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Abstract: After a disaster strikes an urban area, damage to the façades of a building may produce 12 

dangerous falling hazards that jeopardize pedestrians and vehicles. Thus, building façades must be 13 
rapidly inspected to prevent potential loss of life and property damage. Harnessing the capacity to 14 
use new vision sensors and associated sensing platforms, such as unmanned aerial vehicles (UAVs) 15 
would expedite this process and alleviate spatial and temporal limitations typically associated with 16 
human-based inspection in high-rise buildings. In this paper, we have developed an approach to 17 
perform rapid and accurate visual inspection of building façades using images collected from UAVs. 18 
An orthophoto corresponding to any reasonably flat region on the building (e.g., a façade or 19 
building side) is automatically constructed using a structure-from-motion (SfM) technique, 20 
followed by image stitching and blending. Based on the geometric relationship between the 21 
collected images and the constructed orthophoto, high-resolution region-of-interest are 22 
automatically extracted from the collected images, enabling efficient visual inspection. We 23 
successfully demonstrate the capabilities of the technique using an abandoned building of which a 24 
façade has damaged building components (e.g., window panes or external drainage pipes). 25 

Keywords: post-event visual evaluation; image localization; orthophoto generation; unmanned 26 

aerial vehicle 27 
 28 

1. Introduction 29 

During tornado or hurricane events, nonstructural components on the façades or roofs of 30 
buildings are highly vulnerable to strong winds or airborne debris. These often cause serious damage 31 
to the building components, leading to disruption in the functions of the building and, potentially, 32 
jeopardizing the safety of its occupants. Moreover, damage on cladding (e.g., spalling or crack), their 33 
anchorage to the walls, or window panes (e.g., crack or dislocation) may induce dangerous falling 34 
hazards to pedestrians on the sidewalk below, followed by restrictions on the use of the adjacent 35 
roads. Thus, inspection of building façades is one very important task conducted during disaster 36 
recovery and must be conducted in a rapid manner [1]. 37 

Regardless of the degree of urgency, manual visual observation by human engineers is still the 38 
primary method for façade inspection [2]. Currently, several human inspectors are needed to 39 
physically visit every floor of each building. Then, those inspectors evaluate the condition (e.g., crack 40 
or dislocation) of each component on the façade and annotate them on the corresponding engineering 41 
drawing (or layout), producing a damage map for each façade. In the worst cases, special equipment 42 
may be required to access the building from the outside to inspect the condition of the building’s 43 
exterior, such as ladders or ropes for controlled decent. Such manual process would become 44 
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extremely tedious and inefficient at the site. However, unfortunately, there is no a viable rapid 45 
technique to streamline this important process. 46 

Recent advances in image sensors and sensing platforms have been achieved, enabling 47 
automated or semi-automated vision-based visual inspection [3–11]. Incorporating vision sensors 48 
onto aerial sensing platforms will alleviate the spatial and temporal limitations that are typically 49 
associated with manual inspection in the case of large-scale buildings [12–20]. For example, 50 
unmanned aerial vehicles (UAVs) can collect a large volume of high-resolution images to cover the 51 
entire area of buildings in an efficient manner. With automated methods to use and process this data, 52 
computer-aided inspection can overcome time-consuming and risky human-based inspection for the 53 
building façades. 54 

However, a major technical challenge in using those images for façade inspection is considering 55 
the trade-offs between the need for collecting close-up images and their localization. If the images are 56 
collected at a close distance to the building façades, it is difficult to know where the corresponding 57 
images were captured from. Manual searching is laborious when the building façades are large or 58 
have many repetitive patterns. Although GPS can be measured and recorded on the images, it does 59 
not provide sufficient accuracy regarding the camera pose and location (a typical error range is 5 – 60 
15 m), and the signal is often interrupted by the roof and/or wall of the buildings [21]. On the other 61 
hand, if the images are taken far from the building facade, vision-based inspection may not be feasible 62 
due to a lack of details. For instance, to capture crack damage, it is necessary to collect images at a 63 
close distance and under different viewpoints and positions for accurate inspection. These 64 
requirements are because the visibility of the crack depends on the viewing angles. Since UAVs do 65 
not selectively capture favorable images in an automated manner, a large volume of images needs to 66 
be collected and used for visual inspection [22–24]. Thus, to enable efficient visual inspection using 67 
such a large volume of images, an automated technique should be incorporated to localize the close-68 
view images captured from different viewpoints to the corresponding region on the building facades. 69 

