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Several school districts use assignment systems that give students an incentive to
misrepresent their preferences. We find evidence consistent with strategic behavior in
Cambridge. Such strategizing can complicate preference analysis. This paper develops
empirical methods for studying random utility models in a new and large class of school
choice mechanisms. We show that preferences are nonparametrically identified under
either sufficient variation in choice environments or a preference shifter. We then de-
velop a tractable estimation procedure and apply it to Cambridge. Estimates suggest
that while 83% of students are assigned to their stated first choice, only 72% are as-
signed to their true first choice because students avoid ranking competitive schools.
Assuming that students behave optimally, the Immediate Acceptance mechanism is
preferred by the average student to the Deferred Acceptance mechanism by an equiva-
lent of 0.08 miles. The estimated difference is smaller if beliefs are biased, and reversed
if students report preferences truthfully.

KEYWORDS: Manipulable mechanism, school choice, preference estimation, identi-
fication.

1. INTRODUCTION

ADMISSIONS TO PUBLIC SCHOOLS throughout the world is commonly based on assignment
mechanisms that use reported rankings of various schooling options (Abdulkadiroğlu and
Sönmez (2003)). The design of such school choice mechanisms has garnered significant at-
tention in the theoretical literature (Abdulkadiroğlu (2013)). Although mechanisms that
incentivize truthful revelation of preferences have been strongly advocated for in the the-
oretical literature (see Pathak and Sönmez (2008), Azevedo and Budish (2017), e.g.),
with rare exceptions, real-world school choice systems are susceptible to gaming. Table I
presents a partial list of mechanisms in use at school districts around the world. To our
knowledge, only Boston and Amsterdam currently employ mechanisms that are not ma-
nipulable.

The widespread use of manipulable school choice systems poses two important ques-
tions. First, what are the costs and benefits of manipulable mechanisms from the stu-
dent assignment perspective? Theoretical results on this question yield ambiguous an-
swers. Abdulkadiroğlu, Che, and Yasuda (2011) used a stylized model to show that
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TABLE I

SCHOOL CHOICE MECHANISMSa

Mechanism Manipulable Examples

Immediate Acceptance Y Barcelonab, Beijingc, Boston (pre 2005),
Charlotte-Mecklenbergd, Chicago (pre 2009),
Denver, Miami-Dade, Minneapolis,
Seattle (pre 1999 and post 2009),
Tampa-St. Petersburg

Deferred Acceptance
w/ Truncated Lists Y New York Citye, Ghanian Schools,

various districts in England (since mid ’00s)
w/ Unrestricted Lists N Boston (post 2005), Seattle (1999–2008),

Amsterdam (post 2015)f

Serial Dictatorships
w/ Truncated Lists Y Chicago (2009 onwards)

First Preferences First Y various districts in England (before mid ’00s)
Chinese Parallel Y Shanghai and several other Chinese provincesg

Cambridge Y Cambridgeh

Pan London Admissions Y Londoni

Top Trading Cycles
w/ Truncated Lists Y New Orleansj

New Haven Mechanism Y New Havenk

aSource Table 1 of Pathak and Sönmez (2008) unless otherwise stated. See several references therein
for details. Other sources:

bCalsamiglia and Güell (2017);
cHe (2016);
dHastings, Kane, and Staiger (2009);
eAbdulkadiroğlu, Pathak, and Roth (2009);
fde Haan, Gautier, Oosterbeek, and van der Klaauw (2016);
gChen and Kesten (2013);
h“Controlled Choice Plan” CPS, December 18, 2001;
iPennell, West, and Hind (2006);
jhttp://www.nola.com/education/index.ssf/2012/05/new_orleans_schools_say_new_pu.html

accessed May 20, 2014;
kKapor, Neilson, and Zimmerman (2017).

strategic choice in the Immediate Acceptance mechanism, also known as the (old)
Boston mechanism, can effectively elicit cardinal information on preferences and can
improve average student welfare. However, this potential benefit comes at a cost of
violating notions of fairness and stability of the final assignments. Second, how does
one interpret and analyze administrative data on reported rankings generated by these
mechanisms if the reports cannot be taken as truthful? Information on preferences
can be useful for academic research on the effects of school choice on student wel-
fare (Abdulkadiroğlu, Agarwal, and Pathak (2017)), student achievement (Hastings,
Kane, and Staiger (2009)), and school competition (Nielson (2013)). Additionally, stu-
dent preference information can also be useful for directing school reforms by iden-
tifying which schools are more desirable than others.1 However, ignoring strategic in-

1School accountability and improvement programs and district-wide reforms often use stated rank-order
lists as direct indicators of school desirability or student preferences. Boston’s Controlled Choice Plan formally
used the number of applications to a school as an indicator of school performance in an improvement program.
Similarly, Glenn (1991) argued that school choice caused improvements in the Boston school system based on
observing an increase in the number of students who were assigned to their top choice.
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centives for such purposes can lead to incorrect conclusions and misdirected poli-
cies.2

This paper addresses these two questions by developing a general method for estimat-
ing the underlying distribution of student preferences for schools using data from ma-
nipulable mechanisms and by applying these techniques to data from elementary school
admissions in Cambridge, MA. We make several methodological and empirical contri-
butions. First, we document strategic behavior to show that student reports respond to
the incentives present in the mechanism. Second, we propose a new revealed preference
method for analyzing the reported rank-order lists of students. We use this technique
to propose a new estimator for the distribution of student preferences and to derive its
limit properties. These technical results are applicable to a broad class of school choice
mechanisms that includes the systems listed in Table I, except for the Top Trading Cycles
mechanism. Third, we derive conditions under which the distribution of preferences is
nonparametrically identified. Finally, we apply these methods to estimate the distribution
of preferences in Cambridge, which uses an Immediate Acceptance mechanism. These
preference estimates can then be used to analyze how often students are assigned to their
true first choice school and to compare the outcomes under the current mechanism to an
alternative that uses the student-proposing Deferred Acceptance mechanism.

Interpreting observed rank-order lists requires a model of agent behavior. Anecdotal
evidence from Boston (Pathak and Sönmez (2008)) and laboratory experiments (Chen
and Sonmez (2006), Calsamiglia, Haeringer, and Klijn (2010)) suggest that strategic be-
havior may be widespread in manipulable school choice systems. Indeed, our analysis of
ranking behavior for admissions into public elementary schools in Cambridge indicates
significant gaming. There are strong incentives for behaving strategically in Cambridge.
Because Cambridge uses an Immediate Acceptance mechanism, some schools are rarely
assigned to students who rank it second, while others have spare capacity after all stu-
dents have been considered. Students therefore may lose their priority at a competitive
school if they do not rank it first. We investigate whether students appear to respond to
these incentives by using a regression discontinuity design based on the fact that students
receive proximity priority at the two closest schools. We find that student ranking behav-
ior changes discontinuously with the change in priority. This result is not consistent with
a model in which students rank schools in order of their true preferences if residential
decisions are not made in consideration of proximity priority. Reassuringly, we do not
find evidence that aggregate residential decisions or house prices are affected by this pri-
ority.

Therefore, instead of interpreting reported rank-order lists as true preferences, we as-
sume that each report corresponds to an optimal choice of a lottery over assignments to
various schools. The lottery implied by a rank-order list consists of the probabilities of
getting assigned to each of the schools on that list. These probabilities depend on the stu-
dent’s priority type and report, a randomly generated tie-breaker, and the reports and pri-
orities of the other students. Given a belief for the assignment probabilities corresponding
to each rank-order list, the expected utility from the chosen lottery must be greater than

2Previous empirical work has typically assumed that observed rank-order lists are a truthful representa-
tion of the students’ preferences (Hastings, Kane, and Staiger (2009), Abdulkadiroğlu, Agarwal, and Pathak
(2017), Ayaji (2017)), allowing a direct extension of discrete choice demand methods. The assumption is usu-
ally motivated by arguing that strategic behavior may be limited in the specific environment. A handful of
contemporaneous papers discussed below allow for agents to be strategic (He (2016), Calsamiglia, Fu, and
Güell (2017), Hwang (2016)).
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other lotteries the agent could have chosen. We begin by assuming that students best re-
spond to the strategies of other students. This rational expectations assumption is an im-
portant baseline that accounts for strategic behavior. However, we also consider models
in which students have less information or have biased beliefs. First, we consider a model
in which agents are unaware of the fine distinctions the mechanism makes between vari-
ous priority and student types. Second, we consider a model with adaptive expectations in
which beliefs are based on the previous year. In an extension, we also estimate a mixture
model with both naïve and sophisticated players.

Once a model of strategic behavior has been assumed, it is natural to ask whether it
can be used to learn about the distribution of preferences using a typical data set. To
address this question, we study identification of a flexible random utility model that al-
lows for student and school unobservables (see Block and Marshak (1960), McFadden
(1973), Manski (1977)). Under the models of agent beliefs discussed above, estimates
of assignment probabilities obtained from the data can be substituted for the students’
beliefs. As we discuss later, consistent estimates of the assignment probabilities (as a
function of reports and priority types) can be obtained using the data and the knowl-
edge of the mechanism. Our results show that, given estimated assignment probabilities,
two types of variation can be used to learn about the distribution of preferences. The
first is variation in choice environments that may arise when two identical populations
of students face different mechanisms or different school capacities. We characterize the
identified set of preference distributions under such variation. The second form of vari-
ation assumes the availability of a special regressor that is additively separable in the
indirect utility function. Such a regressor can be used to “trace out” the distribution of
preferences (Manski (1985), Matzkin (1992), Lewbel (2000)). Similar assumptions are
commonly made to identify preferences in discrete choice models. In our application, we
use distance to school as a shifter of preferences. Our empirical specification therefore
rules out within-district residential sorting based on unobserved determinants of school
preferences. This assumption is commonly made in the existing empirical work on school
choice. Models of joint schooling and residential decisions are left for future work.3

This analysis naturally suggests a two-step estimation procedure for estimating the dis-
tribution of preferences. In a first step, we estimate the lottery over school assignments as-
sociated with each report and priority type. In a second step, we estimate the parameters
governing the distribution of preferences using a likelihood based method. Specifically,
we implement a Gibbs sampler adapted from McCulloch and Rossi (1994). This proce-
dure is convenient in our setting because the set of utility vectors for which a given report
is optimal can be expressed in terms of linear inequalities, and it allows us to avoid com-
puting or simulating the likelihood that a report is optimal given a parameter vector. We
prove that our estimator is consistent and asymptotically normal. The primary technical
contribution is a limit theorem for the estimated lotteries. This result requires a consid-
eration of dependent data because assignments depend on the reports of all students in
the market. That school choice mechanisms are usually described in terms of algorithms
rather than functions with well-known properties further complicates the analysis. We

3We investigated whether the average house price or the fraction of residential units occupied by Cambridge
elementary school students is higher on the side of a priority zone boundary where priority is accorded at
a better performing school. Our results suggest that priorities are not a strong enough driver of residential
decisions to generate differences in house prices or the aggregate number of families locating in an area.
These findings are consistent with families not paying attention to the details of the admissions system at the
time of choosing where to live. Details available upon request.
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solve this problem for a new and large class of school choice mechanisms that includes all
mechanisms in Table I, except the Top Trading Cycles mechanism.

We then apply our methods to estimate student preferences in Cambridge in order to
address a wide range of issues. First, we investigate the extent to which students avoid
ranking competitive schools in order to increase their chances of assignment at less com-
petitive options. Prevalence of such behavior can result in misestimating the attractiveness
of certain schools if stated ranks are interpreted at face value. Ignoring strategic behav-
ior may therefore result in inefficient allocation of public resources for improving school
quality. Further, a large number of students assigned to their first choice may not be an
indication of student satisfaction or heterogeneity in preferences. We therefore also re-
port on whether strategic behavior results in fewer students being assigned to their true
first choice as compared to their stated first choice.

Second, we study the welfare effects of switching to the student-proposing Deferred Ac-
ceptance mechanism. The theoretical literature supports strategy-proof mechanisms on
the basis of their simplicity, robustness to information available to participants, and fair-
ness (see Azevedo and Budish (2017), and references therein). However, it is possible that
ordinal strategy-proof mechanisms compromise student welfare by not screening students
based on the intensity of their preferences (Miralles (2009), Abdulkadiroğlu, Che, and
Yasuda (2011)). We quantify student welfare from the assignment under these two mech-
anisms under alternative models of agent beliefs and behavior. This approach abstracts
away from potential costs of strategizing and acquiring information, which are difficult to
quantify given the available data. Nonetheless, allocative efficiency is a central consider-
ation in mechanism choice, along with other criteria such as differential costs of partici-
pating, fairness, and strategy-proofness (Abdulkadiroğlu, Pathak, and Roth (2009)).

Our baseline results, which assume equilibrium behavior, indicate that the average stu-
dent prefers the assignments under the Cambridge mechanism to the Deferred Accep-
tance mechanism. Interestingly, this difference is driven by paid-lunch students, who face
stronger strategic incentives than free-lunch students because of quotas based on free-
lunch eligibility. A cost of improved assignments in Cambridge is that some students (2–
10% depending on the specification and the student group) have justified envy.4 We then
evaluate the mechanisms assuming that agents have biased beliefs about assignment prob-
abilities. These estimates suggest that biased beliefs may mitigate the screening benefits
of the Cambridge mechanism because mistakes can be costly in some cases.

Finally, we evaluate a mixture model with naïve and sophisticated agents to assess the
distributional consequences across agents who vary in their ability to game the mecha-
nism. We estimate that about a third of paid-lunch and free-lunch students report their
preferences sincerely even if it may not be optimal to do so. Although naïve agents be-
have suboptimally, we find that the average naïve student prefers the assignments under
the Cambridge mechanism. This occurs because naïve students rank their most preferred
school first and gain priority at this school at the cost of sophisticates who avoid ranking
these schools. The cost of not receiving their true second or third choices turns out to be
smaller than this benefit.

Related Literature

These empirical contributions are closely related to a handful of recent papers
that estimate preferences for schools using manipulable mechanisms (He (2016),

4Student i has justified envy if another student i′ is assigned to a school j that student i prefers to her
assignment and student i has (strictly) higher priority at j than student i′.
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Calsamiglia, Fu, and Güell (2017), Hwang (2016)). He (2016) proposed an estimator
based on theoretically deriving properties of undominated reports using specifics of the
school choice implementation in Beijing.5  Hwang (2016) proposed a subset of restric-
tions on agent behavior based on simple rules to derive a bounds-based estimation ap-
proach. Compared to our procedure, these approaches avoid using restrictions that are
implied if agents have information about which schools are more competitive than oth-
ers. Calsamiglia, Fu, and Güell (2017) estimated a mixture model in which strategic agents
solve for the optimal report in an Immediate Acceptance mechanism using backward in-
duction from lower- to higher-ranked choices.

There are a few other general distinguishing features from the aforementioned papers
worth noting. First, most papers mentioned above use approaches that are specifically tai-
lored to the school choice mechanism analyzed, and it may be necessary for a researcher
to modify these approaches before applying them elsewhere. In contrast, we allow anal-
ysis for a more general class of mechanisms, including mechanisms with student priority
groups. Second, results on identification and on the large market properties of an esti-
mator are not considered in the papers mentioned above. Finally, our empirical exercise
investigates the consequences of specific forms of subjective beliefs on the comparison
between mechanisms.

Our technical results on the large sample properties of our estimator use results from
the work on large matching markets by Azevedo and Leshno (2016) and Azevedo and
Budish (2017). The results on identification build on the work on discrete choice de-
mand (Manski (1985), Matzkin (1992), Lewbel (2000), Berry and Haile (2010)). While
the primitives are similar, unlike discrete choice demand, the probability of assignment
to a schools may not be 0 or 1. This feature is similar to the estimation of preference
models under risk and uncertainty (Cardon and Hendel (2001), Cohen and Einav (2007),
Chiappori, Salanie, Salanie, and Gandhi (2012)). Cardon and Hendel (2001) and Cohen
and Einav (2007) modeled uncertainty in outcomes within each insurance contract rather
than uncertainty over which option is ultimately allocated. Chiappori, Salanie, Salanie,
and Gandhi (2012) focused on risk attitudes rather than the value of underlying prizes.

Our paper provides an empirical complement to the large theoretical literature that has
taken a mechanism design approach to the student assignment problem (Gale and Shap-
ley (1962), Shapley and Scarf (1974), Abdulkadiroğlu and Sönmez (2003)). A significant
literature debates the trade-offs between manipulable and non-manipulable mechanisms
(Ergin and Sonmez (2006), Pathak and Sönmez (2008), Miralles (2009), Abdulkadiroğlu,
Che, and Yasuda (2011), Featherstone and Niederle (2016), Troyan (2012), Pathak and
Sönmez (2013)). Theoretical results from this literature have been used to guide redesigns
of matching markets (Roth and Peranson (1999), Abdulkadiroğlu, Pathak, Roth, and Son-
mez (2006), Abdulkadiroğlu, Pathak, and Roth (2009)).

A growing literature is interested in methods of analyzing preferences in matching mar-
kets, usually using pairwise stability (Choo and Siow (2006), Fox (2010, 2017), Chiappori,
Salanié, and Weiss (2017), Agarwal (2015), Diamond and Agarwal (2017)). In some
cases, estimates are based on the strategic decision to engage in costly courting deci-
sions (Hitsch, Hortaçsu, and Ariely (2010)). Similar considerations are important when
applying to colleges (Chade and Smith (2006)).

The proposed two-step estimator uses insights from the industrial organization liter-
ature, specifically the estimation of empirical auctions (Guerre, Perrigne, and Vuong

5The estimators proposed in He (2016) that do not assume optimal play are based on a limited number of
restrictions implied by rationality, the specific number of schools and ranks that can be submitted in Beijing,
and the fact that the school district treats all agents symmetrically.
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(2000), Hortaçsu (2000), Hortaçsu and McAdams (2010) Cassola, Hortaçsu, and Kastl
(2013)), single agent dynamic models (Hotz and Miller (1993), Hotz, Miller, Sanders,
and Smith (1994)), and dynamic games (Bajari, Benkard, and Levin (2007), Pakes, Ostro-
vsky, and Berry (2007), Aguirregabiria and Mira (2007)). As in the methods used in those
contexts, we use a two-step estimation procedure where the distribution of actions from
other agents is used in a first step estimator.

Overview

Section 2 describes the Cambridge Controlled Choice Plan and presents evidence that
students are responding to strategic incentives provided by the mechanism. Sections 3
and 4 present the model and the main insight on how to use submitted rank-order lists.
Section 5 and Section 6 discuss identification and estimation. A reader solely interested
in the empirical application instead of the econometric techniques may skip these two
sections. Section 7 applies our techniques to the data set from Cambridge, MA.

