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Driven by the quest for efficiency, modern technologies devel-
oped through persistent miniaturization. Devices such as 
transistors, magnetic memories and lasers advanced by 

reducing the number of electrons used per gate, bit, or output pho-
ton. This progression’s arrival at the quantum limit now inspires a 
new class of information processing hardware that starts with the 
quantum coherence of single charges, spins, or photons and grows 
by harnessing the inseparable connections among them. This rever-
sal from scaling down to building up lies at the heart of radical 
technologies that promise breakthroughs in computational power, 
communications security and sensor detection limit.

Solid-state spins are a promising platform for realizing these 
quantum advantages because of their robustness to decoherence 
and compatibility with scalable device engineering1. In particular, 
this Review focuses on optically addressed electron and nuclear 
spins at impurities in crystals. In recent years, pioneering experi-
ments have isolated single spins at these atomic-scale impurities and 
demonstrated high-fidelity initialization, manipulation and readout 
of their quantum states2. These advances at the single-qubit level 
establish a critical foundation, but the connectivity among multi-
ple qubits is required to unlock their full potential. We highlight 
the capacity of hybrid quantum registers formed by an electron 
spin coupled to multiple nuclear spins in its proximity. Electron 
spins readily sense and interface to the outside environment, while 
nuclear spins provide well-isolated quantum memories. These 
complementary functionalities, accessed through the generation of 
entangled states, enable an array of applications, including photonic 
memories3, quantum repeaters4, error correction5 and enhanced 
quantum sensing6.

We concentrate on solid-state spins that utilize optical electronic 
transitions to fulfil several of the DiVincenzo criteria for quantum 
information processing7. Optical pumping can directly initialize the 
electron spin and its coupled nuclear spins, or, alternatively, coherent 
manipulations can transfer optically generated electron spin polar-
ization to nuclear memories8,9. Additionally, spin-dependent optical 

cycles correlate spin information to photon emission, enabling sen-
sitive readout of spin states. Such remarkable optical properties of 
defect systems have been combined with techniques adapted from 
atomic physics and magnetic resonance to enable experiments on 
single electron and nuclear spins at ambient conditions, surpass-
ing limitations in the original fields. Moreover, spin-selective opti-
cal transitions, accessed at cryogenic temperatures, coherently map 
between the quantum states of local spins and propagating pho-
tons10,11. This light/matter interface establishes each electron as a 
quantum gateway to distribute and process entanglement between 
distant registers in a quantum network.

We aim to provide an introduction and broad update on opti-
cally active impurity systems, emphasizing the partnership between 
electron and nuclear spins. We first describe the framework for 
manipulating hybrid quantum registers in the context of the proto-
type defect system, the nitrogen–vacancy (NV) centre in diamond8. 
We briefly review the optical and coherence properties of the NV 
electron spin, which provides access to the entire register. This 
discussion identifies the nuclear spin bath as the dominant source 
of decoherence, but leads to the opportunity to control selected 
nuclear memories via their distinct hyperfine interaction. We then 
overview emerging impurity systems, including alternative colour 
centres in diamond and silicon carbide, rare-earth ions in solids 
and optically active donors in silicon. These platforms offer unique 
advantages, such as in their optical properties or integrability with 
electronic or photonic devices, and stand to benefit from techniques 
developed for the NV centre. Then, we focus on technological appli-
cations of registers of quantum memories, ranging from quantum 
communication, computing and sensing. We conclude our Review 
by looking ahead to future challenges and progress with impurity 
spins in solids.

We remark that spins in self-assembled12,13 and gate-defined 
quantum dots14 share many parallel directions with impurity spins, 
including achievement of extended coherence times and enhanced 
light–matter coupling to enable multi-qubit interactions and  
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single-photon nonlinearities. The rapidly advancing state of the 
art in this field is, however, beyond the scope of our discussion. 
Likewise, we will overlook two-dimensional material systems, such 
as transition metal dichalcogenides and hexagonal boron nitride, 
that have recently emerged as hosts for single quantum emitters15–17. 
For these materials, explorations towards using the valley or spin 
degree of freedom of excitons or defect states as qubits are still in 
their infancy, but could open functionalities for quantum photonics, 
optoelectronics and sensing unattainable in bulk materials.

The nitrogen–vacancy centre in diamond
Consisting of a substitutional nitrogen impurity adjacent to a miss-
ing carbon atom, the negatively charged NV centre in diamond 
traps six electrons at localized atomic-like states, protected from 
charge scattering by diamond’s wide bandgap (Fig. 1a). NV cen-
tres display room-temperature quantum coherence, spin–photon 
entanglement and functionality inside engineered nanostructures, 
establishing their versatility for quantum information processing 
and nanoscale sensing.