In this study, we envision a new inspection procedure for the building façade as follows: After 70 
an event, inspectors fly UAVs manually or autonomously using GPS from a place that is safe from 71 
falling hazards. The UAVs capture a large volume of images of the façades of the building. Once the 72 
images are collected, we automatically construct a high-resolution orthophoto using those images. 73 
This orthophoto allows the inspectors to readily view the entire building façade. Then, they select 74 
any region on the orthophoto that is suspicious or vulnerable to damage. The high-resolution image 75 
patches corresponding to the selected region, named regions-of-interest (ROIs), are extracted from 76 
the original images, enabling quality visual assessment. With this approach, the inspector can 77 
evaluate several buildings in just a short time, saving time that would be spent physically visiting 78 
each building. Moreover, it is a much safer way to conduct an inspection of multiple damaged 79 
buildings without actually accessing them. 80 

To implement this new procedure, we have developed a technique to support rapid visual 81 
inspection of planar building façades using images collected by UAVs. An orthophoto of each 82 
building façade is automatically constructed using a structure-from-motion (SfM) technique followed 83 
by image stitching and blending. The resulting orthophoto contains an entire view of the building 84 
façade so that inspectors can easily recognize and select target regions for inspection (TRIs). This 85 
orthophoto is geometrically connected to each of the original images. Thus, once the engineers select 86 
the TRIs on the orthophoto, all image regions containing the corresponding TRIs, or the ROIs, are 87 
automatically identified and extracted from the original images. This approach will directly support 88 
field engineers in conducting rapid inspection. To demonstrate the capabilities of the technique 89 
developed, we collect images from a damaged façade of an actual building using UAVs. We 90 
successfully generate the high-resolution orthophoto of the façade and extract the ROIs 91 
corresponding to the selected TRIs including a damaged window pane and external drainage pipe. 92 

The major advantage of the technique is that it can rapidly provide the orthophoto and localized 93 
ROIs from a raw collection of images for robust visual inspection. The orthophoto is useful for 94 
making annotation and documentation of damage locations because it provides an entire view of the 95 
building façade. This can streamline the current time-consuming process of manual documentation 96 
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by human inspectors. Also, applying an existing damage detection algorithm to the ROIs may fully 97 
automate the inspection process. Such use of highly relevant ROIs greatly reduces false-positive and 98 
false-negative damage detection by processing many images captured from various viewpoints for 99 
viewing [22–24].  100 

The remainder of this paper is organized as follows. Section 2 begins with an overview of the 101 
technique and introduces the details of the technical steps, regarding image acquisition, orthophoto 102 
generation, and ROI localization. In Section 3, a case study is presented to demonstrate the capability 103 
of the technique using images collected from a full-scale building which contains damaged 104 
components on its facades. Section 4 contains the discussion and conclusions. 105 

2. System Overview 106 

An overview of the technique developed here is presented in Fig. 1. The objective of the 107 
technique is to aid field engineers to perform rapid visual inspection of the target building façades 108 
(TBF) through a sequence of images collected using UAVs. The technique can be used to inspect any 109 
target components (e.g., broken window panes, spalling concrete, etc.) located on a relatively flat 110 
surface of the TBF. 111 

 

Figure 1. System overview: Step1. Image collection – collecting many close-up images to 

cover the entire area of a building façade under various viewpoints, Step2. Orthophoto 

generation – constructing an orthophoto of the building façade and computing a 

geometric relationship between the constructed orthophoto and each image, and Step3. 

ROI localization – extracting the ROIs from the images. 

Step 1 is to fly the UAVs over the TBF to collect a large number of high-resolution images. To 112 
increase the likelihood of detecting damage, these images are captured from many different 113 
viewpoints and positions [22–24]. The entire region of the building façade that is needed for 114 
inspection should be covered by the images. Step 2 is to generate an orthophoto of the TBF from the 115 
collected images. SfM is used to estimate the geometric relationship between each image and the TBF. 116 
By extracting and matching the visual features, this process conducts calibration of the camera 117 
parameters for each image including a projection matrix and radial distortion coefficient(s) as well as 118 
generating a 3D point cloud of the scene [25–27]. The surface of the TBF can be automatically detected 119 
by fitting a plane to the 3D point cloud. Then, the orthophoto is constructed by projecting each image 120 
onto the detected plane, followed by stitching and blending them. Lastly, in Step 3, the ROIs 121 
corresponding to the TRIs that the engineers select for inspection are extracted from the original 122 
images. The geometric relationship with each of the selected TRIs on the orthophoto and the original 123 
images is used to localize the corresponding ROIs. Since the localized ROIs are a set of image patches 124 
cropped from those images, they contain detailed visual information of the TRIs. Thus, the extracted 125 
ROIs enable robust vision-based visual assessment of the facades. Both the orthophoto generation 126 
and ROI extraction are developed to be fully automated without the need for manual manipulation. 127 
The only manual step is associated with the TRI selection on the orthophoto in Step 3.  128 

