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Abstract

CMEIAS (Center for Microbial Ecology Image Analysis System) bioimage informatics software
is designed to strengthen microscopy-based approaches for understanding microbial ecology at
spatial scales directly relevant to ecological functions performed by individual cells and
microcolonies. Copyrighted software components are thoroughly documented and provided as

free downloads at <cme.msu.edu/cmeias/>. The software tools already released include

CMEIAS-ImageTool v. 1.28, CMEIAS Color Segmentation, CMEIAS Quadrat Maker and
CMEIAS JFrad Fractal Dimension analysis. The spatial ecology module of the next CMEIAS
upgrade currently being developed (version 4.0) is designed to extract data from images for
analysis of plotless point-patterns, plot-based quadrat-lattice patterns, geostatistical
autocorrelation and fractal geometry of cells within biofilms. Examples presented here illustrate
how selected CMEIAS attributes can be used to analyze the in sifu spatial intensity, pattern of
distribution, and colonization behavior of an indigenous population of a rhizobial strain on a
sampled image of the rhizoplane landscape of a rice plant grown in field soil. The spatial ecology
information gained can provide useful insights that help to predict the most likely performance of
the biofertilizer test strain in relation to the growth response of the crop under field conditions.
Keywords
biofertilization, biofilm, CMEIAS bioimage informatics, computer-assisted microscopy, image
analysis, spatial ecology
Introduction

Microbial lifestyles in association with plants are dominated by biofilm assemblages
colonized on their root surfaces at root/soil interfaces, which can significantly impact on plant

growth and crop productivities. The complex architectures of such microbial biofilms are


http://cme.msu.edu/cmeias

amenable to computer-assisted microscopy and digital image analysis. The quantitative data
gained by these analyses can bridge with modern genotypic technologies to fill gaps of
phenotypic information on the in situ biofilm ecology of microbial populations and community
assemblages. We have been developing a comprehensive suite of CMEIAS bioimage informatics
software that strengthen quantitative microscopy-based approaches for supporting microbial
ecology research on biofilm development and ecology, thereby providing new and improved
computing tools for image acquisition, processing and segmentation, object analysis and
classification, data processing, statistical analysis and exploratory data mining. After completion,
the copyrighted software technologies and their documentations are released as free downloads
at our project website: <cme.msu.edu/cmeias/>.

Historically, the first release version of CMEIAS featured components for analysis of
object size, shape, luminosity, a single-variable classifier, and a sophisticated hierarchical-
supervised classifier for all major and most minor microbial morphotypes [1]. We next developed
a CMEIAS Color Segmentation tool for analysis of the foreground objects within complex RGB
(red green blue) digital images where color differentiation really matters most, e.g.,
ecophysiological studies of organisms in situ [2]. For instance, this color segmentation tool
provided key image processing functions to accurately analyze the requirements for bacterial cell-
cell communication by biosensor reporter strains during their colonization on plant roots in situ,
indicating that the quorum population requirement was much smaller than originally thought (as
few as 2 individual cells) and also identifying the major importance of spatial positioning of cells
within gradients of external signal molecules to participate in successful cell-cell communication
[3]. The CMEIAS Color Segmentation tool also helps to segment RGB images of bacterial cells

specifically detected with fluorescent molecular probes (e.g., fluorescence-in situ hybridization or



immunofluorescence microscopy) when background autofluorescence and non-specific staining
are present in environmental samples [4]. We next released a CMEIAS Quadrat Maker software
application to optimize the grid dimensions that divide landscape images into smaller, constant
size contiguous quadrats for high-resolution plot-based spatial pattern analysis of cells within
biofilms [5]. Our most recent software release was a CMEIAS JFrad application designed to
discriminate complex biofilm architectures based on the uniqueness of their self-similar fractal
geometry [6]. It uniquely features algorithms to compute 11 different fractal dimensions along
microcolony biofilm coastlines, and also can discriminate the spatial patterns of individual cells in
the biofilm domain. Its protocols are optimally designed for data mining the quantitative
analytical results in order to provide insights of landscape ecology that address the complexity of
biofilm architecture and colonization behavior. This fractal feature of biofilm architecture is
attributed to the elevated efficiency of cell positioning in relation to the scale-dependent
heterogeneous fractal variability in limiting resource partitioning, especially when faced with
interactive forces of microbial coexistence to maximize and compete for their apportionment of
nutrient resources on a local scale in the surrounding environment [6-11].

