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ABSTRACT

Due to their lower pressure drop, impinging cold-plates are
preferred over parallel flow cold-plates when there is no strict
space limitation (i.e. when flow can enter perpendicular to the
electronic board). Splitting the flow into two branches cuts the
flow rate and path in half, which leads to lower pressure drop
through the channels. A groove is used to direct the flow exiting
the diffuser into the channels. The number of the geometric
design parameters of the cold-plate will vary depending on the
shape of the groove. In this research, the response surface
method (RSM) was used to optimization the fin geometry of an
impinging cold-plate with a trapezoidal cross section groove.
The cold plate is used for warm water cooling of electronics.
Three fin parameters (thickness, height, and gap) and three
groove parameters were optimized to reach minimum values for
hydraulic and thermal resistances at fixed values of coolant inlet
temperature, coolant flow rate, and electronic chip power.

KEY WORDS: Thermal Resistance, Hydraulic Resistance,
RSM, Design Parameters, Response Parameters, Regression,
Transformation, Normality Assumption, Linearity Assumption,
JAYA Algorithm.
NOMENCLATURE
a;j Constant Coefficients (Eq. (2))
Cp Specific Thermal Capacity (J/kg. K)
f General Function (Egs. (1) and (2))
H Heat Sink Height (m)
hg Base Thickness (m)
hg Fin Height (m)
h¢ Groove Depth (m)
k Thermal Conductivity (W /m.K)
I Channel Length at the Bottom (m) (Fig. 5)
L, Channel Length at the Top (m) (Fig. 5)
m Counter (Eq. (21))
N Number of Channels
n Number of Design Points
P Pressure (pa)
D Number of Design Parameters
Q Heat Sink Volumetric Flow Rate (m3/s)
q"  Heat Flux (W /m?)
R,  Hydraulic Resistance (1/m.s)
Ry, Logarithmic Hydraulic Resistance (Eq. (17))
Ry, Thermal Resistance (K /W) or (K.m?/W)
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R,,  Logarithmic Thermal Resistance Eq. (16)
Rep,  Reynolds Number Based on Hydraulic Diameter
T Temperature (K)

tr Fin Thickness (m)

4 Velocity (m/s)
w Heat Sink Width (m)
Channel Width (m) (Fig. 8)
wy, Weight Factor of Hydraulic Resistance
Weight Factor of Thermal Resistance
w;  Groove Width at the Top (m)

X; General Independent Variable (Egs. (1), (2))

Y General Dependent Variable (Eq. (1))

ye  Groove Width at the Bottom (m) (Fig. 8)

Greek symbols
a Design Parameter (Table 3)
B Design Parameter (Table 3)
y Design Parameter (Table 3)
) Design Parameter (Table 3)
£ Surface Error of Fitting (Egs. (1), (2))
6 Fin Tilt Angle (Fig. 5)
A hg/H (Eq. (10))
u Absolute Viscosity (kg/m.s)
) Objective Function (Eq. (20))
p Density (kg/m?)
o Design Parameter (Table 3)
1) Design Parameter (Table 3)
) W /wen (Eq. 11)
Subscripts
f Fluid
s Solid
INTRODUCTION

DOE (design of experiments) methods associated with
different optimization algorithms have been used for
optimization of air and water cooled heat sinks extensively.
Subasi et al. [1] used RSM and the Pareto based multi-objective
optimization to calculate the design parameters optimal values
to maximize Nusselt number and minimize friction factor of a
honeycomb heat sink. Rao et al. [2] used RSM for the
dimensional optimization of a liquid cooling micro-channel
heat sink. They minimized thermal resistance and pumping
power using the JAYA algorithm and compared their results
with the results of other algorithms: MOEA and TELBO. The
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grey-based fuzzy algorithm with Taguchi experimental design
method were employed by Chou et al. [3] for designing
parameter optimization of a parallel plain fin heat sink. Chiang
et al. [4] used RSM to estimate the influence of design
parameters on the thermal performance and pressure drop of a
pin-fin heat sink working with air. Sequential approximation
optimization (SAO) was utilized for finding the optimal values
of design parameters in their study. Kulkarni et al. [5] optimized
a double-layered heat sink working with water for thermal
resistance and pumping power using a multi-objective genetic
algorithm. Two geometric parameters of channel cross section
and the ratio of flow rates in the upper and lower channels were
considered as the design parameters. Computational fluid
dynamics (CFD) was used to calculate the response parameters
and RSM was applied to reduce the computational time.
Maximum temperature of a parallel plain fin heat sink was
minimized numerically by Taguchi method and the analysis of
variance (ANOVA) in [6]. Yang et al. [7] optimized an
impinging pin-fin heat sink numerically for stationary and
rotating states. RSM and a genetic algorithm method were
employed for optimizing the stationary and rotating Nusselt
numbers. Manivannan et al. [8] used Taguchi-based grey
relational analysis in order to optimize a flat plate heat sink
numerically. In their geometric optimization their response
parameters were electromagnetic emitted radiation, thermal
resistance, average convective heat transfer coefficient,
pressure drop and mass of the heat sink. Lin et al. [9] optimized
the geometric parameters of a water-cooled, silicon based
double layer micro-channel heat sink to minimize the thermal
resistance. They calculated optimal values of design parameters
at specified values of pressure drop, pumping power and water
flow rate. The effects of geometrical and flow parameters on
heat transfer and pressure drop characteristics in a water-cooled
mini-channel heat sink was studied by Xie et al. [10]. They
verified their results by conducting an extra numerical
simulation based on an orthogonal DOE Method.