2.1. Image Collection 129 
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In this technique, collecting high-quality aerial images is crucial for accomplishing successful 130 
orthophoto generation and ROI localization. The approach developed does not involve any manual 131 
process to choose favorable images among the raw images collected with the UAVs. It also does not 132 
require any configuration of the parameters in the middle of the process. Thus, the quality of the 133 
original images directly affects the accurate extraction and localization of the ROIs for visual 134 
inspection. Here, we suggest some important guidelines for the best use of the technique. 135 

First, the images must cover the entire region of the TBF. Because the images are collected with 136 
and stored in UAVs, there is no way for engineers to check if all images thoroughly cover the TBF 137 
with sufficient quality. Thus, a well-established flight plan is prepared in advance depending on the 138 
shape and size of the TBF so that they can readily collect quality images on site. In general, engineers 139 
draw a virtual grid of the flight path on the entire area of the TBF and images are collected at a regular 140 
interval by following this grid. A depth (distance between the UAV and the TBF) is determined based 141 
on the minimum resolution required in the images for effective visual inspection. The smaller the 142 
field of view (coverage) becomes, the higher the spatial resolution of the scenes containing the TBF, 143 
although more images would need to be captured to cover the entire TBF. The spacing (interval) of 144 
the images collected along the flight path is another important parameter and is directly related to 145 
the next guideline.  146 

Second, the image collection interval is carefully designed to ensure there is sufficient overlap 147 
between adjacent images. Increasing the number of feature matches across multiple images is crucial 148 
for computing accurate geometric relationships between the images and the scene using SfM. As a 149 
rule of thumb, more than 60% overlap with the adjacent images is recommended. However, this value 150 
varies depending on the image quality (e.g., resolution or signal-to-noise) as well as scene 151 
characteristics (e.g., unique texture) [28]. To obtain sufficient and constant overlap, we suggest that 152 
images be captured using a regular time interval (e.g., continuous shoot mode in regular cameras) 153 
under a constant flight speed.  154 

Third, motion blur should be avoided. Motion blur is common in aerial image collection. It 155 
occurs when the object being recorded moves relative to the camera during the period of exposure. 156 
Large relative movement can produce a lack of sharpness or artifacts (e.g., ghosting) on the images 157 
collected. To avoid this problem, translation and angular movements of the camera (with respect to 158 
the scene) should be minimized while the shutter is open. Multiple factors may affect motion blur 159 
including environmental conditions (e.g., low light or high wind), UAV platforms (e.g., fast flying 160 
speed or non-isolated platform vibration), and camera parameters (e.g., long focal length or low 161 
shutter speed). To prevent taking blurry images, we recommend (1) flying UAVs under good weather 162 
conditions (e.g., enough daylight and no wind) and with a slow speed, (2) isolating the vibration of 163 
the camera with respect to the UAV platform using a multi-axis gimbal or vibration damper (e.g., 164 
rubber pad), (3) decreasing the exposure time without increasing the camera’s ISO because a higher 165 
ISO produces higher light sensitivity but also more noise, and (4) zooming out the camera and 166 
maintaining a short focal length so that the relative scene change due to sudden angular vibration is 167 
minimized.  168 

Finally, from the visual inspection standpoint, images should be collected from a variety of 169 
viewpoints [22]. Facilitating the observation of the TRI from various angles through the ROIs is a key 170 
benefit of the technique developed. To collect images that contain many viewpoints, engineers should 171 
fly UAVs following the designed flight path multiple times while using different camera angles each 172 
time. Alternatively, one can use a programmable gimbal so that the angle of the camera is cyclically 173 
changed during one flight. Such angled images are also valuable because they serve to improve the 174 
performance of SfM [29]. Since angled images contain more of the background scene, they provide 175 
more overlap with the other images, producing more accurate parameter estimation using SfM, as 176 
mentioned in the second point above.   177 