Ecosystem function is heavily dependent on spatially structured heterogeneity among its
members [6-9, 11-15]. This ecological relationship provides the impetus to include a spatial
analysis module in the next release prototype of CMEIAS (ver. 4.0) [summary available at

https://Iter.kbs.msu.edu/abstracts/555]. This module is designed to explore the microbial

biogeography of biofilm assemblages across multiple spatial scales, and includes measurement
attributes for plot-less point pattern, plot-based quadrat-lattice spatial dispersion, fractal
dimension and geostatistical analyses of their spatial patterns of distribution at single-cell and

microcolony resolutions [1, 6, 8, 16, 17]. The output data can then be further evaluated by
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various spatial statistics to indicate their colonization intensity and reveal insights of their
colonization behaviors in situ [3-8, 16, 17], all driven by the ecological theory of optimal spatial
positioning of organisms in order to maximize their efficiency in utilization of nutrient resource
allocations and participate in cell-cell communication [3, 6-15]. Analysis of these in situ spatial
patterns of microbial distributions within immature biofilms (i.e., before growth expansion
completely covers the supporting substratum) provides data that support statistically defendable
ecological theories of biogeography, indicating that their early colonization behavior involves a
spatially explicit process affecting their patterns of distribution within their microenvironment
[7-15, 18]. Spatial dependence is considered positive when neighboring organisms aggregate due
to cooperative interactions that promote their localized productive growth, and is considered
negative when conflicting/inhibitory interactions are expressed resulting in their uniform, self-
avoiding colonization behavior [3, 7, 8, 12-15, 18, 19]. Thus, a major use of the CMEIAS spatial
ecology module is to test the null hypothesis of spatial randomness for the 2-dimensional
distribution of organisms within the biofilm landscape, which contrasts to various spatially
dependent and explicit processes from which the positive vs. negative type and intensity of their
colonization behavior can be deduced. When computed from images of immature microbial
biofilms, these categories of colonization behavior provide statistically defendable predictions of
their in situ cooperative (aggregately distributed) vs. conflicting (uniformly distributed) cell-cell
interactions within the spatially structured landscape [3-8, 12-15, 17-19].

Here we describe the use of selected CMEIAS spatial attributes to analyze the distribution
of indigenous cells of a beneficial rhizobial strain in a sampled landscape image of its rhizoplane
biofilm on a rice plant grown on samples of field soil collected from rice production areas in the

Egypt Nile delta. The extracted data of its spatial abundance, substratum-weighted intensity and



pattern of distribution are then evaluated by spatial statistics to provide insights on its
colonization behavior in situ. This information is useful in the assessment of biofertilizer
performance by selected strains of plant growth-promoting rhizobacteria in field inoculation
studies conducted where indigenous populations of the same strain may already be present in the
field soil. Otherwise, the lack of this information may inevitably compromise the final assessment

of inoculation benefit to the crop growth and yield.