The aim of this study is to develop an optimization approach
to obtain the optimal design of an impinging water-cooled cold-
plate to facilitate high performance computing (HPC). It is
typically used in low profile chassis blade servers with
minimum power densities of 300 W /server. Six design
parameters covering the geometry of the cold-plate (e.g.
channels, groove, etc.) are optimized to reach the minimum
thermal and hydraulic resistances at fixed chip heat flux,
coolant volumetric flow rate and inlet temperature. The current
optimization procedure and its final results are expected to
provide a guide for the practical design of impinging water
cooled cold-plates.

RESPONSE SURFACE METHODOLOGY

The response surface methodology is a collection of
mathematical and statistical techniques used for analyzing
problems in which design parameters influence response
parameters. The goal is to discover the optimal values of the
design parameters to achieve the desired value of the response
parameters [11]. The RSM and regression analysis allow the
response parameters to be obtained as functions of the design
parameters. The general form of this function may be
represented as:

Y= (X, Xy Xp) H 6 (1)

where Y is the response parameter, f is the regression relation
(response surface), X; (i =1,2,...,p) are independent design
parameters, ¢ is the surface error of fitting and p is the number
of design parameters. Here, a second order polynomial

regression  function (quadratic form) is used for
approximating f
P P 4
f=a0+ZaiXi+ZaiiXi2+Zainin+£ (2)
i=1 i=1 i<j

where a, represents the intercept, and a;, a; and a;; are the
linear, second order and interaction (mixed terms) coefficients,
respectively.

The optimization process can be summarized by the
following steps:

1. Identify the fixed, design and response parameters.

2. Use RSM with faced centered central composite
design (FCCCD) to obtain the experimental design.

3. Use computational fluid dynamics (CFD) to calculate
the values of the response parameters at each
permutation of the design parameters identified by
RSM.

4. Apply regression analysis to obtain the quadratic
functional forms (response surface).

5. Calculate the analysis of variance (ANOVA) for the
design parameters to illustrate how much the response
parameters are affected by them.

6. Validate the regression function statistically and by
modeling intermediate points.

7. Define an objective function based on the response
parameters and assign weight factors according to the
designer’s priorities.

8. Find the optimum designs for the assigned weight
factors using JAY A algorithm.

COLD-PLATE GEOMTERY
The geometry of the cold-plate can be divided to three parts:
distributor, metal part and collector.

Distributor

The distributor is made of plastic and consists of a short inlet
entrance pipe, a curved diffuser (by 90°) and a duct that
connects the entrance pipe to the diffuser. The diffuser has a
rectangular cross section and supplies the coolant (water) to the
micro-channels. It also has two blades for dividing the flow into
three paths (Fig.1).

Metal Part

The metal part of the cold-plate is copper and consists of
almost 100 channels connected by a longitude groove with a
nearly trapezoidal cross section. A schematic of the metal part
is shown in Fig. 2 with an exaggeration in the fin thickness and
channel width. As seen in Fig. 2, the fins are tilted.



Fig. 1 Distributor

Channel Inlet Flow

Constant Heat Flux

Fig. 2 Metal Part of the Baseline

Collector

The coolant flow is directed to a miniature reservoir from
the exit of the channels by two ducts. A circular cross section
duct then carries the flow from the reservoir to the exit hose

(Fig. 3).

Miniature Reservoir

Fig. 3 Collector

Fig. 4 shows a schematic exploded view of the whole
package including distributor, metal part and collector. The
cover on the top of the channels and fins has not been shown
for clarity.

NUMERICAL ANALYSIS

Basic Assumptions
The following assumptions are made in both the flow and
thermal characteristics of the model:

1. The flow is 3-D, steady state, laminar (low Reynolds
number in channels) and incompressible.

2. The effects of gravity and any other kind of body force
are negligible.

3. The kinematic properties of the coolant and thermal
properties of the coolant and solid are constant.

4. Viscous heating and radiation heat transfer are
neglected.

5. All channels are identical both in thermal performance
and fluid flow. Therefore, the computational domain
can be considered as one-half of a unit cell of a micro-
channel array (Fig. 5).

