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Data-Adaptive Active Sampling for Efficient
Graph-Cognizant Classification

Dimitris Berberidis

Abstract—This paper deals with active sampling of graph nodes
representing training data for binary classification. The graph may
be given or constructed using similarity measures among nodal fea-
tures. Leveraging the graph for classification builds on the premise
that labels across neighboring nodes are correlated according to
a categorical Markov random field (MRF). This model is fur-
ther relaxed to a Gaussian (G)MRF with labels taking continuous
values—an approximation that not only mitigates the combina-
torial complexity of the categorical model, but also offers optimal
unbiased soft predictors of the unlabeled nodes. The proposed sam-
pling strategy is based on querying the node whose label disclosure
is expected to inflict the largest change on the GMREF, and in this
sense it is the most informative on average. Connections are estab-
lished to other sampling methods including uncertainty sampling,
variance minimization, and sampling based on the X-optimality
criterion. A simple yet effective heuristic is also introduced for in-
creasing the exploration capabilities of the sampler, and reducing
bias of the resultant classifier, by adjusting the confidence on the
model label predictions. The novel sampling strategies are based on
quantities that are readily available without the need for model re-
training, rendering them computationally efficient and scalable to
large graphs. Numerical tests using synthetic and real data demon-
strate that the proposed methods achieve accuracy that is compa-
rable or superior to the state of the art even at reduced runtime.

Index Terms—Active learning, classification, expected change,
graph-based.

I. INTRODUCTION

CTIVE learning has recently gained popularity for vari-
A ous applications ranging from bioinformatics [1] to dis-
tributed signal classification and estimation [2]. In contrast
to traditional passive supervised and semi-supervised learning
methods, where classifiers are trained using given or randomly
drawn labeled data, active learning allows for judiciously select-
ing which data are to be queried and added to the training set.
Thus, a typical active learner begins with a small labeled set,
and proceeds to select one or more informative query instances
from a large unlabeled pool. Active learning yields markedly
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improved classification accuracy over passive or random
sampling when the number of training labels is fixed [3]-[6]. It
can be particularly appealing when unlabeled data (instances)
are readily available, but obtaining training labels is expensive.
For instance, a classifier trained to predict the presence of cancer
based on certain protein attributes requires labels that involve
costly and time-consuming medical examinations; see e.g., [1].

Even intuitively, one expects active sampling to outperform
random sampling when (un)labeled instances are correlated.
Such a case emerges with graph-aware classification, where each
instance is denoted by a node, while edges capture correlation
among connected nodes. Although graphs may arise naturally in
certain applications (e.g. social and citation networks), they can
in general be constructed from any set of nodal feature vectors
using proper similarity measures; see e.g., [7], [8]. Knowing
the graph topology, graph-cognizant classification boils down
to propagating the information from labeled nodes to unlabeled
ones through edges of neighboring nodes; see e.g., [9]. As a
result, classification on graphs is inherently semi-supervised
and thus conducive to active learning.

Prior art in graph-based active learning can be divided in
two categories. The first includes the non-adaptive design-of-
experiments-type methods, where sampling strategies are de-
signed offline depending only on the graph structure, based on
ensemble optimality criteria. The non-adaptive category also
includes the variance minimization sampling [10], as well as
the error upper bound minimization in [11], and the data non-
adaptive X-optimality approach in [12]. The second category
includes methods that select samples adaptively and jointly with
the classification process, taking into account both graph struc-
ture as well as previously obtained labels. Such data-adaptive
methods give rise to sampling schemes that are not optimal on
average, but adapt to a given realization of labels on the graph.
Adaptive methods include the Bayesian risk minimization [13],
the information gain maximization [14], as well as the manifold
preserving method of [15]; see also [16]-[18]. Finally, related
works deal with selective sampling of nodes that arrive sequen-
tially in a gradually augmented graph [19]-[21], as well as active
sampling to infer the graph structure [22], [23].

