Equation (17). Using the estlmated X(z,,)
we can write the limit-state function and solve Equation
(20) to obtain R(z,,). Using f(z,,) = @~ [R(‘L’ D] we
can determine the new damage level according to Table
3. Finally, we select the corresponding network of recovery
activities, developed a priori for the new damage level. The
calculation of the instantaneous reliability continues in
the same way, until either the recovery process ends (i.e.
all the determined recovery steps all completed). In this
algorithm 7, should be sufficiently big so that the recovery
process ends before 7 reaches 7.

The above two steps explain the simulation of the
instantaneous reliability at any time 7 conditional on
{r..} oo {7, }'” » and {S(z, ])} . To obtain the uncon-
ditional 1nstantaneous rehablhty, we need to repeat the
above two steps for different realizations of {z,;}/_,
{7, J} - p»and {S(r, )}j";l. We can use the statistical average
of the simulated instantaneous reliabilities as an estimator
of the unconditional instantaneous reliability. The number
of required simulations is determined such that the coef-
ficient of variations (COVs) of the calculated statistical
averages at all times 7 € [0, 7;] are less than a prescribed
threshold (e.g. COV = 0.05).

The computational time of the simulations depends
on the complexity of (1) the occurrence modeling of the
recovery steps and disrupting shocks, and (2) the resultant
impact on the state variables. Using the analytical predic-
tive models as proposed in Equations (15)-(19), a naive
implementation of the formulation is efficient enough to
run on a typical personal computer.

We use the simulated realizations of the instantaneous
reliability to estimate the other recovery quantifiers: N,
N, T}, and the resilience metrics. In each realization of the
instantaneous reliability, the corresponding total number
of completed recovery steps, #, the number of disrupting
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shocks, m, and the completion time of the last recovery
step, 7, ,, are realizations of N, N, and T, respectively.
We can use the obtained realizations of N;, N, and T}, to
approximate the corresponding probability distributions,
based on a probability estimation approach (e.g. Bishop,
2006)

To quantify the system resilience, we can select a set
of resilience metrics from the ones defined in Equations
(7)-(11). We can use the realizations of the instantaneous
reliability in the respective equations to obtain the cor-
responding realizations of the reliability-based resilience
metrics. We can then use these realizations to obtain the
respective statistics of the resilience metrics, similar to
the other recovery quantifiers. When the resilience is in
terms of the system functionality, we can obtain the func-
tionality-based resilience metrics by first obtaining the
realizations of the system functionality by applying the
mapping function M to the realizations of the instanta-
neous reliability and then proceeding as for the estimation
of the reliability-based resilience metrics.

7. lllustrative example

This section illustrates the proposed formulation con-
sidering the resilience analysis of an example RC bridge
subject to seismic excitations. Figure 7 shows the con-
figuration of the considered (single column, single bent)
bridge together with the schematic layout of the consid-
ered site. The details of the considered bridge can be found
in Kumar and Gardoni (2014a) and Jia et al. (2017). For
the purpose of the recovery of the example bridge, we
consider a repair strategy with FRP composites based on
Saini and Saiidi (2013).

To model the impact of the recovery process and dis-
rupting shocks on the system state, we consider both
the impact on the state variables as well as the resulting
impact on the structural properties. Specifically, the recov-
ery process introduces new state variables which are the
properties of the FRP composites, including thickness,

Ly
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tensile strength, and Young’s modulus. Furthermore, we
consider the impact on the structural properties, includ-
ing the ultimate curvature capacity of the RC section,
¢, the pre-yield lateral stiffness of the RC column, K,
and the yield displacement of the RC column, A Modeling
the structural properties is convenient as we use them
directly in the probabilistic capacity and demand models
discussed later.

