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Abstract: After a disaster strikes an urban area, damage to the fagades of a building may produce
dangerous falling hazards that jeopardize pedestrians and vehicles. Thus, building facades must be
rapidly inspected to prevent potential loss of life and property damage. Harnessing the capacity to
use new vision sensors and associated sensing platforms, such as unmanned aerial vehicles (UAVs)
would expedite this process and alleviate spatial and temporal limitations typically associated with
human-based inspection in high-rise buildings. In this paper, we have developed an approach to
perform rapid and accurate visual inspection of building facades using images collected from UAVs.
An orthophoto corresponding to any reasonably flat region on the building (e.g., a facade or
building side) is automatically constructed using a structure-from-motion (SfM) technique,
followed by image stitching and blending. Based on the geometric relationship between the
collected images and the constructed orthophoto, high-resolution region-of-interest are
automatically extracted from the collected images, enabling efficient visual inspection. We
successfully demonstrate the capabilities of the technique using an abandoned building of which a
fagade has damaged building components (e.g., window panes or external drainage pipes).

Keywords: post-event visual evaluation; image localization; orthophoto generation; unmanned
aerial vehicle

1. Introduction

During tornado or hurricane events, nonstructural components on the fagades or roofs of
buildings are highly vulnerable to strong winds or airborne debris. These often cause serious damage
to the building components, leading to disruption in the functions of the building and, potentially,
jeopardizing the safety of its occupants. Moreover, damage on cladding (e.g., spalling or crack), their
anchorage to the walls, or window panes (e.g., crack or dislocation) may induce dangerous falling
hazards to pedestrians on the sidewalk below, followed by restrictions on the use of the adjacent
roads. Thus, inspection of building facades is one very important task conducted during disaster
recovery and must be conducted in a rapid manner [1].

Regardless of the degree of urgency, manual visual observation by human engineers is still the
primary method for fagade inspection [2]. Currently, several human inspectors are needed to
physically visit every floor of each building. Then, those inspectors evaluate the condition (e.g., crack
or dislocation) of each component on the facade and annotate them on the corresponding engineering
drawing (or layout), producing a damage map for each fagade. In the worst cases, special equipment
may be required to access the building from the outside to inspect the condition of the building’s
exterior, such as ladders or ropes for controlled decent. Such manual process would become
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extremely tedious and inefficient at the site. However, unfortunately, there is no a viable rapid
technique to streamline this important process.

Recent advances in image sensors and sensing platforms have been achieved, enabling
automated or semi-automated vision-based visual inspection [3-11]. Incorporating vision sensors
onto aerial sensing platforms will alleviate the spatial and temporal limitations that are typically
associated with manual inspection in the case of large-scale buildings [12-20]. For example,
unmanned aerial vehicles (UAVs) can collect a large volume of high-resolution images to cover the
entire area of buildings in an efficient manner. With automated methods to use and process this data,
computer-aided inspection can overcome time-consuming and risky human-based inspection for the
building facades.

However, a major technical challenge in using those images for facade inspection is considering
the trade-offs between the need for collecting close-up images and their localization. If the images are
collected at a close distance to the building facades, it is difficult to know where the corresponding
images were captured from. Manual searching is laborious when the building fagades are large or
have many repetitive patterns. Although GPS can be measured and recorded on the images, it does
not provide sufficient accuracy regarding the camera pose and location (a typical error range is 5 —
15 m), and the signal is often interrupted by the roof and/or wall of the buildings [21]. On the other
hand, if the images are taken far from the building facade, vision-based inspection may not be feasible
due to a lack of details. For instance, to capture crack damage, it is necessary to collect images at a
close distance and under different viewpoints and positions for accurate inspection. These
requirements are because the visibility of the crack depends on the viewing angles. Since UAVs do
not selectively capture favorable images in an automated manner, a large volume of images needs to
be collected and used for visual inspection [22-24]. Thus, to enable efficient visual inspection using
such a large volume of images, an automated technique should be incorporated to localize the close-
view images captured from different viewpoints to the corresponding region on the building facades.