2. EVIDENCE ON STRATEGIC BEHAVIOR

2.1. The Controlled Choice Plan in Cambridge, MA

We use data from the Cambridge Public Schools’ (CPS) Controlled Choice Plan for the
academic years 2004–2005 to 2008–2009. Elementary schools in the CPS system assign
about 41% of the seats through partnerships with preschools or an appeals process for
special needs students. We focus on the remaining seats that are assigned through a school
choice system that takes place in January for students entering kindergarten.

Table II summarizes the students and schools. The system has 13 schools and about 400
students participating per year. One of the schools, Amigos, was divided into bilingual
Spanish and regular programs in 2005. Bilingual Spanish speaking students are considered
only for the bilingual program, and non-bilingual students are considered only for the
regular program.6 King Open OLA is a Portuguese immersion school open to all students.
Tobin, a Montessori school, divided admissions for four- and five-year-olds starting in
2007.

An explicit goal of the Controlled Choice Plan is to achieve socioeconomic diversity by
maintaining the proportion of students who qualify for the federal free/reduced lunch pro-
gram in each school close to the district-wide average. Only for the purposes of the assign-
ment mechanism, all schools except Amigos are divided into paid-lunch and free/reduced
lunch programs. Students eligible for federal free or reduced lunch are only considered
for the corresponding program.7 About 34% of the students are on free/reduced lunch.
Each program has a maximum number of seats, and the overall school capacity may be
lower than the sum of the seats in the two programs. Our data set contains both the total
number of seats in the school as well as the seats available in each of the programs.

The Cambridge Controlled Choice Mechanism

We now describe the process used to place students at schools. It prioritizes students
based on two criteria:

6A student voluntarily declares whether she is bilingual on the application form.
7Households with income below 130% (185%) of the Federal Poverty line are eligible for free (reduced)

lunch programs. For a household size of 4, the annual income threshold was approximately $27,500 ($39,000)
in 2008–2009.
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TABLE II

CAMBRIDGE ELEMENTARY SCHOOLS AND STUDENTSa

Year 2004 2005 2006 2007 2008 Average

Panel A: District Characteristics
Schools 13 13 13 13 13 13
Programs 24 25 25 27 27 25.6
Seats 473 456 476 508 438 470
Students 412 432 397 457 431 426
Free/Reduced Lunch 32% 38% 37% 29% 32% 34%
Paid Lunch 68% 62% 63% 71% 68% 66%

Panel B: Student’s Ethnicity
White 47% 47% 45% 49% 49% 47%
Black 27% 22% 24% 22% 23% 24%
Asian 17% 18% 15% 13% 18% 16%
Hispanic 9% 11% 10% 9% 9% 10%

Panel C: Language Spoken at Home
English 72% 73% 73% 78% 81% 76%
Spanish 3% 4% 4% 4% 3% 3%
Portuguese 0% 1% 1% 1% 1% 1%

Panel D: Distances (Miles)
Closest School 0.43 0.67 0.43 0.47 0.45 0.49
Average School 1.91 1.93 1.93 1.93 1.89 1.92

aStudents participating in the January Kindergarten Lottery. Free/Reduced lunch based on student’s application for Federal lunch
subsidy.

(i) Students with siblings who are attending that school get the highest priority.
(ii) Students receive priority at the two schools closest to their residence.

Students can submit a ranking of up to three programs at which they are eligible. Cam-
bridge uses an Immediate Acceptance mechanism and assigns students as follows:

Step 0: Draw a single tie-breaker for each student.
Step k = 1�2�3: Each school considers all students who have not been previously as-

signed and have listed it in the kth position. Students are sorted in order of priority, break-
ing ties using a random tie-breaker. Each student is considered sequentially for the paid-
lunch program if she is not eligible for a federal lunch subsidy and for the free/subsidized
lunch program otherwise. She is assigned to the corresponding program unless

(a) there are no seats available in the program, or
(b) there are no seats available in the school.

If either of the conditions above is satisfied, the student is rejected.
There are a few notable features of this mechanism. First, the mechanism prioritizes

students at higher-ranked options. The effective priority therefore depends on the report
of the student. Second, there is a cutoff for each program/school, and all students with
an effective priority below that cutoff are rejected. This cutoff is set so that the number
of students assigned to the program/school does not exceed its capacity. Finally, students
are assigned to the highest-ranked option for which their effective priority is above the
cutoff.

These features of the Cambridge Controlled Choice Plan are shared with a large class of
mechanisms that we will formally introduce below. There are two clear reasons why there
may be strategic incentives in such mechanisms. First, the dependence of the effective
priority on the report provides incentives to skew ranking toward options where priority
is most valuable. Second, if the length of the list is limited, students should avoid ranking
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too many schools where their priority is likely to be below the cutoff. We now describe the
ranking behavior and document strategic decision-making in response to these incentives
in Cambridge.

2.2. Evidence on Ranking Behavior and Strategic Incentives

Panels A and D in Table III show that over 80% of the students rank the maximum
allowed number of schools and over 80% of the students are assigned to their top-ranked
choice in a typical year. Researchers in education have interpreted similar statistics in
school districts as indicators of student satisfaction and heterogeneity in student prefer-
ences. For instance, Glenn (1991) argued that school choice caused improvements in the
Boston school system based on an observed increase in the number of students who were

TABLE III

RANKING, ASSIGNMENT AND PRIORITIESa

Year 2004 2005 2006 2007 2008 Average

Panel A: Round of Assignment
First 81% 84% 85% 83% 75% 82%
Second 8% 3% 4% 7% 5% 5%
Third 5% 2% 2% 2% 4% 3%
Unassigned 6% 11% 9% 8% 16% 10%

Panel B: Round of Assignment: Paid Lunch Students
First 80% 77% 78% 79% 68% 76%
Second 5% 4% 5% 8% 5% 5%
Third 6% 3% 4% 2% 3% 4%
Unassigned 9% 16% 14% 11% 24% 15%

Panel C: Round of Assignment: Free Lunch Students
First 85% 95% 98% 94% 89% 92%
Second 14% 1% 2% 4% 6% 5%
Third 2% 1% 0% 1% 4% 1%
Unassigned 0% 4% 0% 2% 1% 1%

Panel D: Number of Programs Ranked
One 2% 6% 9% 5% 12% 7%
Two 5% 6% 9% 7% 7% 7%
Three 93% 89% 82% 88% 81% 87%

Panel E: Students With Priority at Ranked Schools
Sibling Priority at 1st Choice 38% 34% 32% 24% 34% 32%
Sibling Priority at 2nd Choice 4% 3% 1% 2% 2% 2%
Sibling Priority at 3rd Choice 0% 2% 1% 1% 0% 1%

Proximity at 1st Choice 53% 52% 50% 51% 52% 51%
Proximity at 2nd Choice 42% 34% 37% 33% 37% 36%
Proximity at 3rd Choice 22% 24% 24% 25% 21% 23%

Panel F: Mean Distance (Miles)
Ranked first 1.19 1.18 1.24 1.29 1.19 1.22
All ranked schools 1.37 1.41 1.38 1.40 1.34 1.38
Assigned School 1.10 1.01 1.07 1.12 0.92 1.04

aSibling and proximity priority as reported in the Cambridge Public School assignment files. Students with older siblings enrolled
in CPS receive priority at their sibling’s school. Students also receive proximity priority at their two closest schools. Percentages, where
reported, are based on the total number of applicants each year.
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assigned to their top choice.8 Similarly, Glazerman and Meyer (1994) interpreted a high
fraction of students getting assigned to their top choice in Minneapolis as indicative of
heterogeneous student preferences.

Conclusions based on interpreting stated preferences as truthful are suspect when a
mechanism provides strategic incentives to students. For example, it is tempting to con-
clude from ranking patterns in panels E and F that students have extremely strong pref-
erences for attending a nearby school or the same school as their sibling. However, such
behavior can also be driven by strategic incentives if a student “loses her priority” when a
school is not ranked at the top of the list in an Immediate Acceptance mechanism (Ergin
and Sonmez (2006)).

Indeed, Table IV shows that the incentive to “cash the priority” is strong. While there is
significant heterogeneity in their competitiveness, panel A shows that Baldwin, Haggerty,
Amigos, Morse, Tobin, Graham & Parks, and Cambridgeport have many more students
ranking them than there is capacity. A typical student would be rejected in these schools
if she does not rank it as her top choice. Indeed, Graham & Parks rejected all non-priority
paid-lunch students even if they had ranked it first in each of the five years. Additionally,
panels B and C show that the competitiveness of schools differs by paid-lunch status.
Graham & Parks, for instance, did not reject any free/reduced lunch students who applied
to it in a typical year. Overall, a larger number of schools are competitive for paid-lunch
students than for free-lunch students.

There are two other features that are worth highlighting. First, most schools either re-
ject all students who did not rank them first or do not reject any students. Therefore,
students must rank competitive schools first in order to gain admission but may rank non-
competitive schools at any position. This suggests that, at least in Cambridge, considering
which school to rank first is important. Second, Table IV shows that several paid-lunch
students rank competitive schools as their second or third choice. This may appear hard
to rationalize as optimal behavior. However, it should be noted that these choices are of-
ten not pivotal because an extremely large number of students are assigned to their top
choice. Another possibility is that these students count on back-up schools, either at the
third-ranked school or at a private or charter school, in case they remain unassigned. Fi-
nally, students may simply believe that there is a small chance of assignment in the second
round, even at competitive schools. We further discuss these issues when we present our
estimates.

2.3. Strategic Behavior: A Regression Discontinuity Approach

We now study whether students are ranking schools strategically. Our empirical strategy
is based on the assignment of proximity priority in Cambridge. A student receives priority
at the two closest schools to her residence. We can therefore compare the ranking behav-
ior of students who are on either side of a geographical boundary where the proximity
priority changes. If students are not behaving strategically and the distribution of prefer-
ences is continuous in distance to school, we would not expect the ranking behavior to
change discontinuously at this boundary. On the other hand, the results in Table IV indi-
cate that a student may lose her proximity priority at a competitive school if she does not
rank it first. Therefore, some students may find it optimal to manipulate their reports in

8This argument was based on ranking and assignment data generated when Boston used a manipulable
assignment system.
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TABLE IV

RANKING AND ASSIGNMENT BY SCHOOLa

Graham & Parks Haggerty Baldwin Morse Amigos Cambridgeport King Open Peabody Tobin Fletcher Maynard Kenn Long MLK King Open Ola

Panel A: All Students
Ranked First 60 56 53 47 37 34 33 31 25 18 16 12 5
Ranked Second 72 37 66 25 18 44 39 38 17 10 18 20 0
Ranked Third 56 33 46 31 19 44 37 32 20 15 16 15 0
Ranked Anywhere 192 120 166 102 75 113 114 105 64 48 54 51 6
Capacity 41 41 41 42 41 27 51 48 35 38 41 37 15
First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 1-R NR NR NR NR

Panel B: Paid Lunch Students
Ranked First 49 45 40 29 25 24 25 17 13 4 7 4 2
Ranked Second 60 28 56 14 12 29 23 27 10 3 6 6 0
Ranked Third 47 29 33 19 15 34 24 18 11 4 8 10 0
Ranked Anywhere 152 95 128 60 51 87 70 65 33 9 21 20 3
Capacity 29 27 27 29 41 18 36 34 29 35 34 27 15
First Rejected 1-P 1-R 1-R 1-R 1-R 1-R NR NR 3-R NR NR NR NR

Panel C: Free Lunch Students
Ranked First 9 12 12 17 12 11 13 10 12 16 10 9 2
Ranked Second 13 8 7 11 5 12 17 12 8 8 14 11 0
Ranked Third 10 4 9 10 4 12 13 13 9 10 11 4 0
Ranked Anywhere 29 24 25 40 20 36 44 38 31 36 34 25 2
Capacity 25 23 26 26 41 17 33 31 19 18 26 24 15
First Rejected NR NR NR 1-R 1-R 2-P NR NR 1-R NR NR NR NR

aMedian number of applicants and seats over the years 2004–2008. First rejected is the round and priority of the first rejected student, e.g., 1-P indicates that a student with proximity priority was
rejected in the first round. S: Sibling priority, PS: both proximity and sibling priority, R: regular/no prioirity, and NR: no student was rejected in any round. Free/Reduced lunch based on student’s
application for Federal lunch subsidy.
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(i) First rank (ii) Second rank

(iii) Third rank (iv) Competitive schools

FIGURE 1.—Effect of proximity priority on ranking behavior. Notes: The graphs are bin-scatter plots (based
on distance) with equally sized bins on either side of the boundary. For each student, we construct a boundary
distance, d̄i , based on her distance to the schooling options. For a given school-student pair, the horizontal axis
represents dij − d̄i . The vertical axis is the probability that a student ranks the school in the relevant distance bin.
Range plots depict 95% confidence intervals. Black plot points are based on the raw data, while the gray points
control for school fixed effects. Dashed lines represent local linear fits estimated on either side of the boundary
based on bandwidth selection rules recommended in Bowman and Azzalini (1997, page 50). Panels (i) through
(v) use the average distance between the second and third closest schools as the boundary. A student is given
proximity priority at the schools to the left of the boundary and does not receive priority at schools to the
right. Competitive schools considered in panel (iv) are Graham & Parks, Haggerty, Baldwin, Morse, Amigos,
Cambridgeport, and Tobin. The remaining schools are considered non-competitive in panel (v). Panel (vi)
considers only the two closest schools and uses the average distance between the closest and second closest
schools. Only the two schools where students have proximity priority are considered. Panels (i), (iv), (v), and
(vi) plot the probability that a school is ranked first. Panels (ii) and (iii) plot the probability that a school is
ranked second and third, respectively. Distances as calculated using ArcGIS. Graphs are qualitatively similar
when using only students with consistent calculated and recorded priorities. Details in data appendix.

order to avoid losing proximity priority. Strategic students may rank a competitive school
at which they have priority as their first choice instead of their most preferred school.

Figure 1 and Table V present the results of this discontinuity design. The figure plots the
probability of ranking a school in a particular position against the distance from a prox-
imity priority boundary. Specifically, let di2 and di3 be the second and third closest schools
to student i. For any school j, the horizontal axis is the difference ∆dij = dij − 1

2(di2 +di3).
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(v) Non-competitive schools (vi) Placebo at prioritized schools

FIGURE 1.—Continued.

Because Cambridge assigns a student priority at the two closest schools, ∆dij is negative
if student i has priority at school j and positive otherwise. The vertical line represents
this boundary of interest where we assess ranking behavior. The black dashed lines are
generated from a local linear regression of the ranking outcome yij on the distance from
this boundary, ∆dij , estimated separately using data on either side of the boundary. The
black points represent a bin-scatter plot of these data, with a 95% confidence interval
depicted with the bars. The gray points control for school fixed effects. Table V presents
the estimated size of the discontinuity using the procedure recommended by Imbens and
Kalyanaraman (2011) and their test of whether the outcome studied changes discontinu-
ously at a priority boundary.

Figure 1(i) shows that the probability that a student ranks a school first decreases dis-
continuously at the proximity boundary. Further, the response to distance to school is also
higher to the left of the boundary, probably reflecting the preference to attend a school
closer to home. The jump at the boundary may be attenuated because a student can rank
only one of the two schools where she has priority as her top choice.9 In contrast to Fig-
ure 1(i), Figures 1(ii) and 1(iii) do not show a large jump in the probability that a school is
ranked second or third. This should be expected because we saw earlier that one’s priority
is unlikely to be pivotal in the second or third choices. Further, the probability of ranking
a school that is extremely close to a student’s home in the second or third position is low
because students tend to rank nearby schools first. Table V presents the estimated size
of this discontinuity. The first column shows that the probability that a school is ranked
first drops by 5�75% at the boundary where the student loses proximity priority. This ef-
fect is statistically significant at the 1% level. Further, panels B and C of the table show
that this change is larger for paid-lunch students than for free-lunch students. This is con-
sistent with the theory that paid-lunch students are responding to the stronger strategic
incentives as compared to free-lunch students. The next two columns present these esti-
mates for the second- and third-ranked choices. As expected, the estimated effects here
are smaller and often not statistically significant.

Strategic pressures to rank a school first may be particularly important if the school
is competitive. Figures 1(iv) and 1(v) investigate the differential response to proximity

9Figure E.I(i) in the Appendix focuses on the second and third closest schools and shows that the disconti-
nuity is still discernible.
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TABLE V

REGRESSION DISCONTINUITY ESTIMATESa

Baseline Competitive School Non-Competitive School Placebo Boundary

Rank First Rank Second Rank Third Rank First Rank First Rank First

Panel A: All Students
Estimate −5.75% −2.38% −0.86% −7.27% −2.06% 0.07%

(0.013) (0.012) (0.011) (0.018) (0.019) (0.024)
t-statistic −4.54 −2.02 −0.80 −3.96 −1.10 0.03

Panel B: Paid Lunch Students
Estimate −7.44% −2.65% −0.68% −11.07% −1.22% 1.88%

(0.016) (0.014) (0.015) (0.025) (0.018) (0.031)
t-statistic −4.64 −1.90 −0.46 −4.45 −0.67 0.61

Panel C: Free Lunch Students
Estimate −3.55% −2.59% −3.15% −1.47% −5.23% −3.55%

(0.022) (0.021) (0.022) (0.031) (0.031) (0.033)
t-statistic −1.60 −1.22 −1.43 −0.47 −1.67 −1.06

aRegression discontinuity estimates based bandwidth selection rule proposed by Imbens and Kalyanaraman (2011). All estimates
use rankings by 2,128 students. Competitive schools are Graham & Parks, Haggerty, Baldwin, Morse, Amigos, Cambridgeport, and
Tobin. Placebo boundary at the mid-point of the two-closest schools. Standard errors clustered at the student level in parentheses.

priority by school competitiveness. We split the schools based on whether they rejected
some students in a typical year or not as delineated in Table IV. Consistent with strategic
behavior, Figure 1(iv) shows that the probability of ranking a competitive school first falls
discontinuously at the boundary but less so in Figure 1(v), which focuses on noncompet-
itive schools. Indeed, the fourth and fifth columns of Table V confirm that the estimated
drop in the probability of ranking a competitive school first is 7�27%, which is larger than
the overall estimate. Additionally, panels B and C of Table V show that the estimated
response to proximity priority is larger for paid-lunch students at 11�07% as compared
to 1�47% for free-lunch students.10 Noncompetitive schools, in stark contrast, have an
statistically insignificant estimated drop of only 2�06%, which is consistent with strategic
pressures being less stringent. However, we view the estimated effects at noncompetitive
schools for free-lunch students as inconclusive because the point estimates are large but
imprecise. The findings are therefore consistent with paid-lunch students responding to
significant strategic pressures in the Cambridge mechanism, but not free-lunch students
because of the lower strategic pressure they face.