To determine the damage levels, we use the reliabil-
ity-based definitions in Table 3. For this example, we
assume the following values for the reliability thresholds:
p, =35p,. =250p, = 1.5 Wealso define the following
mapping function M between the instantaneous reliabil-
ity and the system functionality:

0%’ ﬂ < ﬂtol’
30%, < ,
M = % ﬁtol ﬁ < ﬁacc (21)
70%’ ﬁacc < ﬁ < ﬁO’
100%, p = B,

7.1. Recovery process and the impact on the system
state

For this example, we use the network of recovery activities
already shown in Figure 5. Table 4 shows the durations of
the individual recovery activities, obtained from the RS
Means database (Means, 2008) and similar projects (Saini
& Saiidi, 2013). In addition to the most likely durations
of the individual activities, the table reports the lower
and upper bounds of the durations that represent the
variability in their estimates. The table also shows the
set of predecessors of each activity (recovery activities
needed before a specific activity can start). We need the
information on the predecessors to estimate the comple-
tion times of the recovery steps. In this example, because
there is only one recovery step, the completion time of
the recovery step is the completion time of the recovery
process (i.e. 7, = Tp).

Bridge Site

8 km
Fault

} 24 km |

24 km }

Figure 7. The considered RC bridge and layout of the hypothetical site (adapted from Jia et al., 2017).
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Table 4. The time table of the recovery activities for the repair of the damaged RC bridge with FRP composites.

Duration (days)

Number Activity Lower bound Most likely Upper bound Predecessor(s)
1 Inspection 2 3 5

2 Bidding 15 20 30 1

3 Mobilization 5 7 15 2

4 Erection of scaffold (abutment) 1 2 3 3

5 Erection of temporary support 1 2 3 3

6 Erection of scaffold (pier) 1 2 3 3

7 Concrete chipping (abutment) 1 2 3 4

8 Epoxy grouting (abutment) 1 2 3 7

9 Mortar patching (abutment) 1 2 3 8

10 Curing (abutment) 7 10 15 9

1 Removal of scaffold (abutment) 1 2 3 10

12 Concrete chipping (pier top) 1 2 3 4and 5
13 Epoxy grouting (pier top) 2 3 3 12

14 Patching concrete (pier top) 1 2 3 13

15 Curing (pier top) 7 10 15 14

16 FRP surface prep (pier) 0.5 1 2 15

17 Apply FRP (pier) 0.5 1 2 16

18 Removal of scaffold (pier) 0.5 1 2 15and 17
19 Minor repairs 3 4 5 11and 18
20 Demobilization 0.5 1 2 19

We model the duration of each individual recovery activ-
ity as a random variable with a Beta distribution, according
to the information in Table 4. We then use stochastic activity
network scheduling techniques (Duncan, 1996) to estimate
7, , based on the samples of the durations of the individual
recovery activities. Table 5 shows the estimated distribution
parameters for z, | in different recovery projects correspond-
ing to the different levels of damage. As discussed in Section
5.1, for the complex networks of recovery activities with large
numbers of recovery steps (i.e. large »), it is more conven-
ient to first develop a model for A (+), following the general
expression in Equation (15), and then use the Poisson pro-
cess as in Equation (16) to generate realizations of {7, ;}/_,.

The recovery process affects the system state by adding
the FRP properties (i.e. thickness, tensile strength, and
Young’s modulus) to the set of state variables. The recov-
ery process also affects the structural properties ¢ and A
(but not K), the extent of which depends on the properties
of the FRP composites. The properties of FRP composites
can be selected to achieve the desired state of the system
(e.g. in terms of target reliability). In this example, we set
the target reliability after the completion of the repair to
be 10% higher than the reliability of the original as-built
bridge. One can use the capacity model in Tabandeh and
Gardoni (2014) and the demand model in Tabandeh and
Gardoni (2015) to formulate a reliability-based search
problem and obtain the values of the FRP properties.

7.2. Disrupting shocks and the impact on the
system state

In this example, we consider the earthquake mainshocks
and the following aftershocks as the potential disrupting
events that might occur during the recovery process. To

Table 5. The estimated parameters of Beta distributions for T
corresponding to the three damage levels.

Beta distribution

parameters Range of Beta dis-
Damage Levels a p tribution (days)
i 5.29 6.78 [5,10]
M 7.36 9.38 [19,34]
H 8.36 13.78 [40,77]

model {7}, we use a homogeneous Poisson process
for the occurrence of the earthquake mainshocks and a
non-homogeneous Poisson process for the occurrence
of the earthquake aftershocks. The details of modeling
the occurrence of earthquake mainshock-aftershocks
sequence can be found in Jia et al. (2017).