Materials & Methods

Seeds of rice (Oryza sativa) variety Giza 177 were grown for 20 days in a sampled clay
loamy field soil with the following properties: pH: 7.3; electrical conductivity range: 1.9 -12.8
dS-1; CaCOs3 (%): 1 .4 - 2.9; sodium adsorption ratio: 2.9 - 7.2; exchangeable-Na percentage: 2.9
- 16.0; organic matter (%) 1.8 - 2.0; cation exchange capacity (meq/100 g): 41.7 - 50.0;
available-N (ppm): 485 - 947; available-P (P2Os): 12.3 - 19.4; available-K (K20): 38.0 - 73.5;
soil texture: loamy, containing 21.6 - 24.8 % clay; 41.2 - 46.1% silt; and 31.0 - 33.7% sand; and
water-saturation: 77.0 - 90.6%. In situ colonization of the rice rhizoplane by the indigenous soil
population of Rhizobium leguminosarum bv. trifolii strain E11was examined by indirect
immunofluorescence microscopy using a strain-specific rabbit polyclonal antibody [4, 17]. This
native strain was isolated from roots of rice grown in fields that had been used for crop rotation
with berseem clover (Trifolium alexandrinum) for many years [20]. Exploratory field inoculation
studies have documented its ability to promote the vegetative growth and grain yield of rice

under lab, greenhouse and various open fields in this region [20-22].

The landscape image used for analysis (Fig. 1) was acquired by epifluorescence

microscopy, digitally processed using Adobe Photoshop CS3 and CMEIAS Color Segmentation



[http://cme.msu.edu/cmeias/color.shtml] software to include only the individual brightly
immunofluorescent cells, thresholded to find the foreground objects of interest, and then
analyzed in situ using CMEIAS software [1-8, 16, 17]. The extracted data were statistically
analyzed using StatistiXL [statistixl.com/], PAST [23; folk.uio.no/ohammer/past/], EcoStat
[exetersoftware.com/cat/Trinity/ecostat.html], GS+ [gammadesign.com/] and Ecological

Methodology [24; www.exetersoftware.com/cat/ecometh/ecomethodology.html] software.

<insert Figure 1 here>

Results and Discussion

The first set of image analyses involved measurements of the landscape area of the
substratum surface, number and size of the individual immunofluorescent bacteria, and then their
spatial density, biovolume, biosurface area, and % substratum coverage [7, 8, 16]. Using these
collected data, we computed their substratum-weighted colonization intensities in sifu within the
domain of this sampled landscape of the rice rhizoplane (Table 1). These metrics of population
abundance to some extent reflect their success at competing for limited resources in the
substratum microenvironment where they reside [7-9, 25]. Therefore the choice of metrics used
to measure their abundance among community members can significantly influence how
variations in that relationship are interpreted [8]. If needed, further subdivision of biofilm
populations and communities based on CMEIAS object analysis and classification of their
morphological features can be successfully applied when comparing productivity of the entire
rhizoplane community vs. the biofertilizer preparation containing the strain of interest, and

certain adaptive responses to environmental stresses at single-cell resolution [1, 7, 8]. For
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example, bacterial cells increase their surface area/biovolume ratio when they size down to
enhance their nutrient update efficiency as a self-induced adaptive response to starvation [26],
and cell elongation of certain bacterial taxa will increase their resistance to protozoan
bacteriovory stress [27].

< insert Table 1 here >

Other useful attributes are included in the CMEIAS spatial ecology module. Object
analysis attributes reported for each individual cell include the georeferenced location of its
object centroid (Cartesian X | Y coordinates relative to the X, Y landmark origin of 0,0 located in
the lower left corner of the image to be analyzed), the shortest linear distance between each
individual cell and its 1st and 2nd nearest neighbors (NND), the cumulative empirical
distribution function of the 1st nearest neighbor distance for each cell, and a cluster index
indicating the intensity to which each cell is clustered in close proximity to its neighbors [7, 8,
16, 17]. Pertinent cumulative object analysis attributes reported collectively for all cells in the
same landscape image [7, 8, 16] included the mean / median / std. dev. of the distributions of
their 1* and 2™ nearest neighbor distances, and attributes reporting various substratum-weighted
quadrat-density data including their spatial density, colonization intensities, cumulative
biovolume, cumulative biosurface area, and % substratum coverage as indicated in Table 1, plus
other metrics (e.g., distribution of cell counts in different sized quadrats, distance from random
point to nearest object) required to test the null hypothesis of spatial randomness for patterns of
distribution within the image.