In this study, we envision a new inspection procedure for the building facade as follows: After
an event, inspectors fly UAVs manually or autonomously using GPS from a place that is safe from
falling hazards. The UAVs capture a large volume of images of the fagades of the building. Once the
images are collected, we automatically construct a high-resolution orthophoto using those images.
This orthophoto allows the inspectors to readily view the entire building fagade. Then, they select
any region on the orthophoto that is suspicious or vulnerable to damage. The high-resolution image
patches corresponding to the selected region, named regions-of-interest (ROIs), are extracted from
the original images, enabling quality visual assessment. With this approach, the inspector can
evaluate several buildings in just a short time, saving time that would be spent physically visiting
each building. Moreover, it is a much safer way to conduct an inspection of multiple damaged
buildings without actually accessing them.

To implement this new procedure, we have developed a technique to support rapid visual
inspection of planar building facades using images collected by UAVs. An orthophoto of each
building fagade is automatically constructed using a structure-from-motion (SfM) technique followed
by image stitching and blending. The resulting orthophoto contains an entire view of the building
facade so that inspectors can easily recognize and select target regions for inspection (TRIs). This
orthophoto is geometrically connected to each of the original images. Thus, once the engineers select
the TRIs on the orthophoto, all image regions containing the corresponding TRIs, or the ROIs, are
automatically identified and extracted from the original images. This approach will directly support
field engineers in conducting rapid inspection. To demonstrate the capabilities of the technique
developed, we collect images from a damaged facade of an actual building using UAVs. We
successfully generate the high-resolution orthophoto of the facade and extract the ROIs
corresponding to the selected TRIs including a damaged window pane and external drainage pipe.

The major advantage of the technique is that it can rapidly provide the orthophoto and localized
ROIs from a raw collection of images for robust visual inspection. The orthophoto is useful for
making annotation and documentation of damage locations because it provides an entire view of the
building fagade. This can streamline the current time-consuming process of manual documentation
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by human inspectors. Also, applying an existing damage detection algorithm to the ROIs may fully
automate the inspection process. Such use of highly relevant ROIs greatly reduces false-positive and
false-negative damage detection by processing many images captured from various viewpoints for
viewing [22-24].

The remainder of this paper is organized as follows. Section 2 begins with an overview of the
technique and introduces the details of the technical steps, regarding image acquisition, orthophoto
generation, and ROI localization. In Section 3, a case study is presented to demonstrate the capability
of the technique using images collected from a full-scale building which contains damaged
components on its facades. Section 4 contains the discussion and conclusions.

2. System Overview

An overview of the technique developed here is presented in Fig. 1. The objective of the
technique is to aid field engineers to perform rapid visual inspection of the target building facades
(TBF) through a sequence of images collected using UAVs. The technique can be used to inspect any
target components (e.g., broken window panes, spalling concrete, etc.) located on a relatively flat
surface of the TBF.

imgl img2 img n

Step 1. Image collection Step 2. Orthophoto generation Step 3. ROI localization

Figure 1. System overview: Stepl. Image collection — collecting many close-up images to
cover the entire area of a building facade under various viewpoints, Step2. Orthophoto
generation — constructing an orthophoto of the building facade and computing a
geometric relationship between the constructed orthophoto and each image, and Step3.
ROl localization — extracting the ROIs from the images.

Step 1 is to fly the UAVs over the TBF to collect a large number of high-resolution images. To
increase the likelihood of detecting damage, these images are captured from many different
viewpoints and positions [22-24]. The entire region of the building facade that is needed for
inspection should be covered by the images. Step 2 is to generate an orthophoto of the TBF from the
collected images. SfM is used to estimate the geometric relationship between each image and the TBF.
By extracting and matching the visual features, this process conducts calibration of the camera
parameters for each image including a projection matrix and radial distortion coefficient(s) as well as
generating a 3D point cloud of the scene [25-27]. The surface of the TBF can be automatically detected
by fitting a plane to the 3D point cloud. Then, the orthophoto is constructed by projecting each image
onto the detected plane, followed by stitching and blending them. Lastly, in Step 3, the ROIs
corresponding to the TRIs that the engineers select for inspection are extracted from the original
images. The geometric relationship with each of the selected TRIs on the orthophoto and the original
images is used to localize the corresponding ROIs. Since the localized ROIs are a set of image patches
cropped from those images, they contain detailed visual information of the TRIs. Thus, the extracted
ROIs enable robust vision-based visual assessment of the facades. Both the orthophoto generation
and ROI extraction are developed to be fully automated without the need for manual manipulation.
The only manual step is associated with the TRI selection on the orthophoto in Step 3.