In this context, the present work develops data-adaptive pool
based active samplers for graph-aware classification. The pro-
posed sampling strategy relies on querying the node that is
expected to inflict the largest change on the underlying label
correlation model. Albeit in different context, a related crite-
rion was adopted for semantic segmentation of images [24],
and for regression of Gaussian processes [25]. The proposed
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approach here advocates novel metrics of expected model
change, establishing connections to existing methods such as un-
certainty sampling, variance minimization and sampling based
on the X —optimality criterion. A simple yet effective heuristic
is also introduced for improving the exploration capabilities,
and for reducing the bias of the resultant classifiers, by taking
into account the confidence on the model label predictions.

The rest of the paper is organized as follows. Section II states
the problem, and presents the GMRF model adopted to approxi-
mate the marginal distributions of the unknown categorical node
labels. Section III develops active learning methods based on
different measures of change, and establishes links to existing
sampling schemes. Section IV points out the issue of sampling
bias, and mitigates it by incorporating a confidence metric on
the underlying model. Finally, Section V presents numerical
experiments on real and synthetic datasets.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). Calligraphic symbols are reserved for
sets, while T stands for transposition. Vectors 0, 1, and e,, de-
note the all-zeros, the all-ones, and the n-th canonical vector,
respectively. Symbol 15 denotes the indicator for the event E.
Notation A/ (m, C) stands for the multivariate Gaussian distri-
bution with mean m and covariance matrix C, while tr(X),
Amin (X), and Ay, ax (X) are reserved for the trace, the minimum
and maximum eigenvalues of matrix X, respectively. Symbol
[x]; denotes the i—th entry of vector x.

II. MODELING AND PROBLEM STATEMENT

Consider a connected undirected graph G = {V, £}, where
V is the set of IV nodes, and £ contains the edges that are
also represented by the N x N weighted adjacency matrix
‘W whose (i, j)—th entry denotes the weight of the edge that
connects nodes v; and v;. Let us further suppose that a bi-
nary label y; € {—1,1} is associated with each node v;. The
weighted binary labeled graph can either be given, or, it can
be inferred from a set of N data points {x;,;}/*, such that
each node of the graph corresponds to a data point. Matrix
W can be obtained from the feature vectors {x;} ; using
different similarity measures. For example, one may use the
radial basis function w; ; = exp (—|x; — x;||3/0?) that as-
signs large edge weights to pairs of points that are neigh-
bors in Euclidean space, or the Pearson correlation coefficients
wi ;= (x5, %5)/ (Ixill2l|x;|2) - If w; j # 0V4, j, the resulting
graph will be fully connected, but one may obtain a more struc-
tured graph by rounding small weights to 0.

Having embedded the data on a graph, semi-supervised learn-
ing amounts to propagating an observed subset of labels to
the rest of the network. Thus, upon observing {y; };c, where
L C V, henceforth collected in the |£| x 1 vector y, the goal
is to infer the labels of the unlabeled nodes {y; };c;/ concate-
nated in the vector y;;, where U := V/L. Let us consider labels
as random variables that follow an unknown joint distribution
(y1,92,---,yn) ~ 0(Y1,Y2,...,yn),ory ~ p(y) for brevity.

For the purpose of inferring unobserved from observed labels,
it would suffice if the joint posterior distribution p (yy|y ) were
available; then, y;; could be obtained as a combination of labels
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that maximizes p (yy|yz). Moreover, obtaining the marginal
posterior distributions p (y;|yz) of each unlabeled node 7 is
often of interest, especially in the present greedy active sampling
approach. To this end, it is well documented that MRFs are
suitable for modeling probability mass functions over undirected
graphs using the generic form, see e.g., [13]

ply) = Zlﬂ exp <—§¢(Y))

where the “partition function” Z3 ensures that (1a) integrates to
1, 3 is a scalar that controls the smoothness of p(y), and ®(y)
is the so termed “energy” of a realization y, given by

(1a)

D(y) = % > wijyi—y)* =y Ly (1b)
ijev

that captures the graph-induced label dependencies through the
graph Laplacian matrix L := D — W with D := diag(W1).
This categorical MRF model in (1a) naturally incorporates the
known graph structure (through L) in the label distribution
by assuming label configurations where nearby labels (large
edge weights) are similar, and have lower energy as well as
higher likelihood. Still, finding the joint and marginal poste-
riors using (la) and (1b) incurs exponential complexity since
yu € {—1,1}¥. To deal with this challenge, less complex
continuous-valued models are well motivated for a scalable
approximation of the marginal posteriors. This prompts our
next step to allow for continuous-valued label configurations
aby; € R that are modeled by a GMRF.

