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Many scarce public resources are allo-
cated through a waitlist. A particularly
salient example is the kidney waitlist in
the United States, which now has almost
100,000 patients waiting for a lifesaving
transplant.
While the design of such systems has gar-

nered significant research attention, most
theoretical results yield answers that de-
pend on the primitives of the market (com-
pare Su and Zenios, 2004; Leshno, 2017;
Bloch and Cantala, 2017). Moreover, the
state of the art empirical methods used
to prospectively evaluate waitlist designs
do not incorporate the dynamic incentives
that are central to the theoretical litera-
ture. Perhaps the most prominent exam-
ple of an empirically guided redesign is the
2014 reform of the deceased donor kidney
allocation system. The kidney committee
used the Kidney Pancreas Simulated Ac-
ceptance Module (KPSAM) to predict the
transplants that would result from various
organ allocation rules. KPSAM allowed the
committee to experiment with the prior-
ity system, evaluate outcomes and make an
informed decision. However, this decision
tool simplifies patient acceptance behavior
by assuming that it is invariant to priority
rules and therefore ignores patients? dy-
namic incentives.
This article uses a combination of the-
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oretical and empirical arguments to show
that considering dynamic incentives is im-
portant for evaluating waitlist mechanisms.
We present examples to illustrate the in-
teraction between dynamic incentives, pref-
erences and waitlist design (Section II)
as well as evidence consistent with agent
choices being influenced by dynamic in-
centives (Section III). These results mo-
tivate methodological and empirical work
studying dynamic assignment systems more
broadly.

I. Background

In the United States, kidneys from de-
ceased donors are allocated through a wait-
list. Each organ is offered to patients ac-
cording to an organ-specific priority rule.
Patients may accept or decline an offer,
with no penalty for refusing. Each organ is
assigned to the highest priority biologically
compatible agent that accepts the organ.
These assignments must take place quickly
because it is difficult to maintain a kidney’s
viability after the donor has deceased.
A new priority system for allocating kid-

neys was adopted on December 4, 2014.
Prior to the reform, organs were offered
first to patients that had a rare perfect im-
munological match, then to patients within
the local area of the donor, next to pa-
tients in the broader geographical region,
and finally to patients nationwide. Within
each group, patients were ordered accord-
ing to points awarded based on patient and
donor characteristics with ties broken by
how long the patient had waited. Points
were awarded to patients that had highly
sensitive immune systems, that were pedi-
atric, and that were immunologically well-
matched to the donor.
The reform aimed to alleviate the inef-

ficiency, organ waste and inequity that re-
sulted, in part, from a growing waitlist that

1



2 PAPERS AND PROCEEDINGS MONTH YEAR

emphasized waiting time (see Israni et al.,
2014). Despite the long waitlist, about 20%
of medically viable kidneys are discarded
each year. Reports by the kidney commit-
tee suggest that the goal of the reform was
to allocate organs to patients that would
benefit most from them, to reduce waste,
and to avoid hurting any specific group of
patients.1 The new system prioritizes pa-
tients in the top quintile of predicted post-
transplant survival probability for kidneys
in the lowest quintile of estimated risks of
post-transplant organ failure. It also in-
creased national organ sharing for patients
that have the most sensitive immune sys-
tems.

II. Dynamic Mechanism Design

We now show that it is important to con-
sider dynamic incentives when designing a
waitlist mechanism because design trade-
offs depend on the preferences of agents.

A. A Model of Decisions on a Waitlist

We consider a model similar to the one
described in Bloch and Cantala (2017).
There are n ≥ k agents waiting for an ob-
ject, where k is a positive constant. Each
day, an object arrives and can be offered to
l < k agents. Offers are made sequentially,
according to a predefined priority order.
Each object must be assigned immediately
and is wasted if none of the top l agents
accepts. Each agent makes an accept-reject
decision. She is assigned the object if she
accepts it, and is then removed from the
waitlist. Agents that reject the object re-
main on the waitlist, and may accept a fu-
ture offer. We assume that waiting incurs
a per-period cost of c.
An optimal decision rule recommends ac-

ceptance if and only if the value of receiving
an assignment is higher than the value of
waiting for a future offer. Specifically, let α
be the value of an object to an agent, s ∈ S
denote the agent’s position on the waitlist,
and let Fs be the cumulative distribution

1We obtained the reports of the committee from the

Communications Office at the United Network for Or-
gan Sharing (UNOS).

function of the value of objects offered to
an agent in position s. This equilibrium
distribution, Fs, depends on the strategies
of other agents on the waitlist. We suppress
this dependence from the notation and fo-
cus on the optimal decision of each agent.
This optimal decision can be written as