In order to determine the impact of a disrupting shock
on the systems state, we need to estimate the intensity
of the shock. In this example, we use the spectral accel-
eration, S , as the intensity measure. To obtain the PDF
of § , we need to perform a probabilistic seismic hazard
analysis for the mainshock-aftershocks sequence. The
details of the seismic hazard analysis can be found in
Kramer (1996) and Yeo and Cornell (2009b). For a given
value of S, we use the probabilistic models developed
by Kumar and Gardoni (2014b) to predict the degrada-
tion of ¢ , K, and A . The details on the state-dependent
models can be found in Jia and Gardoni (2017b). Once
we obtain the values of ¢ , K, and A , we use them in the
probabilistic capacity model developed by Gardoni et al.
(2002) and the demand model developed by Gardoni
et al. (2003) to write the limit-state function and then
calculate the instantaneous reliability, as explained in
Section 6.
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Figure 8. The (a) recovery surface and (b) recovery curve of the example RC bridge in terms of predictive reliability index.

7.3. Results and discussion

In this example, we used COV = 0.05 of the instantane-
ous reliability index as the convergence criterion, which
required approximately 10,000 simulations of {z,}/_,,
{7 }j’il, and {S(z, J)}j’il. The analysis took approximately
10 min of runtime on a personal computer (Intel(R)
core(TM) i5-4460 CPU @ 3.20 GHz with 8.00 GB RAM).

Figure 8(a) shows the recovery surface in terms of the
predictive reliability index, f(,S,), and the PDF of S,
f(S), where S_is the intensity measure of the earthquake
after which the recovery process starts. Furthermore, to
explore the impact of S_ on the recovery process and the
progress over time for a given S , Figure 8(b) shows the
curves f(r = 50, S,) and f(z, S, = 0.5). The white lines
indicate the locations of f,; = 1.5 and g, = 2.5. For
small values of S_(i.e. S, € [0,0.1]), the initial damage
level of the system is insignificant and the system quickly
recovers up to the desired value, with a mean recovery
time of E[T,] ~ 7 days. For intermediate values of S_ (i.e.
S, € [0.1,0.9]), the initial damage level is moderate and

4 T
3 Confidence -
L band
\é’ 2r 21, 29] .
1L 1
—B(7)
| |
0 25 50 75 100
7 [day]

Figure 9. The recovery curve of the example RC bridge in terms of
the predictive instantaneous reliability index.

the corresponding recovery time is longer than that for the
small values of S , with a mean recovery time of E[ T} ] = 26
days. For large values of S_(i.e. S, € [0.35¢, 1.5¢), the ini-
tial damage level is heavy and the corresponding recovery
time has the mean E[T,] ~ 54 days. Having three discrete
damage levels creates these three trends over time.
Figure 9 shows the recovery curve in terms of the pre-
dictive instantaneous reliability index, f(z). The figure
also shows the confidence band (between f(z) — 0,(7)
and f(7) + 0,(7)) due to the statistical uncertainty in ©.
We can observe that most of the recovery progress occurs
over two distinct intervals, T € [5,9] and 7 € [21,29].
To explain this observation, we note that the initial dam-
age level is a function of f(r = 0)which is obtained using
Equation (20) considering Bz =0, S,)instead of F[S(7)]
In this example, (7 = 0, S,)is such that for the most likely
values of § , the initial damage could be either insignificant
or moderate. When the initial damage level is insignificant,
the recovery time is in the first of the two intervals with
probability P(T,, € [5,9]|DL =I) = 0.997. On the other
hand, when the initial damage level is moderate, the prob-
ability that the recovery process ends within the second
interval isP(T, € [21,29]|DL = M) = 0.954 We can also
observe that the confidence band is larger in the interval
7 € [9,21] due to the various possible recovery trends,
which are highly sensitive to the initial damage level.
Figure 10 shows the PDF and PMF of the recovery
quantifiers T, (Figure 10(a)), and N (Figure 10(b)). In
this example, because there is only one recovery step,
P(N, = 1) = 1. Figure 10(a) also shows the conditional
PDFs of Ty, f; p, (7| DL), for three different initial damage
levels, considering that no disrupting shock occurs during
the recovery (i.e. the PDFs in Table 5). We can observe
that f. () in this example is bimodal. This is because, as
explairj;ed earlier, the initial damage level of the exam-
ple bridge could be either insignificant or moderate with
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Figure 10. The PDF and PMF of the (a) recovery time, and (b) number of disrupting shocks during the recovery process.

comparable probabilities (while the probability of being
heavy is negligible). Due to the occurrence of disrupting
shocks, we also observe that the peaks of f,. (7) for exam-
ple, bridge shift toward higher values of = with respect to
the modes of f. |, (z| DL) for insignificant and moderate
initial damage levels.