The electron spin and its optical interface. The NV electron spin 
can be off-resonantly excited from its spin-triplet ground state (GS) 
to a spin-triplet, orbital-doublet excited state (ES) via phonon-
assisted optical absorption8. Owing to a non-radiative, spin-flip 
decay channel that preferentially couples to the = ±m 1s  sublevels 
of the excited state, repeated optical cycling initializes the electron 
spin into the =m 0s  level (~90% polarization)18. Concurrently, off-
resonant excitation of ∣ = ±m 1s  results in ~30% lower photolumi-
nescence (PL) than ∣ =m 0s , allowing optical determination of the 
spin state at room temperature19. Higher-fidelity initialization and 
readout are obtained by cooling diamond below 10 K, where dis-
tinct spin-selective, zero-phonon optical transitions are resolved18 
(Fig. 1b). Resonant optical pumping of a spin-mixed transition 
(for example ∣ = ±m 1s  →​ ∣A1 ) fully initializes the NV centre into 
∣ =m 0s  (>​99.7% polarization)18. Alternatively, by resonant excita-
tion of a cycling transition (∣ =m 0s  →​ ∣Ex  or ∣Ey ) and optimizing 
photon-collection efficiency, the electron spin state can be deter-
mined without averaging multiple preparations (>​97% fidelity 
averaged for ∣ =m 0s  and ∣ = ±m 1s )20. Such single-shot measure-
ments can be non-demolition to allow initialization of electron and 
nuclear spins by projective measurement18. Moreover, these spin-
dependent optical transitions and their polarization selection rules 
form the basis for spin–photon entanglement10,11.

Aided by diamond’s high Debye temperature and low spin–orbit 
coupling, NV centres possess long spin–lattice relaxation times T1 
that reach ~5 ms at room temperature and exceed hours at cryogenic 
temperatures (~25 mK)21,22. In high-quality samples grown by chem-
ical vapour deposition, low concentrations of paramagnetic impuri-
ties leave the bath of 13C nuclear spins (1.1% natural abundance) as 
the dominant magnetic noise19. This dephasing can be mitigated in 
isotopically enriched materials (>​99.99% 12C). For single spins in 
isotopically purified samples, the inhomogeneous dephasing time 
T *2 , reflecting temporal magnetic fluctuations, exceeds 100 μ​s at 
room temperature23. Dynamical decoupling further filters the noise 
spectrum and extends spin coherence to the homogeneous dephas-
ing time T2 of several milliseconds at room temperature24 and nearly 
seconds at low temperature, limited by direct lattice contributions to 
spin dephasing ( ≈ .T T0 52 1)25 (Fig. 1c). These remarkable coherence 
times underpin the technological promise of NV centres, extending 
the range of this defect’s access to nearby nuclear spins and enhanc-
ing its sensitivity to environmental influences.

Strongly coupled nuclear spins. While the nuclear bath repre-
sents the main contribution to electron spin decoherence, indi-
vidual nuclear spins with isolated interactions offer a resource for 
quantum memories and multi-qubit entanglement9,26,27. Strongly  

coupled nuclear spins, such as the intrinsic N forming the NV 
centre and proximal 13C atoms, possess hyperfine couplings larger 
than the electron spin resonance (ESR) linewidth, set by the 
dephasing rate ∕T1 *2  (Fig. 1a,d). For samples with natural isotope 
abundance, strongly coupled nuclei typically occur within 1 nm 
from the electron and have hyperfine couplings from 300 kHz to  
130 MHz, where the latter value corresponds to a 13C on a nearest-
neighbour lattice site28. For these nuclei, narrow-band microwave 
pulses at the distinct ESR transition frequencies (Fig. 1d) perform 
rotations of the electron spin conditional on the nuclear spin state 
(for example, controlled NOT gate, CnNOTe, where the subscripts n 
and e denote the nuclear and electron spin, respectively). Moreover, 
radio-frequency pulses can directly drive nuclear spin transitions 
(Δ = ±m 1I ) conditional on the electron spin manifold (for example, 
CeNOTn)29. Nuclear rotations can alternatively be implemented by 
nuclear Larmor precession for orthogonal nuclear quantization axes 
in different electron manifolds9. Using tailored pulse sequences of 
controlled two-qubit operations, the electron polarization can be 
transferred to the nuclear spin, after which the electron spin is reset 
by optical pumping9,30.

Readout of the nuclear spin is achieved by mapping its popula-
tion and coherences onto the electron spin using a combination of 
selective radio-frequency and microwave pulses26. In ref. 31, single-
shot readout of the nuclear spin at room temperature was dem-
onstrated by repeated application of electron–nuclear correlation 
(CnNOTe) and optical readout of the electron (Fig. 1e). This repeti-
tion leverages the robustness of the nuclear spin to optical excita-
tion to accumulate sufficient photon statistics. Projective readout 
can initialize multiple strongly coupled nuclei if the CnNOTe logic is 
conditional on each nuclear spin state of the multi-qubit register18.

The coherence times of nuclear spins and their sensitivity to opti-
cal illumination determine their usefulness as quantum memories. 
Nuclear coherence times T2n exceed several milliseconds at room 
temperature and are limited by the electron spin relaxation time 
T1 and interactions with other nuclei9. Control over the NV charge 
state, either by strong optical illumination32 or electrostatic gating33, 
can effectively decouple or eliminate the electron spin, extending 
nuclear T2n beyond several seconds by the former technique. For 
nuclear depolarization (T1n), transverse components of the hyper-
fine interaction drive electron–nuclear flip-flops. Since hyperfine 
interactions may be stronger in the excited state, optical excitation 
can exacerbate depolarization, requiring high magnetic fields to 
minimize this process for strongly coupled nuclear spins31. In addi-
tion, these transverse terms become dominant near the excited-
state anti-crossing ( ≈B 500 G), enabling optical excitation to drive 
dynamic nuclear polarization (DNP)34,35. The DNP efficiency can 
approach unity, depending on the strength and direction of the 
hyperfine interaction36. For quantum networks and error-corrected 
quantum computing, the coherences of nuclear spins must also be 
conserved under all operations performed with the electron spin37. 
Failed remote entanglement attempts due to photon loss or errors 
in the electron spin readout randomize the electron spin, introduc-
ing an uncertainty to the nuclear memory’s precession frequency 
and accumulated phase that cannot be refocused. Hence, these con-
siderations have motivated the exploration of more distant nuclear 
memories that are less sensitive to electronic interference.

