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Abstract  

CMEIAS (Center for Microbial Ecology Image Analysis System) bioimage informatics software 

is designed to strengthen microscopy-based approaches for understanding microbial ecology at 

spatial scales directly relevant to ecological functions performed by individual cells and 

microcolonies. Copyrighted software components are thoroughly documented and provided as 

free downloads at <cme.msu.edu/cmeias/>. The software tools already released include 

CMEIAS-ImageTool v. 1.28, CMEIAS Color Segmentation, CMEIAS Quadrat Maker and 

CMEIAS JFrad Fractal Dimension analysis. The spatial ecology module of the next CMEIAS 

upgrade currently being developed (version 4.0) is designed to extract data from images for 

analysis of plotless point-patterns, plot-based quadrat-lattice patterns, geostatistical 

autocorrelation and fractal geometry of cells within biofilms. Examples presented here illustrate 

how selected CMEIAS attributes can be used to analyze the in situ spatial intensity, pattern of 

distribution, and colonization behavior of an indigenous population of a rhizobial strain on a 

sampled image of the rhizoplane landscape of a rice plant grown in field soil. The spatial ecology 

information gained can provide useful insights that help to predict the most likely performance of 

the biofertilizer test strain in relation to the growth response of the crop under field conditions. 

Keywords  

biofertilization, biofilm, CMEIAS bioimage informatics, computer-assisted microscopy, image 

analysis, spatial ecology  

Introduction 

Microbial lifestyles in association with plants are dominated by biofilm assemblages 

colonized on their root surfaces at root/soil interfaces, which can significantly impact on plant 

growth and crop productivities. The complex architectures of such microbial biofilms are 

http://cme.msu.edu/cmeias
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amenable to computer-assisted microscopy and digital image analysis. The quantitative data 

gained by these analyses can bridge with modern genotypic technologies to fill gaps of 

phenotypic information on the in situ biofilm ecology of microbial populations and community 

assemblages. We have been developing a comprehensive suite of CMEIAS bioimage informatics 

software that strengthen quantitative microscopy-based approaches for supporting microbial 

ecology research on biofilm development and ecology, thereby providing new and improved 

computing tools for image acquisition, processing and segmentation, object analysis and 

classification, data processing, statistical analysis and exploratory data mining. After completion, 

the copyrighted software technologies and their documentations are released as free downloads 

at our project website: <cme.msu.edu/cmeias/>. 

Historically, the first release version of CMEIAS featured components for analysis of 

object size, shape, luminosity, a single-variable classifier, and a sophisticated hierarchical-

supervised classifier for all major and most minor microbial morphotypes [1]. We next developed 

a CMEIAS Color Segmentation tool for analysis of the foreground objects within complex RGB 

(red green blue) digital images where color differentiation really matters most, e.g., 

ecophysiological studies of organisms in situ [2]. For instance, this color segmentation tool 

provided key image processing functions to accurately analyze the requirements for bacterial cell-

cell communication by biosensor reporter strains during their colonization on plant roots in situ, 

indicating that the quorum population requirement was much smaller than originally thought (as 

few as 2 individual cells) and also identifying the major importance of spatial positioning of cells 

within gradients of external signal molecules to participate in successful cell-cell communication 

[3]. The CMEIAS Color Segmentation tool also helps to segment RGB images of bacterial cells 

specifically detected with fluorescent molecular probes (e.g., fluorescence-in situ hybridization or 
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immunofluorescence microscopy) when background autofluorescence and non-specific staining 

are present in environmental samples [4]. We next released a CMEIAS Quadrat Maker software 

application to optimize the grid dimensions that divide landscape images into smaller, constant 

size contiguous quadrats for high-resolution plot-based spatial pattern analysis of cells within 

biofilms [5]. Our most recent software release was a CMEIAS JFrad application designed to 

discriminate complex biofilm architectures based on the uniqueness of their self-similar fractal 

geometry [6]. It uniquely features algorithms to compute 11 different fractal dimensions along 

microcolony biofilm coastlines, and also can discriminate the spatial patterns of individual cells in 

the biofilm domain. Its protocols are optimally designed for data mining the quantitative 

analytical results in order to provide insights of landscape ecology that address the complexity of 

biofilm architecture and colonization behavior. This fractal feature of biofilm architecture is 

attributed to the elevated efficiency of cell positioning in relation to the scale-dependent 

heterogeneous fractal variability in limiting resource partitioning, especially when faced with 

interactive forces of microbial coexistence to maximize and compete for their apportionment of 

nutrient resources on a local scale in the surrounding environment [6-11]. 