A. GMRF Relaxation

Consider approximating the binary field y € {—1, 1}/ that
is distributed according to (la) with the continuous-valued
1 ~ N(0, C), where the covariance matrix satisfies C~* = L.
Label propagation under this relaxed GMRF model becomes
readily available in closed form. Indeed, 1, of unlabeled
nodes conditioned on the labeled ones obeys

Yuie ~ N (e, Ligy) 2

where L, is the part of the graph Laplacian that corresponds
to unlabeled nodes in the partitioning

Lo Lyc

L= 3)

Lo Lgg

Given the observed 1),, the minimum mean-square error
(MMSE) estimator of 1);, is given by the conditional expec-
tation

e = CucCrpvp,
=L} Lucy, “)

where the first equality holds because for jointly Gaussian zero-
mean vectors the MMSE estimator coincides with the linear
(LYMMSE one (see e.g., [26, p. 382]), while the second equality
is derived in Appendix Al. When binary labels y . are obtained,
they can be treated as measurements of the continuous field
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(¥, :=yr), and (4) reduces to

e = — Lo Lucye. (5)

Interestingly, the conditional mean of the GMRF in (5) may
serve as an approximation of the marginal posteriors of the
unknown labels. Specifically, for the i—th node, we adopt the
approximation

p(yi = 1lyc) = 5 (E [[yuchi] +1)

(E [[%uel,] +1)

N — N~ N

([pge), +1) ©

where the first equality follows from the fact that the expectation
of a Bernoulli random variable equals its probability. Given
the approximation of p (y;|y.) in (6), and the uninformative
prior p(y; = 1) = 0.5 Vi € V, the maximum a posteriori (MAP)
estimate of y;, which in the Gaussian case here reduces to the
minimum distance decision rule, is given as

R 1
Yi = .

thus completing the propagation of the observed y, to the un-
labeled nodes of the graph.

It is worth stressing at this point, that as the set of labeled
samples changes, so does the dimensionality of the conditional
mean in (5), along with the “auto-" and “cross-"" Laplacian sub-
matrices that enable soft label propagation via (5), and hard
label propagation through (7). Two remarks are now in order.

Remark 1: 1t is well known that the Laplacian of a graph is
not invertible, since L1 = 0; see, e.g. [27]. To deal with this
issue, we instead use L + 01, where 0 < 1 is selected arbitrar-
ily small but large enough to guarantee the numerical stabil-
ity of e.g., Ly in (5). A closer look at the energy function
O(y) =22 jey Wiy (Yi — y;)* + 630y y? reveals that this
simple modification amounts to adding a “self-loop” of weight
0 to each node of the graph. Alternatively, 4 can be viewed as
a regularizer that “pushes” the entries of the Gaussian field 1,
closer to 0, which also causes the (approximated) marginal pos-
teriors p(y;|y.) to be closer to 0.5 (cf. eq. (6)). In that sense, §
enforces the priors p(y; = 1) = p(y; = —1) = 0.5.

Remark 2: The method introduced here for label propagation
(cf. (5)) is algorithmically similar to the one reported in [13].
The main differences are: i) we perform soft label propagation
by minimizing the mean-square prediction error of unlabeled
from labeled samples; and ii) our model approximates {—1,1}
labels with a zero-mean Gaussian field, while the model in [13]
approximates {0, 1} labels also with a zero-mean Gaussian field
(instead of one centered at 0.5). Apparently, [13] treats the two
classes differently since it exhibits a bias towards class O; thus,
simply denoting class O as class 1 yields different marginal
posteriors and classification results. In contrast, our model is
bias-free and treats the two classes equally.