Weakly coupled nuclear spins. Access to nuclear spins with 
hyperfine couplings weaker than ∕T1 *2  greatly increases the avail-
able number of register qubits and improves the longevity of each 
memory, at the expense of slower control speeds. This objective was 
achieved using dynamical decoupling (DD) sequences on the elec-
tron, thereby both extending its coherence and isolating its inter-
action with a particular nuclear spin23,38,39. The precession axis and 
frequency of a nuclear spin are conditional on the electron spin state 
and on its distinct hyperfine tensor (Fig. 1f). DD pulses that invert 
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the electron spin thus modulate the nuclear precession, such that 
when the unique dynamics of a targeted nuclear spin is in resonance 
with the periodicity of the DD pulses, the precession due to its trans-
verse hyperfine component accumulates38,40 (Fig. 1g). Meanwhile, 
destructive interference occurs for nuclear spins with dynamics  

out-of-sync with the DD sequence. Through this method, univer-
sal control40 and single-shot readout41 of weakly coupled nuclear 
spins were demonstrated (Fig. 1h). These capabilities, together 
with remote electron entanglement11,42, establish an architecture 
for distributed quantum communication and computing based on 
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Fig. 1 | The NV centre in diamond and nearby nuclear spins. a, Schematic of an NV– centre in diamond. The NV electron spin is coupled to proximal 
nuclear spins, such as its intrinsic 14N and lattice 13C. b, PL into the phonon sideband (PSB) as the detuning of a laser is scanned across the NV centre 
ZPL (637.2 nm, T =​ 7 K). Resonant transitions to six spin–orbit excited states follow spin-selection rules and enable optical spin initialization, readout 
and entanglement. Cycling transitions are labelled in green, whereas non-cycling transitions are labelled in orange. c, Coherence time T2 of an NV 
centre ensemble in isotopically purified diamond (0.01% 13C) as a function of the number of pulses N in a dynamical decoupling sequence, for various 
temperatures. The inset depicts the relationship between the maximum coherence time T2 under dynamical decoupling and the spin relaxation time T1 at 
the same temperature. d, Optically detected magnetic resonance (ODMR) spectrum taken by sweeping the frequency of a microwave field and measuring 
the NV centre PL. The NV electronic transition ∣ =m 0s  to ∣−1  is split due to interaction with three strongly coupled nuclear spins (hyperfine couplings:  
14N, 2.16 MHz; 13C1, 413 kHz; 13C2, 89 kHz). e, Left: single-shot readout for strongly coupled nuclear spins (depicted by red box in ‘wire diagram’).  
The protocol consists of repetitions of the following block: the nuclear spin state (here for 13C1) is correlated to the electron spin state by a controlled-
not operation and then the electron state is read-out (green box). Right: fluorescence time traces showing quantum jumps between nuclear spin states. 
The orange curves are guides to the eye. f, Illustration of hyperfine coupling. If the electron spin is in ∣ =m 0s , the nuclear spin (labelled ‘n’) precesses 
with frequency ω0 about the applied magnetic field B, while in ∣ = −m 1 ,s  the nuclear precession frequency ω−1 and axis are modified by the hyperfine 
components ∥A  and A⊥, which depend on the relative position between the nuclear and electron spin. g, Schematic for the evolution of a nuclear spin 
when the electron spin is repeatedly flipped by a dynamical decoupling sequence. B0 and B1 are the effective magnetic fields felt by the nuclear spin when 
the electron spin state ∣ψel

 is ∣ =m 0s  and ∣ =m 1s , respectively. When the spacing between the electronic π​-pulses is in resonance with a half-period of 
the nuclear Larmor precession, the nuclear spin effectively rotates in opposite directions depending on the initial electron spin state. h, Data showing 
oscillations in the <​Y>​ component of a weakly coupled nuclear spin after a dynamical decoupling sequence. This sequence implements a conditional 
nuclear rotation gate φ

±R N
X : the initial electron spin state determines the nuclear rotation axis (±​X), while the number of pulses N determines the total 

rotation angle Nφ. Figure reproduced from: a, ref. 23, Springer Nature Ltd; b, ref. 10, Springer Nature Ltd; c, ref. 25, Springer Nature Ltd; d,e, ref. 30, Springer 
Nature Ltd; f, ref. 37, under a Creative Commons licence (https://creativecommons.org/licenses/by/3.0/); g, ref. 38, APS; h, ref. 40, Springer Nature Ltd.
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error-corrected few-qubit nodes. Moreover, the direct applicability 
of DD methods to sensing nuclear species external to diamond has 
impacted progress in nanoscale magnetic resonance43,44.