Ecosystem function is heavily dependent on spatially structured heterogeneity among its 

members [6-9, 11-15]. This ecological relationship provides the impetus to include a spatial 

analysis module in the next release prototype of CMEIAS (ver. 4.0) [summary available at 

https://lter.kbs.msu.edu/abstracts/555]. This module is designed to explore the microbial 

biogeography of biofilm assemblages across multiple spatial scales, and includes measurement 

attributes for plot-less point pattern, plot-based quadrat-lattice spatial dispersion, fractal 

dimension and geostatistical analyses of their spatial patterns of distribution at single-cell and 

microcolony resolutions [1, 6, 8, 16, 17]. The output data can then be further evaluated by 

https://lter.kbs.msu.edu/abstracts/555
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various spatial statistics to indicate their colonization intensity and reveal insights of their 

colonization behaviors in situ [3-8, 16, 17], all driven by the ecological theory of optimal spatial 

positioning of organisms in order to maximize their efficiency in utilization of nutrient resource 

allocations and participate in cell-cell communication [3, 6-15]. Analysis of these in situ spatial 

patterns of microbial distributions within immature biofilms (i.e., before growth expansion 

completely covers the supporting substratum) provides data that support statistically defendable 

ecological theories of biogeography, indicating that their early colonization behavior involves a 

spatially explicit process affecting their patterns of distribution within their microenvironment 

[7-15, 18]. Spatial dependence is considered positive when neighboring organisms aggregate due 

to cooperative interactions that promote their localized productive growth, and is considered 

negative when conflicting/inhibitory interactions are expressed resulting in their uniform, self-

avoiding colonization behavior [3, 7, 8, 12-15, 18, 19]. Thus, a major use of the CMEIAS spatial 

ecology module is to test the null hypothesis of spatial randomness for the 2-dimensional 

distribution of organisms within the biofilm landscape, which contrasts to various spatially 

dependent and explicit processes from which the positive vs. negative type and intensity of their 

colonization behavior can be deduced. When computed from images of immature microbial 

biofilms, these categories of colonization behavior provide statistically defendable predictions of 

their in situ cooperative (aggregately distributed) vs. conflicting (uniformly distributed) cell-cell 

interactions within the spatially structured landscape [3-8, 12-15, 17-19]. 

Here we describe the use of selected CMEIAS spatial attributes to analyze the distribution 

of indigenous cells of a beneficial rhizobial strain in a sampled landscape image of its rhizoplane 

biofilm on a rice plant grown on samples of field soil collected from rice production areas in the 

Egypt Nile delta. The extracted data of its spatial abundance, substratum-weighted intensity and 

4 
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pattern of distribution are then evaluated by spatial statistics to provide insights on its 

colonization behavior in situ. This information is useful in the assessment of biofertilizer 

performance by selected strains of plant growth-promoting rhizobacteria in field inoculation 

studies conducted where indigenous populations of the same strain may already be present in the 

field soil. Otherwise, the lack of this information may inevitably compromise the final assessment 

of inoculation benefit to the crop growth and yield. 

Materials & Methods 

Seeds of rice (Oryza sativa) variety Giza 177 were grown for 20 days in a sampled clay 

loamy field soil with the following properties: pH: 7.3; electrical conductivity range: 1.9 -12.8 

dS-1; CaCO3 (%): 1 .4 - 2.9; sodium adsorption ratio: 2.9 - 7.2; exchangeable-Na percentage: 2.9 