[“u\ﬁ]i >
else

0
, Vielu (7)
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Algorithm 1: Active Graph Sampling Algorithm.
Input: Adjacency matrix W, § < 1
Initialize: U° =V, L =0, p=0,Gy = (L +I)"!
First query is chosen at random
fort=1:Tdo
Scan I/'~! to find best query node Vg, asin (8)
Obtain label y;, of vy,
Update the GMRF mean as in (9)
Update G, as in (10)
U =u={k}, £ = LV u {k}
end for
Predict remaining unlabeled nodes as in (7)

B. Active Sampling With GMRFs

In passive learning, £ is either chosen at random, or, it is
determined a priori. In our pool based active learning setup, the
learner can examine a set of instances (nodes in the context of
graph-cognizant classification), and can choose which instances
to label. Given its cardinality |£|, one way to approximate the
exponentially complex task of selecting L is to greedily sample
one node per iteration ¢ with index

k; = arg max U(v;, £'71) )
eyt
where U'~! is the unlabeled set at time ¢ — 1, and U (v, £'~1)
is a utility function that evaluates how informative node v is
while taking into account information already available in £/~
Upon disclosing label ¥, , it can be shown that instead of re-
solving (5), the GMRF mean can be updated recursively using
the “dongle node” trick in [13] as

Yk 1
/J,u,,fw,,l = M-ty + gT(Z/k,, - [Hw4|z:f4]k[,)gk,
tRe

+3 (9)

where uug}f}*‘ i1 is the conditional mean of the unlabeled nodes
when node vy, is assigned label y;, (thus “gravitating” the
GMRF mean [py1(1]r, toward its replacement yy, ); vec-
tor gy, := [L&},lu,,l];kl and scalar g, , := [L&},lu,,l}k, %, are
the k; —th column and diagonal entry of the Laplacian inverse,
respectively. Subsequently, the new conditional mean vector
defined U' is given b ing the i—th f

M|t defined over 1S given by removing the :—th entry o
u;,f"fl EEE Using Shur’s lemma it can be shown that the inverse

t

Laplacian G, * when the k; —th node is removed from the un-
labeled sub-graph can be efficiently updated from G, := L&}w
as [12]

G* o
l ' =G, - g 81, (10)

ol 0

Gk ky

which requires only O(|U|?) computations instead of (’)(iu %)
for matrix inversion. Alternatively, one may obtain G, " by
applying the matrix inversion lemma employed by the RLS-like
solver in [13]. The resultant greedy active sampling scheme for
graphs is summarized in Algorithm 1.

Remark 3: Existing data-adaptive sampling schemes, e.g.,
[13], [16], [14], often require model-retraining by examining
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candidate labels per unlabeled node (cf. (8)). Thus, even
when retraining is efficient, it still needs to be performed
[U| x #Classes times per iteration of Algorithm 1, which in
practice significantly increases runtime, especially for larger
graphs.

In summary, different sampling strategies emerge by select-
ing distinct utilities U (v, £771) in (8). In this context, the goal
of the present work is to develop novel active learning schemes
within a maximum-expected change framework that achieve
high accuracy with a small number of samples. A further desir-
able attribute of the sought approach is to bypass the need for
GMREF retraining.

III. EXPECTED MODEL CHANGE

Judiciously selecting the utility function is of paramount im-
portance in designing an efficient active sampling algorithm.
In the present work, we introduce and investigate the relative
merits of different choices under the prism of expected change
(EC) measures that we advocate as information-revealing utility
functions. From a high-level vantage point, the idea is to iden-
tify and sample nodes of the graph that are expected to have the
greatest impact on the available GMRF model of the unknown
labels. Thus, contrary to the expected error reduction and en-
tropy minimization approaches that actively sample with the
goal of increasing the “confidence” on the model, our focus is
on effecting maximum perturbation of the model with each node
sampled. The intuition behind our approach is that by sampling
nodes with large impact, one may take faster steps towards an
increasingly accurate model.