Table 2 lists various spatial point-pattern, quadrat-lattice, geostatistical and fractal
geometry analyses of CMEIAS data extracted from the image of immunoreactive cells colonized

on this sampled landscape of the rice rhizoplane. Student t and Mann-Whitney statistical tests



indicated that the mean and median values of the 1% and 2™ nearest neighbor distances were
significantly different (p of equal means and medians are 6.64 x 10 32 and 9.54 x 107,

respectively) and not derived from the same distribution. The Holgate aggregation index [28]
was computed from the distribution of each cell’s 1% and 2™ nearest neighbor distances. The
Hopkins and Skellum Aggregation index [29] was computed from distributions of their 1%
nearest neighbor distance and the distance from an equal number of random points to their
nearest objects in the image. The arrays of X | Y object centroid coordinates were used to
compute the Clark and Evans Aggregation Index [30, 31], kernel point density [23], linear
interpoint alignments [23, 32] and Ripley K distribution [23, 33]. Classifications of spatial
patterns were differentiated in cumulative plots of each cell’s empirical distribution function and
its corresponding 1% nearest neighbor distance [7, 8]. The quadrat indices of dispersion (ratio of
variance : mean, Morisita and standardized Morisita indices) were computed from the frequency
distribution of quadrat counts [24, 34, 35]. The cluster index was computed from the 1% nearest
neighbor distance for each cell [16, 17]. The geostatistical metrics of Moran’s Index and
effective range were computed from the best fit semivariogram model of spatial autocorrelation
derived from each object’s centroid X |Y coordinates and its associated cluster index as the
corresponding “Z variate” [7, 17, 36]. The mathematical methods of dilation, Eucledian distance
mapping, and box counting were used to compute the fractal-like patterns of spatial distribution
of individual, aggregated cells [6]. All of these indices rejected the null hypothesis of
randomness in spatial distribution of the target bacteria, and provided evidence of strong overall
spatial aggregation of cells indicating that their colonization behavior was dominated by
positive/cooperative interactions (Table 2).

<insert Table 2 here >



10

Spatial structure representing an aggregated pattern of distribution for the targeted strain
was further indicated in the plots of kernel density, linear interpoint alignments, minimal
spanning tree and Ripley’s K multi-distance pattern (Figs. 2a-2d, respectively), all derived from
analysis of the X ‘ Y coordinate locations of the target cells within the landscape rhizoplane
image. The spatial map provided by the kernel density analysis (Fig. 2a) revealed the
pseudocolored gradients in intensity of cell aggregation and probability of (dis)continuity in their
local cell density interpolated over the landscape area [7, 8, 23]. The counts of multidirectional,
linear point alignments (Table 2) and their intersections (Fig. 2b) predicted a significant
abundance of localized epicenters of potential interactions among aggregated microbial cells,
indicative of their clustered colonization behavior [7, 8, 23, 32]. The minimal spanning tree
displays the nearest-neighbor network of vertices interconnecting all cells into a multi-branched
tree with minimal total length, and its plot in Fig. 2¢ identified local aggregated patches with
high vertex densities of short length that further corroborate the same location of intense cell-cell
interactions predicted by the kernel density and linear point alignment plots. Ripley’s 2" order
spatial analysis evaluates if the point pattern characteristics change with radial distance between
cells [23, 33], indicating in this case that the vast majority of cells displayed aggregated spatial
patterns with a multimodal distribution of their paired separation distances (Fig. 2d, Table 2).