2.2. Orthophoto Generation 178 
An orthophoto is a planar image created by arranging and stitching the set of collected images 179 

after removing perspective and radial distortions [30]. Since the resulting orthophoto has a uniform 180 
scale in each direction, it will show a true aspect ratio of the target regions on the plane (a single 181 
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façade surface, in this case). Herein, we describe the process needed to construct a high-quality 182 
orthophoto from the aerial images collected and to identify the geometric relationship between each 183 
image and the orthophoto. With the orthophoto available, engineers can readily view specific areas 184 
of the TBF to select the TRIs for visual inspection. 185 

 

Figure 2. Overview of the orthophoto generation: (a) Projection matrix estimation for 

each image using SfM, (b) Façade plane estimation from a 3D point cloud, (c) Planar 

homography estimation from corresponding projection matrix, (d) Image projection and 

arrangement into the estimated façade plane, and (e) Image stitching and blending to 

generate the complete orthophoto. 

First, a projection matrix is computed for each image collected using SfM [25]. SfM automatically 186 
computes the 3D point cloud and the geometric relationship between the 2D image points and the 187 
3D points in the world (scene). All these results are generated solely from the set of images collected 188 
and no manual configuration is required. Only good quality images having enough overlap with the 189 
other images are automatically selected and utilized in the SfM process. The SfM process is shown in 190 
Fig. 2(a), where the geometric relationship is represented with the projection matrix, denoted as 

i
P  191 

and the subscript indicates an image index. With this matrix, any 3D point in the world can be 192 
mapped to its corresponding 2D point in each image. This relationship is represented as 193 

i i
x X P  (1) 

where X  is any 3D point in the world, and 
i

x  is the corresponding 2D image point in image i. These 194 

equations are established in homogenous coordinates. Thus, X  and 
i

x  are 4 × 1 and 3 × 1 vectors, 195 

respectively. 
i

P is a 3 × 4 matrix that includes parameters for internal and external camera matrices. 196 

Note that the relationship in Eq. (1) is valid under the assumption of a pin-hole camera model [25]. 197 
Thus, lens distortion of the images should be corrected in advance. Engineers can use a calibrated 198 
camera or can correct their distortion using lens distortion parameter(s) computed from SfM. 199 

Second, the façade plane is estimated from the 3D point cloud computed in the previous step 200 
(see Fig. 2(b)). For estimation of the plane, we use a RANdom SAmple Consensus (RANSAC) 201 
estimator to obtain the best fit plane to the 3D points. Since the 3D point cloud is mainly generated 202 
from the TBF, the associated high inlier/outlier ratio produces rapid convergence to accurately find 203 
the plane’s location with the RANSAC estimator (the inliers are the points close to the TBF). The plane 204 
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estimated with the RANSAC estimator is denoted as  (1 × 4 vector) and the 3D points, X


, placed 205 

on this plane satisfy the equation: 206 

0X


   (2) 

Third, we compute a homography relationship between each of the images and the façade plane 207 
using projection matrices as shown in Fig. 2(c). The homography matrix is a 3 × 3 matrix providing a 208 
planar projection transformation between 2D images. This matrix thus provides a one-to-one 209 
mapping between the 2D points on the images and the 2D points on the estimated plane [25]. In the 210 
current coordinate systems, the points on the plane ( X


) are represented as all three values in each 211 

axis. To establish the homography relationship, one of the dimensions in X


 should be reduced by 212 

transforming the coordinate system. A rotation matrix ( R ) transforms the current coordinate system 213 
to align its Z axis to the normal vector of the estimated plane . Then, the plane in the new coordinate 214 
system ( ), becomes parallel to the XY-plane, and a point on this plane, X


, has a constant value in 215 

the Z axis, which is c
π

 in Eq. (3). This relationship can be represented as: 216 

X X
 

= R  

where 1
T

X a b c
   

  =  and 
1 2 3 4

[ ]     -1R= . 
(3) 

X


 and   in Eq. (3) also satisfy the relationship in Eq. (2), which becomes   217 

1 2 3 4
0a b c

  
        (4) 

Any X


on the plane   has a constant value of c


and will satisfy Eq. (4). This means c
π

 is not 218 

correlated with a


or b


 and thus, c


 yields: 219 

4 3
c


   (5) 