Finally, we consider a placebo test in which we repeat the analysis assuming that prox-
imity priority is only given at the closest school. Figure 1(vi) shows no discernible dif-
ference in the ranking probability at this placebo boundary. The estimated size of the
discontinuity, presented in the last column of Table V, is only 0�07% and statistically
indistinguishable from zero. Figure E.I(iv) in the Appendix presents a second placebo
boundary, dropping the two closest schools and constructing priorities at the two closest
remaining schools. As expected, we do not find a discontinuous response at this placebo
boundary.

Taken together, these results strongly suggest that ranking behavior is discontinuous at
the boundary where proximity priority changes. However, there are two important caveats
that must be noted before concluding that agents in Cambridge are behaving strategically.

10Figures E.I(ii) and E.I(iii) in the Appendix show the corresponding plots by free-lunch status.
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First, the results do not show that all students are responding to strategic incentives in
the mechanism or that their expectations are correct. We therefore consider models with
biases in beliefs and non-optimal behavior in addition to a rational expectations model.
Second, it is possible that the response is driven in part by residential choices, with parents
picking a home so that the student receives priority at a more preferred school. While the
previous literature has found evidence of residential sorting across school districts (Black
(1999), Bayer, Ferreira, and McMillan (2007)), we are not aware of any research on the
effects of priorities on the housing market within a unified school district. A boundary
discontinuity design similar to Black (1999) suggests that neither house prices nor the ag-
gregate number of families in an area are related to priorities.11 A more thorough analysis
of this issue or a full model that considers the joint residential and school choice decision
is left for future research.

These results contrast with Hastings, Kane, and Staiger (2009), who found that the aver-
age quality of schools ranked did not respond to a change in the neighborhood boundaries
in the year the change took place. As suggested by Hastings, Kane, and Staiger (2009),
strategic behavior may not be widespread if the details of the mechanism and the change
in neighborhood priorities are not well advertised. Note that the Charlotte-Mecklenburg
school district did not make the precise mechanism clear. In contrast, Cambridge’s Con-
trolled Choice Plan is published on the school district’s website and has been in place for
several years. These institutional features may account for the differences in the student
behavior.

3. MODEL

We consider school choice mechanisms in which students are indexed by i ∈ {1� � � � � n},
programs are indexed by j ∈ {0�1� � � � � J} = J , and schools are indexed by s ∈ S . Pro-
gram 0 denotes being unmatched. Each program or school, k ∈ J ∪ S , has n × qn

k seats,
with qn

k ∈ (0�1) and q0 = 1.12 The school capacities are such that qn
s ≤

∑

{j:sj=s} q
n
j , where

s ∈ S and sj is the school corresponding to program j. We now describe how students are
assigned to these seats, their preferences over assignments, and assumptions on behavior.

3.1. Utilities and Preferences

We assume that student i’s utility from assignment into program j is given by
V (zij� ξj� εi), where zij is a vector of observable characteristics that may vary by pro-
gram or student or both, and ξj and εi are (vector-valued) unobserved characteristics.
Let vi = (vi1� � � � � viJ) be the random vector of indirect utilities for student i with con-
ditional joint density fV (vi1� � � � � viJ|ξ�zi), where ξ = (ξ1� � � � � ξJ) and zi = (zi1� � � � � ziJ).
We normalize the utility of not being assigned through the assignment process, vi0, to
zero. Therefore, vi0 is best interpreted as the inclusive value of remaining unassigned and
participating in the post-assignment wait-list.

This formulation allows for heterogeneous and non-additive preferences conditional
on observables. The primary restriction thus far is that a student’s indirect utility depends
only on her own assignment and not on the assignments of other students. This rules out
preferences for peer groups or for conveniences that carpool arrangements may afford.

11Details available upon request. Note that the proximity priority system for kindergarten admission is not
used for higher grades in Cambridge.

12This convention will be convenient because we will be considering limits as n → ∞, in which qn
k → qk ∈

(0�1).
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Except when explicitly noted, we assume that the set of observables zij ∈ R
Kz can be

partitioned into z2
ij ∈R

Kz−1 and z1
ij ∈ R. The indirect utility function is additively separable

in z1
ij :

V (zij� ξj� εi)= U
(

z2
ij� ξj� εi

)

− z1
ij� (1)

We assume that εi ⊥ (z1
i1� � � � � z

1
iJ), which implies that any unobserved characteristics that

affect the taste for schools are independent of z1. This representation normalizes the scale
of utilities by setting the coefficient on z1

ij to −1. The model is observationally equivalent
to one with student-specific tastes, αi, for z1

ij as long as it is negative for all i. The term
z1
ij in this representation is sometimes referred to as a special regressor (Manski (1985),

Matzkin (1992), Lewbel (2000)). The combination of the additively separable form and
the independence of εi is the main restriction in this formulation.

In the school choice context, this assumption needs to be made on a characteristic that
varies by student and school. We follow a common approach in the school choice lit-
erature by assuming that distance to school is additively separable and independent of
unobserved student preferences (see Abdulkadiroğlu, Agarwal, and Pathak (2017), for
instance). The independence assumption is violated if unobserved determinants of stu-
dent preferences simultaneously determine residential choices. As mentioned earlier, we
do not find evidence that school choice incentives in Cambridge affect house prices or ag-
gregate residential decisions. Nonetheless, the potential for interactions between school
and residential choice warrants further research. Our empirical approach will include
fixed-effects for whether a student has priority at a school as a determinant of preference
to partially control for residential choice.

While our identification results do not make parametric assumptions on utilities, we
specify student i’s indirect utility for school j in the empirical application as

vij =
K

∑

k=1

βkjzijk − dij + εij� (2)

vi0 = 0�

where dij is the road distance between student i’s home and school j; zijk are student-
school specific covariates; βkj are school-specific parameters to be estimated; and εi =
(εi1� � � � � εiJ) ∼ N (0�Σ) independently of z�d.13 The scale normalization is embedded in
the assumption that the coefficient on dij is −1. Our estimated specification constructs zijk
by interacting indicators of student paid-lunch status, sibling priority, proximity priority,
ethnicity, home-language, and a constant with school-specific dummies.14

3.2. Assignment Mechanisms

School choice mechanisms typically use submitted rank-order lists and student priority
types to determine final assignments. Let Ri ∈ Ri be a rank-order list, where jRij

′ indi-
cates that j is ranked above j′.15 Students, if they so choose, may submit a report in which

13Our specification allows for heteroscedastic errors εij and arbitrary correlation between εij and εij′ . This
specification relaxes homoscedastic and independent preference shocks commonly used in logit specifications.

14The school-specific dummies interacted with the constant subsume the unobservable ξj .
15The set Ri may depend on the student’s priority type ti and may be constrained. For example, students in

Cambridge can rank up to three schools, and programs are distinguished by paid-lunch status of the student.
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schools are not ranked in order of true preferences. Let student i’s priority type be de-
noted ti ∈ T . In Cambridge, ti is defined by the free-lunch type, the set of schools where
the student has proximity priority, and whether or not the student has a sibling in the
school.16

A mechanism is usually described as an outcome of an algorithm that takes these rank-
order lists and priorities as inputs. It will be convenient for our analysis to define a mech-
anism as a function that depends on the number of students n.

DEFINITION 1: A mechanism is a function Φn : Rn × T n → (∆J)n such that for
all (Ri� ti), R−i = (R1� � � � �Ri−1�Ri+1� � � � �Rn), and T−i = (t1� � � � � ti−1� ti+1� � � � � tn),
Φn

ij((Ri� ti)� (R−i�T−i)) denotes the probability that i is assigned to program j.

Therefore, the assignment probabilities for each student depend on her report and her
priority type as well as the reports and priority types of the other students. In addition,
the final outcome depends on a random number used to break ties between students. As
we demonstrate below, a student can face uncertainty about both the reports of other
students as well as the tie-breaker.

In Cambridge, Φn((Ri� ti)� (R−i�T−i)) is determined by a cutoff rule and the effective
priority of the student, which depends on her report. Specifically, the priority of student i
at school j is

eij = fj(Ri� ti� νi)=
3 −Ri(j)+ tij + νi

4
3

�

where νi ∈ [0�1] is student i’s draw of the random tie-breaker, Ri(j) is the position of
school j in the rank-order list Ri,17 and tij is respectively 0, 1, 2, or 3 if the student has
no priority, proximity priority only, sibling priority only, or both proximity and sibling
priority. The function f chosen for Cambridge ensures that students who rank a school
higher than other students are given precedence, with ties broken first by proximity and/or
sibling priority, and then by the random tie-breaker.

Given the priorities eij above, let pj be the highest priority student who was rejected at
program j. The algorithm described in Section 2.1 places student i in program j if eij >pj

and student i ranks program j above any other program j′, with eij′ > pj′ . Hence, the
algorithm assigns student i to program j if D(Ri�ti�νi)

j (p)= 1, where

D
(Ri�ti�νi)
j (p)= 1{eij >pj� jRi0}

∏

j′ 
=j

1
{

jRij
′ or eij′ ≤ pj′

}

and eij = fj(Ri� ti� νi).
The total fraction of students who would be assigned to program j if the cutoffs were p

is therefore given by Dj(p)= 1
n

∑

iD
(Ri�ti�νi)
j (p). Because the number of students assigned

to program j (likewise school s) cannot exceed the number of available seats n× qn
j (like-

wise n×qn
s ), it is easy to verify that the cutoffs determined by the algorithm in Section 2.1

have the following property.

16We assume that students take their priority type as given. Cambridge verifies residence and free-lunch
eligibility using documentary evidence. Because most schools are less competitive for free-lunch students and
the classes of instruction are not split by free-lunch status, it is unlikely that not declaring free-lunch eligibility
is beneficial for an eligible student.

17Ri(j) is set to 4 if school j is not ranked.
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DEFINITION 2: The vector of cutoffs p ∈ [0�1]J is market clearing for (D(p)�qn), if, for
each program j ∈J ,

Dj(p)− qn
j ≤ 0�

with equality if pj > min{pj′ : j′ 
= j� sj′ = sj},18 and for each school s ∈ S ,

∑

{j:sj=s}

Dj(p)− qn
s ≤ 0�

with equality if min{pj : sj = s}> 0.

The first constraint ensures that program j has a cutoff larger than the other programs
in the same school only if a student was rejected because the program has exhausted
its capacity. The second constraint ensures that the lowest cutoff in the school is strictly
positive only if the school has exhausted its total capacity.

In fact, this representation of the assignments in terms of the market clearing cutoffs
and a priority that depends on a student’s report is not unique to Cambridge. Many school
choice mechanisms prioritize students based on their rank-order list and implement a
cutoff rule that rejects all students below a program/school specific threshold. We now
formally define a large class of mechanisms for which such a representation is valid.

DEFINITION 3: The mechanism Φn is a Report-Specific Priority + Cutoff mechanism if
there exist a function f :R×T ×[0�1]J → [0�1]J and a measure γν over [0�1]J such that

(i) Φn
j ((Ri� ti)� (R−i� t−i)) is given by

∫

· · ·
∫

D(Ri�ti�νi)
(

pn
)

dγ
ν1 · · ·dγ

νn�

where f (Ri� ti�νi) is the eligibility score vector for student i,
(ii) pn are market clearing cutoffs for (D(p)�qn), where D(p)= 1

n

∑

iD
(Ri�ti�νi)
j (p),

(iii) fj(Ri� ti�νi) is strictly increasing in νij and does not depend on νij′ for j′ 
= j.19

The representation highlights two ways in which these mechanisms can be manipula-
ble.20 First, the report of an agent can affect her eligibility score. Even with a fixed cutoff,
agents may have the direct incentive to make reports that may not be truthful. Second,
even if eligibility does not depend on the report, an agent may (correctly) believe that the
cutoff for a school will be high, making it unlikely that she will be eligible. If the rank-
order list is constrained in length, she may choose to omit certain competitive schools.

18We use the convention that min{pj′ : j′ 
= j� sj′ = sj} = 0 if {j′ 
= j� sj′ = sj} = ∅.
19We can allow for a single tie-breaker (as in Cambridge) by ensuring that νij and νij′ are perfectly correlated.
20The representation extends the characterization of stable matchings by Azevedo and Leshno (2016) in

terms of demand, supply and market clearing to discuss mechanisms. Particularly, we can use their framework
to consider mechanisms that produce matchings that are not stable. The representation may therefore be
of independent theoretical and empirical interest. For example, Abdulkadirğlu, Angrist, Narita, and Pathak
(2017) used a related cutoff-based approach for evaluating achievement gains from attending various types of
schools for the case of the Deferred Acceptance Algorithm. Our representation suggests that it may be possible
to extend their techniques to the entire class of RSP+C mechanisms.
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Table I presents a partial list of school choice mechanisms currently used around the
world. As we show in Appendix C.1, all mechanisms in Table I, except for the Top Trad-
ing Cycles mechanism, belong to this class of cutoff-based mechanisms.21 A remarkable
feature is that these mechanisms differ essentially in their choice of f . The techniques we
develop below are applicable to this entire class.

3.3. Agent Beliefs and Best Responses

Evidence presented in Section 2 suggests that agents are responding to strategic in-
centives in the Cambridge mechanism. To model this strategic behavior, we assume that
agents submit rank-order lists that are optimal given a set of beliefs about the probability
of assignment at various schools. We assume that agents have private information about
their preferences, vi. For an agent with priority type ti, let the lottery Lσ

Ri�ti
∈ ∆J consist of

the believed assignment probabilities at various schools when other agents in the market
follow the strategy σ and she reports Ri. Because agents do not know the preferences of
others in the market, these beliefs do not depend directly on the preferences of others,
v−i, or on the (realized) reports of others, R−i. Instead, we specify these beliefs as a func-
tion of the mechanism and the strategies of the other agents in the mechanism but will
drop the dependence on these objects for notational simplicity.

Given a preference vector vi ∈ R
J and priority type ti, the agent’s expected utility from

reporting Ri is therefore vi ·LRi�ti .
22 By choosing different rank-order lists, this agent can

choose lotteries in the set Lti = {LRi�ti :Ri ∈Ri}. Therefore, this agent reports Ri only if

vi ·LRi�ti ≥ vi ·LR′
i�ti

for all R′
i ∈Ri� (3)

It is important to emphasize that optimality of Ri is with respect to the agent’s belief about
her assignment probabilities, which may or may not be the true assignment probabilities
generated by the mechanism. In our application, we consider specifications with three
alternative forms of beliefs below.

3.3.1. Rational Expectations

Our baseline model assumes that agents have correct beliefs about the probabilities of
assignments given their own type t, the population distribution of types and preferences,
and the ranking strategies used in the district. Specifically, let σ : RJ × T → ∆|R| be a
(symmetric) mixed strategy used by the students in the district.23 The first argument of σ
is the vector of utilities over the various schools, and the second argument is the priority
type of the student. Each student believes that the lottery when she reports Ri ∈ Ri is
given by

LRi�ti = Eσ

[

Φn
(

(Ri� ti)� (R−i�T−i)
)

|Ri� ti
]

=
∑

(R−i�T−i)

Φn
(

(Ri� ti)� (R−i�T−i)
)

∏

k 
=i

fσ(Rk� tk)�
(4)

21Leshno and Lo (2017) derived a cutoff representation for the Top Trading Cycles mechanism that does
not belong to the class of RSP+C mechanisms.

22Although our model incorporates social interactions through L, it differs from a multinomial version of
Brock and Durlauf (2001) because we do not specify an idiosyncratic payoff shock for each possible report Ri .
Instead, we micro-found the expected utility of a report Ri through preferences for schools incorporated in vi .

23Note that when the distribution of utilities admits a density, a unique pure strategy is optimal except for a
measure zero set of types.
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where Eσ [·] denotes expectations taken over the random variable (Ri′� ti′) for i′ 
= i drawn
i.i.d. with probability fσ(R� t) = fT (t)

∫

σR(V � t)dFV |T=t , and FV �T is the joint distribution
of preference and priority types in the population. As a reminder, the dependence of L on
the mechanism, Φn, and the strategy, σ , have been suppressed for notational simplicity.

In this model of beliefs, the perceived probability of assignment depends on both the
tie-breaker in the mechanism and the distribution of reports by the other students in the
district. Therefore, a student perceives uncertainty due to both the the uncertainty in the
lotteries within the mechanism as well as the reports submitted by other students. This
contrasts with models of complete information about the reports submitted by the other
students, where the latter form of uncertainty is not present.24 We believe that this model
is more realistic than a complete information model because students are unlikely to be
aware of all the reports that will be submitted by others. This assumption is commonly
made in the analysis of other non-dominant strategy mechanisms, for example, in the
empirical analysis of auctions (Guerre, Perrigne, and Vuong (2000), among others).25

It is important to note that agents need not have beliefs over a very high dimensional
object in Report-Specific Priority + Cutoff mechanisms in order to compute the assign-
ment probabilities and best responses. It is sufficient for agents to form beliefs over the
distribution of cutoffs for the various programs. Our empirical approach will use this fea-
ture to reduce the dimension of the problem.26

3.3.2. Adaptive Expectations

Assuming rational expectations implies a strong degree of knowledge and sophistica-
tion. One may reasonably argue that the primary source of information for parents may
be based on prior year information. We address this concern by considering the following
alternative model of agent beliefs:

LRi�ti = Eσ−1

[

Φ−1�n
(

(Ri� ti)� (R−i�T−i)
)

|Ri� ti
]

� (5)

where the notation −1 indicates the use of previous year quantities rather than the current
year. Specifically, we assume that the agents have knowledge about the previous year
strategy σ−1, believe the school/program capacities are the same as the previous year, and
that the distribution of other student types is the same as the previous year as well.

Such beliefs may arise if agents form expectations about the competitiveness of various
schools based on the experiences of parents that participated in the previous year. Agents,
in this case, may be systematically misinformed, for example, about increases or decreases
in capacity. Estimates from this model will be used to investigate whether the potential

24Complete information Nash Equilibrium models are common in the literature on assignment mechanisms
(see Ergin and Sonmez (2006), e.g.). Results based on assuming that agents have knowledge of R−i are both
quantitatively and qualitatively similar to the ones presented here and are available on request.