<insert Figure 2a-2d montage here>

The geostatistical method of spatial pattern analysis is particularly noteworthy, robust and
informative. This statistical method measures the degree of dependency among observations in a
geographic space to evaluate the variation in continuity of spatial patterns over that entire
domain [8, 36]. It does so by quantifying the resemblance between neighbors as a function of

spatial separation distance [8, 36]. Data are autocorrelated when nearby neighbor pairs are more
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similar than far neighbor pairs, as commonly occurs when the cell distribution is strongly
aggregated [7, 8, 36, 37]. When found, autocorrelation results can be mathematically modeled to
connect various spatially dependent relationships derived from regionalized variable theory [36].
In this study, we used geostatistical methods to explore the variation and connectivity in the
continuously distributed “Z-variate” of the cluster index for the targeted population of cells in the
sampled landscape domain. A positive sum of the Moran’s Index (Table 2) indicated that this Z-
variate was spatially autocorrelated in the landscape, delivered statistically defendable evidence
that cell-cell interactions positively influence their neighbors’ aggregated colonization behavior,
and indicated that the cooperative spatial aggregation is a dominant pattern/behavior that
significantly exceeds what would be expected if located randomly within the examined
geographic space, consistent with the other analysis results.

The geostatistical semivariogram plot (Fig. 3) provides several features that define the
extent to which the Z-variate exhibits autocorrelated spatial dependence between pairs of all
sampled cells [36]. An isotropic exponential model made the best fit of the CMEIAS cluster
index as the Z-variate for cells in this landscape image, with a high coefficient of determination
(r2=0.900) and low residual sum of squares (2.338 x 107%). The nugget value (Y intercept of
0.000010 at X = 0 separation distance) indicated the very low amount of measured
microstructure that is not spatially dependent over the range of separation distances examined.
Its small value also indicated that the sampling points were sufficient in quantity and sampled at
the proper spatial scale for this geostatistical analysis [36]. The semivariogram model also
indicated the important parameter of effective separation range (the X-axis intercept at 95% of
the asymptote height) that defines the maximal separation distance between pairs of sampling

points at which the Z variate is still autocorrelated [36]. This extrapolated value (Table 2)
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represents the in situ, predicted maximal distance that bacterial cells can be separated from one
another and still influence their neighbor’s ability to congregate locally into microcolony
aggregates within the defined spatial domain. This range of influence exceeds the maximal
distance found between neighboring cells in the image (13.14 um), providing a statistically-
defendable appraisal of the significant intensity of autocorrelated cell-cell interactions resulting
in their aggregated colonization behavior.

<insert Figure 3 here >

Biofilm landscapes commonly have complex architectures that exhibit self-similar fractal
geometry [6-8, 38]. This type of spatial pattern often arises from the scale-dependent,
heterogeneous fractal variability in limiting resource partitioning within their distribution
networks, and reflects a high efficiency of cell positioning for optimal utilization of fractal-like
apportionments in distribution of food-cluster resources, and the coexistence of multiple species
among community members on a local scale [6-11]. CMEIAS analysis detected positive fractal
geometry in the spatial pattern of aggregated distribution among the cells in the landscape image
(Table 2), suggesting that their colonization behavior has resulted in a spatial positioning
designed to exploit the fractal-like allocation and acquisition of clustered nutrient resources on
the rhizoplane [6-11].

In summary, CMEIAS-based applications of bioimage informatics can fill major gaps in
studies of microbial ecology by providing user-friendly computing tools that extract ecologically
relevant, quantitative phenotypic information from digital images of microbes at multiple spatial
scales, including their spatial ecology within biofilms. In this study, we examined the spatial
distribution of a rhizobial biofertilizer strain on a sampled rhizoplane surface of rice grown in a

field soil, representing an association that can ultimately lead to significant growth promotion of
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the crop plant. The results of this spatial ecology analysis concur with other studies that
examined the patterns of spatial distribution and biofilm colonization behavior of other microbes
on other substrata [3-8, 16, 17], indicating that microbial patterns of spatial distribution within
immature biofilms in various ecosystems are highly structured rather than deemed as randomly
distributed, and the data provide abundant statistical evidence indicating that the colonization
behavior of the test strain in the sampled rhizoplane landscape is dominated in situ by positive,
cooperative types of regionalized cell-cell interactions with their microbial neighbors. We are
exploring how this bioimage informatics approach to analyze colonization intensities and
behaviors of superior inoculant strains can enhance the biofertilization technologies as a
successful/promising tool for predicting, in advance of harvest, the potential for success or
failure of the biofertilization practice in promoting plant growth and crop yield under field
conditions, especially when the same inoculant strain is already indigenous in the field soil used
for cultivation.
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Table 1. Spatial abundance of immunofluorescent rhizobial cells in the sampled landscape

image of the rice rhizoplane (Fig. 1).