In Figure 10(b), we observe that P(Ng = m) is concen-
trated at m = 0, and decreases significantly for higher val-
ues of m. This is because the mean return period of seismic
shocks (= 6 years) is significantly larger than the expected
completion time of the recovery process (= 16 days); thus,
it is unlikely that an earthquake would disrupt the recov-
ery process.

We use the instantaneous reliability and the system
functionality as the performance indicators to estimate
the reliability- and functionality-based resilience metrics
of the example bridge. To obtain the system functional-
ity, we use the mapping function M defined in Equation
(21). Table 6 summarizes the estimated statistics of the
reliability- and functionality-based resilience metrics p,,
Xo and 1//(12/ >, The values of the standard deviations for
Po Xo and q/é/ ? are large (with respect to the mean val-
ues). This is due to the effect of the initial damage level
on the recovery process. Comparing the resilience met-
rics based on the two performance indicators, we observe
that the mean values of the functionality-based resilience
metrics are larger than the reliability-based metrics. This
is because the scale of variation, as defined by Q,../Q,,
of the system functionality is higher than that of the

Table 6. The statistics of reliability- and functionality-based resil-
ience metrics.

Reliability-based Functionality-based

Resilience Standard Standard
metric Mean deviation Mean deviation
Po 0.29 1.95 9.36 11.27
Xo 1.58 2.62 4.23 3.12
WW 3.28 4.04 4.74 3.31

instantaneous reliability. For example, with reference to
Equation (8), we note that in Po the value of Poes=16.5)
is the same for the reliability- and functionality-based
metrics. However, the value of Q,./Q,,, in the reliabili-
ty-based metric (=0.006) is significantly smaller than that
of the functionality-based metric (=0.468). Furthermore,
we observe that the differences among the reliability- and
functionality-based metrics diminishes as the order of the
metrics increases (e.g. the difference between the two y,’s
is less than that of p’s). This is because increasing the
order of the resilience metric, increases the effect of the
recovery trend (determined by the time instants when a
change in the system state occurs) on the resilience metric,
as compared to the effect of the scale of variation in the
performance indicator. The recovery trend is similar for
both the reliability- and functionality-based metrics; thus,
the difference between the corresponding resilience met-
rics decreases with increase in the order of the resilience
metric. These observations indicate (1) the importance
of considering functionality in addition to reliability (i.e.
considering functionality-based resilience metrics instead
of only reliability-based resilience metrics); and (2) the
importance of choosing the metrics of interest and inter-
preting/communicating the obtained results.

8. Conclusion

This paper proposed a rigorous mathematical formula-
tion to quantify the resilience of engineering systems.
Proposed resilience metrics can accurately quantify the
resilience of a given engineering system and differenti-
ate between various resilient characteristics of any two
systems. Resilience metrics constitute a systematically
expandable set of partial descriptors, which can replace/
characterize the recovery curve of the system with the
desired level of accuracy. The paper provided a general
nomenclature for the resilience metrics and the effect of
system properties (including physical characteristics) on
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resilience. In addition, the paper discussed the various
phases of recovery and their importance in achieving
resilience.

For modeling the recovery, the paper proposed a sto-
chastic formulation that models the impact of recovery
activities and possible disruptions to recovery by estimat-
ing their impact on the damage state of the system. A reli-
ability-based definition of damage levels was developed
in this regard, which accounts for the safety requirements
and is ideally suited for probabilistic resilience analysis.
The proposed model for the recovery process can incorpo-
rate information from available databases, collected data,
past record and engineering experience, and judgment.
A general discussion about the relationship between reli-
ability and functionality is included to better infer and
communicate the resilience measured in terms of different
types of performance indicators.

Resilience analysis of a RC bridge was performed to
illustrate the proposed formulation. Recovery curves and
resilience metrics of the bridge were obtained, while con-
sidering earthquake hazard and FRP repair strategy. The
proposed model is ideally suited in applications such as
resilience-based design and life-cycle analysis.
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