25Indeed, when all agents optimally respond to such beliefs, the behavior is consistent with a Bayesian Nash
Equilibrium:

DEFINITION 4: The strategy σ∗ is a type-symmetric Bayesian Nash Equilibrium if vi ·Lσ∗
Ri�ti

≥ vi ·Lσ∗
R′
i�ti

for all

R′
i ∈ Ri whenever σ∗

Ri
(vi� ti) > 0, where Lσ∗

Ri�ti
and Lσ∗

R′
i�ti

are given by equation (4).

26Kapor, Neilson, and Zimmerman (2017) used a survey of students in New Haven to construct estimates of
students’ beliefs over these cutoffs. They then extended our methods to estimate the preference distribution
using these estimated beliefs.
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screening benefits of manipulable mechanisms hinge crucially on agents forming rational
expectations.

3.3.3. Coarse Expectations

Another form of misinformation in the mechanism may be about the specific use of
priorities and the program quotas based on free/reduced lunch status. If agents are not
informed about these details of the mechanism, their expected probability of assignment
given report Ri will not depend on their priority type, ti. For example, beliefs that are
based only on aggregate information about the number of applicants and capacities at
each school would have this property.

To address the possibility that beliefs are coarse, we consider a model in which an agent
believes that the lotteries are given by

LRi
=

∑

ti∈T

Eσ

[

Φn
(

(Ri� ti)� (R−i�T−i)
)

|Ri� ti
]

f (ti)� (6)

where σ is the strategy used by the students in the district. Such beliefs may have distri-
butional consequences and may undo some of the goals of the Controlled Choice Plan
of maintaining a diverse student mix within programs. It is possible that schools that are
popular among paid-lunch students, such as Graham & Parks, may be under-subscribed
by free/reduced lunch students because of such coarse beliefs.

4. A REVEALED PREFERENCE APPROACH

This section illustrates the key insight that allows us to learn about the preferences
of students from their (potentially manipulated) report and presents an overview of our
method for estimating preferences. Equation (3) reveals that a student’s optimal choice,
given her priority type, depends on the assignment probabilities the student believes she
can achieve by altering her report. The choice of a report by a student is, therefore, a
choice from the set of lotteries,

L= {LRi
:Ri ∈Ri}�

where the dependence on ti is dropped for simplicity. The various forms of beliefs de-
scribed in Section 3.3 specify particular values for LRi

.
Assume, for the moment, that a student’s believed assignment probabilities is known to

the analyst, and consider the student’s decision problem. Figure 2 illustrates an example
with two schools and an outside option. Each possible report corresponds to a proba-
bility of assignment into each of the schools and a probability of remaining unassigned.
Figure 2(i) depicts three lotteries LR�LR′�LR′′ corresponding to the reports R, R′, and
R′′, respectively, on a unit simplex.27 The dashed lines show the linear indifference curves
over the lotteries for an agent with a utility vector parallel to the vector a. A student with
a utility vector parallel to aR will therefore find LR optimal (Figure 2(ii)). A student who
is indifferent between LR and LR′ must have indifference curves that are parallel to the
line segment connecting the two points and, therefore, a utility vector that is parallel to
aR�R′ (Figure 2(ii)). Likewise, students with a utility vector parallel to aR�R′′ are indifferent
between LR and LR′′ . In fact, LR is optimal for all students with utility vectors that are

27The simplex is often referred to as the Marschak–Machina triangle.
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(i) Indifference curves for utility vectors parallel to a, (ii) LR is optimal for aR if aR = α1aR�R′ + α2aR′�R′′

and choices over three lotteries for α1�α2 > 0

(iii) Normal cones for each lottery (iv) Lottery choice reveals utility region

FIGURE 2.—A revealed preference argument.

linear combinations of aR�R′ and aR�R′′ with positive coefficients. A similar reasoning can
be applied to LR′ and LR′′ , resulting in the vector aR′�R′′ depicted in Figure 2(iii). We now
turn our attention to utility space in Figure 2(iv). The rays starting from the origin and
parallel to each of these vectors partition this space. As argued above, LR is optimal for
students with utility vectors v ∈ CR, for example if v is parallel to aR. In symbols, for any
J and set of lotteries L, choosing LR is optimal if and only if the utility vector belongs to
the (normal) cone:

CR =
{

v ∈ R
J : v · (LR −LR′)≥ 0 for all LR′ ∈L

}

�28 (7)

28Mathematically, CR is the normal cone to the convex hull of L at LR.
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For all values of v in this cone, the expected utility from choosing R is at least as large as
choosing any other report.29 Similarly, reports R, R′, and R′′ are only optimal for students
with utility vectors in the regions CR, CR′ , and CR′′ , respectively. Further, these regions
may intersect only at their boundaries and together cover the utility space. The choice of
report therefore reveals the region in utility space to which a student’s preference vector
belongs.

Remarkably, a partition of this form is implied for all school choice mechanisms that use
tie-breakers if a student’s belief for assignment probabilities is identified. The argument
does not rely on uniqueness of equilibria as long as agent beliefs are identified and can be
estimated using the data. Further, these inequalities use all the restrictions on preferences
given the beliefs of the agents and the mechanism. We can use this insight to construct
the likelihood of observing a given choice as a function of the distribution of utilities:

P(R|z�ξ) = P

(

R= arg max
R′∈R

v ·LR|z�ξ; f
)

=
∫

1{v ∈ CR}fV |z�ξ(v|z�ξ)dv� (8)

This expression presents a link between the observed choices of the students in the market
and the distribution of the underlying preferences, and it is the basis of our empirical
approach. It presents rich information about utilities because the number of regions is
equal to the number of reports that may be submitted to a mechanism.30

There are three remaining issues to consider. First, we need to show that agent beliefs
over assignment probabilities can be consistently estimated so that the regions CR used
to construct the likelihood can be determined. The objective is to justify an approxima-
tion to ex ante student beliefs using a realized sample of reports. Section 6.1 shows that
assignment probabilities for the strategies used by students observed in the data can be
consistently estimated in all RSP+C mechanisms. Therefore, our procedure is robust to
the possibility of multiple equilibria in case one wishes to assume that students play equi-
librium strategies.31 Second, Section 5 provides conditions under which the distribution
of utilities is nonparametrically identified. We can obtain point identification by “tracing
out” the distribution of utilities with either variation in lottery sets faced by students or by
using an additively separable student-school specific observable characteristic. Third, Sec-
tion 6.2 proposes a computationally tractable estimator that can be used to estimate the
parameters of the preference distribution. Here, we use a first step estimate of assignment
probabilities.

5. IDENTIFICATION

Section 4 showed that the choice of report by a student allows us to determine the cone,
CR�t ⊆R

J for R ∈R, that contains her utility vector v. The argument required knowledge
of a student’s beliefs for assignment probabilities that constitute LR�t . Knowledge of the
mechanism and the joint distribution of reports and types directly identifies the forms

29We allow for the possibility that LR = LR′ for two reports R and R′. This may occur if the student lists a
school she is sure to be assigned to as her first choice. In such cases, our revealed preference method does not
deduce any preference information from later ranked choices.

30There are a total of 1,885 elements in R because students in Cambridge can rank up to three programs
from 13.

31We avoid common issues in deriving a likelihood in games with multiple equilibria (Ciliberto and Tamer
(2009), Galichon and Henry (2011), e.g.) because we are able to identify and estimate agent beliefs.
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of beliefs specified in equations (4)–(6).32 This section presents our results on identifica-
tion of the distribution of indirect utilities. Knowledge of this distribution is sufficient for
positive analysis of various types. For example, it allows for analysis of assignments un-
der counterfactual mechanisms and a determination of the fraction of students who are
assigned to their true first choice. Additionally, certain forms of normative analysis that
involve comparing the proportion of students who prefer one mechanism over another
can also be conducted.33

We now show what one can learn about the distribution of utilities using equation (8):

P(R ∈R|z� t� ξ�b)=
∫

1{v ∈ Cb�R�t}fV |z�t�ξ(v|z� t� ξ)dv�

where b is a market subscript and the dependence on t has been reintroduced for no-
tational clarity. This expression shows the two potential sources of variation that can be
used to “trace out” the densities fV |T�z�ξ(v|z� t� ξ). The first results from choice environ-
ments with different values of Cb�R�t . The second results from variation in the observable
characteristic z. We consider each of these below. As is standard in the identification lit-
erature, we treat the assignment probabilities and the fraction of students who choose any
report as observed.

5.1. Identification Under Varying Choice Environments

In some cases, researchers may be willing to exclude certain elements of the priority
structure, t, from preferences, or they may observe data from multiple years in which
the set of schools is the same but capacities vary across years. Such variation in choice
environments can result in rich information about preferences. Our arguments in this
subsection will therefore relax the additive separability assumption made in equation (1)
by allowing V (·) to have a general functional form. Because utilities can be determined
only up to positive affine transformations, we instead normalize the scale as ‖vi‖ = 1 for
each student i. This normalization is without loss of generality. Hence, it is sufficient to
consider the case when vi has support only on the unit circle.

To gain intuition, assume that a researcher has data from two years with one school
adding a classroom in the second year. If we assume that school capacity can be excluded
from the distribution of preferences, that is, v|z�ξ� t� b∼ v|z�ξ� t� b̃ for the years indexed
by b and b̃, we effectively observe students with the same distribution of preferences fac-
ing two different lottery choice sets. For example, let the choice sets faced by students
be L = {LR�LR′�LR′′} and L̃ = {LR� L̃R′�LR′′}, respectively. Figure 3(i) illustrates these
choice sets. The change from LR′ to L̃R′ affects the set of utilities for which the vari-
ous choices are optimal. The set of types for which LR is optimal now also includes the
dotted cone. The utilities in this cone can be written as linear combinations of ãR�R′ and
aR�R′ with positive coefficients. Observing the difference in likelihood of reporting R for
students with the two types allows us to determine the weight on this region:

P(R|b̃)− P(R|b) =
∫

(

1{v ∈ C̃R} − 1{v ∈ CR}
)

fV (v)dv�

32Section 6.1 presents a consistent estimator for LR�t as defined by each of the forms of beliefs.
33Solving the social planner’s problem or comparing mechanisms using a Kaldor–Hicks criterion requires

additional assumptions on the transferability of utility or a choice of Pareto weights.
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(i) Variation in the assignment probabilities (ii) Allows identifying the density of utility
induces variation in the normal cones distribution on the unit circle

FIGURE 3.—Variation in lotteries.

where explicit conditioning on the vector (z� t� ξ) is dropped because it is held fixed. Fig-
ure 3(ii) illustrates that this variation allows us to determine the weight on the arc h̃R−hR.
Carvalho, Magnac, and Viong (2017) independently developed a similar identification ar-
gument in the case where there are only two programs (i.e., J = 2) and there is rich vari-
ation in the choice environment. Appendix D.1 proves a result for the general case and
characterizes the identified set even when the variation in choice environments is limited.

The discussion suggests that enough variation in the set of lotteries faced by individuals
with the same distribution of utilities can be used to identify the preference distribu-
tion. The arc above traces the density of utilities along the circle when such variation is
available. However, typical school choice systems have only a small number of priority
types and data sets typically cover a small number of years. Therefore, due to limited sup-
port, we will typically partially identify fV . While this source of variation may not be rich
enough for a basis for nonparametric identification, it makes minimal restrictions on the
distribution of utilities. In particular, the result allows for the preference distribution to
depend arbitrarily on residential locations through z. Although beyond the scope of this
paper, this framework may be a useful building block for a model that incorporates both
residential and school choice.

5.2. Identification With Preference Shifters

This subsection drops the scale normalization, ‖vi‖ = 1, made in the previous subsec-
tion and reverts back to the additive separable form with the scale normalization in equa-
tion (1). We describe how variation in z1 within a market, fixing ξ and z2, can be used to
learn about the distribution of indirect utilities. The objective is to identify the joint dis-
tribution of uij = U(z2

ij� ξj� εi) given (ξ� z2), where we drop this conditioning for simplicity
of notation. Because εi is independent of z1

ij , we have that

fV |Z1

(

v|z1
)

= g
(

v + z1
)

�
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FIGURE 4.—Local variation in z identifies the density of u.

where g is the density of u and z1 is observed on a set ζ. Therefore, our goal is to iden-
tify g.34

Consider the lottery set faced by a set of students and the corresponding region,
CR, of the utility space that rationalizes choice R (Figure 2). A student with z1

i = z
chooses R if v = u − z ∈ CR. The values of u that rationalize this choice are given by
z + α1aR�R′ + α2aR�R′′ for any two positive coefficients α1 and α2. Figure 4 illustrates the
values of u that make R optimal. As discussed in Section 4, observing the choices of indi-
viduals allows us to determine the fraction of students with utilities in this set. Similarly, by
focusing on the set of students with z1

i ∈ {z′� z′′� z′′′}, we can determine the fraction of stu-
dents with utilities in the corresponding regions (see Figure 4). By appropriately adding
and subtracting these fractions, we can learn the fraction of students with utilities in the
parallelogram defined by (z� z′� z′′′� z′′). This allows us to learn the total weight placed by
the distribution g on such parallelograms of arbitrarily small size. It turns out that we can
learn the density of g around any point z in the interior of ζ by focusing on variation in
the neighborhood of z. The next result formalizes this intuition.

THEOREM 1: If CR is spanned by J linearly independent vectors {aR�R1� � � � � aR�RJ }, where
R1� � � � �RJ belong to R \ {R}, then g(·) is identified in the interior of ζ. Hence, fV (v|z1) =
g(v + z1) is identified for all v such that v+ z1 is in the interior of ζ.

PROOF: Let AR = [aR�R1� � � � � aR�RJ ] and note that CR = {v : v = ARx for some x ≥ 0}.
Assume, wlog, |detAR| = 1. Evaluate hCR

(z) = P(v ∈ CR|z) at ARx:

hCR
(ARx) =

∫

RJ

1{u−ARx ∈ CR}g(u)du

=
∫

RJ

1
{

AR(y − x) ∈ CR

}

g(ARy)dy =
∫ ∞

x1

· · ·
∫ ∞

xJ

g(ARy)dy�

34In recent work, Allen and Rehbeck (2017) studied identification in a general class of demand models and
considered the case where vij = uij −h(z1

ij). Specifically, they studied the identification of h(·) and showed that
it can be identified up to scale and location without knowledge of the distribution of uij . Our goal is to identify
the distribution of indirect utilities, which requires identification of the distribution of uij . It may be possible
to combine these results to relax the restriction that (indirect) utilities are linear in z1

ij .
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where the second equality follows from a change of variables, u = ARy , and the third
equality follows because AR(y − x) ∈ CR ⇐⇒ y ≥ x. Therefore,

∂JhCR
(ARx)

∂x1 · · ·∂xJ

= g(ARx)�

In particular, for any z1 in the interior of ζ, g(z1) is given by
∂JhCR

(ARx)

∂x1···∂xJ
evaluated at

x = A−1
R z1. This derivative is identified on the interior of ζ because hCR

(·) is observed
on ζ. Q.E.D.

Intuitively, z1
i shifts the distribution of indirect utilities. For example, when z1

ij denotes
the distance to school j, then all else equal, students closer to a particular school should
have stronger preferences for attending that school. These students should be more likely
to rank it on their list. The extent to which students who are closer to a given school are
more likely to rank it is indicative of the importance of distance relative to other factors
that affect preferences that are captured by U(·).35

One drawback of the formal result above is that it places a restriction on CR, which is
a non-primitive object. However, the condition can be verified in the data because CR is
identified. Moreover, Theorem A.2 in Appendix A.2 shows that we can identify g under
weaker conditions on CR if g has exponentially decreasing tails and ζ = R

J . The proof
is based on Fourier-deconvolution techniques because the distribution of v is given by a
location family parameterized by z1. The conditions on g are quite weak and are satis-
fied for commonly used distributions with additive errors such as normal distributions,
generalized extreme value distributions, or if u has bounded support.36

When z1
ij is assumed to be the road or walking distance from student i’s residence to

school j, then the support of z1 will be limited by geographical constraints. In this case,
such variation provides partial information on fV . Our estimator, which is described in
the next section, will use variation from this source in addition to variation in choice
environments in a parametric specification.

6. ESTIMATING ASSIGNMENT PROBABILITIES AND PREFERENCE PARAMETERS

We estimate our preference parameters, θ = (β�Σ), using a two-step estimator. In the
first step, we estimate the assignment probabilities for each lottery, LR�t . The second step
estimates θ taking the estimate from the first step L̂ as given. Although it may be possible
to estimate these two sets of parameters jointly, the two-step procedure is computationally
tractable, albeit potentially less efficient. Theorems 2.1 and 6.1 of Newey and McFadden
(1994) show conditions under which a two-step estimator is consistent and asymptotically
normal. These results require that the first step is consistent and asymptotically normal,
and the second step is reasonably well-behaved. Our second-step estimator will be equiv-
alent to a maximum likelihood estimator. The main challenge, therefore, is to show that
our first step is consistent and asymptotically normal.

35The nature of this identification result articulates the fact that identification of the density at a point does
not rely on observing extreme values of z1. Of course, identification of the tails of the distribution of u will
rely on support of extreme values of z1. Also note that our identification result requires only one convex cone
generated by a lottery and, therefore, observing additional lotteries with simplicial cones generates testable
restrictions on the assumption that z1 is a special regressor.

36We do not require that g has a non-vanishing characteristic function. Further, when u has bounded sup-
port, we can allow for ζ to be a corresponding bounded set.
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The asymptotic framework assumes that the number of students n grows large in a
single year and the number of programs is held fixed. The capacity of the programs, n ×
qn
j , increases proportionally with the number of students, that is, qn

j → qj ∈ (0�1). These
limits are meant to capture an environment, such as the one in Cambridge, where the
number of students is large relative to the number of schools.37 It is sufficient for the
researcher to observe data from a single year of the mechanism with many students for
consistency and asymptotic normality of the estimator. In our application, the parameters
governing the distribution of preferences given the observables, θ, is held constant across
years and multiple years of data to improve the precision of θ̂. For simplicity of notation,
we omit the dependence of L on the application year.

6.1. First Step: Estimating Assignment Probabilities

The first step requires us to estimate the probabilities in equation (4) for each value
of (Ri� ti). The equation highlights two sources of uncertainty facing the student when
forming this expectation. First, at the time of submitting the report, the student does not
know the realization of (R−i�T−i). The agents form expectations for this realization based
on population distribution of types and the forecast strategy σ . The second source of un-
certainty is within Φn because of the random tie-breaker used to determine assignments.
Even with rational expectations, these two sources of uncertainty imply that the realized
empirical assignment probabilities differ from the agent’s expectations.