- 16.0;  organic matter (%) 1.8 - 2.0; cation exchange capacity (meq/100 g): 41.7 - 50.0; 

available-N (ppm): 485 - 947; available-P (P2O5): 12.3 - 19.4; available-K (K2O): 38.0 - 73.5; 

soil texture: loamy, containing 21.6 - 24.8 % clay; 41.2 - 46.1% silt; and 31.0 - 33.7% sand; and 

water-saturation: 77.0 - 90.6%. In situ colonization of the rice rhizoplane by the indigenous soil 

population of Rhizobium leguminosarum bv. trifolii strain E11was examined by indirect 

immunofluorescence microscopy using a strain-specific rabbit polyclonal antibody [4, 17]. This 

native strain was isolated from roots of rice grown in fields that had been used for crop rotation 

with berseem clover (Trifolium alexandrinum) for many years [20]. Exploratory field inoculation 

studies have documented its ability to promote the vegetative growth and grain yield of rice 

under lab, greenhouse and various open fields in this region [20-22].  

The landscape image used for analysis (Fig. 1) was acquired by epifluorescence 

microscopy, digitally processed using Adobe Photoshop CS3 and CMEIAS Color Segmentation 
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[http://cme.msu.edu/cmeias/color.shtml] software to include only the individual brightly 

immunofluorescent cells, thresholded to find the foreground objects of interest, and then 

analyzed in situ using CMEIAS software [1-8, 16, 17].  The extracted data were statistically 

analyzed using StatistiXL [statistixl.com/], PAST [23; folk.uio.no/ohammer/past/], EcoStat 

[exetersoftware.com/cat/Trinity/ecostat.html], GS+ [gammadesign.com/] and Ecological 

Methodology [24; www.exetersoftware.com/cat/ecometh/ecomethodology.html] software. 

                                            <insert Figure 1 here> 

Results and Discussion  

 

The first set of image analyses involved measurements of the landscape area of the 

substratum surface, number and size of the individual immunofluorescent bacteria, and then their 

spatial density, biovolume, biosurface area, and % substratum coverage [7, 8, 16]. Using these 

collected data, we computed their substratum-weighted colonization intensities in situ within the 

domain of this sampled landscape of the rice rhizoplane (Table 1). These metrics of population 

abundance to some extent reflect their success at competing for limited resources in the 

substratum microenvironment where they reside [7-9, 25]. Therefore the choice of metrics used 

to measure their abundance among community members can significantly influence how 

variations in that relationship are interpreted [8]. If needed, further subdivision of biofilm 

populations and communities based on CMEIAS object analysis and classification of their 

morphological features can be successfully applied when comparing productivity of the entire 

rhizoplane community vs. the biofertilizer preparation containing the strain of interest, and 

certain adaptive responses to environmental stresses at single-cell resolution [1, 7, 8]. For 

https://folk.uio.no/ohammer/past/
http://www.exetersoftware.com/cat/Trinity/ecostat.html
http://www.gammadesign.com/
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example, bacterial cells increase their surface area/biovolume ratio when they size down to 

enhance their nutrient update efficiency as a self-induced adaptive response to starvation [26], 

and cell elongation of certain bacterial taxa will increase their resistance to protozoan 

bacteriovory stress [27]. 

< insert Table 1 here >  
 

Other useful attributes are included in the CMEIAS spatial ecology module. Object 

analysis attributes reported for each individual cell include the georeferenced location of its 

object centroid (Cartesian XY coordinates relative to the X, Y landmark origin of 0,0 located in 

the lower left corner of the image to be analyzed), the shortest linear distance between each 

individual cell and its 1st and 2nd nearest neighbors (NND), the cumulative empirical 

distribution function of the 1st nearest neighbor distance for each cell, and a cluster index 

indicating the intensity to which each cell is clustered in close proximity to its neighbors [7, 8, 

16, 17]. Pertinent cumulative object analysis attributes reported collectively for all cells in the 

same landscape image [7, 8, 16] included the mean / median / std. dev. of the distributions of 

their 1st and 2nd nearest neighbor distances, and attributes reporting various substratum-weighted 

quadrat-density data including their spatial density, colonization intensities, cumulative 

biovolume, cumulative biosurface area, and % substratum coverage as indicated in Table 1, plus 

other metrics (e.g., distribution of cell counts in different sized quadrats, distance from random 

point to nearest object) required to test the null hypothesis of spatial randomness for patterns of 

distribution within the image.  