Governing Equations

The governing equations for a conjugate (conduction-
convection) heat transfer problem in the incompressible steady
state laminar flow regime can be written as follows:

Conservation of mass for liquid phase (coolant)

V.V =0 3)
Equation of motion for liquid phase (coolant)

ps(V.V)V = —VP + pu V2V 4)
Energy equation for liquid phase (coolant)
Energy equation for solid phase (metal)

k,V2T, = 0 (6)
Numerical Domain and Boundary Conditions

According to the fifth basic assumption, the computational

domain is considered one half of a unit cell of a micro-channel
array. Fig. 5 shows the computational domain of the baseline
(manufactured cold-plate) with associated geometric
parameters and boundary conditions. The cell is cut in the
middle of the fin thickness so periodic boundary conditions

were applied to its sides. Water enters from the top of the
groove and after a 90° change in its direction goes through the



channels. A constant pressure drop boundary condition is
applied at the exit of the channels. A symmetry boundary
condition is used for the front plane of the cell (where the flow
splits into branches) because the metal part is symmetric. A
constant heat flux boundary condition is applied to the bottom
of the cell and simulates the heat generated by an
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Fig. 5 Computational Domain

electrical chip. The values of the geometric parameters of the
baseline are shown in Table 1 for quick reference.

Table 1. Baseline Geometric Parameters in Millimeters
tl 12 Wen hF tp hB Z) hG We w N
236 18 0.167 2 0.100 135 65 08 4 27 100

Numerical Methods

The finite volume SIMPLEC algorithm with pressure based
solver was used to solve the governing equations numerically.
Second order upwind scheme was employed to discretize the
equations of motion and energy. A structured grid with
prismatic cells in the groove and hexahedral cells for the rest of
the domain (channel and solid phase) was generated for the
baseline. A grid sensitivity study was performed based on both
the hydraulic and thermal resistances (response parameters).

Coolant and Metal Properties

For conjugate heat transfer problems, in addition to the
thermal and kinematic properties of the fluid, the thermal
properties of the solid phase should be involved. In the present
study, the coolant and solid phase are pure water and copper at
room temperature (27°C). The thermal and kinematic properties
of the coolant are constant and read from thermodynamics
tables at the inlet temperature. The thermal properties of copper
at room temperature were applied to the model for the solid
phase. Table 2 shows the thermal and kinematic properties of
the coolant and thermal properties of the solid phase.

Table 2. Liquid and Solid Phases Properties at 300 K

Cpurkgry kawmry Pwgmy K kg/ms)
Coolant 4179 0.613 997 0.000855
Copper 381 388 8978 e

Validation of the Numerical Model

The simulated pressure drop versus coolant flow rate was
validated by comparison with a theoretical model reported in
[12]. Fig. 6 illustrates this comparison. The average and
maximum difference between the numerical and theoretical
results are almost 16% and 17%, respectively.
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Fig. 6 Pressure Drop vs Coolant Flow Rate

It should be noted that the theoretical model has been solved
for channels with a rectangular cross section and extending it to
the impinging channels with parallelogram cross section may
decrease its accuracy.

For the thermal resistance, the results of the numerical model
were compared with the available commercial data released by
manufacturer [13] in Fig. 7. For these results, the average and
maximum differences are less than 8% and 10%, respectively.

0.1
—o—Available Commertial Data

o
(=]
®

—i— Model Prediction

Ry (K/W)
o
&

0.04
0.02
0
0 5 10 15 20
Q(cm3/s)

Fig. 7 Thermal Resistance vs Coolant Flow Rate
OPTIMIZATION PROCESS

Fixed Parameters

The optimization study has been performed for constant
values of heat flux (chip electrical power and area) and coolant
flow rate and inlet temperature. Among the geometric
parameters, the base thickness and the width of the cold-plate
(hg and W) as well as the length of the channels (I, and [,) were
equated to the values of the baseline (Table 1). Tilt angle of the
fins is another parameter that was assumed to be fixed.
Although for the baseline the fins are tilted (Fig. 2), in the
optimization process they were assumed to be vertical
according to [14] which shows 8 = 90" (vertical fins) is the
optimum value for both thermal and hydraulic resistances in



short heat exchangers. In the current study the optimization was
done for constant heat flux of 257525 W /m? and coolant flow
rate and inlet temperature of 1lit/min (16.67 cm3/s)
and 300 K, respectively.

Design Parameter

Fin thickness (tr), fin height (hg), channel width (w¢p),
groove width at the top (wg), groove width at the bottom (y;;),
and groove depth (h) are the initial design parameters. Fig. 8
summarizes the initial design parameters. The total height of the
plate (H) and the number of channels (N) could be calculated
by the following relations:

h’B + hF = H (7)
or
W+t
- [== | ©)
Wceh + tF

where the brackets denote the ceiling function.

Fin Design Groove Design
Parameters Parameters
T 7
tr+] ‘//,/’
hr
H
Wch
hg

Fig. 8 Fin (Channel) and Groove Design Parameters

Fig. 9 shows the general schematic of the optimized cold-
plate, with an exaggeration in fin thickness and channel width,
in which the number of fins is equal to the number of channels
minus one.