Based on Eqs. (3) and (4), the homography matrix between   and image i can be computed as: 220 

1
T

i i
x a b

  
   = H  

where 3 4

i i i i i
c

 
   

1 2H p p p p  and 1 2 3 4

i ii i i i
    

-1 p p pP P pR  
(6) 

i

jp  is the jth column of 
i

P . The homography matrix 
i

H  maps the points on the plane   to those 221 

on the image i.  222 
Fourth, in Fig. 2(d), a set of the images is projected onto the facade plane using the homography 223 

matrices. In Section 2.1, although a large volume of images is collected from various viewpoints, 224 
rather than utilizing all the images it is best to only use a subset of suitable images for constructing 225 
the orthophoto. The backgrounds of the angled images do not have sufficient and regular resolution 226 
of the building regions and they may also include non-façade regions. So, images that are relatively 227 
parallel to the TBF are selected to generate the orthophoto provided that they cover the entire area of 228 
the TBF. For the experimental validation in this study, we set a threshold for the angle between the 229 
normal vectors of the façade plane and the image planes at 20 degrees. Note that although we use a 230 
set of mainly parallel images for orthophoto generation, the ROIs will be extracted from all images if 231 
they satisfy the constraints in Section 2.3.  232 

Finally, the aligned projected images are stitched and blended to construct an orthophoto of the 233 
TBF, shown in Fig. 2(e). For their seamless composition, we implement gain compensation and multi-234 
band blending developed by Allène, et al. [30]. Note that since the technique developed in this study 235 
assumes that scenes are placed on the same flat plane, scenes that are not captured from the plane of 236 



Sensors 2018, 18, x FOR PEER REVIEW  7 of 13 

 

the TBF (e.g., ground, roof of the building or sky in this study) will be incorrectly wrapped (see Fig. 237 
2(e)) and not geometrically correlated to the images using Eq. (6). In such cases, the engineers should 238 
simply ignore such unnecessary regions.  239 

2.3. Region-of-Interest Localization 240 

The homography matrix between the orthophoto and each raw image can be computed using 241 
Eq. (6). With this matrix, the ROIs, which are high-resolution image patches, corresponding to any 242 
region on the orthophoto can be extracted from the raw images. In this step, engineers are asked to 243 
define a TRI on the orthophoto, as illustrated in Fig. 3. The user simply draws a polygon on the 244 
orthophoto that fully encompasses the TRI. Any region and shape of the polygon may be selected to 245 
define the TRI. For example, in our experimental validation we simply draw a rectangle by dragging 246 

the mouse to select damaged components on the TBF. A set of 2D points (
i

x ) in each image 247 

corresponding to the vertices of the selected polygon ( a
π

 and b
π

) on the orthophoto can be 248 

computed from Eq. (6). The portions of each image within those points becomes the ROI.  249 

 

Figure 3. Region-of-interest localization procedure: (a) Selection of target regions of 

inspection (TRIs) and (b) Extraction of ROIs from raw collection of images. 

Here, not all images include a suitable ROI corresponding to the selected TRI because the ROI 250 
may not have a favorable condition that can be used for actual visual inspection. Thus, the following 251 
two conditions should be satisfied before the ROI is selected for use. First, the entire region of the 252 
selected TRI must be visible in each ROI. When an ROI is located at the boundary of an image it often 253 
does not contain a view of the entire TRI. Second, ROIs with very low quality (e.g., low resolution 254 
and motion blur) are not useful for visual inspection. Thus, the size of the ROIs should be larger than 255 
a pre-determined threshold that would produce the sufficient quality of the ROIs for visual 256 
inspection. For example, in the following experimental validation, the minimum ROI size is set to 200 257 
 200 pixels.  258 

3. Experimental Validation 259 

3.1. Description of the test building 260 

To demonstrate and validate the capability of the method developed herein, a building with 261 
severe façade damage (Fig. 4) is utilized to reproduce the typical scenario of post-event building 262 
evaluation. This steel frame building is covered with window panes and masonry cladding on its 263 
TBF. The building was originally built in 1925 as a railroad warehouse but has been abandoned since 264 
1996 [31]. Thus, cracked or broken window panes, tiles and external drain pipes remain unfixed and 265 
untrimmed trees obstruct their views. The size of the façade of the test building is roughly 128 × 16 266 
m2, but in this demonstration we only collect images from the center sections of the façade marked in 267 
Fig 4 (a). The size of the TBF is 43 × 16 m2 in Fig. 4 (b). Window panes in the façade are opaque with 268 
an identical size of dimension 25.4 × 300 × 3 mm3.  269 
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Figure 4. Experimental validation using a building having severe façade damage: (a) 3D 

view of the building (courtesy of Google 3D Maps) [32] and (b) Façade test region. 