2.1. Image Collection
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In this technique, collecting high-quality aerial images is crucial for accomplishing successful
orthophoto generation and ROI localization. The approach developed does not involve any manual
process to choose favorable images among the raw images collected with the UAVs. It also does not
require any configuration of the parameters in the middle of the process. Thus, the quality of the
original images directly affects the accurate extraction and localization of the ROIs for visual
inspection. Here, we suggest some important guidelines for the best use of the technique.

First, the images must cover the entire region of the TBF. Because the images are collected with
and stored in UAVs, there is no way for engineers to check if all images thoroughly cover the TBF
with sufficient quality. Thus, a well-established flight plan is prepared in advance depending on the
shape and size of the TBF so that they can readily collect quality images on site. In general, engineers
draw a virtual grid of the flight path on the entire area of the TBF and images are collected at a regular
interval by following this grid. A depth (distance between the UAV and the TBF) is determined based
on the minimum resolution required in the images for effective visual inspection. The smaller the
field of view (coverage) becomes, the higher the spatial resolution of the scenes containing the TBF,
although more images would need to be captured to cover the entire TBF. The spacing (interval) of
the images collected along the flight path is another important parameter and is directly related to
the next guideline.

Second, the image collection interval is carefully designed to ensure there is sufficient overlap
between adjacent images. Increasing the number of feature matches across multiple images is crucial
for computing accurate geometric relationships between the images and the scene using SfM. As a
rule of thumb, more than 60% overlap with the adjacent images is recommended. However, this value
varies depending on the image quality (e.g., resolution or signal-to-noise) as well as scene
characteristics (e.g., unique texture) [28]. To obtain sufficient and constant overlap, we suggest that
images be captured using a regular time interval (e.g., continuous shoot mode in regular cameras)
under a constant flight speed.

Third, motion blur should be avoided. Motion blur is common in aerial image collection. It
occurs when the object being recorded moves relative to the camera during the period of exposure.
Large relative movement can produce a lack of sharpness or artifacts (e.g., ghosting) on the images
collected. To avoid this problem, translation and angular movements of the camera (with respect to
the scene) should be minimized while the shutter is open. Multiple factors may affect motion blur
including environmental conditions (e.g., low light or high wind), UAV platforms (e.g., fast flying
speed or non-isolated platform vibration), and camera parameters (e.g., long focal length or low
shutter speed). To prevent taking blurry images, we recommend (1) flying UAVs under good weather
conditions (e.g., enough daylight and no wind) and with a slow speed, (2) isolating the vibration of
the camera with respect to the UAV platform using a multi-axis gimbal or vibration damper (e.g.,
rubber pad), (3) decreasing the exposure time without increasing the camera’s ISO because a higher
ISO produces higher light sensitivity but also more noise, and (4) zooming out the camera and
maintaining a short focal length so that the relative scene change due to sudden angular vibration is
minimized.

Finally, from the visual inspection standpoint, images should be collected from a variety of
viewpoints [22]. Facilitating the observation of the TRI from various angles through the ROIs is a key
benefit of the technique developed. To collect images that contain many viewpoints, engineers should
fly UAVs following the designed flight path multiple times while using different camera angles each
time. Alternatively, one can use a programmable gimbal so that the angle of the camera is cyclically
changed during one flight. Such angled images are also valuable because they serve to improve the
performance of SfM [29]. Since angled images contain more of the background scene, they provide
more overlap with the other images, producing more accurate parameter estimation using SfM, as
mentioned in the second point above.