To specify the range of variation of the design parameters,
we make the quantities dimensionless. Table 3 illustrates the
dimensionless design parameters together with their range of
variations. Eqs. (7) and (9) in terms of dimensionless design
variables are rewritten as follows:

A+ep=1 (10)
w+a
-[e5s an

h w
where 1 = 2 and w = —.
H Wch

It is worth mentioning that, the cross section shape of the
baseline groove is trapezoidal because of manufactural reasons.
However in the optimization process the groove is triangular for
6 = 0, rectangular for § = 1 and trapezoidal for 0 < § < 1.

Table 3. Dimensionless Design Parameters and Ranges of

Variation
Parameters a B @ o § ¥
Definition tr h_F hj h’i Ys We
Weh Wen H hg We by
\R,j:]ﬁf]g:l [0.61.2] [4 12] [0.60.7] [0.25 1] [0 1] [0.10.5]

Fig. 9 General Schematic of Optimized Metal Part

Response Parameters

A multi-objective optimization is performed to minimize
two response parameters. One of the response parameters that
is a measure of thermal performance of the cold-plate is thermal
resistance and is defines as:

(12)

where q" symbolizes cold-plate heat flux and Ty g, and
T;, are maximum base and coolant inlet temperatures,
respectively.

The other response parameter is hydraulic resistance which
is a measure of pressure drop and is defined as:

AP
Ri="5 (13)
where AP is the pressure drop across the channels and Q is
coolant volumetric flow rate of the heat sink.

Experimental Design

RSM with face centered central composite design (FCCCD)
was used to generate 53 design points in the design space. The
response parameters were calculated at these design points
using CFD. The results of response parameters associated with
channel Reynolds numbers are shown in Table 4. The
maximum value of 307.1 for channel Reynolds number
confirms that the flow is laminar through the channels.

Regression Function and Analysis of Variance

Table 5 shows the results of a full analysis of variance
(ANOVA) for R;y. The first column of this table is the degree
of freedom (DOF) which is the number of variable levels minus



one. The second column is the adjusted sum of squares (Adj.
SS) which is a measure of the variation in the response data that
is caused by each term in the regression function. The adjusted

Table 4. Calculated Response Parameters for FCCCD
Points

Design Parameters Response Parameters

No. Rep,
a B oy § 4 " Rpp(K.mm? /W) Rp(1/m.s)

1 09 8 0.65 03 0.5 0.250 149.8 34.06 16972.32
2 0.9 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
3 09 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
4 0.9 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
5 09 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
6 12 12 0.60 05 0.0 1.000 119.7 25.73 54117.45
7 09 8 0.60 03 0.5 0.625 149.7 31.50 28262.00
8 12 4 0.70 0.1 1.0 1.000 2903 71.18 322311
9 0.6 4 0.70 0.1 0.0 1.000 2244 60.21 2578.06
10 12 12 0.70 0.5 1.0 1.000 118.6 54.77 13541.92
1 0.6 12 0.60 0.5 1.0 1.000 87.7 46.78 32548.00
12 06 4 0.60 0.5 1.0 0.250 2258 52.12 8148.80
13 0.9 8 0.65 03 0.5 0.625 143.8 34.56 15737.85
14 06 12 0.60 0.5 0.0 0.250 87.7 25.32 41424.10
15 0.6 4 0.60 0.1 1.0 1.000 225.8 52.01 7508.91
16 09 8 0.65 0.3 0.5 1.000 149.8 35.04 15275.74
17 06 8 0.65 03 0.5 0.625 125.3 33.98 12565.60
18 0.6 a4 0.70 0.1 1.0 0.250 224.4 55.61 4307.72
19 0.6 12 0.70 0.1 0.0 0.250 87.6 29.67 18841.34
20 12 4 0.60 0.1 1.0 0.250 307.1 51.42 21415.08
21 06 12 0.70 05 0.0 1.000 876 3031 11206.51
22 12 12 0.60 0.5 1.0 0.250 119.7 25.90 52939.90
23 09 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
24 0.9 8 0.65 03 1.0 0.625 149.8 35.09 14652.68
25 09 8 0.65 0.1 0.5 0.625 149.8 33.74 16652.83
26 1.2 4 0.70 0.1 0.0 0.250 290.3 51.42 26530.75
27 09 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
28 12 12 0.70 05 0.0 0.250 1186 29.55 18319.69
29 0.6 12 0.6 0.1 0.0 1.000 87.7 24.60 52369.97
30 09 8 0.65 0.5 0.5 0.625 149.8 35.79 13433.69
31 0.6 a4 0.70 0.5 1.0 1.000 224.4 90.48 2379.04
32 06 4 0.70 0.5 0.0 0.250 224.4 60.54 3812.02
33 0.6 12 0.70 0.5 1.0 0.250 876 30.35 11035.60
34 06 12 0.70 0.1 1.0 1.000 87.6 28.79 12376.84
35 12 4 0.60 0.5 0.0 0.250 307.1 52.88 17568.37
36 12 12 0.60 0.1 0.0 0.250 119.7 24.44 89471.13
37 0.9 8 0.70 03 0.5 0.625 148.2 38.61 8527.40
38 0.6 a4 0.60 0.1 0.0 0.250 225.8 46.53 19450.00
39 0.9 8 0.65 03 0.5 0.625 149.8 34.56 15737.85
40 09 8 0.65 0.3 0.5 0.625 149.8 34.56 15737.85
41 09 4 0.65 03 0.5 0.625 258.4 60.43 6753.84
42 12 4 0.70 0.5 1.0 0.250 290.4 68.43 4401.63
43 12 4 0.60 0.1 0.0 1.000 307.1 55.26 16138.94
44 12 12 0.70 0.1 0.0 1.000 118.6 28.82 20177.00
45 06 12 0.60 0.1 1.0 0.250 87.7 24.68 53901.15
46 09 12 0.65 03 0.5 0.625 103.7 26.62 30441.48
47 12 4 0.60 0.5 1.0 1.000 307.1 77.08 11860.37
48 0.6 4 0.60 0.5 0.0 1.000 225.8 53.62 8298.08
49 12 12 0.70 0.1 1.0 0.250 118.6 28.92 22345.54
50 12 12 0.60 0.1 1.0 1.000 119.7 24.54 71416.93
51 12 4 0.70 0.5 0.0 1.000 290.3 72.47 4607.67
52 12 8 0.65 03 0.5 0.625 1723 35.84 18862.94
53 09 8 0.65 0.3 0.0 0.625 149.8 34.20 16478.88