We approximate the first source of uncertainty using a resampling procedure because
the data consist of a large sample of reports and priorities drawn from the population
distribution (see Hortaçsu (2000) for an early implementation of a similar re-sampling
procedure in the context of an auction). For the second source of uncertainty, we can
use the fact that Cambridge uses a mechanism with a Report-Specific Priority + Cutoff
(RSP+C) representation. For each draw of (R−i�T−i)b and tie-breakers ν−i�b, we compute
a market clearing cutoff pn−1

b by simulating the mechanism.38 The assignment for a stu-
dent with priority type ti, report Ri, and a draw of the random tie-breaker νi is given by
D(Ri�ti�νi)(pn−1

b ), where ei = f (Ri� ti� νi). This reasoning suggests the following estimator,
L̂, for the rational expectations case:

LRi�ti ≈
1
B

B
∑

b=1

Φn
(

(Ri� ti)� (R−i�T−i)b
)

≈ 1
B

B
∑

b=1

∫

D(Ri�ti�ei)
(

pn−1
b

)

dγνi

= L̂Ri�ti�

(9)

where (R−i�T−i)b is the bth sample of n− 1 reports and priority types and γνi is the CDF
of the tie-breaker. The estimator therefore incorporates information on all the submit-
ted applications, data on school capacities in each year, and knowledge of the assignment

37Azevedo and Leshno (2016) used similar limits to analyze properties of stable matchings in a large market.
38Our estimator approximates the cutoffs by ignoring the report of agent i because, in a large market, any

single agent has a negligible impact on the cutoffs. That the resulting approximation error is negligible is
formalized in Appendix A.3, where we show that the approximation error in using only the other n− 1 agents
is of order 1/n.
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mechanism. Further, it uses a single set of draws for pn−1
b to compute assignment proba-

bilities for all values of (Ri� ti). This makes the computation tractable even with a large
number of possible rank-order lists.39

Our estimator for the adaptive expectations case is analogous. We draw (R−i�T−i)b
from the observed reports in the previous year and calculate pn−1

b using the previous year’s
capacity. The estimate for LRi

in the coarse expectations case uses the estimate L̂Ri�ti for
the rational expectations case and averages it for each Ri using the empirical distribution
of ti.

Equation (9) highlights why the RSP+C representation is useful for estimating assign-
ment probabilities, a potentially complicated task for general mechanisms. Because mech-
anisms are usually described in terms of algorithms that use the reports and priority types
of all the students in the district, there are few a priori restrictions that prevent them
from being ill-behaved. A small change in students’ reports could potentially have large
effects on the assignment probabilities.40 Moreover, our objective is to estimate assign-
ment probabilities simultaneously for all priority types and each possible rank-order list
that can be submitted by a student. The RSP+C representation allows us to obtain results
on the limiting distribution of L̂ by examining the limit behavior of the cutoffs, pn−1

b .

THEOREM 2: Suppose that Φn is an RSP+C mechanism with a random tie-breaker νij =
νij′ = νi that is drawn from the uniform distribution on [0�1].

(i) If p∗ is the unique market clearing cutoff for (E[D(p)]� q), where q = limqn, then for

each (R� t), |L̂R�t −LR�t |
p→ 0.

(ii) Further, if p∗
j > 0 for all j, ‖qn − q‖ = op(n

−1/2), and ∇pE[D(p∗)] is invertible, then
for each each (R� t),

√
n(L̂R�t −LR�t)

d→ N
(

0�Ω∗)�

where Ω∗ is given in Theorem A.3.

PROOF: The result is a special case of Theorem A.3 in Appendix A.3, which relies on
less restrictive assumptions on γν and does not assume that p∗

j > 0. Q.E.D.

This result is based on showing that the cutoffs determining the eligibility thresholds are
close to p∗ if the number of students is large and then analyzing the limit distribution of√
n(pn−1

b −p∗). As discussed in Appendix C, the uniqueness of the cutoff p∗ is a generic
property.41 Uniqueness of p∗ in the Cambridge mechanism follows if, for all j, Dj(·) is
strictly decreasing in pj (see Proposition C.4 in the Appendix). Results on pn−1

b can be

39One may instead use observed assignment frequencies conditional on priorities and the rank-order lists in
this step. However, this approach is likely to yield poor estimates due to the curse of dimensionality unless there
are many students relative to the number of rank-order list and priority combinations. In Cambridge, there
are just under 2,000 feasible rank-order lists for each priority type. Our sample consists of 2,129 students. The
knowledge of the mechanism and administrative data on capacities and submitted reports is helpful in reducing
the dimension of the problem to the number of cutoffs, which is equal to the number of programs.

40Two pathological examples allowed by Definition 1 are instructive. The first example is one in which the
assignment of all students depends only on student 1’s report. The second is an algorithm that depends on
whether an odd or even number of students apply to schools. It is easy to see why the conclusions of Theorem 2
will not apply in these cases.

41Specifically, we use results from Azevedo and Leshno (2016) to show that market clearing cutoffs are
generically unique. Using techniques from Berry, Gandhi, and Haile (2013) and Berry and Haile (2010), we
can also derive stronger conditions for global uniqueness of the market clearing cutoffs.
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translated to L̂ using smoothness imparted by the non-degenerate distribution of ν. Fi-
nally, as formalized in Proposition C.5, our results also imply convergence of finite market
equilibria to large-market limits.

6.2. Second Step: Preference Estimates

The second step is defined as a maximum likelihood estimator and it takes the esti-
mate L̂ from the first step as given. Specifically, equation (8) implies that the maximum
likelihood estimator is given by

θ̂ = arg max
θ∈Θ

n
∑

i=1

logP
(

Ri = arg max
R∈Ri

vi · L̂R�ti |zi� ti;θ
)

� (10)

where Ri is the report submitted by student i, zi is the vector of observables that the
distribution of vi depends on, ti is the priority type of agent i, and θ parameterizes the
distribution of v as given in Section 3.1.

Unfortunately, our model does not yield a simple closed-form solution for this like-
lihood. Further, the relatively large number of potential rank-order lists implies that a
simulated maximum likelihood with enough draws to avoid bias is computationally bur-
densome.42 To solve this problem, we adapt the Gibbs sampler used by McCulloch and
Rossi (1994) to estimate a discrete choice model. It offers a computationally convenient
likelihood-based method for estimating parameters in some cases when an analytic form
for the likelihood function is not available. The Gibbs sampler obtains draws of β and
Σ from the posterior distribution by constructing a Markov chain of draws from any ini-
tial set of parameters θ0 = (β0�Σ0). The invariant distribution of the resulting Markov
chain is the posterior given the prior and the data. The posterior mean of this sampler is
asymptotically equivalent to the maximum likelihood estimator (see van der Vaart (2000,
Theorem 10.1 (Bernstein–von-Mises))).

As in the discrete choice case, we use data augmentation to pick utility vectors con-
sistent with observed choices. For each agent, we initialize v0

i ∈ CRi�ti for each student i,
where Ri is the report chosen by agent i. We set v0

i by using a linear programming solver
to find a solution to the constraints v0

i · (L̂Ri�ti − L̂R′�ti)≥ 0 for all R′ ∈Ri.43

The chain is then constructed by sampling from the conditional posteriors of the pa-
rameters and the utility vectors given the previous draws. The sampler iterates through
the following sequence of conditional posteriors:

βs+1 | vsi �Σs�

Σs+1 | vsi �βs+1�

vs+1
i | vsi �CRi�ti�β

s+1�Σs+1�

The first two steps update the parameters β and Σ in equation (2) using standard
procedures (see McCulloch and Rossi (1994), and Appendix E.1 for details). The last
step, which draws vs+1

i for each student, differs slightly from McCulloch and Rossi (1994).

42There are 1,885 possible ways to rank up to three schools from 13. This is the potential number of rank-
order lists for each student priority type.

43A linear programming solver can be used to eliminate linearly dependent constraints with positive coeffi-
cients in order to further simplify the later stages of the Gibbs sampler.
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Specifically, we need to condition on the regions CRi�ti and sample from the following
conditional posteriors:

vs+1
ij |vs+1

i1 � � � � � vs+1
ij−1� v

s
ij+1� � � � � v

s
iJ�β

s+1�CRi�ti�Σ
s+1�

This requires us to draw from a (potentially two-sided) truncated normal distribution with
mean, variance, and truncation points determined by βs+1, Σs+1, CRi�ti , and vi�−j .44 We can
ensure that vs+1

i ∈ CRi
for every student i in every step by calculating the bounds on vs+1

ij

conditional on vi�−j defined by the restriction vs+1
i · (LRi�ti −LR′�ti)≥ 0 for all R′ ∈Ri.

We specify independent and diffuse conjugate prior distributions according to standard
practice. These details and other implementation issues are described in Appendix E.1.
Standard errors in our case also need to account for estimation error in the first step. We
do this using the bootstrap procedure described in Appendix E.2.

7. APPLICATION TO CAMBRIDGE

7.1. Assignment Probabilities and Preference Parameters

Table VI presents the assignment probabilities for various schools averaged over vari-
ous student subgroups.45 As in Table IV, the estimates indicate considerable heterogene-
ity in school competitiveness. The typical student is not guaranteed assignment at one of
the more competitive schools even if she ranks it first. On the other hand, several schools
are sure shots for students who rank them first. The probability of not getting assigned
to a school also differs with paid-lunch status. A comparison of estimates in panel A with
those in panels D and E indicates that having priority at a school significantly improves
the chances of assignment. The differential is larger if the school is ranked first.

Panel A of Table VII presents the (normalized) mean utility for various schools net of
distance by student group for four specifications. The first specification treats the agent
reports as truthful, while the second, third, and fourth specifications assume that students
best respond to beliefs given by rational expectations, adaptive expectations, and coarse
beliefs, respectively.46 In each of these specifications, we find significant heterogeneity in
willingness to travel for the various schooling options. Paid-lunch students, for instance,
place a higher value on the competitive schools as compared to the non-competitive
schools. Although not presented in the mean utilities, Spanish- and Portuguese-speaking
students disproportionately value schools with bilingual and immersion programs in their
home language. Students also place a large premium on going to school with their siblings.

A comparison between the first column and the others suggests that treating stated
preferences as truthful may lead to underestimating the value of competitive schools rela-
tive to non-competitive schools. This differential is best illustrated using Graham & Parks
as an example. Treating stated preferences as truthful, we estimate that paid-lunch stu-
dents have an estimated mean utility that is an equivalent of 1.29 miles higher than the
average public school option. This is an underestimate relative to the models that assume
students correctly believe that Graham & Parks is a competitive school. In contrast, the
value of Graham & Parks for free-lunch students is overestimated by the truthful model

44The standard discrete choice model only involves sampling from one-sided truncated normal distributions.
45Table E.I provides an estimate for standard errors of L̂ constructed by bootstrapping the estimator.
46The underlying parameter estimates for the two baseline specifications, rational expectations and truthful

reporting, are presented in Tables E.III and E.II.
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TABLE VI

ESTIMATED ASSIGNMENT PROBABILITIESa

Amigos Fletcher
Ranked Graham & Parks Haggerty Baldwin Morse Amigos Bilingual Cambridgeport King Open Peabody Tobin Tobin K4 Tobin K5 Maynard Kenn Long MLK King Open Ola

Panel A: All Students
First 0.43 0.59 0.63 0.57 0.73 0.98 0.60 1.00 0.94 0.85 0.31 0.34 0.92 1.00 1.00 1.00
Second 0.24 0.25 0.23 0.20 0.35 0.94 0.18 0.92 0.83 0.74 0.04 0.14 0.86 1.00 0.99 1.00
Third 0.21 0.19 0.18 0.10 0.25 0.83 0.10 0.67 0.61 0.66 0.02 0.08 0.77 0.90 0.90 0.89

Panel B: Paid Lunch
First 0.22 0.45 0.49 0.54 0.73 1.00 0.51 1.00 0.94 0.93 0.32 0.36 1.00 1.00 1.00 1.00
Second 0.00 0.05 0.03 0.16 0.35 1.00 0.08 0.89 0.82 0.76 0.03 0.16 1.00 1.00 1.00 1.00
Third 0.00 0.01 0.00 0.06 0.24 0.85 0.01 0.56 0.56 0.64 0.01 0.09 0.89 0.89 0.89 0.87

Panel C: Free/Reduced Lunch
First 0.82 0.87 0.90 0.64 0.74 0.97 0.77 1.00 0.94 0.72 0.31 0.29 0.76 1.00 1.00 1.00
Second 0.71 0.65 0.61 0.26 0.35 0.90 0.39 0.98 0.86 0.71 0.07 0.08 0.59 0.99 0.99 1.00
Third 0.62 0.56 0.52 0.18 0.27 0.83 0.28 0.87 0.70 0.68 0.03 0.05 0.53 0.92 0.92 0.94

Panel D: Proximity Priority
First 0.63 0.97 0.95 0.89 0.95 0.99 0.94 1.00 1.00 0.92 0.55 0.54 0.95 1.00 1.00 1.00
Second 0.12 0.21 0.15 0.24 0.38 0.97 0.30 0.97 0.84 0.76 0.07 0.16 0.80 1.00 1.00 1.00
Third 0.10 0.11 0.06 0.12 0.28 0.84 0.16 0.76 0.66 0.67 0.02 0.12 0.72 0.89 0.90 0.88

Panel E: No Priority
First 0.37 0.55 0.60 0.52 0.71 0.97 0.55 1.00 0.94 0.85 0.28 0.33 0.92 1.00 1.00 1.00
Second 0.28 0.25 0.23 0.19 0.34 0.96 0.17 0.92 0.83 0.75 0.03 0.14 0.88 1.00 1.00 1.00
Third 0.25 0.20 0.18 0.10 0.24 0.85 0.10 0.66 0.60 0.66 0.02 0.08 0.78 0.90 0.90 0.89

aAverage estimates weighted by number of students of each type. Probabilities estimated using B = 1,000. Ranks and priority types of opposing students are drawn with replacement from the
observed data. Second and third rank assignment probabilities are conditional on no assignment to higher ranked choices, averaged across feasible rank-order lists.
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TABLE VII

ESTIMATED MEAN UTILITIESa

Truthful Rational Expectations Adaptive Expectations Coarse Beliefs

Paid Lunch Free Lunch Paid Lunch Free Lunch Paid Lunch Free Lunch Paid Lunch Free Lunch

Panel A: Mean utility
Graham & Parks 1.29 0.40 1.93 −0.20 1.89 −0.19 1.85 0.47

(0.06) (0.08) (0.27) (0.33) (0.36) (0.52) (0.12) (0.16)
Haggerty 1.39 0.72 1.45 0.69 1.41 0.89 1.56 0.68

(0.07) (0.11) (0.16) (0.24) (0.20) (0.31) (0.13) (0.18)
Baldwin 1.26 0.50 1.36 0.70 1.05 −0.14 1.57 0.72

(0.05) (0.09) (0.14) (0.16) (0.17) (0.37) (0.10) (0.15)
Morse 0.66 0.70 0.77 0.97 0.61 0.78 0.82 0.8

(0.07) (0.08) (0.12) (0.17) (0.18) (0.33) (0.14) (0.16)
Amigos −0.01 −0.38 0.13 −0.29 0.05 −0.43 −0.11 −0.64

(0.13) (0.15) (0.18) (0.27) (0.22) (0.32) (0.19) (0.27)
Cambridgeport 0.77 0.18 0.60 0.29 0.41 0.25 0.91 0.21

(0.06) (0.08) (0.14) (0.18) (0.21) (0.26) (0.12) (0.16)
King Open 0.65 0.40 0.58 0.27 0.44 0.37 0.52 0.24

(0.06) (0.07) (0.10) (0.13) (0.13) (0.18) (0.10) (0.12)
Peabody 0.22 0.48 0.06 0.30 0.03 0.52 0.05 0.31

(0.08) (0.09) (0.12) (0.15) (0.16) (0.20) (0.11) (0.15)
Tobin −0.49 0.64 −0.92 0.38 −0.83 0.39 −0.74 0.28

(0.11) (0.12) (0.21) (0.26) (0.25) (0.30) (0.18) (0.21)
Fletcher Maynard −1.30 −0.05 −2.03 −0.14 −1.67 0.12 −2.21 −0.3

(0.14) (0.10) (0.42) (0.23) (0.32) (0.22) (0.30) (0.18)
Kenn Long −0.19 0.47 −0.40 0.11 −0.54 0.08 −0.51 0.25

(0.09) (0.07) (0.20) (0.17) (0.27) (0.21) (0.18) (0.15)
MLK −0.66 0.08 −1.14 −0.28 −0.82 0.16 −1.24 −0.27

(0.10) (0.09) (0.23) (0.19) (0.22) (0.22) (0.18) (0.17)
King Open Ola −3.60 −4.13 −2.39 −2.79 −2.01 −2.79 −2.47 −2.75

(0.35) (0.39) (0.53) (0.67) (0.62) (0.93) (0.47) (0.63)
Outside Option −2.08 −1.44 −0.55 −0.92 −0.64 −0.74 −0.49 −0.73

(0.10) (0.09) (0.08) (0.08) (0.09) (0.13) (0.06) (0.07)

Panel B: Percentage of acceptable schools
Up to 1 10% 20% 24% 14% 23% 19% 16% 21%
Up to 2 16% 30% 61% 40% 61% 45% 58% 51%
Up to 3 23% 40% 85% 62% 86% 69% 84% 74%
Up to 4 34% 51% 95% 79% 95% 85% 95% 89%
Up to 5 44% 61% 98% 91% 99% 95% 99% 96%

aAverage estimated utility for each school, normalizing the mean utility of the inside options to zero. Utilities calculated by aver-
aging the predicted utility given the non-distance covariates. Bootstrap standard errors in parentheses, except for Truthful reporting
where we present the standard deviation of the posterior. Adaptive Expectations based on reported lists from 2005, 2006, and 2008
with assignment probabilities estimated using data from 2004, 2005, and 2007, respectively. This specification drops data from 2007 in
preference estimates since Tobin split by entering age in that year. The fraction of students with rationalizable lists is 97.3%, 96.8%,
and 99.3% for the Rational Expectations, Adaptive Expectations, and Coarse Beliefs specifications, respectively.

relative to both the rational expectations and adaptive expectations models. The differ-
ence is due to the fact that Graham & Parks is not competitive for free-lunch students
and therefore, the low number of applications it receives indicates particular dislike for
the school.