Table 2 lists various spatial point-pattern, quadrat-lattice, geostatistical and fractal 

geometry analyses of CMEIAS data extracted from the image of immunoreactive cells colonized 

on this sampled landscape of the rice rhizoplane. Student t and Mann-Whitney statistical tests 
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indicated that the mean and median values of the 1st and 2nd nearest neighbor distances were 

significantly different (p of equal means and medians are 6.64 x 10 -32 and 9.54 x 10-60, 

respectively) and not derived from the same distribution. The Holgate aggregation index [28] 

was computed from the distribution of each cell’s 1st and 2nd nearest neighbor distances. The 

Hopkins and Skellum Aggregation index [29] was computed from distributions of their 1st 

nearest neighbor distance and the distance from an equal number of random points to their 

nearest objects in the image. The arrays of XY object centroid coordinates were used to 

compute the Clark and Evans Aggregation Index [30, 31], kernel point density [23], linear 

interpoint alignments [23, 32] and Ripley K distribution [23, 33]. Classifications of spatial 

patterns were differentiated in cumulative plots of each cell’s empirical distribution function and 

its corresponding 1st nearest neighbor distance [7, 8]. The quadrat indices of dispersion (ratio of 

variance : mean, Morisita and standardized Morisita indices) were computed from the frequency 

distribution of quadrat counts [24, 34, 35]. The cluster index was computed from the 1st nearest 

neighbor distance for each cell [16, 17]. The geostatistical metrics of Moran’s Index and 

effective range were computed from the best fit semivariogram model of spatial autocorrelation 

derived from each object’s centroid XY coordinates and its associated cluster index as the 

corresponding “Z variate” [7, 17, 36]. The mathematical methods of dilation, Eucledian distance 

mapping, and box counting were used to compute the fractal-like patterns of spatial distribution 

of individual, aggregated cells [6]. All of these indices rejected the null hypothesis of 

randomness in spatial distribution of the target bacteria, and provided evidence of strong overall 

spatial aggregation of cells indicating that their colonization behavior was dominated by 

positive/cooperative interactions (Table 2). 

<insert Table 2 here > 
 



10 
 

Spatial structure representing an aggregated pattern of distribution for the targeted strain 

was further indicated in the plots of kernel density, linear interpoint alignments, minimal 

spanning tree and Ripley’s K multi-distance pattern (Figs. 2a-2d, respectively), all derived from 

analysis of the XY coordinate locations of the target cells within the landscape rhizoplane 

image. The spatial map provided by the kernel density analysis (Fig. 2a) revealed the 

pseudocolored gradients in intensity of cell aggregation and probability of (dis)continuity in their 

local cell density interpolated over the landscape area [7, 8, 23]. The counts of multidirectional, 

linear point alignments (Table 2) and their intersections (Fig. 2b) predicted a significant 

abundance of localized epicenters of potential interactions among aggregated microbial cells, 

indicative of their clustered colonization behavior [7, 8, 23, 32]. The minimal spanning tree 

displays the nearest-neighbor network of vertices interconnecting all cells into a multi-branched 

tree with minimal total length, and its plot in Fig. 2c identified local aggregated patches with 

high vertex densities of short length that further corroborate the same location of intense cell-cell 

interactions predicted by the kernel density and linear point alignment plots. Ripley’s 2nd order 

spatial analysis evaluates if the point pattern characteristics change with radial distance between 

cells [23, 33], indicating in this case that the vast majority of cells displayed aggregated spatial 

patterns with a multimodal distribution of their paired separation distances (Fig. 2d, Table 2).    

<insert Figure 2a-2d montage here> 

The geostatistical method of spatial pattern analysis is particularly noteworthy, robust and 

informative. This statistical method measures the degree of dependency among observations in a 

geographic space to evaluate the variation in continuity of spatial patterns over that entire 

domain [8, 36]. It does so by quantifying the resemblance between neighbors as a function of 

spatial separation distance [8, 36]. Data are autocorrelated when nearby neighbor pairs are more 
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similar than far neighbor pairs, as commonly occurs when the cell distribution is strongly 

aggregated [7, 8, 36, 37]. When found, autocorrelation results can be mathematically modeled to 

connect various spatially dependent relationships derived from regionalized variable theory [36]. 