mean square (Adj. MS) is calculated by dividing the adjusted
sum of squares by their corresponding degrees of freedom. The
F-value is defined as the ratio of the mean regression sum of
squares to the mean error sum of squares and is a non-negative
real number. The higher F-value a term has in a regression
function, the more significant effect it has on the response. In
the last column, the P-value is the probability of rejecting the
null hypothesis when it is true. In an ANOVA regression table,
terms with P-values larger than 0.1 do not have substantial
effect on the response parameter and should be rejected in the
regression function. As it can be seen in Table 5, a, all square
terms except B2 and many interaction terms have P-values
larger than 0.1 and should be neglected. R? is the ratio of the
sum of squares due to regression (SSR) to sum of squared errors
(SSE) and is called coefficient of determination. R?and Adj. R?
usually are the criteria of the fitness quality. The closer R?and
Adj. R? are to one, the more accurate the regression function
predicts. More details about regression and ANOV A analysis is
available in [15].

Table 5. ANOVA Full Table for Thermal Resistance ( R;;,)

Source DOF  Adj. SS Adj. MS F-Value P-Value
Model 27 1.23373 0.045694 34.83 0.000
Linear 6 1.01118 0.168531 128.45 0.000
@ 1 0.00321 0.003213 245 0.130
I3 1 0.80112 0.801117 610.59 0.000
@ 1 0.05418 0.054176 41.29 0.000
¥ 1 0.05788 0.057878 44.11 0.000
8 1 0.03728 0.037277 28.41 0.000
o 1 0.05752 0.057524 43.84 0.000
Square 6 0.13923 0.023205 17.69 0.000
a? 1 0.00006 0.000059 0.04 0.834
;’,’2 1 0.01980 0.019795 15.09 0.001
? 1 0.00010 0.000098 0.07 0.787
¥ 1 0.00003 0.000029 0.02 0.882
52 1 0.00001 0.000013 0.01 0.922
a? 1 0.00000 0.000004 0.00 0.954
2-Way Interaction 15 0.08332 0.005555 4.23 0.001
aff 1 0.00225 0.002253 172 0.202
ap 1 0.00020 0.000201 0.15 0.699
ay 1 0.00004 0.000036 0.03 0.870
ad 1 0.00042 0.000424 0.32 0.575
ao 1 0.00069 0.000695 0.53 0.474
B 1 0.00788 0.007885 6.01 0.022
By 1 0.00276 0.002762 2,11 0.159
BS 1 0.00114 0.001141 0.87 0.360
Bo 1 0.00716 0.007155 5.45 0.028
oy 1 0.00217 0.002166 1.65 0.211
) 1 0.00117 0.001175 0.90 0.353
pa 1 0.00215 0.002147 1.64 0.213
¥& 1 0.01965 0.019647 14.97 0.001
Yo 1 0.01685 0.016850 12.84 0.001
8o 1 0.01878 0.018784 14.32 0.001
Error 25 0.03280 0.001312 - -
Lack- of -Fit 17 0.03280 0.001929 _ _
Pure Error 8 0.00000 0.000000 _ _
Total 52 1.26654 _ _ _
Standard Deviation R? R%(Adjusted) R%(Predicted)
0.0348366 97.41% 94.61% 78.34%

The backward-elimination process to estimate the regression
function eliminates terms which are not significant (P-value>
0.1). The regression function of R, based on backward-
elimination is given by Eq. (14) and the corresponding ANOVA
results are presented in Table 6.