Spatial Ecology Attribute Value Obtained
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Substratum Area of Interest (um?)

Cell Count

Spatial Density (cells / mm?)

Mean Cell Biovolume (um?; x + std. dev.)

Cumulative Cell Biovolume (um?)

Colonization Intensity - Cell Biovolume (um?® / mm? substratum)
Mean Cell Biosurface Area (um?)

Cumulative Cell Biosurface Area (um?)

Colonization Intensity - Cell Biosurface Area (um? / mm? substratum)

% Substratum Coverage

32,796
580
17,685.08
1.462 £0.435
848.047
25,858.37
8.79
5,094.89
155,353.39

4.27

Data are derived from an image analysis of Figure 1 using CMEIAS Bioimage Informatics

software.
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Table 2. In situ spatial pattern analyses of R. leguminosarum E11 cells on the rice rhizoplane.

Spatial Ecology Attribute Value Interpretation
Mean + Std. Dev. 1** NND (um)  2.72 £ 1.32 Radial proximity to 1% nearest neighbors
Mean + Std. Dev. 2" NND (um) 3.78 £ 1.65 Radial proximity to 2" nearest neighbors
Median 18 NND (pm) 2.45 Radial proximity to 1% nearest neighbors
Median 2" NND (um) 341 Radial proximity to 2"¢ nearest neighbors
Holgate Aggregation Index 0.582 Aggregated pattern (> 0.5; p random = 0.001)
Hopkins & Skellum Aggregation 9.310 Aggregated pattern (> 1.0; p random < 0.001)
Clark & Evans Aggregation Index 7.863 Aggregated pattern (p random = 3.76 x 10'15)
Interpoint Line Alignments 142 Multiple, spatially structured interactions
Ripley K Radial Distances 7.5; 37.5; 67.5 Minor uniform, multiple dominant clusters

Empirical Distribution Function

Quadrat Dispersion Variance : Mean
Quadrat Dispersion Morisita Index

Morisita Standardized Dispersion

Moran's Index for Cluster Index

Effective range for Cluster Index (um)
Fractal Dimension: Dilation

Fractal Dimension: Eucledian Distance Map

Fractal Dimension: Box Counting

Sigmoid curve
4.29
1.140
0.502

(+) 2.808
18.42
1.34562
1.30985

1.20190

Minor uniform, dominant clustered
Aggregated pattern of dispersion (> 1.0)
Aggregated pattern of dispersion (> 1.0)
Aggregated pattern of dispersion (> 0.0)

Positively autocorrelated clustering

Radial distance of autocorrelated clustering
Aggregated fractal pattern
Aggregated fractal pattern

Aggregated fractal pattern

Values are computed from data obtained by an image analysis of Figure 1 using CMEIAS

Bioimage Informatics software.
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Figure 1. A noise-free, segmented binary image of a sampled landscape of the rice rhizoplane

containing a population of the targeted indigenous rhizobial strain detected by

21

immunofluorescence microscopy using a strain-specific antibody against R. leguminosarum bv.

trifolii E11.
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Figure 2. Plots of spatial distribution analysis of R. leguminosarum E11 cells colonized on the

sampled rhizoplane landscape. A) interpolated 2-D map of Kernel point density. B) Linear

interpoint alignments. C) Minimal spanning tree of E11 cells connected to their 1% nearest

neighbors. D) Ripley’s K point pattern classification.
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Figure 3. Geostatistical semivariogram of the spatial autocorrelation of the CMEIAS cluster

index for cells of R. leguminosarum bv. trifolii E11 in the rhizoplane landscape image.
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