Emerging systems for spin/light interfaces
Although possessing long spin coherence, NV centres are hindered 
by their broad emission spectrum, where only ~4% of the total 
photons are coherently emitted into the zero-phonon line (ZPL) 
at 6 K (ref. 45). Since entanglement protocols require indistinguish-
able photons from remote NVs, this low percentage and the high 
scattering losses in optical fibre at the ZPL wavelength (637 nm) 
have limited entanglement rates to 40 Hz (ref. 20). Achieving higher 
bandwidth in NV-based quantum networks will thus require pho-
tonic cavities to boost ZPL emission45–48 and, for long-distance net-
works, quantum frequency conversion into telecom wavelengths49, 
together with the advantages of a quantum repeater architecture. 
Promising for quantum network applications, recent experiments 
at cryogenic temperatures have shown emission into the ZPL with 
46% probabability using microcavities50 and conversion of single 
NV photons into telecom wavelength with 17% efficiency using dif-
ference frequency generation51. A parallel approach that may relax 
these requirements for efficient long-distance entanglement is the 
advancement of alternative colour centres with more favourable 
intrinsic properties.

Silicon–vacancy and germanium–vacancy centres in diamond. 
The silicon–vacancy (SiV) centre in diamond, consisting of an inter-
stitial silicon atom midway between two adjacent carbon vacancies, 
has garnered interest as a higher-efficiency source of indistinguish-
able photons. The negative charge state SiV– features an orbital 
doublet in both the ground and excited states, with degeneracies 
broken by the spin–orbit interaction52,53 (Fig. 2a). Four zero-phonon 
optical transitions between these orbital levels comprise over 70% 
of the total fluorescence emission, with ~50% into the single line C 
at 4 K (Fig. 2b). Moreover, due to the defect’s inversion symmetry, 
SiV– optical transitions are robust in linear order to electric-field 
and strain variations, resulting in highly stable and homogeneous 
emission frequencies with lifetime-limited linewidths53.

The S =​ 1/2 electronic spin of SiV– can be coherently controlled 
by either microwave or optical driving, where the latter utilizes 
a GS–ES lambda (Λ​) system tuned by an off-axis magnetic field. 
However, coherent population trapping54,55 and Ramsey56 experi-
ments indicate a short spin dephasing time ~T 100*2  ns at 4 K. 
Phonon-mediated transitions between the two ground-state orbital 
branches, separated by 50 GHz (≈ .2 5 K), represent the dominant 
contribution to spin dephasing, arising from slightly different 
spin splitting in each orbital. Recently, by cooling SiV– to 100 mK  
(refs 57,58), spin coherence was extended to ≈T *2  10 μ​s and ≈T2  13 ms 
for an isotopically purified sample58, clearing the way for coherent 
manipulation of coupled nuclear memories. Additionally, efficient 
ZPL emission from SiV–, predominantly polarized into a single 
transition dipole, makes this defect attractive for coupling to nano-
photonic structures59. Through precision placement of Si+ ions into 
a nanophotonic cavity, the entanglement signature between two 
emitters was observed60 (Fig. 2c). Possessing similar spin and opti-
cal properties as SiV–, the germanium–vacancy (GeV–) centre in 
diamond may offer stronger atom–light coupling due to its higher 
quantum efficiency61,62. Furthermore, the neutral charge state of 
SiV63,64 and the tin–vacancy centre65,66 have recently been investi-
gated to potentially combine a robust optical interface with long 
spin coherence at moderate cryogenic temperatures, although opti-
cal spin readout for these systems has yet to be demonstrated.

Divacancy and silicon–vacancy in silicon carbide. Silicon car-
bide (SiC) presents an opportunity to integrate colour centres into 
a technologically mature platform capable of wafer-scale growth, 

fabrication and doping67. Unlike diamond, SiC exists in over 250 
polytypes68 (different stacking sequences of a silicon–carbon bilayer 
unit) to allow customizable material properties and heterojunc-
tion devices, boosting the potential for interacting its hosted colour 
centre spins with electrical or mechanical degrees of freedom69,70. 
Among colour centres investigated in SiC, the divacancy and sili-
con–vacancy defects have fulfilled key requirements for quantum 
applications, including optical electron and nuclear spin address-
ability35,71, long spin coherence72–74 and single-defect isolation72,75.

The neutral divacancy (VC–VSi; missing C atom next to missing 
Si atom) possesses the same C v3  symmetry and number of active 
electrons as the NV centre in diamond, leading to analogous spin 
and optical structures67 (Fig. 2d). Its spin-triplet ground state exhib-
its electron coherence times T2 that can exceed 1 ms in samples 
with natural isotope abundance72. This extended coherence despite 
higher fractions of nuclear spins than diamond stems from the 
larger lattice spacing in SiC and the suppression of heteronuclear 
flip-flops between 29Si and 13C at moderate magnetic fields ( >T 12  ms 
for >B 15 mT)76,77. Crucially, divacancies have ZPLs at near-infrared 
wavelengths (~1,100 nm), where significantly lower attenuation in 
optical fibre (~1 dB km–1 versus ~8 dB km–1 at 637 nm for the NV 
centre in diamond) will facilitate entanglement generation over 
long distances. Recently, single divacancies, isolated in the 4H and 
3C polytypes, were shown to display well-resolved spin-dependent 
optical transitions below 20 K, similar to the NV centre (Fig. 2e)78. 
Consequently, high-fidelity resonant readout78 of the divacancy 
spin (Fig. 2f) and Stark tuning of its optical transition frequencies79 
were demonstrated at cryogenic temperatures, establishing criti-
cal elements for the implementation of entanglement protocols11. 
Harnessing the advantages of divacancies for long-range quantum 
networks will also require improving their photon-collection effi-
ciency and natural ZPL emission fraction (5–7%)78. To this end, 
3C-SiC, which can be epitaxially grown as thin films on silicon, 
presents an advanced platform for nanophotonic engineering80,81.