(1) a∗ = 1{α > V (s;M)},

where V (s;M) is the expected net present
value of continuing to wait, and M denotes
the mechanism in use.
The acceptance thresholds depend on the

agent’s position s and the mechanism M
because these quantities influence the value
of waiting. Agarwal et al. (2018) show how
to estimate the values of various object at-
tributes in a similar dynamic choice model
using data on accept-reject decisions and
knowledge of the mechanism. They apply
their methods to data on decisions from the
deceased donor kidney waitlist.
This approach is in contrast to the one

taken in KPSAM, which assumes that ac-
ceptance behavior is invariant to the mech-
anism, that is, a∗ = 1{α > V }, where V
does not depend on M or on s. It is easy to
see that the simpler model is likely to yield
incorrect predictions if the mechanism in-
fluences the value of waiting.

B. Preferences and Design

We now compare the First Come First
Served (FCFS) mechanism, which orders
patients based on how long they have
waited, with a Lottery Mechanism (LM).
We assume that LM randomly orders the
k agents that have waited the longest (see
Leshno, 2017, for a similar mechanism). We
present results for two different preference
models. In both models, values are drawm
from the cumulative distribution function
F . The first, which we call vertical prefer-
ences, assumes that the value of each ob-
ject is common across agents. The sec-
ond, which we call horizontal preferences,
assumes that agents’ values for a given ob-
ject are drawn independently. For simplic-
ity, we assume that F has support only on
the unit interval [0, 1] and focus on the case
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when l = 2, so that the object is wasted if
the top two agents decline it.

1. Vertical Preferences

FCFS: In equilibrium, the agent in position
i ∈ {1, 2} will accept the object if and only
if the value of the object exceeds a cutoff
αi. The value of waiting for the agent in
position 1 solves

V (1) =

∫

1

α1

xdF + F (α1)V (1)− c.

Because this agent must be indifferent be-
tween accepting an object with value α1

and continuing, V (1) = α1. Therefore, α1

solves:

(2)

∫

1

α1

(x− α1)dF = c.

Similarly, the value of waiting for the
agent in the second position solves

V (2) =(1− F (α1))V (1)+
∫

α1

α2

xdF + F (α2)V (2)− c.

Using the expression V (i) = αi and equa-
tion (2), we have that α2 solves:

(3)

∫

1

α2

(x− α2)dF = 2c.

The fraction of objects wasted in this
model is F (α2), and the expected value of
each assigned object is E[α|α > α2].

LM: Observe that all agents use the same
cutoff in equilibrium, αLM . Because values
are perfectly correlated, an agent accepts
the object only if she was (randomly) cho-
sen to be at the top of the list. Therefore,
the expected waiting time before the next
offer is k and the threshold αLM solves:

(4)

∫

1

αLM

(x− αLM)dF = kc.

Comparison: Observe that
∫

1

α
(x−α)dF is

decreasing in α. Therefore, waste is lower in

the lottery mechanism because α2 ≥ αLM

for all k > 2. However, the value condi-
tional on assignment is higher under FCFS.
A social planner that accounts for waiting
costs and the value of assignments may pre-
fer lowering waste if the waiting list is long
enough or if c is high enough. Indeed, an
agent’s refusal in FCFS can impose a nega-
tive externality on agents lower on the list
because a rejected object is of lower quality
and waiting time increases.

2. Horizontal Preferences

FCFS: The cutoff for the agent in the first
position, α1, is identical to the vertical case.
The value of waiting for the agent in the
second position is given by

V (2) =(1− F (α1))V (1)+

F (α1)

[
∫

1

α2

xdF + F (α2)V (2)

]

− c.

The cutoff α2 now solves:

F (α1)

∫

1

α2

(x− α2)dF+

(1− F (α1))(α1 − α2) = c.

(5)

LM: The value of waiting for the top k
agents solves:

V =
1

k
(1 + F (α))

[
∫

1

α

xdF + F (α)V

]

+

[

1−
1

k
(1 + F (α))

]

V − c.

The first term represents the case when an
agent receives an offer, and the second term
represents the remaining case. Setting V =
αLM , the cutoff αLM solves

(1 + F (α))

∫

1

α

(x− α)dF = kc.(6)

A comparison of equations (4) and (6)
shows that each agent is more selective if
preferences are horizontal. However, waste
might be lower because one of many agents
may accept the object.

Comparison: Again, it can be shown that
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αLM ≤ α2 ≤ α1 if k > 2. However, an agent
rejecting an offer does not indicate that the
object is undesirable. Therefore, agents at
the top of the list can exert a positive ex-
ternality on other agents by rejecting offers.