Overall, estimates based on modeling expectations as adaptive are strikingly similar to
those from assuming rational expectations. In part, this occurs because the relative com-
petitiveness of the various schooling options in Cambridge is fairly stable even though
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there is some annual variation in assignment probabilities across schools. This result is
comforting and suggestive of the robustness of our estimates to small misspecifications of
agent beliefs. Estimates that endow agents with coarse beliefs continue to indicate that
treating reports as truthful underestimates the relative preference for the most compet-
itive schools such as Graham & Parks, Haggerty, Baldwin, and Morse. The results are
more mixed for the less desirable schools. As in the models that treat preferences as
truthfully reported, free-lunch and paid-lunch students are in broad agreement on the
relative ranking of the various schools.

Another significant difference between the estimates that treat agents as truthful and
those that do not is in the number of schools students find preferable to the outside op-
tion. Panel B shows that estimates that treat stated preferences as truthful suggest that
about half the students have five or more schools where assignment is preferable to the
outside option. On the other hand, treating agents as best responding to one of the three
forms of beliefs studied here suggests that about half the students find at most two schools
in the system preferable to the outside option. To understand these results, note that treat-
ing preferences as truthful extrapolates from the few students (about 13%) that do not
have complete rank-order lists. On the other hand, the model that treats students as be-
ing strategic interprets the decision to rank long-shots in the second and third choices as
evidence of dislike for the remaining schools relative to the outside option.

These results should be viewed in light of Cambridge’s thick after-market. About 92%
of the students who are not assigned through the school choice process are assigned to
one of the schools in the system. Only a quarter of unassigned students are placed at
their top-ranked school through a wait-list that is processed after the assignment process
in Cambridge. Most of the remaining unassigned students are placed in an unranked
school. Cambridge also has charter and private school options that unassigned students
may enroll in. The value of the outside option is therefore best interpreted in terms of the
inclusive value of participating in this after-market.47

These specifications estimated the preference parameters using the set of students who
submitted a rank-order list consistent with optimal play (i.e., submitted a list correspond-
ing to an extremal lottery). For the rational expectations model, a total of 2,071 students
(97.3% of the sample) submitted a rationalizable list.48 The large fraction of students
with rationalizable lists may initially appear surprising. However, Theorem A.1 in Ap-
pendix A.1 indicates that the lists that are not rationalized are likely the ones where as-
signment probabilities for one of the choices is zero. Our estimates in Table VI suggest
that this is rare, except for a few schools. Most of the students with lists that cannot be
rationalized listed Graham & Parks as their second choice. One concern with dropping
students with lists that cannot be rationalized is that we are liable to underestimate the
desirability of competitive schools. Indeed, these reports can be rationalized as optimal if
agents believe that there is a small but nonzero chance of assignment at these competitive

47Students who are assigned through the process can later enroll in other schools with open seats; approxi-
mately 91% of the students register at their assigned school. Some differences between assignments and reg-
istrations can be caused by changes in student preferences or the arrival of new information (Narita (2016)).
Because the wait-list process in Cambridge allows students to choose the set of schools at which to apply,
we explored whether this feature results in significant bias. Specifically, we estimated the probability that a
student is able to ultimately register at a school where she was rejected during the main application process.
Beliefs based on these probabilities resulted in quantitatively similar results to our baseline specifications. We
therefore avoid modeling the after-market.

48One student was dropped because the recorded home address data could not be matched with a valid
Cambridge street address.
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schools. Although not reported, estimates that add a small probability of assignment to
each of the ranked options yield very similar results.

7.2. Ranking Behavior, Out-of-Equilibrium Truth-Telling, and Assignment to Top Choice

In this section, we investigate the ranking strategy of agents, whether they would suffer
large losses from out-of-equilibrium truth-telling, and how strategic manipulation may
affect student welfare.

Table VIII presents the fraction of students who find truthful reporting optimal and
losses from truthful behavior relative to optimal play as estimated using the two polar
assumptions on student behavior and beliefs. The first three columns are based on the
assumption that the observed reports are truthful and analyze the losses as a result of
such naïvete. These estimates can be interpreted as analyzing the true loss to students
from not behaving strategically if they are indeed out-of-equilibrium truth-tellers. The
estimates suggest that the truthful report is optimal for 57% of the students. The aver-
age student suffers a loss equal to 0.18 miles by making a truthful report, or 0.42 miles
conditional on regretting truthful behavior. We also estimate heterogeneous losses across
student groups. Free-lunch students, for instance, suffer losses from truthful play less of-
ten and suffer lower losses conditional on any losses. This reflects the fact that the Cam-
bridge school system is not competitive for these students because of the seats specifically
reserved for this group.

The last three columns use estimates based on rational expectations and tabulate losses
from nonstrategic behavior.49 Again, these estimates suggest that about half the students,
and disproportionately paid-lunch students, have strategic incentives to manipulate their
reports. Together, the observations suggest that markets where students face large com-
petitive pressures are precisely the markets where treating preferences as truthful may
lead to biased assessments of how desirable various schools are.

The estimated losses using both specifications may seem small on first glance, but can
be explained by noting that whenever a student has a strong preference for a school, she

TABLE VIII

LOSSES FROM TRUTHFUL REPORTSa

Truthful Rational Expectations

No Loss Mean Loss Std Loss No Loss Mean Loss Std Loss

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.

All 57% 0.01 0.18 0.02 0.53 0.05 46% 0.01 0.07 0.01 0.26 0.03

Free Lunch 68% 0.02 0.01 0.00 0.09 0.03 62% 0.02 0.01 0.00 0.07 0.03
Paid Lunch 51% 0.01 0.26 0.03 0.64 0.06 38% 0.01 0.10 0.01 0.31 0.04
Black 65% 0.02 0.06 0.02 0.30 0.07 56% 0.02 0.04 0.01 0.19 0.05
Asian 56% 0.03 0.19 0.04 0.56 0.09 46% 0.03 0.07 0.02 0.25 0.06
Hispanic 60% 0.04 0.10 0.03 0.36 0.09 51% 0.03 0.04 0.01 0.18 0.06
White 52% 0.01 0.24 0.03 0.62 0.06 40% 0.02 0.09 0.01 0.30 0.04
Other Race 47% 0.06 0.20 0.07 0.51 0.15 39% 0.05 0.08 0.04 0.24 0.09

aEstimated loss from reporting preferences truthfully, relative to optimal report in distance units (miles).

49These estimates differ from the ones based on truthful reporting only because of differences in preference
parameters.
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will rank it as her first choice in her optimal report (while potentially manipulating lower-
ranked choices). The priority given to the first-ranked choice results in a low chance that
the student is not assigned to this highly desired school. This fact significantly lowers the
potential of large losses from truthful reporting.

Our estimates that about half the students find it optimal to behave truthfully is likely
to affect our assessment of how many students are assigned to their top choice. Table IX
presents this fraction by student paid-lunch status. The last column indicates that 85.2% of
the students rank their top choice first. This occurs because many students avoid ranking
competitive schools as their top rank in favor of increasing the odds of assignment to a less
preferred option. As a result, fewer students rank Graham & Parks as their top choice, in-
stead favoring Haggerty or Baldwin. We therefore see over-subscription to Haggerty and
Baldwin by paid-lunch students relative to the true first choice. The last column indicates
that while 83.4% were assigned to their stated first choice, only 72.3% were assigned to
their true first choice. This pattern is particularly stark for paid-lunch students, who are
assigned to their true first choice only 64.6% of the time. Table VI indicates that assign-
ment to competitive schools is less likely for paid-lunch students. Together, these results
suggest that calculations of whether students are assigned to their preferred options based
on stated preferences may be misleading and differentially so by student demographics.

7.3. Evaluating Assignments Under Alternative Mechanisms

A central question in the mechanism design literature is whether an Immediate Accep-
tance mechanism is worse for student welfare compared to strategy-proof mechanisms
such as the Deferred Acceptance mechanism. This question has been debated in the the-
oretical literature with stylized assumptions on the preference distribution (see Miralles
(2009), Abdulkadiroğlu, Che, and Yasuda (2011), Featherstone and Niederle (2016)). The
Immediate Acceptance mechanism exposes students to the possibility that they are not as-
signed to their top listed choices, which can harm welfare when they strategically choose
not to report their most preferred schools. However, this possibility has a countervailing
force that agents with particularly high valuations for their top choice will find it worth-
while listing competitive schools on top. Hence, the mechanism screens agents for cardi-
nal preferences and can result in assignments with higher aggregate student welfare. Ad-
ditionally, assignments under an Immediate Acceptance mechanism may be preferable
under a utilitarian criterion because they need not eliminate justified envy (equivalently,
they may not be stable). We say that a student has justified envy if she prefers the school
assigned to another student and the envied student has lower priority at that school.

Table X presents a quantitative comparison between the Cambridge mechanism and
the Student Proposing Deferred Acceptance mechanism50 using the preference estimates
presented earlier. Because the Deferred Acceptance mechanism is strategy-proof, evalu-
ating the counterfactual market with this mechanism is relatively straightforward because
it does not involve hurdles in computing an equilibrium.51

50We construct a Deferred Acceptance mechanism by adapting the Cambridge Controlled Choice Plan.
Schools consider students according to their priority + tie-breaking number. A paid-lunch student’s application
is held if the total number of applications in the paid-lunch category is less than the number of available seats
and if the total number of applications at the school is less than the total number of seats. Free-lunch student
applications are held in a similar manner. We allow students to rank all available choices.

51To evaluate the Cambridge mechanism, we use the beliefs estimated for each model to determine choices
and compute outcomes using the estimated assignment probabilities. Alternatively, it may be possible to solve
for the equilibria of manipulable Report-Specific Priority + Cutoff mechanisms because only equilibrium cut-
offs need to be obtained. These cutoffs can then be used to compute assignment probabilities and beliefs.
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TABLE IX

RANKING AND ASSIGNMENT AT TOP CHOICEa

Graham & Parks Haggerty Baldwin Morse Amigos Cambridgeport King Open Peabody Tobin Fletcher Maynard Kenn Long MLK King Open Ola Total

Panel A: All Students
Preferred School 24�8 11�6 9�4 10�0 7.9 6.1 7.2 6.1 5�4 4�0 3.6 2.2 1.0 99�3
Ranked #1 (simul) 16�2 12�6 11�6 11�2 8.4 8.0 8.6 7.0 4�9 3�9 3.6 2.3 1.0 99�3
Ranked #1 (data) 14�3 12�6 11�9 11�0 8.8 7.7 8.2 7.8 5�7 4�4 3.8 2.7 1.2 100�0
Preferred and Ranked #1 15�3 10�4 8�2 9�6 7.5 5.8 7.2 6.1 4�6 3�9 3.6 2.2 1.0 85�2
Preferred and Assigned 9�9 8�5 6�6 8�2 6.8 5.1 7.2 6.0 3�8 3�5 3.6 2.2 1.0 72�3
Ranked #1 and Assigned 10�4 10�1 9�0 9�5 7.6 6.8 8.6 6.9 4�2 3�6 3.6 2.3 1.0 83�4

Panel B: Free Lunch Students
Preferred School 9�0 8�1 6�5 12�5 6.9 6.8 7.2 7.9 10�7 10�8 7.1 4.6 1.6 99�5
Ranked #1 (simul) 8�9 8�5 6�8 12�7 6.9 7.1 7.2 8.2 9�0 10�6 7.2 4.7 1.6 99�5
Ranked #1 (data) 6�7 8�3 8�0 12�2 7.8 6.4 7.7 9.0 8�5 10�8 7.1 5.5 2.0 100�0
Preferred and Ranked #1 8�6 8�0 6�4 12�2 6.7 6.6 7.2 7.8 8�9 10�3 7.1 4.6 1.6 96�1
Preferred and Assigned 7�9 7�5 6�0 10�7 6.0 6.1 7.2 7.8 7�1 9�3 7.1 4.6 1.6 88�8
Ranked #1 and Assigned 8�3 7�9 6�4 11�1 6.2 6.5 7.2 8.1 7�2 9�5 7.2 4.7 1.6 91�9

Panel C: Paid Lunch Students
Preferred School 32�6 13�3 10�9 8�7 8.6 5.7 7.3 5.3 2�7 0�6 1.8 1.1 0.7 99�3
Ranked #1 (simul) 20�0 14�6 13�9 10�4 9.3 8.3 9.3 6.5 2�9 0�6 1.8 1.1 0.7 99�3
Ranked #1 (data) 18�8 14�6 13�4 10�6 9.5 7.9 8.7 7.2 3�7 1�2 2.2 1.3 0.9 100�0
Preferred and Ranked #1 18�9 11�5 9�2 8�2 8.1 5.3 7.3 5.3 2�4 0�6 1.8 1.1 0.7 80�2
Preferred and Assigned 11�0 8�9 7�0 6�9 7.3 4.6 7.3 5.2 2�2 0�6 1.8 1.1 0.7 64�6
Ranked #1 and Assigned 11�7 11�1 10�2 8�6 8.3 6.9 9.3 6.4 2�7 0�6 1.8 1.1 0.7 79�4

aPercent of students. Unless otherwise noted, table presents averages over 1,000 simulations from the posterior mean of the parameters estimated from the rational expectations model.
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TABLE X

DEFERRED ACCEPTANCE VERSUS CAMBRIDGEa

Truthful Rational Expectations Coarse Beliefs Adaptive Expectations

All Students Paid Lunch Free Lunch All Students Paid Lunch Free Lunch All Students Paid Lunch Free Lunch All Students Paid Lunch Free Lunch

Panel A: Deferred Acceptance
Percent Assigned to First Choice 71.0 64.0 84.8 67.8 58.4 86.4 70.4 62.0 86.9 68.9 58.0 88.4
Percent Assigned to Second Choice 12.0 13.6 8.7 15.8 18.7 10.0 12.3 14.1 8.8 13.8 17.3 7.5
Percent Assigned to Third Choice 5.1 7.0 1.4 5.2 7.1 1.5 4.9 6.8 1.1 5.1 7.2 1.3
Percent Assigned to Fourth Choice 3.0 4.4 0.3 1.3 1.9 0.2 1.8 2.6 0.1 1.5 2.3 0.2
Percent Assigned to Fifth Choice 1.7 2.5 0.1 0.2 0.3 0.0 0.4 0.6 0.0 0.2 0.4 0.0

Panel B: Cambridge Mechanism
Percent Assigned to First Choice 78.9 74.5 87.7 72.3 63.9 88.8 73.9 67.3 86.9 72.2 63.0 88.9
Percent Assigned to Second Choice 6.5 6.8 5.9 14.7 18.1 7.9 10.2 11.1 8.3 11.9 15.1 6.1
Percent Assigned to Third Choice 3.1 4.0 1.3 3.9 5.1 1.3 3.5 4.6 1.5 3.6 4.7 1.5
Percent Assigned to Fourth Choice 0.0 0.0 0.0 1.0 1.4 0.3 1.5 2.1 0.3 1.2 1.7 0.3
Percent Assigned to Fifth Choice 0.0 0.0 0.0 0.2 0.2 0.0 0.4 0.5 0.0 0.2 0.3 0.1

Panel C: Deferred Acceptance vs. Cambridge
Mean Utility DA − Cambridge 0.065 0.102 −0.008 −0.078 −0.107 −0.021 −0.035 −0.052 −0.001 −0.032 −0.069 0.033

(0.019) (0.027) (0.008) (0.009) (0.012) (0.009) (0.009) (0.012) (0.011) (0.025) (0.033) (0.032)
Std. Utility DA − Cambridge 0.149 0.168 0.044 0.109 0.120 0.046 0.095 0.104 0.061 0.178 0.124 0.233
Percent DA > Cambridge 26.1 28.0 22.2 17.3 15.6 20.6 25.2 24.6 26.3 25.0 23.4 27.8

(1.6) (1.9) (2.4) (1.8) (2.2) (2.4) (1.5) (1.8) (2.2) (2.7) (3.5) (3.4)
Percent DA ≈ Cambridge 32.4 27.4 42.4 31.2 28.0 37.5 32.1 28.2 39.7 31.6 26.3 41.0

(1.2) (1.5) (2.0) (1.2) (1.5) (2.0) (1.2) (1.4) (1.9) (1.7) (1.9) (2.8)
Percent DA < Cambridge 41.5 44.6 35.4 51.5 56.4 41.9 42.8 47.2 34.0 43.5 50.3 31.2

(1.8) (2.1) (2.5) (2.0) (2.4) (2.7) (1.7) (2.0) (2.4) (2.8) (3.7) (3.5)
Percent With Justified Envy 7.7 10.4 2.4 2.5 2.7 2.3 5.0 5.8 3.4 3.8 4.2 2.9

(0.5) (0.7) (0.4) (0.2) (0.3) (0.4) (0.3) (0.4) (0.4) (0.7) (1.0) (0.6)
aNotes: Panels A and B present percentages of students assigned to their true kth choice. Panel C compares the expected utility difference between Deferred Acceptance and Cambridge

Mechanism. Simulations of the Deferred Acceptance mechanism draw other student reports using the estimated utility distribution. We say DA ≈ Cambridge if the expected utility is within 10−5

miles. Point estimates use θ̂ and 1,000 simulations of the mechanisms. Bootstrap standard errors, using 250 draws of the parameters from the posterior distribution, in parentheses. For Truthful
reporting, we use the 1,000 draws from the posterior distribution.
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An approach that treats agents’ stated preferences as truthful finds that the average
welfare is higher in the Deferred Acceptance mechanism. Panels A and B show that al-
though Cambridge assigns more students to their top choice due to the additional priority
awarded to students at schools that are ranked first, Deferred Acceptance does better at
assigning students to less preferable options, including fourth and fifth choices. Recall
that estimates from this specification indicated that many students prefer these options
to remaining unassigned (see Table VII). However, estimates assuming optimal behav-
ior showed that the vast majority find less than three schools in Cambridge preferable to
remaining unassigned. Therefore, the conclusion that Deferred Acceptance improves on
average student welfare may be incorrect if strategic behavior is widespread.

In contrast to estimates assuming truthful behavior, results that treat agents as respond-
ing to strategic incentives indicate that the assignments produced by the Cambridge mech-
anism are preferable to those produced by the Deferred Acceptance mechanism. The
fraction of students assigned to their true first choice remains higher under the Cambridge
mechanism but, interestingly, the mechanism also places students at their true second
choices with high probability if agents are strategic. This occurs because some students
report their true second choice as their top choice. Indeed, panel C shows that more stu-
dents prefer the Cambridge mechanism’s assignments to the Deferred Acceptance mech-
anism’s assignments than the other way around. Although the mechanism is effectively
screening based on cardinal utilities, the average student prefers the assignments under
the Cambridge mechanism by only an equivalent of 0.08 miles. The table also illustrates
differences across student groups. Paid-lunch students prefer the Cambridge assignments
more than free/reduced lunch students, perhaps due to strategic pressures. The estimated
effects are of similar magnitude to the difference between Deferred Acceptance and Stu-
dent Optimal Stable Matching (SOSM) as measured in New York City High Schools by
Abdulkadiroğlu, Agarwal, and Pathak (2017). Unlike SOSM, however, the Cambridge
mechanism need not result in a Pareto improvement relative to the Deferred Acceptance
mechanism.