Ry, = 7.50 —8.778 + 142.60¢p — 10.88y —
8.896 + 3.300 + 0.6782 — 7.858¢ — fo +
24.78y6 + 30.60y0 + 12.9260

(14)

In Table 6, all insignificant terms with P-values larger than
0.1 are eliminated. The values of R? and Adj. R? are 96.09%
and 95.02%, respectively. Since, these values are close to unity
and the difference between them is small enough, the achieved
regression function provides a precise relationship between the
design parameters and thermal resistance. However, to have a
more-detailed view on how this polynomial works, we can
perform a regression diagnostics and detect the regression
model violations. To do this, we have to check for the following
assumptions:

1- Linearity assumption: Standard multi-regression can
estimate the relation between design and response
parameters accurately when it is linear in nature.

2- Normality assumption: The errors of the regression
function should have a normal distribution. Highly
skewed residuals can be a symptom of a low quality
fitting.

3- Homoscedasticity (constant variance) assumption:

It means that the variance of errors is constant and does
not depend on their mean.



Table 6. ANOVA Backward-Elimination Table for Thermal
Resistance ( Ryy,)

Source DOF  Adj. SS Adj. MS F-Value P-Value
Model 11 1.21678 0.110616 91.15 0.000
Linear 5 1.00797 0.201594 166.11 0.000
B 1 0.80112 0.801117 660.12 0.000
@ 1 0.05418 0.054176 44.64 0.000
14 1 0.05788 0.057878 47.69 0.000
& 1 0.03728 0.037277 30.72 0.000
[ 1 0.05752 0.057524 47.40 0.000
Square 1 0.13849 0.138487 114.11 0.000
B8? 1 0.13849 0.138487 114.11 0.000
2-Way Interaction 5 0.07032 0.014064 11.59 0.000
By 1 0.00788 0.007885 6.50 0.015
Bo 1 0.00716 0.007155 5.90 0.020
¥ 1 0.01965 0.019647 16.19 0.000
yo 1 0.01685 0.016850 13.88 0.001
do 1 0.01878 0.018784 15.48 0.000
Error 41 0.04976 0.001214 _ _
Lack- of -Fit 33 0.04976 0.001508 _ -
Pure Error 8 0.00000 0.000000 _ _
Total 52 1.26654 _ _ _
Standard Deviation R? R2(Adjusted) R?(Predicted)
0.0348366 96.09% 95.02% 91.82%

In addition to the above assumptions the regression model
should also be checked for outliers and influential points.

In order to check the linearity, normality and
homoscedasticity assumptions the standard residual plots of
thermal resistance are shown in Fig. 10. The normal probability
plot displays normal scores (what is expected to be obtained
when a sample of size n is taken from a standard normal
distribution.) versus standardized residuals. If the residuals
have a normal distribution, this plot resembles an almost
straight line [15]. From this plot, the normality assumption of
the regression model is satisfied. From the standardized
residuals versus fitted values, both the linearity and
homoscedasticity assumptions are checked. With a random
scatter of points, we can conclude that the linearity assumption
holds. As the second diagram of Fig. 10 shows no trend is
distinguishable for the points so that there should not be any
problem associated with the linearity of our regression model.
A funnel-shape distribution for residual trend, either diverging
or converging with the fitted values, is a sign of heterogeneity
of variance. In the standardized residuals versus fitted values
plot we witness a roughly horizontal band around the line of
zero which implies the consistency of variance. The skewness
of the data can be determined from the standardized residuals
histogram [16]. As it can be seen in the histogram, the residuals
distribution is not remarkably skewed however it is not entirely
symmetric. Points with absolute standardized residuals higher
than 2 or more than 3 times of standard deviation far from the
mean are recognized as the outliers [15]. From either the fitted
value or histogram diagrams, we find that there is at least one
outlier in our data (No 26 in Table 4). In a regression model a
point is said to be an influential point provided that its deletion,
singly or together with two or three others, changes the fitted
relation considerably. In order to specify the influential points,
a measure proposed by Cook [17] named Cook’s distance was
used. Cook’s distance of the regression function of Eq. 14 is
plotted in Fig. 11. A point is classified as an influential point if
it satisfies the inequality of:

Cook's distance > 1 (15)
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Fig. 10 Residual Plots of Thermal Resistance

Although as Fig. 11 shows the point number 26 has a high
value of leverage (Cook’s distance) in comparison to the other
points (greater than 0.4), it does not satisfy the inequality of Eq.
(15). Consequently, the point number 26 cannot be recognized
as an influential point. The same analysis completed for thermal
resistance can be done for hydraulic resistance.
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Fig. 11 Cook’s Distance Criterion



Transformation

In order to improve the accuracy of the regression models,
logarithmic transformation was used for both thermal and
hydraulic resistances. Although the logarithmic transformation
increases the normality and decreases the effects of outliers, it
is mainly used to increase the data linearity and remove
heteroscedasticity. Therefore, it makes the regression model
more accurate.

While in this study, for both thermal and hydraulic
resistances, the linearity of data is not the major problem, more
accurate results were obtained by applying logarithmic
transformation. For example, the average error of thermal
resistance decreased from about 6.5% to 5.4% and the number
of points with errors larger than 10% decreased from 14 to 5.