2.2. Orthophoto Generation

An orthophoto is a planar image created by arranging and stitching the set of collected images
after removing perspective and radial distortions [30]. Since the resulting orthophoto has a uniform
scale in each direction, it will show a true aspect ratio of the target regions on the plane (a single
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facade surface, in this case). Herein, we describe the process needed to construct a high-quality
orthophoto from the aerial images collected and to identify the geometric relationship between each
image and the orthophoto. With the orthophoto available, engineers can readily view specific areas
of the TBF to select the TRIs for visual inspection.

3D point cloud from
_building facade

(b) Fagade plane estimation (c) Planar homography estimation

(d) Image projection and arrangement (e) Image stitching and blending

Figure 2. Overview of the orthophoto generation: (a) Projection matrix estimation for
each image using SfM, (b) Facade plane estimation from a 3D point cloud, (c) Planar
homography estimation from corresponding projection matrix, (d) Image projection and
arrangement into the estimated fagade plane, and (e) Image stitching and blending to
generate the complete orthophoto.

First, a projection matrix is computed for each image collected using SfM [25]. StM automatically
computes the 3D point cloud and the geometric relationship between the 2D image points and the
3D points in the world (scene). All these results are generated solely from the set of images collected
and no manual configuration is required. Only good quality images having enough overlap with the
other images are automatically selected and utilized in the SfM process. The SfM process is shown in
Fig. 2(a), where the geometric relationship is represented with the projection matrix, denoted as P,

and the subscript indicates an image index. With this matrix, any 3D point in the world can be
mapped to its corresponding 2D point in each image. This relationship is represented as

x =PX 1)

i i

where X isany 3D pointinthe world, and «, isthe corresponding 2D image point in image i. These
equations are established in homogenous coordinates. Thus, X and x, are 4 x 1 and 3 x 1 vectors,
respectively. P is a 3 x 4 matrix that includes parameters for internal and external camera matrices.

Note that the relationship in Eq. (1) is valid under the assumption of a pin-hole camera model [25].
Thus, lens distortion of the images should be corrected in advance. Engineers can use a calibrated
camera or can correct their distortion using lens distortion parameter(s) computed from SfM.
Second, the facade plane is estimated from the 3D point cloud computed in the previous step
(see Fig. 2(b)). For estimation of the plane, we use a RANdom SAmple Consensus (RANSAC)
estimator to obtain the best fit plane to the 3D points. Since the 3D point cloud is mainly generated
from the TBF, the associated high inlier/outlier ratio produces rapid convergence to accurately find
the plane’s location with the RANSAC estimator (the inliers are the points close to the TBF). The plane
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estimated with the RANSAC estimator is denoted as 7 (1 x 4 vector) and the 3D points, X _, placed

on this plane satisfy the equation:
X, =0 )

Third, we compute a homography relationship between each of the images and the facade plane
using projection matrices as shown in Fig. 2(c). The homography matrix is a 3 x 3 matrix providing a
planar projection transformation between 2D images. This matrix thus provides a one-to-one
mapping between the 2D points on the images and the 2D points on the estimated plane [25]. In the
current coordinate systems, the points on the plane ( X ) are represented as all three values in each

axis. To establish the homography relationship, one of the dimensions in X _ should be reduced by

transforming the coordinate system. A rotation matrix (R ) transforms the current coordinate system
to align its Z axis to the normal vector of the estimated plane 7 . Then, the plane in the new coordinate
system (/ ), becomes parallel to the XY-plane, and a point on this plane, X_, has a constant value in

the Z axis, which is ¢. in Eq. (3). This relationship can be represented as:

X}_ =RY”
3
where X =l n -~ 1T and z=7 R 3)
X. and 7 in Eq. (3) also satisfy the relationship in Eq. (2), which becomes
AR @

Any X _on the plane ;/° has a constant value of ¢_and will satisfy Eq. (4). This means ¢_ is not

correlated with 4_or b. and thus, c. yields:

e =7 ©)

) - 6
where H. [+ -~ 7 and I, . Z[f, AU ©

-

[ is the jt" column of I,.The homography matrix H,. maps the points on the plane / to those

on the image i.