The negatively charged silicon vacancy (VSi; single missing Si 
atom) diverges from the well-studied NV-type level structure due 
to its odd number of active electrons that gives rise to a S =​ 3/2 
ground state and a complex set of optical transitions82. Notably, its 
spin properties and optical readout at room temperature provide 
unique capabilities for thermometry83 and vector magnetometry84. 
Single VSi at both inequivalent lattice sites (V1 and V2 centres) in 
4H-SiC have been isolated, with both centres possessing coher-
ence on the order of milliseconds under dynamical decoupling73,74 
and the V1 centre emitting 40% of its photons into the ZPL at 4 K  
(ref. 74) (Fig. 2d,g). A crucial step will be the demonstration of the 
predicted excited-state fine structure82 that enables schemes for 
spin–photon entanglement.

Rare-earth ions in solids. Owing to shielding provided by their 
filled outer electronic shells, rare-earth ions in solid-state crystals 
possess 4f electrons with optical and spin levels that display narrow 
intrinsic linewidths and high spectral stability, reminiscent of free 
atoms. This isolation from environmental noise has been exploited 
in rare-earth ensembles for photonic quantum memories, where the 
quantum state of single photons is stored and retrieved via the collec-
tive optical and spin-wave excitations of the ensemble3,85. Moreover, 
rare-earth impurities provide exceptionally long-lived nuclear spins 
with relaxation and coherence times measured in units of days86 and 
hours87, respectively. While these properties motivate rare-earth 
ensemble systems as leading platforms for quantum repeaters and 
transducers88,89, extending control to single rare-earth ions would 
expand capabilities for programmable quantum circuits.

Recently, several groups have optically addressed single rare-
earth ions, overcoming challenges in signal-to-noise ratios due to 
their weak optical emission and high background fluorescence in 
low-purity samples. These groups implemented techniques such 
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as spectral isolation in microcrystallites90,91, customized optics to 
minimize the confocal volume92 and fluorescence upconversion to 
levels with shorter optical lifetimes93. Coherent control over single 
Ce3+ electron spins in yttrium aluminium garnet (YAG) was dem-
onstrated94. Additionally, the hyperfine levels of single Pr3+ ions in 
yttrium orthosilicate (YSO)90,91, LaF3 (ref. 92) and YAG95 were spec-
troscopically resolved, allowing nuclear spins to be initialized and 
read-out by resonant optical excitation and manipulated by radio-
frequency fields (Fig. 3a,b). Coherence of single nuclear spins in 
Pr:YAG was limited at 4 K by electron–phonon coupling95 ( ~ μT 4 s1n ),  
but can exceed seconds for Pr:YSO based on ensemble measure-
ments96. Notably, an alternative detection route for single rare-earth 
ions relies on charge sensing of resonant photoionization, demon-
strated for single Er3+ ions in a silicon single-electron transistor97.

The robustness of rare-earth systems to surface perturbations 
motivates nanophotonic engineering as a promising route to ame-
liorate their low photon count rate. Recently, an atomic frequency 
comb quantum memory with optical control over the storage time 
was demonstrated for a small ensemble of Nd3+ ions in a nanopho-
tonic cavity98. Moreover, several groups reported addressing single 
rare-earth ions, exploiting cavity enhancement of their spontaneous 
emission rate (Purcell factors >​100)99,100. Cavities can be fabricated 
directly into glassy rare-earth host materials by focused ion beam 
milling98,99. Additionally, they can be fabricated externally into a 
material, such as silicon, and then transferred onto the rare-earth 

host for evanescent coupling100. These platforms set the stage for 
advances in optical control and remote entanglement of rare-earth 
electrons and nuclei, as well as quantum routing of single photons, 
in integrated photonic devices.

Optically active donors in silicon. The miniaturization of silicon 
electronics to the nanoscale has naturally broached the prospect for 
quantum systems in this technologically ubiquitous platform. In 
recent years, the electron and nuclear spins of single 31P donors in 
silicon have been read-out by spin-dependent tunnelling in a single-
electron transistor, demonstrating state-of-the-art coherence times 
( >T2e  0.5 s at 100 mK) and control fidelities (>​99.99% for a single 
31P nuclear spin)101. However, coupling between multiple donor 
qubits in silicon remains an unsolved challenge, motivating various 
proposals that span nanometre1 to macroscopic length scales102,103. 
Schemes requiring strong coupling of individual donor spins to a 
common microwave resonator102 are difficult to realize due to their 
small magnetic dipole moment. Recently, strong coupling between 
microwave cavity photons and a single electron spin in a silicon 
double quantum dot was achieved only after hybridizing the spin 
with its electronic wavefunction in the presence of an inhomoge-
neous magnetic field104,105. Alternatively, optical photon intercon-
nects103 could realize longer-distance couplings.