3.2. Collection of the images from the test building 270 

A consumer-grade UAV (3DR Solo Quadcopter) with a compact camera (Canon PowerShot 271 
SX280 HS) is used for image acquisition in Fig. 5. The cost of this equipment was around $1,000 in 272 
2015 but is becoming more affordable every year [33]. For high-quality image acquisition, we collect 273 
still images in continuous shot mode (1 frame/s) rather than taking a video [34]. Auto-focus or flash 274 
functions are not used. A total of 1,254 images are collected from the TBF and the resolutions of all 275 
images are fixed to 4,000 × 2,664 pixels. Since this technique is developed for the purpose of rapid 276 
and automated image acquisition, the images are collected without advanced knowledge of damage 277 
locations or special control of camera angles in the middle of the flight. For successful implementation 278 
of the technique developed herein to other structures, users should design a proper image acquisition 279 
plan following the guidelines illustrated in Section 2.1. 280 

 

Figure 5. Image collection using an UAV (3DR Solo Quadcopter) with a consumer-grade 

camera (Canon PowerShot SX280). 

In our experiment, suitable UAV flight paths are designed based on the guidelines established 281 
in Section 2.1. First, images are collected by flying the UAV along a grid pattern. During this process 282 
the UAV must first maintain a set altitude (vertical direction) and flies from one side to the other, and 283 
then repeats this process after changing its altitude. Image acquisition along this pre-designed flying 284 
path is assured to have sufficient and consistent overlap between the images in both the horizontal 285 
and vertical directions and to also capture the entire test façade. Second, the UAV must also maintain 286 
a constant and low flying speed to avoid abrupt transitions. Rapid transitions between the images 287 
will produce insufficient overlap between images and also makes the images blurry. The flying speed 288 
is determined based on the distance between the UAV and the test façade, the camera’s field of view 289 
(FoV), and the image collection rate. In this experiment, the distance is set to roughly 4 – 5 m to 290 
capture the detailed appearance of the test façade. The FoV and image capture rate of the camera are 291 
around 90 degrees and one frame per second (1 frame/s), respectively. Accordingly, the flying speed 292 
is determined as 0.5 – 1 m/s to produce more than 60% overlap between images. Third, angled images 293 
must be collected from four different viewpoints. Sample angled images and parallel images are 294 
provided in Fig. 6. In this experiment, we fly the UAV four times after changing the angles of the 295 
camera (parallel, right- and left-angled, and downward).  296 
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Figure 6. Sample images captured by UAVs from various angles: (a) Parallel, (b) left-

angled, (c) right-angled, and (d) Downward. 

3.3. Results of Orthophoto Generation and Region-of-Interest Localization 297 

In this study, VisualSfM is used to compute the projection matrix of each image [35]. VisualSfM 298 
is a freeware SfM software and provides a user-friendly graphic interface to monitor the intermediate 299 
steps of the SfM process, such as feature matching and camera pose estimation. VisualSfM highly 300 
improves the speed of the SfM computations by implementing the SiftGPU Library and parallel 301 
processing using Graphical Processor Units (GPUs) [36, 37]. Once the projection matrices are 302 
computed from VisualSfM, the rest of the process including building plane detection and orthophoto 303 
generation are deployed in MATLAB [38]. In this experiment, it takes approximately four hours to 304 
process 1,254 images to cover the 43 x 16 m2 TBF. A PC workstation having a Xeon E5-2620 CPU and 305 
NVidia Telsa k40c with a 12 GB video memory GPU is used for this process. This period includes 53 306 
minutes for image collection using the UAV, 3 hours for computations associated with projection 307 
matrix estimation and point cloud generation, 0.2 hour for façade plane estimation and image 308 
blending, and less than one minutes for the ROI localization once the engineers select the TRI. 309 
However, the time will vary depending on the size of the building façade and the number of images 310 
collected as well as the computation resources available and their specifications.  311 