Rth = In(Rn) (16)

R, = In(Ry) (17)

Replacing R, and R, with the new response parameters R,
and R;, in Table 4 and applying the backward-elimination
analysis of variance we approach the new ANOVA results
shown in Tables 7 and 8. The corresponding regression
relations are given in Egs. (18) and (19).

R = exp(3.8340 — 0.27618 + 1.7390¢ —
0.2370y — 0.18778 — 0.11180 +

0.0117B8% + 0.5210y68 + 0.6380y0 + (18)
0.259660)
R, = exp(13.61 + 1.20a + 0.328 — 7.53¢ —
1.74y — 0.698 + 0.340 — 0.05af — (19)

0.268¢ + 0.03556 + 0.7080 — 2.96¢0 +
1.39y0 + 0.2760)

Table 7. ANOVA Backward-Elimination Table for Ry,

Source DOF  Adj. SS Adj. MS F-Value P-Value
Model 9 5.87581 0.65287 116.09 0.000
Linear 5 5.21582 1.04316 185.49 0.000
B 1 4.36126 4.36126 775.50 0.000
P 1 0.25691 0.25691 45.68 0.000
¥ 1 0.24245 0.24245 43.11 0.000
8§ 1 0.14536 0.14536 25.85 0.000
a 1 0.20984 0.20984 37.21 0.000
Square 1 0.42406 0.42406 75.41 0.000
,’jz 1 0.42406 0.42406 75.41 0.000
2-Way Interaction 3 0.23593 0.07864 13.98 0.000
¥6 1 0.08674 0.08674 15.42 0.000
yo 1 0.07335 0.07335 13.04 0.001
So 1 0.07583 0.07583 13.48 0.001
Error 43 0.24182 0.00562 _ _
Lack- of -Fit 35 0.24182 0.00691 _ _
Pure Error 8 0.00000 0.00000 _ -
Total 52 6.11763 _ _ _
Standard Deviation R? R%(Adjusted) R?(Predicted)
0.0749918 96.05% 95.22% 92.93%

Comparing Tables 6 and 7 (thermal resistance regression
models with and without logarithmic transformation), there is
no significant changes in R%s and Adj. R%; however, we have a
slight increase in R? (predicted) which confirms more precise
prediction of Eq. (18) than Eq. (14). The standard residual plots
of the Egs. (18) and (19) were very similar to those of Eq. (14)
and were not given here to prevent unnecessary repetition.

Table 8. ANOVA Backward-Elimination Table for R,

Source DOF  Adj. S8 Adj. MS F-Value P-Value
Model 13 32.3409 2.4878 105.58 0.000
Linear 6 31.1232 5.1872 220.15 0.000
3 1 1.9609 1.9609 83.22 0.000
B 1 15.3187 15.3187 650.13 0.000
@ 1 11.1729 11.1729 474.18 0.000
Y 1 1.0256 1.0256 43.53 0.000
& 1 0.5706 0.5706 24.22 0.000
a 1 1.0745 1.0745 45.60 0.000
2-Way Interaction 7 1.2177 0.1740 7.38 0.000
aff 1 0.1136 0.1136 4.82 0.034
Be 1 0.0870 0.0870 3.69 0.062
s 1 0.1373 0.1373 5.83 0.021
Ba 1 0.3557 0.3557 15.10 0.000
oo 1 0.0983 0.0983 417 0.048
yo 1 0.3457 0.3457 14.67 0.000
So 1 0.0800 0.0800 3.40 0.073
Error 39 0.9189 0.0236 _ _
Lack- of -Fit 31 09189 0.0296 _ _
Pure Error 8 0.0000 0.0000 _ -
Total 52 33.2599 _ -
Standard Deviation R? R%(Adjusted) R?(Predicted)
0.153501 97.24% 96.32% 92.52%

In addition to statistical validation the accuracy of the
regression functions (Egs. (18) and (19)) was proved
numerically. Two intermediate points were selected from the
design parameters range of variation, shown in Table 3, and the
results of CFD modeling are compared with regression model
predictions in Table 9.

Table 9. Results of Regression Confirmation by CFD

Design Parameters Ren (K.mm? /W) Ry (1 /m.s)

a B @ 4 8 a Simulation Regression Error  Simulation Regression Error
1050 10.0 0.5 0.20 025 04375 2812 29.46  4.56%  29683.32 27509.73 7.90%
0.625 4.5 0.60 040 0.00 1.0000 48.40 50.38 4.10%  9917.75 9707.64 2.12%

It is worth mentioning that both Eqgs. (14) and (18) do not
include the design parameter & which implies that in the range
of variation selected for this parameter, the thermal resistance
of the heat sink is not affected by fin thickness remarkably.
Although making the fins thinner increases their thermal
resistance, it simultaneously increases the total convective heat
transfer surface area and vice versa.