For group V shallow donors, optical transitions to excited orbital 
states occur in the far-infrared, a technologically difficult regime. 
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Instead, efforts have focused on transitions between the neutral 
donor (D0) and its donor-bound exciton (D0X) with energies at  
1.15 eV, near bandgap. In isotopically enriched 28Si samples, these 
transitions are sufficiently narrow to resolve the hyperfine struc-
ture of 31P donors, allowing optical pumping through an Auger de-
excitation to hyperpolarize the electron and nuclear spin106,107. This 
Auger decay occurs with near-unit probability in indirect-bandgap 
Si and enables electrical readout of long-lasting nuclear spin coher-
ence that exceeds 39 min at room temperature for ensembles of  
ionized donors106,107. However, the non-radiative nature of this pro-
cess precludes optical detection or coupling of single donors.

Recently, singly ionized, chalcogen double donors (for example, 
S+, Se+) have begun to be investigated for their stronger binding 
energies (~600 mV/2.9 μ​m) that permit donor optical transitions 
in the mid-infrared103 (Fig. 3c). Optical measurements on 77Se+ 
ensembles at 1.2 K demonstrate competitive electron spin coher-
ence times ( =T 22,Hahn  s for a qubit based on a clock transition) and 
hyperfine-resolved optical transitions with narrow homogeneous 
linewidths (<​29 MHz). Isolation of single chalcogen donors in the 
future could enable the use of silicon-on-insulator photonics for 
cavity-enhanced readout and coupling103.

Applications of quantum registers and memories
In this section, we highlight recent advances that leverage the col-
lective functionality of electron and nuclear spins in solid-state 
defect systems for quantum applications.

Quantum networks. Shared entanglement between spatially sepa-
rated nodes in a quantum network represents the essential resource 
for quantum key distribution and quantum cloud computing, pos-
sessing security independent of the trustworthiness of the com-
municating devices108 or computing server109. Although photons 
are ideal long-distance carriers of quantum states, their conversion 
to long-lived stationary qubits is necessary for flexible timing of 
network tasks and efficient propagation of entanglement over long 
distances4. These requirements are fulfilled by the NV centre in dia-
mond, which combines a spin/light interface with control over local 
nuclear memories. In 2013, a breakthrough experiment established 
entanglement between two NV spins separated by 3 m (ref. 11). Using 
the Barrett–Kok protocol, each NV centre was prepared to allow 
probabilistic emission of a photon correlated with its spin state. If 
the NV centres emit indistinguishable photons (requiring the ZPL), 
overlapping their emitted modes on a beam-splitter erases which-
path information and causes detection of a single photon to project 

the NV centres into an entangled state. Owing to possible photon 
loss, detection of a second single photon in an ensuing trial where 
both NV spins are flipped is required to confirm the entangled 
state, leading to a low success probability ≈ −P 10E

7, proportional 
to the square of the photon-collection efficiency. Nevertheless, 
the high fidelity of the heralded entangled state (~0.92), as well 
as its fast tomography by single-shot readout, enabled the first 
loophole-free Bell test, using two NV centres separated by 1.3 km  
(ref. 110) (Fig. 4a,b).

Incorporating nuclear memories with remote electron entangle-
ment enables key network primitives, such as teleportation, entan-
glement purification and photonic quantum memory. The state 
of the nitrogen nuclear spin associated with one NV centre of an 
entangled pair was unconditionally teleported (that is, each attempt 
is successful) onto the electron spin of the other NV centre111.  
Recently, entanglement purification, an essential capability of quan-
tum repeaters that ‘distills’ a single high-fidelity entangled state from 
multiple lower-fidelity copies, was achieved112 (Fig. 4c,d). Here, a 
low-quality entangled state is first generated between two NV spins 
by detecting only a single output photon at the beam-splitter, forgo-
ing the second trial of the Barrett–Kok protocol11,110. The entangled 
electron states are then swapped onto 13C nuclear spins at both 
nodes, freeing the communication qubits for additional entangle-
ment generation. Critically, the weakly coupled nuclear memories 
used are robust to several hundred optical cycles of the electron37, 
allowing the second entanglement generation to be attempted until 
success. The memory qubits are finally projected onto a pure entan-
gled state depending on the outcome of local operations on the two 
entangled pairs112. Since the purification protocol does not require 
simultaneous detection of single photons in two consecutive entan-
glement attempts, it achieves faster entanglement rates that scale 
linearly in photon detection probability.

While the above applications leverage the emission of spin-entan-
gled photons, the optical interface of the NV centre additionally 
permits quantum storage of incident photons and absorption-based 
remote entanglement113. Raman quantum memories for photons 
similar to those for rare-earth and atomic systems were proposed 
for ensembles of NV centres114,115, but have been difficult to real-
ize due to the crowded NV excited-state structure and larger opti-
cal inhomogeneous broadening. Alternatively, using a single NV 
centre, photon polarization states were coherently transferred onto 
the intrinsic nitrogen nuclear spin113 (Fig. 4e,f). This recent dem-
onstration prepares the electron and nitrogen nuclear spins in an 
entangled Bell state, and then utilizes the entangled absorption of 
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a photon in a degenerate optical Λ​ system116 to teleport the pho-
ton polarization onto the nuclear spin. This approach paves the way 
for entanglement distribution between network nodes through the 
absorption of entangled photon pairs at the NV resonant energy.