As a result, the orthophoto of the TBF in Fig. 2(e) is successfully generated by automatically 312 
processing the raw aerial images. For the orthophoto, a total of 375 images (among 1,254 images) are 313 
automatically selected as the set of images considered to be relatively parallel to the façade when the 314 
angle threshold is set to 20 degrees. 315 

 

Figure 7. Selection of two sample TRIs (TRI 1 and TRI 2) on the orthophoto. 
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Fig. 7 shows the constructed orthophoto of the TBF and a selection of sample TRIs. In this study, 316 
we choose two TRIs using rectangular boxes, denoted as TRI 1 and TRI 2. TRI 1 and TRI 2 include a 317 
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Five samples of localized ROIs corresponding to each TRI are presented in Fig. 8. The number 323 
of extracted ROIs corresponding the two TRIs is 22 and 27 (from a total of 1,254 images), respectively. 324 
All ROIs have different resolutions and aspect ratios depending on the depth between the images 325 
and TBF and viewing angles. However, in Fig. 8, they are transformed into a square for this 326 
arrangement. These ROIs do satisfy the two conditions introduced in Section 2.3. Since the ROIs 327 
include details and multiple viewpoints of the TRIs, reliable vision-based visual inspection can be 328 
achieved. For instance, in Fig. 8(a), the white vertical crack propagated from the broken region is only 329 
visible in the specific ROIs captured from certain angles. Similarly, in Fig. 8(b), the break in the 330 
drainage pipe is only identified when the corresponding region is not impeded by the branch. The 331 
images that are captured with an angle are helpful in identifying such damage. These two examples 332 
clearly illustrate the need for collecting a sufficient number of images from different viewpoints and 333 
localizing the high-resolution ROIs from the original images for conducting robust visual evaluation. 334 

 

Figure 8. Localized ROIs corresponding to TRI 1 in (a) and TRI 2 in (b): The hairline 

vertical crack on a window pane in TRI 1 and damage on a drainage pipe in TRI 2 are 

only visible in specific ROIs and those damage locations are marked with a red dotted 

line.  

4. Conclusion 335 

In this study, we develop a vision-based approach for computer-aided rapid inspection for the 336 
TBFs. The technique developed here will automatically generate an orthophoto of the TBF using 337 
images collected from UAVs. First, UAVs collect a large volume of aerial images from the TBF by 338 
following the image collection guidelines developed in this study (see Section 2.1). Then, human 339 
inspectors select any region on the orthophoto where inspection is required and a set of ROIs 340 
corresponding to the region are localized from the high-resolution original images. Since the localized 341 
ROIs contain various viewpoints of the region, human inspectors can perform a complete and robust 342 
inspection. The feasibility of the method is demonstrated using an abandoned building having 343 
several damaged components on its TBF. ROIs corresponding to two TRIs having a damaged window 344 
pane and drainage pipe are extracted by processing a set of original images collected using a 345 
commercial UAV.  346 
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Some practical considerations are provided for successful implementation of the developed 347 
technique:  348 
• Large geometric variations in the TBF (e.g., extrusions or intrusions), which are not placed within 349 

the same plane, will induce large distortions in the orthophoto. It is recommended in such a case 350 
that more images be captured parallel to the TBF and a smaller angle threshold be used for the 351 
orthophoto construction to reduce distortions due to a relief displacement coming from different 352 
elevations on the plane [38]. If the TBF does not lie within a single plane, engineers can generate 353 
multiple orthophotos and conduct visual inspection using each of the orthophotos. However, if 354 
the building façade is reasonably flat, a single orthophoto is sufficient to make the best use of 355 
the technique.  356 

• As seen in Fig. 8(b), the presence of unwanted foreground objects (e.g., branch, tree, street light) 357 
may obstruct the view of the TRIs in the ROIs. In such a case, the only possible solution is to 358 
collect images from additional viewpoints. A similar issue occurs when the geometry of the 359 
structure is complex. Alternatively, one may further apply an image classification technique to 360 
filter out unnecessary ROIs and utilize only useful ROIs [22,24,39–41].  361 

• In some cases, the existence of incorrect feature matches will introduce significant errors or even 362 
failures in SfM. The mis-associated features should be adaptively handled to enhance to the 363 
accuracy of the SfM outcomes. To address this issue, the authors have developed an adaptive 364 
resection-intersection bundle adjustment approach that refines the 3D points and camera poses 365 
separately [42]. 366 
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