In this study, we used geostatistical methods to explore the variation and connectivity in the 

continuously distributed “Z-variate” of the cluster index for the targeted population of cells in the 

sampled landscape domain. A positive sum of the Moran’s Index (Table 2) indicated that this Z-

variate was spatially autocorrelated in the landscape, delivered statistically defendable evidence 

that cell-cell interactions positively influence their neighbors’ aggregated colonization behavior, 

and indicated that the cooperative spatial aggregation is a dominant pattern/behavior that 

significantly exceeds what would be expected if located randomly within the examined 

geographic space, consistent with the other analysis results.  

The geostatistical semivariogram plot (Fig. 3) provides several features that define the 

extent to which the Z-variate exhibits autocorrelated spatial dependence between pairs of all 

sampled cells [36]. An isotropic exponential model made the best fit of the CMEIAS cluster 

index as the Z-variate for cells in this landscape image, with a high coefficient of determination 

(r 2 = 0.900) and low residual sum of squares (2.338 × 10−5). The nugget value (Y intercept of 

0.000010 at X = 0 separation distance) indicated the very low amount of measured 

microstructure that is not spatially dependent over the range of separation distances examined. 

Its small value also indicated that the sampling points were sufficient in quantity and sampled at 

the proper spatial scale for this geostatistical analysis [36]. The semivariogram model also 

indicated the important parameter of effective separation range (the X-axis intercept at 95% of 

the asymptote height) that defines the maximal separation distance between pairs of sampling 

points at which the Z variate is still autocorrelated [36]. This extrapolated value (Table 2) 
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represents the in situ, predicted maximal distance that bacterial cells can be separated from one 

another and still influence their neighbor’s ability to congregate locally into microcolony 

aggregates within the defined spatial domain. This range of influence exceeds the maximal 

distance found between neighboring cells in the image (13.14 m), providing a statistically-

defendable appraisal of the significant intensity of autocorrelated cell-cell interactions resulting 

in their aggregated colonization behavior.  

                                                  < insert Figure 3 here > 
 
Biofilm landscapes commonly have complex architectures that exhibit self-similar fractal 

geometry [6-8, 38]. This type of spatial pattern often arises from the scale-dependent, 

heterogeneous fractal variability in limiting resource partitioning within their distribution 

networks, and reflects a high efficiency of cell positioning for optimal utilization of fractal-like 

apportionments in distribution of food-cluster resources, and the coexistence of multiple species 

among community members on a local scale [6-11]. CMEIAS analysis detected positive fractal 

geometry in the spatial pattern of aggregated distribution among the cells in the landscape image 

(Table 2), suggesting that their colonization behavior has resulted in a spatial positioning 

designed to exploit the fractal-like allocation and acquisition of clustered nutrient resources on 

the rhizoplane [6-11].   

  In summary, CMEIAS-based applications of bioimage informatics can fill major gaps in 

studies of microbial ecology by providing user-friendly computing tools that extract ecologically 

relevant, quantitative phenotypic information from digital images of microbes at multiple spatial 

scales, including their spatial ecology within biofilms. In this study, we examined the spatial 

distribution of a rhizobial biofertilizer strain on a sampled rhizoplane surface of rice grown in a 

field soil, representing an association that can ultimately lead to significant growth promotion of 
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the crop plant. The results of this spatial ecology analysis concur with other studies that 

examined the patterns of spatial distribution and biofilm colonization behavior of other microbes 

on other substrata [3-8, 16, 17], indicating that microbial patterns of spatial distribution within 

immature biofilms in various ecosystems are highly structured rather than deemed as randomly 

distributed, and the data provide abundant statistical evidence indicating that the colonization 

behavior of the test strain in the sampled rhizoplane landscape is dominated in situ by positive, 

cooperative types of regionalized cell-cell interactions with their microbial neighbors. We are 

exploring how this bioimage informatics approach to analyze colonization intensities and 

behaviors of superior inoculant strains can enhance the biofertilization technologies as a 

successful/promising tool for predicting, in advance of harvest, the potential for success or 

failure of the biofertilization practice in promoting plant growth and crop yield under field 

conditions, especially when the same inoculant strain is already indigenous in the field soil used 

for cultivation. 
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Table 1. Spatial abundance of immunofluorescent rhizobial cells in the sampled landscape 

image of the rice rhizoplane (Fig. 1). 