Quantum computing. Overcoming the challenge of scaling a quan-
tum computer to the large number of qubits required to outperform 
classical algorithms hinges on correcting the inevitable errors that 
arise due to the delicate, analogue nature of quantum states. While 
a potential resolution lies in a monolithic architecture employing 
a large qubit array stabilized by topological codes, a distributed or 
modular architecture that utilizes photonically linked nodes, each 
with only a small number of qubits, could provide efficiencies due 
to its reconfigurable connections and non-local quantum gates117. 
This distributed architecture is particularly applicable to defect-
based quantum registers of electron and nuclear spins, which sat-
isfy the requirements for inter-node photonic entanglement, as 

well as intra-node universal control and non-demolition readout. 
Encouragingly, a distributed error-correction approach using only 
four qubits per node was shown to possess modest threshold error 
rates for the entangling links (~10%) and local operations (~1%) 
that would allow a large-scale implementation to be fault-tolerant118.

Experimental efforts have so far focused on error correction 
within individual nodes. In 2014, two groups30,40 demonstrated a 
majority-vote error-correction protocol, encoding a quantum bit 
in a logical qubit of three spins (Fig. 4g). These experiments lever-
aged advanced electron–nuclear initialization sequences and quan-
tum gates to correct a single bit-flip error automatically during the 
decoding of the three-qubit register, avoiding direct measurement 
of error syndromes. More recently, by utilizing non-demolition, 
single-shot readout at cryogenic temperatures, a stabilizer-based 
approach119 involving active error detection and real-time feed-
back was implemented for a logical qubit of three weakly coupled 
13C nuclei. This latter experiment demonstrated a continuously  
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phase-corrected logical qubit with coherence exceeding its best 
component qubit. Future prospects include extending error correc-
tion to larger qubit registers and applying more sophisticated codes 
to repair arbitrary single-qubit errors, or combining it with remote 
electron entanglement for networked information processing. In 
addition, the potential to coherently interface shallow NV centres 
with chemically assembled nuclear spin arrays on the surface of 
diamond could enable large-scale quantum simulations120. Towards 
simulations of quantum chemistry and condensed-matter phases, 
proof-of-principle demonstrations with NV quantum registers 
internal to diamond have deduced the energy structure of a HeH+ 
cation121 and a topological wire coupled to a superconductor122.

Quantum sensing. The atomic-scale dimensions, fast dynamics 
and acute sensitivity of quantum systems make them exceptional 
probes of their environment, combining high spatial resolution, 
bandwidth and precision. The challenge of quantum sensing is to 
isolate maximum information about a target variable from its effect 
on the dynamics of the quantum sensor, which simultaneously 
experiences decoherence and a multitude of competing influences6. 
The room-temperature coherence of NV centres and their diverse 
deployment inside wide-field arrays123, nanoparticles124 and scan-
ning probes125–127 have precipitated their development as a transfor-
mative technology for sensing magnetic fields and other external 
perturbations (Fig. 5a–d). Wide-ranging efforts have leveraged the 
NV sensor for detection and characterization of intracellular and 

biological processes123,124,128, nanoscale nuclear magnetic resonance 
(NMR)43,44,129,130, magnetism in condensed-matter systems125–127,131 
and device performance of nanotechnologies132,133.

In particular, NV detection of NMR spectroscopy significantly 
enhances the sensitivity and spatial resolution of this powerful 
technique, promising chemical structure identification with single-
molecule sensitivity and subcellular resolution (Fig. 5e,f). However, 
improving the frequency resolution of NV detection to distinguish 
the few-hertz changes in NMR frequencies due to chemical shifts 
and spin–spin couplings represents an ongoing pursuit. Pioneering 
works applied DD sequences to single shallow NV centres to sense 
the magnetic field fluctuations from a statistical polarization of 
~102 external protons43,44. These experiments demonstrated ~10 
kHz NMR linewidths, limited by T2 of the NV sensor and diffu-
sion of the target nuclei through the nanoscale sensing volume. 
Correlation spectroscopy extends the phase acquisition time to the 
electron T1 (~ms), improving spectral resolution to several hundred 
hertz134,135. Here, the phase accumulated during an initial DD seg-
ment is stored in the polarization of the electron spin and then cor-
related to the phase from a second DD segment after free evolution 
of the target nuclei.

Recently, the intrinsic nitrogen nuclear spin was leveraged as 
a longer-term memory for the initial phase measured in correla-
tion spectroscopy, extending the interrogation time to T1n (>​min-
utes for tesla-scale magnetic fields)136–138. This approach naturally 
integrates repetitive, non-demolition nuclear state readout31,130 and 
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also frees the sensor electron spin so that its back-action on the 
target nuclei, which shortens their correlation time, can be decou-
pled137. Although sample diffusion still limited the sensing duration  
(~5 ms), the nuclear memory approach resolved part-per-million-
level chemical shifts in liquid-state samples139 (Fig. 5f). Alternatively, 
a recent NMR scheme140 utilized an NV ensemble and a synchro-
nous readout technique141,142 that enabled frequency resolution 
independent of the sensor coherence time. Here, the larger sensing 
volume mitigated the effects of diffusion and enabled access to the 
thermal, rather than statistical, nuclear polarization, culminating 
in ~3 Hz spectral resolution to resolve chemical shifts and nuclear 
spin–spin couplings140.

Challenges and outlook
Even with the enormous progress in impurity systems, the poten-
tial for improvement across the spectrum of applications is limit-
less. Realizing kilohertz entanglement rates across metropolitan 
distances, distributed logical qubits in a fault-tolerant network, 
or real-time intracellular NMR spectroscopy, among other far-
reaching goals, will require concerted advances in photonic and 
device engineering, quantum control and materials science. 
Moreover, while it may be enticing to regard solid-state spins as a 
self-sufficient platform, exploration of their connection to diverse 
quantum systems may lead to hybrid devices with optimized com-
ponents. Recent advances in interacting NV spins with micro-
wave143, acoustic144,145, or magnonic excitations146,147 open new 
routes towards on-chip state transfer and entanglement between 
impurity spins or hybrid systems.