Specifications with biased beliefs indicate that the cardinal screening benefits of an Im-
mediate Acceptance mechanism may be diminished and instances of justified envy may
be larger if beliefs are not well aligned with true assignment probabilities. In the models
with biased beliefs, free-lunch students tend to prefer the assignment produced by the
Deferred Acceptance mechanism relative to the one produced by the Cambridge mech-
anism. Further, the benefits to paid-lunch students are lower than the model that treats
agents as having rational expectations. The significant aggregate benefit to free-lunch stu-
dents under the Deferred Acceptance mechanism is driven, in part, by the large fraction
of students assigned to their top two choices. Paid-lunch students continue to prefer as-
signments in the Cambridge mechanism to the strategy-proof counterpart.

Finally, an undesirable feature of the Cambridge mechanism is that it may result in
instances of justified envy. Panel C shows that there are few instances of justified envy if
agents have rational expectations, only about 2.5%, because students are often assigned at
one of the top two choices. Under truthful reporting, the estimated instances of justified
envy is higher, just under 8%. The other specifications yielded intermediate results.

Our quantitative results contribute to the debate in the theoretical literature about
the welfare properties of an Immediate Acceptance mechanism, which is similar to the
Cambridge mechanism. The results are different in spirit from Ergin and Sonmez (2006),
which suggests that full-information Nash equilibria of an Immediate Acceptance mech-
anism are Pareto inferior to outcomes under Deferred Acceptance. This difference stems
from our focus on beliefs that account for ex ante uncertainty faced by the students. Our
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results provide a quantitative counterpart to the theoretical claims in Abdulkadiroğlu,
Che, and Yasuda (2011). They argued that an Immediate Acceptance mechanism can ef-
fectively screen for the intensity of preferences and can have better welfare properties
than the Deferred Acceptance mechanism. Troyan (2012) showed that the theoretical re-
sults in this literature that are based on notions of interim efficiency are not robust to
students having priorities, and he advocated for an ex ante comparison such as the one
performed in this paper.

Given the small benefits of the Cambridge mechanism, it is important to note that
agents may face costs of strategizing because students may need to gather additional
information about the competitiveness of various schools before formulating ranking
strategies. These costs may weigh against using an Immediate Acceptance mechanism
for school assignment. Additionally, there may be distributional consequences if agents
vary in their ability to strategize (Pathak and Sönmez (2008)). While we cannot quantify
the direct costs of strategizing and gathering information with our data, we extend our
model to address distributional consequences of heterogeneous sophistication and biased
beliefs in the next subsection.

7.4. Extension: Heterogeneous Agent Sophistication

The specifications presented above have modeled a homogeneous population of agents
who make optimal reports given beliefs consistent with the data. However, agents may dif-
fer in their information about the competitiveness of various schools or may vary in their
understanding of the mechanism. The difficulty in empirically analyzing extremely flexible
models of heterogeneously sophisticated agents stems from the fact that a researcher has
to disentangle heterogeneity in sophistication from preference heterogeneity while only
observing the actions of the agents. Theorem A.1 in Appendix A.1 shows it is typically
possible to rationalize any rank-order list as optimal for some vector of utilities. Simulta-
neously identifying preferences and heterogeneity in sophistication will therefore require
restricting behavioral rules and parametric assumptions.

We estimate a stylized model with heterogeneous agent sophistication based on Pathak
and Sönmez (2008).52 They theoretically compared the Deferred Acceptance mechanism
to the Immediate Acceptance mechanism using a model with two types of agents: naïve
and sophisticated. Naïve agents report their preferences sincerely by ranking the schools
in order of their true preferences. Sophisticated agents, on the other hand, recognize that
truthful reporting is not optimal because schools differ in the extent to which they are
competitive and because of the details of the mechanism. Reports made by sophisticated
agents are optimal given the reports of the other agents.

We model a population with a mixture of sophisticated and naïve agents who have the
same distribution of preferences but differ in their behavior. Naifs report their prefer-
ences truthfully while sophisticated agents report optimally given their (correct) beliefs
about the probability of assignment at each option given their report. The distribution of
preferences is parameterized as in equation (2). In addition to parametric assumptions,
the model embeds two strong restrictions. First, it is a mixture of two extreme forms of
agent behavior: perfect sophistication and complete naïvete. Second, the distribution of
preferences does not depend on whether the agent is sophisticated. These simplifications
allow us to keep the estimation procedure tractable. Appendix E.1.2 details the Gibbs

52See Calsamiglia, Fu, and Güell (2017) for another empirical model of agents that are heterogeneous in
their sophistication.
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TABLE XI

ESTIMATED MEAN UTILITIES USING A MIXTURE MODELa

Mixture Model

All Students Paid Lunch Free Lunch

Panel A: Mean Utility
Graham & Parks 1.19 1.53 0.52

(0.11) (0.12) (0.15)
Haggerty 1.27 1.53 0.76

(0.14) (0.13) (0.22)
Baldwin 1.25 1.45 0.84

(0.10) (0.10) (0.13)
Morse 0.74 0.68 0.86

(0.11) (0.11) (0.13)
Amigos −0.12 0.00 −0.38

(0.21) (0.19) (0.30)
Cambridgeport 0.56 0.68 0.31

(0.11) (0.11) (0.15)
King Open 0.48 0.57 0.32

(0.09) (0.10) (0.12)
Peabody 0.08 0.03 0.16

(0.13) (0.13) (0.16)
Tobin −0.45 −0.81 0.26

(0.16) (0.18) (0.23)
Fletcher Maynard −1.02 −1.52 −0.04

(0.24) (0.30) (0.18)
Kenn Long −0.07 −0.23 0.24

(0.14) (0.16) (0.15)
MLK −0.68 −0.97 −0.10

(0.14) (0.17) (0.15)
King Open Ola −3.23 −2.96 −3.77

(0.40) (0.43) (0.46)
Outside Option −1.11 −1.03 −1.26

(0.09) (0.09) (0.11)

Panel B: Agent Behavior
Fraction Naïve 0.378 0.316

[0.0079] [0.0079]

aPanel A presents the average estimated utility for each school, normal-
izing the mean utility of the inside options to zero. Utilities calculated by
averaging the predicted utility given the non-distance covariates. Panel B re-
ports the estimated fraction of naive agents by free-lunch status. Bootstrap
standard errors in parentheses.

sampler for this model, which needed to be modified. We use estimates of the beliefs in
the rational expectations model for the sophisticated agents.

Table XI presents the estimated mean utilities and the fraction of agents who are naïve.
The estimated mean utilities are similar to the estimates in the other specifications, and
usually in between the specifications treating agents as either truthful or fully sophisti-
cated (Table VII). Panel B shows that about a third of paid-lunch and free-lunch students
are estimated to be naïve. These results contrast with estimates obtained by Calsamiglia,
Fu, and Güell (2017) in Barcelona, where they estimated that over 94% of households are
strategic in their decisions. One potential reason driving this difference is that the 93% of
students in Barcelona are assigned to their top-ranked choice, while in Cambridge, this
number is only 84%.
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TABLE XII

DEFERRED ACCEPTANCE VERSUS CAMBRIDGE USING A MIXTURE MODELa

All Students Paid Lunch Free Lunch

Panel A: Deferred Acceptance
Percent Assigned to First Choice 70.0 61.8 86.3
Percent Assigned to Second Choice 13.1 14.5 10.3
Percent Assigned to Third Choice 5.8 7.8 1.7
Percent Assigned to Fourth Choice 2.8 4.0 0.3
Percent Assigned to Fifth Choice 0.9 1.4 0.1

Naïve Sophisticated Naïve Sophisticated Naïve Sophisticated

Percent of Students 35.7 64.3 37.8 62.2 31.6 68.4

Panel B: Cambridge Mechanism
Percent Assigned to First Choice 78.4 76.2 72.4 69.5 90.2 89.6
Percent Assigned to Second Choice 6.5 12.3 6.6 14.7 6.3 7.6
Percent Assigned to Third Choice 3.3 4.3 4.1 5.9 1.7 1.3
Percent Assigned to Fourth Choice 0.0 1.8 0.0 2.6 0.0 0.3
Percent Assigned to Fifth Choice 0.0 0.5 0.0 0.8 0.0 0.1

Panel C: Deferred Acceptance vs. Cambridge
Mean Utility DA − Cambridge −0.024 −0.094 −0.029 −0.13 −0.014 −0.023

(0.010) (0.010) (0.014) (0.013) (0.008) (0.007)
Std. Utility DA − Cambridge 0.096 0.125 0.112 0.137 0.047 0.046
Percent DA > Cambridge 22.5 12.8 23.2 9.4 21.0 19.4

(1.6) (1.6) (2.0) (1.8) (2.2) (2.3)
Percent DA Cambridge 30.4 30.6 26.6 26.7 38.1 38.2

(1.2) (1.2) (1.4) (1.4) (2.0) (2.0)
Percent DA < Cambridge 47.1 56.7 50.2 63.9 40.9 42.4

(1.6) (1.6) (1.9) (1.9) (2.5) (2.6)
Percent With Justified Envy 6.4 2.5 8.3 2.7 2.6 2.3

(0.4) (0.2) (0.6) (0.3) (0.4) (0.4)

aPanels A and B present percentages of students assigned to true kth choice. Panel C compares the expected utility difference
between Deferred Acceptance and Cambridge Mechanism. Simulations of the Deferred Acceptance mechanism draw other student
reports using the estimated utility distribution. We say DA ≈ Cambridge if the expected utility is within 10−5 miles. Bootstrap standard
errors in brackets.

Table XII describes the differences between outcomes in the Cambridge and the De-
ferred Acceptance mechanisms. Because Deferred Acceptance is strategy-proof, both
naïves and sophisticates report their preferences truthfully. Therefore, their outcomes
are identical. The fractions of students assigned to their first, second, and third choices
are similar to the results presented previously. We also see a similar overall increase in
the fraction of students assigned to their top choice school in the Cambridge mechanism
and a decrease in fractions assigned at lower-ranked choices. Interestingly, the probabil-
ity of a student assigned to her top choice under the Cambridge mechanism is larger for
naïve agents than for sophisticated agents even though they have identical preferences
(78.4% vs. 76.2%). This relatively larger probability of assignment at the top choice is at
the cost of a significantly lower probability of assignment at the second choice, which is
6.5% for naifs and 12.3% for sophisticates. These differences are particularly stark for the
paid-lunch students, who face a more demanding strategic environment. Our estimates
suggest that, relative to sophisticates, naïve students effectively increase their chances of
placement at their top choice school at the cost of losing out at less preferred choices.

These results can be explained by the difference between the propensity of naifs and
sophisticates for ranking popular schools. While naïve students disregard a school’s com-
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petitiveness, sophisticates are likely to avoid ranking competitive schools. Therefore, naifs
effectively gain priority at their first choice school relative to sophisticated students with
the same true first choice if the school is competitive. For example, Graham & Parks is
estimated to be the top choice for 17.7% of students, but about a third of the sophisti-
cated students for whom it is the top choice avoid ranking it first. Consequently, naive
students are more likely to be assigned to Graham & Parks if it is their first choice. Quali-
tatively similar patterns hold for the other competitive schools such as Haggerty, Baldwin,
and Morse. This increase in assignment probability at the top choice comes at the cost of
a reduction in the probability of assignment at the second choice. For example, while
14.7% of sophisticated paid-lunch students are assigned to their second choice school,
only 6.6% of naïve paid-lunch students get placed at their second choice. As Pathak and
Sönmez (2008) pointed out, naïve students effectively “lose priority” at their second and
lower choice schools to sophisticated students who rank the school first. It is therefore not
surprising that the instances of justified envy are largest amongst naïve students, and par-
ticularly paid-lunch naifs. About 17% of paid-lunch naifs remain unassigned while about
6% of paid-lunch sophisticates are unassigned. Further, of the 27.6% paid-lunch naifs
who are not assigned to their top choice, just under a third have justified envy for another
student’s assignment.

The aggregate welfare effects for naïve students therefore depend on whether the bene-
fits of an increased likelihood of assignment at the top choice outweigh the lost priority at
less preferred options. Although the naïve agents are making mistakes in the Cambridge
mechanism, our comparison of assignments under the Deferred Acceptance mechanism
to those under the Cambridge mechanism in panel C of Table XII shows that only 23.2%
of the naïve paid-lunch students prefer the Deferred Acceptance mechanism to the Cam-
bridge mechanism. This compares with 9.4% for paid-lunch sophisticates and less than
22% for free-lunch naifs and free-lunch sophisticates. Overall, we find that the average
naïve student prefers assignments under the Cambridge mechanism by an equivalent of
0.024 miles. Because sophisticates are optimally responding to incentives in their environ-
ment, their estimated value for the assignments in the Cambridge mechanism is larger, at
an equivalent of 0.094 miles.

8. CONCLUSION

We show that students in Cambridge respond to the strategic incentives in the mech-
anism. Specifically, students who reside on either side of the boundary where proximity
priority changes have observably different ranking behavior. This finding weighs against
the assumption that agents are ranking schools in order of true preferences if proximity
priority is not a significant driver of residential choice.

Motivated by these results, we develop a general method for analyzing preferences
from reports made to a single unit assignment mechanism that may not be truthfully im-
plementable. The approach views the choice of report as an optimal choice from available
assignment probabilities. We show that these probabilities can be consistently estimated
for a broad class of school choice mechanisms, including the Immediate Acceptance and
the Deferred Acceptance mechanisms. We consider models in which agents have biased
beliefs in addition to a rational expectations model. Further, we study the identification
of preferences and propose a computationally tractable estimator.

Our empirical results indicate that treating preferences as truthful is likely to result
in biased estimates in markets where students face stiff competition for their preferred
schools. The stated preferences therefore exaggerate the fraction of students assigned to
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their true top choice. We then evaluate changes in the design of the market, where we
find that the typical student prefers the Cambridge mechanism’s assignment to the De-
ferred Acceptance mechanism’s assignment by an equivalent of 0.08 miles. These losses
are concentrated for the paid-lunch students, for whom the scarcity of seats at desirable
programs results in the highest advantage from screening based on intensity of prefer-
ences. Free-lunch students, on the other hand, face a less complex strategic environment
in the Cambridge mechanism, and the average student is close to indifferent between the
two mechanisms.

Estimates from models in which agents have biased beliefs about assignment proba-
bilities have a less optimistic view on the cardinal screening benefits of the Cambridge
mechanism. A model with heterogeneously sophisticated agents finds that the Cambridge
mechanism is preferable for naïve students because they gain priority at their top choice.
Across specifications, we find relatively few instances of justified envy in the Cambridge
mechanism due to the large majority of students who are assigned to their top choice in
this school district.

The relatively small welfare advantage of the Cambridge mechanism should be weighed
against potential costs and distributional consequences of strategizing. Quantifying these
effects may be difficult without directly observing differences in information acquisition
activities across mechanisms. More broadly, our results motivate further research on
mechanisms that use the intensity of student preferences in allocation more directly.

Our methods can be extended to many other settings. Within school choice systems,
the study of mechanisms that use finer priorities or exams is left for future research.
Another important setting where agents make similar trade-offs is when they apply to
college. A challenge in directly extending our approach is that colleges’ admission deci-
sions may be based on unobserved factors. Also closely related are multi-unit assignment
mechanisms such as course allocation mechanisms. These settings, however, will require
a richer space of preferences with complementarities over objects.

It is worth re-emphasizing that our approach to school assignment is predicated on two
important assumptions that deserve further research. First, we assume that families do not
make residential decisions in response to latent tastes for schools. Future research that
investigates potential sources of residential sorting in unified school districts and jointly
models residential and school choice would be valuable. Second, we infer beliefs based
on observed ranking behavior and assume optimal responses. Further work that directly
measures beliefs and ranking behavior in the field and develops appropriate models can
help us better understand how agents interact with assignment mechanisms.

APPENDIX A

This appendix provides the main results for the paper. Appendices B to E appear online
and contain additional results and preliminaries cited here.

A.1. Testable Restrictions of Optimal Behavior

Our empirical methods are based on the assumption that agent behavior is optimal.
Therefore, if agents maximize their utility, they must pick lotteries that are extremal in
the set of lotteries with probability 1 because ties in expected utilities are non-generic:

PROPOSITION A.1: Let the distribution of indirect utilities admit a density. If LR is not an
extreme point of the convex hull of L, the set of utilities v such that v · LR ≥ v · LR′ for all
LR′ ∈L has measure zero.
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PROOF: If LR is not an extreme point of the convex hull of L, then CR = {v ∈ R
J :

∀LR′ ∈ L� v · (LR − L′
R) ≥ 0} has Lebesgue-measure zero. Since v admits a density,

∫

1{v ∈CR}dFV = 0. Q.E.D.

The result indicates that the fraction of students with behavior that is not consistent
with optimal play can be identified. This suggests that the assumption that agents behave
optimally is testable. However, as we will show below, we should expect that observed
behavior can be rationalized as optimal in most assignment mechanisms.

Consider a mechanism in which reports correspond to rank-orders over the avail-
able options. Therefore, a report is a function R : {1� � � � �K} → J such that (i) for all
k�k′ ∈ {1� � � � �K}, R(k) = R(k′) 
= 0 =⇒ k = k′ and (ii) R(k) = 0 =⇒ R(k′) = 0 if
k′ > k. Let R be the space of such functions. Therefore, R is a (partial) rank-order list
and R(k) denotes the identity of the kth ranked school. As discussed earlier, the mecha-
nism produces lotteries LR�t for each report submitted by an agent with priority type t. Let
LR�j be the probability that a student with priority type t is assigned to program j when
submitting R, where we suppress the dependence on t for notational simplicity.

DEFINITION 5: The set of lotteries L= {LR ∈ ∆J :R ∈R} is rank-monotonic for priority
type t if, for all R�R′ ∈ R, R−i ∈ R−i, and k ≤ K, we have that (R(1)� � � � �R(k − 1)) =
(R′(1)� � � � �R′(k− 1)) implies

LR�R(k) ≥LR′�R(k)�

Further, Lt is strictly rank-monotonic for priority-type t if the inequality above is strict if
R(k) 
=R′(k), and LR�R(k) > 0.