Sensitivity Analysis

Sensitivity analysis is a method to determine how the
uncertainties in independent variables (design parameters)
affect dependent variables (response parameters). By using
sensitivity analysis, the effective parameters are ranked in order
of influence. This analysis can be done both by taking partial
derivatives of regression functions with respect to independent
variables or using F-values in the analysis of variance results.
In the current work we used the second method. The
contribution bar chart for thermal and hydraulic resistances is
given in Fig. 12. Note that § (channels aspect ratio) has the most
significant contributions of 74.2% and 47.4%, respectively.
This is in agreement with previous researchers’ results for
parallel channels where narrower and deeper channels provide
lower thermal resistance and pressure drop [10, 18]. Apart from
B, it can be seen that ¢ also has significant effect on hydraulic
resistance. The reason is that by increasing the depth of the
channels, regardless of their width, we increase their hydraulic
diameter, leading to lower pressure drop. There are two
conclusions for this sensitivity analysis:



1- The groove geometry is not of great importance for
both thermal and hydraulic resistances.

2- Channel height and width are the most influential
parameters on the heat transfer performance and
pressure drop of the heat sink.
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Objective Function

The objective function of the optimization is considered as
a weighted combination of our response parameters.

Ren Ry,
=wy, (M) | 55 | + Wh (M) Fmin (20)
th h
where R¥™ and RT™ are the minimum values of the regression

functions of Egs. (18) and (19). wy,(m) and wy(m) are the
weight factors assigned to thermal and hydraulic resistances.

Wep(m) = 1_0
10-m m=20,1,2,..,10 21
wy(m) = To
Optimal Designs

The optimal designs were obtained by minimizing the
objective function (£) for m = 0 to m = 10 using the JAYA
optimization algorithm [19]. By selecting low values of m we
emphasize minimizing hydraulic resistance and with large
values of m thermal resistance. The results of this optimization
are given in Table 10.

Table 10. Optimization Results

m_ W Wn o« B @ ¥ 5 o RyKmmtw) Rp/ms) N
Q 0.0 1.0 0.60 4.00 0.70 0.50 1.00 1.00 95.07 1825.85 22
1 0.1 0.9 0.60 4.00 0.70 0.50 1.00 1.00 95.07 1825.85 22
2 0.2 0.8 0.60 4.00 0.70 0.10 1.00 1.00 65.75 1992.02 22
3 0.3 0.7 0.60 4.20 0.70 0.10 1.00 1.00 63.39 2067.10 23
4 0.4 0.6 0.60 693 0.70 0.10 1.00 1.00 4253 4025.08 38
5 05 0.5 0.60 928 0.70 0.50 1.00 0.25 3532 5631.89 51
6 0.6 04 0.60 10.29 0.70 0.10 1.00 0.25 28.18 9911.00 56
7 0.7 03 0.60 10.84 0.70 0.10 1.00 0.25 27.72 10651.97 59
8 0.8 0.2 0.60 1114  0.60 0.10 1.00 0.25 23.16 33863.74 94
9 0.9 0.1 0.60 11.53  0.60 0.10 100 0.25 23.05 35982.93 97
10 1.0 0.0 0.60 11.84 0.60 0.10 1.00 0.25 23.02 3777112 100

Fig. 13 shows the optimized points together with the RSM
design points and the baseline point in a R, — Ry, plane. This
provides a visual perception of the optimized points.
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Fig. 13 Baseline, Design and Optimum Points

EFFECT OF GROOVE
TEMPERATURE DISTRIBUTION
As shown in Fig. 12, y, which is the width of the groove to
the length of a channel, does not have a significant effect on
thermal resistance. However, the temperature contours show
that y has considerable effect on the temperature distribution of
the base and the electrical chip. In Fig. 14, the temperature
profile along the fin symmetry plane for two similar design
points in Table 4 with different y’s (points 11 and 50) are
compared. For the narrow-groove design (50), the maximum
base (chip) temperature occurs around the channel end (chip
edge) as the coolant temperature increases along the channel.
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Fig. 14 Temperature Profile for Two Design Points: (11)
and (50)
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However, for the wide-groove design (11), the maximum
temperature occurs around the beginning of the channel (chip
center). Compare to narrow grooves, wide grooves create a
large stagnation zone in the beginning of the channel where heat



is transferred mainly by diffusion. Fig. 15 compares the velocity
profiles on the symmetry plane of the channel for these two
design points.

CONCLUSION AND SUMMARY

An impinging flow, warm water-cooled heat sink was
modeled and optimized using CFD and RSM. Designed points
were modeled and solved numerically. RSM in conjunction
with logarithmic transformation were used to generate the
regression function. The validity of the regression model was
evaluated both statistically and numerically. Sensitivity
analysis shows that the channel aspect ratio is the most
influential parameter for thermal and hydraulic resistances. The
objective function was written as a weighted combination of
response parameters. Optimum designs were obtained for
different weight factors using the JAYA algorithm. Finally, it
was shown that although groove geometry does not have
significant effect on our response parameters, it can affect the
temperature profile of the base and electrical die.
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