Fourth, in Fig. 2(d), a set of the images is projected onto the facade plane using the homography
matrices. In Section 2.1, although a large volume of images is collected from various viewpoints,
rather than utilizing all the images it is best to only use a subset of suitable images for constructing
the orthophoto. The backgrounds of the angled images do not have sufficient and regular resolution
of the building regions and they may also include non-fagade regions. So, images that are relatively
parallel to the TBF are selected to generate the orthophoto provided that they cover the entire area of
the TBF. For the experimental validation in this study, we set a threshold for the angle between the
normal vectors of the facade plane and the image planes at 20 degrees. Note that although we use a
set of mainly parallel images for orthophoto generation, the ROIs will be extracted from all images if
they satisfy the constraints in Section 2.3.

Finally, the aligned projected images are stitched and blended to construct an orthophoto of the
TBF, shown in Fig. 2(e). For their seamless composition, we implement gain compensation and multi-
band blending developed by Alléne, et al. [30]. Note that since the technique developed in this study
assumes that scenes are placed on the same flat plane, scenes that are not captured from the plane of
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the TBF (e.g., ground, roof of the building or sky in this study) will be incorrectly wrapped (see Fig.
2(e)) and not geometrically correlated to the images using Eq. (6). In such cases, the engineers should
simply ignore such unnecessary regions.

2.3. Region-of-Interest Localization

The homography matrix between the orthophoto and each raw image can be computed using
Eq. (6). With this matrix, the ROIs, which are high-resolution image patches, corresponding to any
region on the orthophoto can be extracted from the raw images. In this step, engineers are asked to
define a TRI on the orthophoto, as illustrated in Fig. 3. The user simply draws a polygon on the
orthophoto that fully encompasses the TRI. Any region and shape of the polygon may be selected to
define the TRI. For example, in our experimental validation we simply draw a rectangle by dragging
the mouse to select damaged components on the TBF. A set of 2D points ( x;) in each image

corresponding to the vertices of the selected polygon (4. and b, ) on the orthophoto can be

computed from Eq. (6). The portions of each image within those points becomes the ROL.

F Dragging and enraging Automated searching .
S the orthophoto the TRIs on the images Ceicalizad/ROLS
(a) Selection of a target region of inspection (TRI) (b) Region of interest localization

Figure 3. Region-of-interest localization procedure: (a) Selection of target regions of
inspection (TRIs) and (b) Extraction of ROIs from raw collection of images.

Here, not all images include a suitable ROI corresponding to the selected TRI because the ROI
may not have a favorable condition that can be used for actual visual inspection. Thus, the following
two conditions should be satisfied before the ROI is selected for use. First, the entire region of the
selected TRI must be visible in each ROI. When an ROl is located at the boundary of an image it often
does not contain a view of the entire TRIL. Second, ROIs with very low quality (e.g., low resolution
and motion blur) are not useful for visual inspection. Thus, the size of the ROIs should be larger than
a pre-determined threshold that would produce the sufficient quality of the ROIs for visual
inspection. For example, in the following experimental validation, the minimum ROI size is set to 200
x 200 pixels.

3. Experimental Validation

3.1. Description of the test building

To demonstrate and validate the capability of the method developed herein, a building with
severe facade damage (Fig. 4) is utilized to reproduce the typical scenario of post-event building
evaluation. This steel frame building is covered with window panes and masonry cladding on its
TBE. The building was originally built in 1925 as a railroad warehouse but has been abandoned since
1996 [31]. Thus, cracked or broken window panes, tiles and external drain pipes remain unfixed and
untrimmed trees obstruct their views. The size of the facade of the test building is roughly 128 x 16
m?, but in this demonstration we only collect images from the center sections of the facade marked in
Fig 4 (a). The size of the TBF is 43 x 16 m? in Fig. 4 (b). Window panes in the fagade are opaque with
an identical size of dimension 25.4 x 300 x 3 mm?.
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@ (b)

Figure 4. Experimental validation using a building having severe facade damage: (a) 3D
view of the building (courtesy of Google 3D Maps) [32] and (b) Fagade test region.