             

    Spatial Ecology Attribute        Value Obtained 

 

Substratum Area of Interest (µm2) 32,796 

Cell Count 580 

Spatial Density (cells / mm2) 17,685.08 

Mean Cell Biovolume (µm3; x ± std. dev.)  1.462 ± 0.435 

Cumulative Cell Biovolume (µm3) 848.047 

Colonization Intensity - Cell Biovolume (µm3 / mm2 substratum) 25,858.37 

Mean Cell Biosurface Area (µm2) 8.79 

Cumulative Cell Biosurface Area (µm2) 5,094.89 

       Colonization Intensity - Cell Biosurface Area (m2 / mm2 substratum) 155,353.39 

% Substratum Coverage 4.27 

  
Data are derived from an image analysis of Figure 1 using CMEIAS Bioimage Informatics 

software. 
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Table 2. In situ spatial pattern analyses of R. leguminosarum E11 cells on the rice rhizoplane. 
 
 
 

Spatial Ecology Attribute Value  Interpretation 

 

Mean  Std. Dev. 1st NND (m) 

 

2.72 ± 1.32 

 

Radial proximity to 1st nearest neighbors 

Mean  Std. Dev. 2nd NND (m) 3.78 ± 1.65 Radial proximity to 2nd nearest neighbors 

Median 1st NND (m) 2.45 Radial proximity to 1st nearest neighbors 

Median 2nd NND (m) 3.41 Radial proximity to 2nd nearest neighbors 

Holgate Aggregation Index 0.582 Aggregated pattern (> 0.5; p random = 0.001) 

Hopkins & Skellum Aggregation  9.310 Aggregated pattern (> 1.0; p random < 0.001) 

Clark & Evans Aggregation Index 7.863 Aggregated pattern (p random = 3.76 x 10-15) 

Interpoint Line Alignments 142 Multiple, spatially structured interactions 

Ripley K Radial Distances 7.5; 37.5; 67.5 Minor uniform, multiple dominant clusters  

Empirical Distribution Function Sigmoid curve Minor uniform, dominant clustered 

Quadrat Dispersion Variance : Mean 4.29 Aggregated pattern of dispersion (> 1.0) 

Quadrat Dispersion Morisita Index 1.140 Aggregated pattern of dispersion (> 1.0) 

Morisita Standardized Dispersion 0.502 Aggregated pattern of dispersion (> 0.0) 

Moran's Index for Cluster Index (+) 2.808 Positively autocorrelated clustering 

Effective range for Cluster Index (µm) 18.42 Radial distance of autocorrelated clustering 

Fractal Dimension: Dilation 1.34562 Aggregated fractal pattern  

Fractal Dimension: Eucledian Distance Map 1.30985 Aggregated fractal pattern 

Fractal Dimension: Box Counting 1.20190 Aggregated fractal pattern 

 
Values are computed from data obtained by an image analysis of Figure 1 using CMEIAS 

Bioimage Informatics software. 
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Figure 1. A noise-free, segmented binary image of a sampled landscape of the rice rhizoplane 

containing a population of the targeted indigenous rhizobial strain detected by 

immunofluorescence microscopy using a strain-specific antibody against R. leguminosarum bv. 

trifolii E11.  
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Figure 2. Plots of spatial distribution analysis of R. leguminosarum E11 cells colonized on the 

sampled rhizoplane landscape. A) interpolated 2-D map of Kernel point density. B) Linear 

interpoint alignments. C) Minimal spanning tree of E11 cells connected to their 1st nearest 

neighbors. D) Ripley’s K point pattern classification.  
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Figure 3. Geostatistical semivariogram of the spatial autocorrelation of the CMEIAS cluster 

index for cells of R. leguminosarum bv. trifolii E11 in the rhizoplane landscape image.  

 
 

 