C. A Numerical Example

Table 1 presents a numerical example
with α ∼ U [0, 1], c = 1

6
and k = 3. Un-

der the chosen parameters, the LM results
in the same waste and match value condi-
tional on assignment (MV) irrespective of
whether preferences are vertical or horizon-
tal. Moving from LM to FCFS results in a
higher match value and higher waste. How-
ever, waste increases less and match value
increases more under horizontal preferences
than under vertical preferences. Indeed, the
unconditional expected value obtained from
each object (EV) is higher in FCFS than in
LM if preferences are horizontal, but the
reverse is true if preferences are vertical. If
preferences are vertical, FCFS is dominated
by LM.

Table 1—: FCFS vs Lottery

Cutoffs Waste MV EV

Vertical
FCFS (0.42, 0.18) 0.18 0.59 0.48
LM 0 0 0.5 0.5

Horizontal

FCFS (0.42,0.309) 0.13 0.69 0.60
LM 0 0 0.5 0.5

Note: The cutoffs for FCFS are described as the pair

(α1, α2), while LM has only one cutoff.

Higher waste can outweigh the matching
benefits of FCFS if preferences are horizon-
tal. Due to the increase in waste when
moving from LM to FCFS, the expected
wait between assignments increases from 1
to 1/ (1− 0.13) ≈ 1.15. The social costs of
waiting therefore increase by n × c × 0.15.
Therefore, FCFS outperforms LM if n ≤ 4,
but not otherwise.2 Taken together, these
results show that a social planner’s decision
between these two mechanisms ultimately
depend upon the nature of primitives.

2The variable n is the expected equilibrium queue
length, which is bounded if agents depart exogeneously
without an assignment. The increased waste could re-
sult in an endogenously longer queue.

The result that FCFS may better match
agents to more preferred objects is not spe-
cific to this example. Arnosti and Shi
(2017) also find that FCFS produces higher
match value than LM. Indeed, Bloch and
Cantala (2017) show that FCFS yields bet-
ter match value than any mechanism that
gives agents that have waited longer weakly
higher priority. However, this result de-
pends on the nature of primitives as shown
in Leshno (2017), who studies a model with
agents that have preferences for a specific
type of object. He shows that it may be
optimal to run a lottery among agents at
the “top positions” to influence selectivity
and reduce misallocation. Similarly, using
a model with stochastic arrivals and verti-
cal preferences, Su and Zenios (2004) show
that a Last Come First Served mechanism
reduces waste and improves social welfare
relative to FCFS if preferences are vertical.
These examples assume that the planner

does not have information about how much
different agents value various object types.
It is easy to construct examples in which the
optimal mechanism prioritizes agents based
on observed predictors of value. Similarly,
mechanisms that prioritize agents based on
predictable differences in waiting costs can
improve welfare.

III. Evidence on Dynamic Incentives

A testable implication of the model is
that agents with a low option value of wait-
ing are more likely to accept an offer of a
given quality. This is in contrast to static
choice models such as the one used in KP-
SAM. We now present descriptive evidence
consistent with this hypothesis.

A. Data

This study uses data from the Organ
Procurement and Transplantation Network
(OPTN). The OPTN data system includes
data on all donors, wait-listed candidates,
and transplant recipients in the U.S. sub-
mitted by the members of the Organ
Procurement and Transplantation Network
(OPTN). The Health Resources and Ser-
vices Administration (HRSA), U.S. De-
partment of Health and Human Services
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with acceptance rates. Figure ?? shows
that offer rates decline with CPRA, despite
the fact that patients above a CPRA of 80%
receive higher priority. Figure ?? shows
an increasing acceptance rate in CPRA,
particularly for high CPRA patients. The
main confounding factors are that the pri-
ority system and other patient and donor
characteristics can affect the value of a
transplant. While this concern cannot be
fully addressed, one can assess the extent
to which this relationship is robust to the
inclusion of a rich set of covariates.
Table 3 presents estimates from a linear

probability model of acceptance as a func-
tion of CPRA, controlling for a variety of
patient, donor, and match-specific charac-
teristics. Column (1) controls only for an
indicator of whether the patient is com-
pletely unsensitized. The co-efficient on
CPRA is positive and statistically signifi-
cant. Column (2) controls for all patient-
specific indicators of priority types. This
reduces the estimated effects of CPRA be-
cause the CPRA thresholds of 20% and
80% are cutoffs in the priority system.
Columns (3) and (4) add controls for ad-
ditional patient and donor characteristics.
The CPRA coefficient estimates are a little
lower, but still positive and statistically sig-
nificant. Column (5) controls more flexibly
for interactions between CPRA and indica-
tors of tissue-type similarity because high
CPRA patients with sensitive immune sys-
tems may differentially prefer kidneys that
their bodies are less likely to reject. These
interactions barely affect the CPRA coeffi-
cient estimate. These results are consistent
with dynamic incentives influencing accep-
tance decisions.
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