3.2. Collection of the images from the test building

A consumer-grade UAV (3DR Solo Quadcopter) with a compact camera (Canon PowerShot
5X280 HS) is used for image acquisition in Fig. 5. The cost of this equipment was around $1,000 in
2015 but is becoming more affordable every year [33]. For high-quality image acquisition, we collect
still images in continuous shot mode (1 frame/s) rather than taking a video [34]. Auto-focus or flash
functions are not used. A total of 1,254 images are collected from the TBF and the resolutions of all
images are fixed to 4,000 x 2,664 pixels. Since this technique is developed for the purpose of rapid
and automated image acquisition, the images are collected without advanced knowledge of damage
locations or special control of camera angles in the middle of the flight. For successful implementation
of the technique developed herein to other structures, users should design a proper image acquisition
plan following the guidelines illustrated in Section 2|.1.

Figure 5. Image collection using an UAV (3DR Solo Quadcopter) with a consumer-grade
camera (Canon PowerShot SX280).

In our experiment, suitable UAV flight paths are designed based on the guidelines established
in Section 2.1. First, images are collected by flying the UAV along a grid pattern. During this process
the UAV must first maintain a set altitude (vertical direction) and flies from one side to the other, and
then repeats this process after changing its altitude. Image acquisition along this pre-designed flying
path is assured to have sufficient and consistent overlap between the images in both the horizontal
and vertical directions and to also capture the entire test facade. Second, the UAV must also maintain
a constant and low flying speed to avoid abrupt transitions. Rapid transitions between the images
will produce insufficient overlap between images and also makes the images blurry. The flying speed
is determined based on the distance between the UAV and the test facade, the camera’s field of view
(FoV), and the image collection rate. In this experiment, the distance is set to roughly 4 — 5 m to
capture the detailed appearance of the test facade. The FoV and image capture rate of the camera are
around 90 degrees and one frame per second (1 frame/s), respectively. Accordingly, the flying speed
is determined as 0.5 — 1 m/s to produce more than 60% overlap between images. Third, angled images
must be collected from four different viewpoints. Sample angled images and parallel images are
provided in Fig. 6. In this experiment, we fly the UAV four times after changing the angles of the
camera (parallel, right- and left-angled, and downward).



297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

Sensors 2018, 18, x FOR PEER REVIEW 9of 13

Figure 6. Sample images captured by UAVs from various angles: (a) Parallel, (b) left-
angled, (c) right-angled, and (d) Downward.

3.3. Results of Orthophoto Generation and Region-of-Interest Localization

In this study, VisualSfM is used to compute the projection matrix of each image [35]. VisualStM
is a freeware SfM software and provides a user-friendly graphic interface to monitor the intermediate
steps of the SfM process, such as feature matching and camera pose estimation. VisualSfM highly
improves the speed of the SfM computations by implementing the SiftGPU Library and parallel
processing using Graphical Processor Units (GPUs) [36, 37]. Once the projection matrices are
computed from VisualSfM, the rest of the process including building plane detection and orthophoto
generation are deployed in MATLAB [38]. In this experiment, it takes approximately four hours to
process 1,254 images to cover the 43 x 16 m? TBF. A PC workstation having a Xeon E5-2620 CPU and
NVidia Telsa k40c with a 12 GB video memory GPU is used for this process. This period includes 53
minutes for image collection using the UAV, 3 hours for computations associated with projection
matrix estimation and point cloud generation, 0.2 hour for facade plane estimation and image
blending, and less than one minutes for the ROI localization once the engineers select the TRIL
However, the time will vary depending on the size of the building facade and the number of images
collected as well as the computation resources available and their specifications.

As a result, the orthophoto of the TBF in Fig. 2(e) is successfully generated by automatically
processing the raw aerial images. For the orthophoto, a total of 375 images (among 1,254 images) are
automatically selected as the set of images considered to be relatively parallel to the facade when the
angle threshold is set to 20 degrees.