While the solid-state environment poses challenges to impurity 
spins via phonon broadening and total internal reflection of their 
emission, it also provides them their greatest asset, amenability to 
fabrication and device integration. Coupling of optical emitters to 
photonic cavities with high quality factors and small mode volumes 
concentrates their emission into the ZPL and into a single cav-
ity mode for efficient collection. A recent Fabry–Pérot microcav-
ity design50 directs 46% of the NV centre’s emission into the ZPL, 
offering in situ resonance tuning and reduced processing-induced 
broadening of NV linewidths as advantages over previous mono-
lithic diamond approaches46 (Fig. 6a). In parallel, novel defect plat-
forms with robust ZPLs60 or advanced heteroepitaxy and selective 
etching techniques78 will accelerate photonic cavity development 
(Fig. 6b). These advances will enable significantly higher rates 
of indistinguishable photons for long-distance entanglement, as 
well as ultimately near-deterministic light–matter interactions in 
the strong-coupling regime of cavity quantum electrodynamics. 

Towards continental-scale fibre-based quantum networks, defect 
systems with near-telecom wavelength emission, such as divacan-
cies in SiC or various rare-earth ions, may offer additional avenues 
to create efficient entanglement between solid-state nodes.

At a more local level, a promising direction lies in integrating 
impurity spins with on-chip photonics, thereby creating field-
deployable quantum sensors and compact information processing 
devices. An integrated package using microfabricated photonic ele-
ments, including waveguides, couplers, metalenses and supercon-
ducting nanowire detectors, could crucially reduce optical losses 
and eliminate bulky free-space optics48,148,149 (Fig. 6c). In these inte-
grated photonic circuits, impurity spins would provide powerful 
functionalities as single-photon sources, photonic memories and 
nonlinear single-photon switches, establishing a scalable architec-
ture for quantum processors based on either photonic or modu-
lar matter-based qubits. Moreover, engineering of lab-on-a-chip 
devices150 and deployable probes, such as nanodiamonds attached 
directly to optical fibres151, will proliferate the reach of quantum 
sensing. For example, diamond devices with surface-structured 
microfluidic grooves realize both enhanced sensor–analyte contact 
for NMR applications and increased photon-collection efficiency by 
optical waveguiding152.

Advances in quantum control and materials science will naturally 
be fundamental to continued progress. Encoding quantum memo-
ries in decoherence-free subspaces of two nuclear spins would allow 
the use of more strongly coupled nuclear spins while maintaining 
robustness to optical excitation37. This would increase speeds for 
interfacing quantum memories and enable high-throughput mul-
tiplexed versions of entanglement protocols, where entanglement is 
continuously attempted using multiple memories before successes 
are heralded153. Time-dependent Hamiltonian engineering, such as 
optimal control154 and shortcuts to adiabacity155, could be extended 
for fast and robust gates despite densely spaced electron–nuclear 
energy levels. Furthermore, the convergence of quantum error cor-
rection and quantum sensing could improve sensitivity by extend-
ing qubit coherence regardless of the noise spectrum, in contrast to 
dynamical decoupling. Pioneering demonstrations156,157 leveraged a 
single ancilla nuclear spin that is robust against noise to correct the 
NV electron sensor. Finally, improvements in materials engineer-
ing could overcome current limits to many applications, as well as 
open new opportunities. Important challenges include the creation 
of high-density near-surface defect centres with long coherence 
times and a single orientation158–160, control over defect charge states 
by Fermi level tuning, and customized surface functionalization for 
targeted sensing tasks. In addition, the discovery of novel impurity 

a b c

Diamond

Thin
film

Photonic
crystal 

Cavity

Input A

Input B
Waveguide–detectors

To RF readout

Fibre
A1

A2
B1

B2

3C-SiC

Nanopositioners

SiO2

SiO2

1 μm

0–3 μm

3 μm

DBR

DBR

z y

x

Fig. 6 | Photonic engineering for solid-state spins. a, Miniaturized Fabry–Pérot microcavity containing a thin diamond membrane. Nanopositioning a 
movable distributed Bragg reflector (DBR) mirror allows in situ tuning of the cavity resonance frequency and antinode location. Emission of the NV centre 
into the ZPL is boosted to 46% at 4 K. b, SEM image of a photonic crystal cavity in 3C-SiC. The starting material is grown as a heteroepitaxial thin film on 
silicon, allowing for effective substrate removal. Collected PL from a divacancy ensemble in the cavity is enhanced by a factor of 30. c, Implementation of a 
photonic integrated circuit featuring on-chip waveguides and superconducting nanowire single-photon detectors (A1, A2, B1, B2). This architecture could 
provide a route towards scalable on-chip entanglement of impurity spins. Figure reproduced from: a, ref. 50, under a Creative Commons licence (https://
creativecommons.org/licenses/by/4.0/); b, ref. 81, APS; c, ref. 148, under a Creative Commons licence (https://creativecommons.org/licenses/by/4.0/).
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systems with superlative optical, spin and host material properties 
may aid in bringing solid-state spins closer to widely impactful 
quantum technologies.
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