Rank-monotonicity is a natural condition that should be satisfied by many single-unit
assignment mechanisms. Specifically, it requires that the assignment probability at the
kth ranked school does not depend on schools ranked below it, and that ranking a school
higher weakly increases a student’s chances of getting assigned to it. Under strict rank-
monotonicity, ranking a school higher strictly increases the assignment probability unless
this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that
pick a report that gives them a positive probability of assignment at each of their options
are behaving in a manner rationalizable as optimal for some v.53

THEOREM A.1: Assume that L is strictly rank-monotonic. The report R ∈ R corresponds
to an extremal lottery LR ∈L if LR�R(k) > 0 for all k such that

∑

k′<kLR�R(k′) < 1.

PROOF: Consider a report R ∈ R such that for any k = 1�2� � � � �K,
∑

k′<kLR�R(k′) < 1
and LR�R(k) > 0. Take any vector of coefficients λ such that

λR̃ ≥ 0 for every R̃ ∈R�
∑

R̃∈R

λR̃ = 1�

∑

R̃∈R

λR̃LR̃ = LR�

53Strict rank-monotonicity does not rule out that two different reports result in the same lottery, for example,
if R1 = (A�B�C) and R2 = (A�B�D) both result in assignment probabilities for A�B�C , and D equal to
[φA�1 −φA�0�0].
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We will show that λR = 1. The proof follows by induction. Consider some report R̃

where R(1) 
= R̃(1). Strict rank-monotonicity and our assumption on R imply λR̃ = 0. We
have shown that for k = 1, R(k′) 
= R̃(k′) for any k′ ≤ k =⇒ λR̃ = 0. Suppose that this
statement is true for all l ≤ k − 1 and that

∑

l<kLR�R(l) < 1. Take any report R̃ where
R(l) 
= R̃(l) for some l ≤ k. If l < k, λR̃ = 0 by the inductive hypothesis. If l = k, strict
rank-monotonicity and our assumption on R imply λR̃ = 0. By induction, R(l) 
= R̃(l) and
∑

l<kLR�R(l) < 1 =⇒ λR̃ = 0.
Suppose that there is a j ∈ S and R̃ ∈R such that LR�j 
=LR̃�j ; we will show that λR̃ = 0.

Let k̃ be the minimum k such that R(k) 
= R̃(k). Rank-monotonicity and the fact that
either LR�j > 0 or LR̃�j > 0 imply that

∑

l<k̃

LR(l)�R̃ =
∑

l<k̃

LR�R(l) < 1�

Thus, our previous results imply that λR̃ = 0. Q.E.D.

The result implies that every report with nonzero assignment probabilities is rational-
izable as an optimal report for some v if the mechanism is strictly rank-monotonic. Intu-
itively, this is the case because upgrading any school in the reported rank-order list strictly
increases the probability of assignment and there exists a utility vector for which such a
report is optimal.

Although optimal play is potentially testable, we do not develop a statistical test for
the null hypothesis that play is consistent with optimal behavior. The technical challenge
arises because showing that some students rank a report estimated to be suboptimal is not
enough. Rejecting the null of optimal behavior amounts to showing that one of the true
assignment probabilities in this report is indeed equal to zero.

A.2. Identification With Non-Simplicial Cones

In this section, we consider identification for the case when the cone CR is not spanned
by linearly independent vectors. We need that there exists a report for which the normal
cone satisfies the following property:

DEFINITION 6: A cone C is salient if v ∈ C =⇒ −v /∈ C for all v 
= 0.

Our results require that the tails of the distribution of utilities are light. Formally, as-
sume that for some c > 0, the density of u belongs to the set

Gc ≡
{

g ∈ L
1
(

R
J
)

: ec|u|g(u) ∈ L
1
(

R
J
)}

�

where L
1 is the space of Lebesgue integrable functions.

THEOREM A.2: Assume that g ∈ Gc and there is a lottery LR such that CR is a salient
convex cone with a nonempty interior. If ζ = R

J , then the distribution of utilities FV (v|z1) is
identified from

hCR

(

z1
)

= P
(

LR ∈L|z1
)

�
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PROOF: For a fixed lottery LR such that CR is salient, define the linear operator A:

Ag(z) =
∫

CR

g(v+ z)dv = hCR
(z)�

We need to show that if A(g′ − g′′) = 0 a.e., then g′ − g′′ = 0 a.e. The proof is by contra-
diction.

Since the cone CR is salient, its dual TR has a nonempty interior. Let ε ∈ int(TR), with
|ε| sufficiently small so that gε(u)= g(u)e2π〈ε�u〉 ∈ L

1. Note that 1{u ∈CR}e−2π〈ε�u〉 ∈ L
1 for

every ε ∈ int(TR) because 〈ε�u〉> 0.
Towards a contradiction, suppose that A(g′ − g′′) = 0 a.e. but |g′ − g′′|1 > 0. Since ζ =

R
J , we have that for almost all z ∈R

J ,

Ag(z) = e−2π〈ε�z〉
∫

1{v ∈CR}e−2π〈ε�v〉e2π〈ε�v+z〉g(v + z)dv = 0�

Since e−2π〈ε�z〉 > 0, Ag = 0 for almost all z ⇐⇒ f̂ε�CR
(ξ) · ĝε(ξ) = 0, where f̂ε�CR

is the
Fourier transform of fε�CR

(x) = 1{x ∈ CR}e−2π〈ε�x〉 and ĝε is the conjugate of the Fourier
transform of gε(x), both continuous functions in L

1. Since ĝε is continuous, the set where
ĝε 
= 0 is open. Further, since |g|1 > 0, the support of ĝε is nonempty. It follows that
there is an open Zε where ĝε is different from zero, and therefore, f̂ε�CR

(ξ) = 0 for all
ξ ∈ Zε. This contradicts the fact that f̂ε�CR

is an entire function, a property of f̂ε�CR
shown

in Lemma D.1.
Finally, since g(u) is known for almost all u, we have that FV (v|z1) =

∫ v−z1

−∞ g(u)du is
identified. Q.E.D.

The condition that there exists a lottery LR such that CR is salient and has a nonempty
interior is satisfied for all school choice mechanisms in which (i) singleton rank-order lists
are allowed, (ii) the probability of assignment into the top-ranked school is nonzero, and
(iii) the probability of assignment into unranked schools is zero. A rank-order list in which
only one school is ranked will then yield a salient cone with a nonempty interior.54

The key insight is that the Fourier transform of an exponential density restricted to
any salient cone is nonzero on any open set. Lemma D.1 shows this preliminary based on
results in De Carli (1992, 2012).

A.3. Asymptotic Theory for RSP+C Mechanisms

Our main results in this section derive the properties of our estimator L̂ for Ln
R�t defined

in equation (9) in the main text where the dependence of L on n is reintroduced in the
notation for clarity. We hold σ fixed unless it is explicitly conditioned on, and treat the
rational expectations case. Results for the other forms of beliefs follow as a consequence.
We start by introducing some notation and definitions.

54It is easy to see that the two conditions imply that the convex hull of L has a nonempty interior. Let LR

be an extremal point in L. Because the convex hull of L has a nonempty interior, there exists L
′ ⊆ L such that

the matrix A= [LR −LR1 � � � � �LR −LRJ
], where each LRk

∈ L
′ has full rank. Consider v 
= 0. Because A is full

rank, A′v 
= 0. Therefore, if v ∈ CR, then it must be that A′v has a strictly positive component. It follows that
−v /∈ CR. Hence, CR is salient.
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Although the text stated our result for the uniform distribution, in our main results,
we will assume that the mechanism uses a general/non-degenerate distribution of tie-
breakers.

DEFINITION 7—Non-Degenerate Tie-Breakers: Fix a function f (R� t� ν). The tie-
breaker is non-degenerate if there exists some κ > 0, such that for each p�p′ ∈ [0�1]J ,
j ∈ {1� � � � � J}, and (R� t) ∈R× T ,

γν

({

ν : pj ∧p′
j ≤ fj(R� t� ν)≤ pj ∨p′

j

})

≤ κ
∣

∣pj −p′
j

∣

∣�

Non-degenerate tie-breakers is a strengthening of strict preferences in Azevedo and
Leshno (2016). The assumption is straightforward to verify with knowledge of the mech-
anism. For example, it is satisfied if a random number is used to break ties between mul-
tiple students with the same priority type. It also allows for a situation in which a single
tie-breaking number is used by all schools to break ties.

Given a sample (Ri� ti� νi), for i ∈ {1� � � � � n}, we can obtain an empirical measure ηn =
1
n

∑n

i=1 δ(Ri�ti�νi), where δ(Ri�ti�νi) is the Dirac-delta measure on (Ri� ti� νi). Given ηn and a
cutoff vector p, we can define the fraction of students that would be assigned to each
program j as follows:

Dj

(

p|ηn
)

= ηn

(

{

fj(Ri� ti� νi) > pj� jRi0
}

⋂

j′ 
=j

({

jRij
′} ∪

{

fj′(Ri� ti� νi)≤ pj′
})

)

�

As a proof device, we will use a continuum economy. Let η be a probability measure
over Borel sets in R × T × [0�1]J . If agents in the economy are using strategy σ , then
η =mσ ×γν , where mσ((R� t))= fT (t)

∫

σR(v� t)dFV |T=t . Analogously, define the fraction
of students that would be assigned to each program j in the continuum economy:

Dj(p|η)= η

(

{

fj(Ri� ti� νi) > pj� jRi0
}

⋂

j′ 
=j

({

jRij
′} ∪

{

fj′(Ri� ti� νi) ≤ pj′
})

)

� (11)

It is straightforward to see that Dj(p|η) is a continuum analog of Dj(p|ηn) because if
(Ri� ti� νi) are drawn i.i.d. from η, then E[Dj(p|ηn)] = Dj(p|η).

Market clearing cutoffs (Definition 2) embody two sets of constraints, one set for the
programs and another for schools. It will be useful to combine them in a single set. Define
a J × S matrix A with entries ajs = 1 if sj = s, that is, if program j belongs to school s,
and 0 otherwise. Here, S is the total number of schools. Let Ã = [IJ A], where IJ is the
J-dimensional identity matrix, and

D̃(p̃|η) = Ã′D(Ãp̃|η) ∈ [0�1]J+S� (12)

where p̃ ∈ [0�1]J+S . The function D̃ stacks the program and school aggregates of the
number of students demanding assignment given the cutoffs p = Ãp̃. In this notation,
we have an equivalent definition of market clearing cutoffs in terms of p̃ and D̃:

PROPOSITION A.2: The cutoffs p ∈ [0�1]J are market clearing cutoffs for D(p|η) ∈ [0�1]J
and q ∈ [0�1]J+S if and only if, for each k ∈J ∪ S ,

D̃k(p̃|η)− qk ≤ 0� with equality if p̃k > 0� (13)

where p̃ = [p̃J � p̃S] with p̃S�s = min{pj : sj = s} for s ∈ {1� � � � � S} and p̃J = p−Ap̃S .
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PROOF: It is easy to verify that the inequalities D̃k(p̃|η) − qk ≤ 0 are equivalent to
those in the definition for market clearing cutoffs. Therefore, we only need to verify that
the set of restrictions satisfied with equality coincide. For every j ∈ J , p̃j > 0 if and only
if pj > min{pj′ : j′ 
= j� sj′ = sj}. Similarly, for every school s ∈ S , p̃S�s > 0 if and only if
min{pj : sj = s}> 0. Q.E.D.

In what follows, we will therefore work with p̃ instead of p. Finally, let p+ be the sub-
vector of p with strictly positive elements and D+(p|η) be the corresponding subvector
of D(p|η).

We are now ready to state the main result of this section.

THEOREM A.3: Suppose that Φn is an RSP+C mechanism that uses non-degenerate tie-
breakers, and for each k ∈J ∪S , qn

k −qk = o(1/
√
n). For strategy σ , consider η =mσ ×γν .

If p̃∗ is the unique solution to equation (13), then for each each (R� t),

∣

∣L̂R�t −Ln
R�t

∣

∣

p→ 0�

If, additionally, ∇p̃∗
+D̃+(p̃

∗|η) is invertible, then

√
n
(

L̂R�t −Ln
R�t

) d→ Γ Ã∇D̃Ã′Z�

where Z ∼N (0�Ω), Γ = ∇p

∫

D(R�t�ν)(Ãp̃∗)dγν ,

∇D̃ =
[

(

∇p̃∗
+D̃+

(

p̃∗|η
))−1

0
0 0

]

�

Ω=
(

1 + 1
B

)

V

(∫

D(R�t�ν)
(

Ãp̃∗)dγν

)

+
Eσ

[

V
(

D(R�t�ν)
(

Ãp̃∗)|R� t
)]

B
�

The first part of the result shows that if an RSP+C mechanism uses non-degenerate
tie-breakers and the market clearing cutoff is unique in the continuum economy, then L̂
is a consistent estimator for Ln. Non-degeneracy of the tie-breaker is straightforward to
verify with knowledge of the mechanism. Appendix C.3 derives conditions on D(p) and q
under which uniqueness is guaranteed, and weaker conditions under which uniqueness is
generically guaranteed using results from Azevedo and Leshno (2016) and Berry, Gandhi,
and Haile (2013).

Under additional smoothness conditions, the result also provides a limit distribution
for L̂. The expression shows that the variance of the estimator depends on the inherent
sampling variation in the observed reports and priority types. In addition, the estimator
also has an additional independent source of variance due to resampling. This variance
decreases with the number of resamples B used to construct the estimator.

PROOF: We first define market clearing cutoffs pn given that an agent of type t re-
ports R. Let

ηn = 1
n
δ(R�t�ν) + n− 1

n
ηn−1�



440 N. AGARWAL AND P. SOMAINI

and ηn−1 = 1
n−1

∑n−1
i=1 δ(Ri�ti�νi) with (Ri� ti� νi) drawn from η. Define p̃n

k such that
D̃k(p̃|ηn) − qn

k ≤ 0 with equality only if p̃n
k > 0. Note that p̃n exists by assumption since

Φn is an RSP+C mechanism.
We define similar objects for a bootstrap sample. Index a draw in the bth bootstrap

sample from the empirical sample (R1� t1)� � � � � (Rn� tn) with ib, and denote the bootstrap
empirical measure mn−1

b = 1
n−1

∑n−1
ib=1 δ(Rib

�tib
). Since the distribution of ν is known, we can

draw νib directly from γν for each ib. Therefore, ignoring the report of one agent, we can
define

ηn−1
b = 1

n

n−1
∑

ib=1

δ(Rib
�tib

�νib
)�

where νib is a draw from γν , independently of all other random variables. Let p̃n−1
b be such

that D̃k(p̃|ηn−1
b )− qn

k ≤ 0 with equality only if p̃n−1
b�k > 0.

For each (R� t), consider the difference L̂R�t −Ln
R�t . Since Φn is an RSP+C mechanism,

we have that

L̂R�t −Ln
R�t = 1

B

∑

b

∫

D(R�t�ν)
(

pn−1
b

)

dγν −E

[∫

D(R�t�ν)
(

pn
)

dγν|R� t
]

�

where pn−1
b = Ãp̃n−1

b , and pn = Ãp̃n.
We will derive the limit properties of the difference in the equation above using the

limit distributions of pn−1
b and pn and smoothness of the integals in the expressions.

By definition of D(p|ηn), we have that supp ‖D(p|ηn) − D(p|ηn−1)‖ = O(1/n) and
supp ‖D(p|ηn−1

b ) − D(p| n
n−1η

n−1
b )‖ = O(1/n). The definition of D̃(p̃|η) and Lemma C.1

imply that
(i) for each k ∈J ∪ S , supp̃ |D̃k(p̃|η)− D̃k(p̃|ηn)| converges in probability to 0,

(ii)
√
n( 1

B

∑

bD(Ãp̃∗|ηn−1
b ) − D(Ãp̃∗|η)) converges in distribution to Z, and there-

fore,

√
n

(

1
B

∑

b

D̃
(

p̃∗
0|ηn−1

b

)

− D̃
(

p̃∗|η
)

)

d→ Ã′Z�

(iii) for any p̃∗ and any sequence of δn decreasing to 0,

sup
‖p̃−p̃∗‖≤δn

√
n
∥

∥D̃
(

p̃|ηn
)

− D̃(p̃|η)+ D̃
(

p̃∗|η
)

− D̃
(

p̃∗|ηn
)
∥

∥ = op(1)�

and likewise

sup
‖p̃−p̃∗‖≤δn

√
n
∥

∥D̃
(

p̃|ηn−1
b

)

− D̃(p̃|η)+ D̃
(

p̃∗|η
)

− D̃
(

p̃∗|ηn−1
b

)∥

∥ = op(1)�

Since E[p̃n] = E[p̃n|mσ ] by definition and E[D̃(p̃|ηn)] = D̃(p̃|η), Lemma C.2 applied
to D̃(p̃|η) and p̃∗ implies that

∥

∥

∥

∥

1
B

∑

b

p̃n−1
b − p̃∗

∥

∥

∥

∥

p→ 0�
∥

∥p̃n − p̃∗∥
∥

p→ 0�
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and
√
n

(

1
B

∑

b

p̃n−1
b −E

[

p̃n
]

)

d→ ∇D̃Ã′Z�

where p̃n and p̃n−1
b are respectively market clearing cutoffs for (D̃(p̃|η)�qn) and

(D̃(p̃|ηn−1
b )�qn). Pre-multiplying by Ã, we have that

∥

∥

∥

∥

1
B

∑

b

pn−1
b −E

[

pn
]

∥

∥

∥

∥

p→ 0

by the triangle inequality, and because pn is bounded. Further, by Slutsky’s theorem,

√
n

(

1
B

∑

b

pn−1
b −E

[

pn
]

)

d→ Ã∇D̃Ã′Z�

Since the tie-breaker ν is non-degenerate, γν admits a density. Therefore,
∫

D(R�t�ν)(p)dγν is differentiable at every p since D(R�t�ν)(p) is an indicator for f (R� t� ν)
belonging to a hyper-cube:

D(R�t�ν)
j (p)= 1

{

fj(R� t� ν) > pj� jR0
}

∏

1
{

fj′(R� t� ν)≤ pj′ or jRj′}�

Hence, L̂R�t is a differentiable function of 1
B

∑

bp
n−1
b . Therefore, by the continuous map-

ping theorem,

sup
R�t

∣

∣L̂R�t −Ln�σ
R�t

∣

∣

p→ 0�

and by the delta method,

√
n
(

L̂R�t −Ln�σ
R�t

) d→ Γ Ã∇D̃Ã′Z� Q.E.D.
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