Figure 7. Selection of two sample TRIs (TRI 1 and TRI 2) on the orthophoto.
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Fig. 7 shows the constructed orthophoto of the TBF and a selection of sample TRIs. In this study,
we choose two TRIs using rectangular boxes, denoted as TRI 1 and TRI 2. TRI 1 and TRI 2 include a
broken window pane with a hairline crack and a cracked external drainage pipe, respectively.
Although only two TRIs are chosen for this experimental validation, multiple regions with any sizes
and locations may be selected with the technique developed. Note that the orthophoto is only used
for assigning the TRIs. We recommend that further documentation and the actual inspection is
conducted using the ROIs extracted from the original high-resolution images.

Five samples of localized ROIs corresponding to each TRI are presented in Fig. 8. The number
of extracted ROIs corresponding the two TRIs is 22 and 27 (from a total of 1,254 images), respectively.
All ROIs have different resolutions and aspect ratios depending on the depth between the images
and TBF and viewing angles. However, in Fig. 8, they are transformed into a square for this
arrangement. These ROIs do satisfy the two conditions introduced in Section 2.3. Since the ROIs
include details and multiple viewpoints of the TRIs, reliable vision-based visual inspection can be
achieved. For instance, in Fig. 8(a), the white vertical crack propagated from the broken region is only
visible in the specific ROIs captured from certain angles. Similarly, in Fig. 8(b), the break in the
drainage pipe is only identified when the corresponding region is not impeded by the branch. The
images that are captured with an angle are helpful in identifying such damage. These two examples
clearly illustrate the need for collecting a sufficient number of images from different viewpoints and
localizing the high-resolution ROIs from the original images for conducting robust visual evaluation.

(b)

Figure 8. Localized ROIs corresponding to TRI 1 in (a) and TRI 2 in (b): The hairline
vertical crack on a window pane in TRI 1 and damage on a drainage pipe in TRI 2 are
only visible in specific ROIs and those damage locations are marked with a red dotted
line.

4. Conclusion

In this study, we develop a vision-based approach for computer-aided rapid inspection for the
TBFs. The technique developed here will automatically generate an orthophoto of the TBF using
images collected from UAVs. First, UAVs collect a large volume of aerial images from the TBF by
following the image collection guidelines developed in this study (see Section 2.1). Then, human
inspectors select any region on the orthophoto where inspection is required and a set of ROIs
corresponding to the region are localized from the high-resolution original images. Since the localized
ROIs contain various viewpoints of the region, human inspectors can perform a complete and robust
inspection. The feasibility of the method is demonstrated using an abandoned building having
several damaged components on its TBF. ROlIs corresponding to two TRIs having a damaged window
pane and drainage pipe are extracted by processing a set of original images collected using a
commercial UAV.
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Some practical considerations are provided for successful implementation of the developed

technique:

Large geometric variations in the TBF (e.g., extrusions or intrusions), which are not placed within
the same plane, will induce large distortions in the orthophoto. It is recommended in such a case
that more images be captured parallel to the TBF and a smaller angle threshold be used for the
orthophoto construction to reduce distortions due to a relief displacement coming from different
elevations on the plane [38]. If the TBF does not lie within a single plane, engineers can generate
multiple orthophotos and conduct visual inspection using each of the orthophotos. However, if
the building facade is reasonably flat, a single orthophoto is sufficient to make the best use of
the technique.

As seen in Fig. 8(b), the presence of unwanted foreground objects (e.g., branch, tree, street light)
may obstruct the view of the TRIs in the ROlIs. In such a case, the only possible solution is to
collect images from additional viewpoints. A similar issue occurs when the geometry of the
structure is complex. Alternatively, one may further apply an image classification technique to
filter out unnecessary ROIs and utilize only useful ROIs [22,24,39-41].

In some cases, the existence of incorrect feature matches will introduce significant errors or even
failures in SfM. The mis-associated features should be adaptively handled to enhance to the
accuracy of the SfM outcomes. To address this issue, the authors have developed an adaptive
resection-intersection bundle adjustment approach that refines the 3D points and camera poses
separately [42].
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