A. EC of Model Predictions

An intuitive measure of expected model change for a given
node v; is the expected number of unlabeled nodes whose label
prediction will change after sampling the label of v;. To start,
consider per node ¢ the measure

Z Ligrvizsn

jeu—{i}

F(yi, ) ° (1n

where y+ Yi is the predicted label for the j—th node after the

label of the 1—th node is revealed, denoting the number of such
“flips” in the predicted labels of (7). For notational brevity,
we henceforth let p; = [pyc)i- The corresponding utility
function is

UFL('W,,L) EU:‘YE [ (yi:“uw)}

=p(yi = Uye)Fyi = 1, iy )

+p(yi = —1yc)F(yi =

1
~ 5+ DGy

—1, )
= 1al“l/l/{\£)

1
+ <1 = 5 ki + 1)) Py =—1,mye) (12)

where the approximation is because (6) was used in place of
p(y; = 1|y.). Note that model retraining using (9) is required
to be performed twice (in general, as many as the number of
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classes) for each node in ¢/ in order to obtain the labels {g; } ¥
in (11).

B. EC Using KL Divergence

The utility function in (12) depends on the hard label decisions
of (7), but does not account for perturbations that do not lead to
changes in label predictions. To obtain utility functions that are
more sensitive to the soft GMRF model change, it is prudent to
measure how much the continuous distribution of the unknown
labels changes after sampling. Towards this goal, we consider
first the KL divergence between two pdfs p(x) and ¢(x), which
is defined as

L x n@ X = n—-:"
Dicr (plla) = /p( I =B [1 q(x)

For the special case where p(x) and ¢(x) are Gaussian with
identical covariance matrix C and corresponding means m,,
and m,, their KL divergence is expressible in closed form as

p(X)} .

1
5(m, — qu)TCi1 (m, —m,)

2

Upon recalling that 1);, defined over the unlabeled nodes is
Gaussian [cf. (2)], and since the Gaussian field obtained after
node v; € U is designated label y; is also Gaussian, we have

Py~ N(“Z[,/é  Lo)-

It thus follows that the KL divergence induced on the GMRF
after sampling y; is (cf. (13))

Di1(pllg) = (13)

(14)

1 .
Dice (5" |10 = 5 | (ke — b L (bt = page)
1 2T 1 2
= — (Y — 1) Luugi = Yi — hi)
2% ( ) 2gii (
(15)

where the second equality relied on (9), and the last equality
used the definition of g;;. The divergence in (15) can be also
interpreted as the normalized innovation of observation y;. Av-
eraging (15) over the candidate values of y; yields the expected
KL divergence of the GMREF utility as

Ukra(vi,£) :=Ey, 1y, [Drr(thy e |[b0)]
2 )
+ (i = —1lye) D ("~ |vby)

=p(yi = llyc)Drr(vy,

1 1
~ = |— i 1 1— i2
2[29”<u+ )1 )

# (1= 500+ D) -1

1
(- u2). (6)

2gii
Interestingly, the utility in (16) leads to a form of uncertainty
sampling, since (1 — p?) is a measure of uncertainty of the
model prediction for node v;, further normalized by g;;, which
is the variance of the Gaussian field (cf. [10]). Note also that the
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expected KL divergence in (16) also relates to the information
gain between {¢; };¢;4/ ;) and y;.

Albeit easy to compute since model retraining is not required,
Uk 1.¢ quantifies the impact of disclosing y; on the GMREF, but
not the labels {y; } e/ (i} themselves. To account for the labels
themselves, an alternative KL-based utility function could treat
{;}jeu—iy as Bernoulli variables [c.f. (6)]; that is

y; ~ Ber((p; +1)/2). (17

In that case, one would ideally be interested in obtaining the
expected KL divergence between the true posteriors, that is

Ey. v. [Prr 0(yulye, vi)llptyulye))] - (18)

Nevertheless, the joint pdfs of the labels are not available
by the GMRF model; in fact, any attempt at evaluating the
joint posteriors incurs exponential complexity as mentioned in
Section II. One way to bypass this limitation is by approximat-
ing the joint posterior p(yy|yz) with the product of marginal
posteriors [ [, p(y;|yc). since the later are readily given by
the GMREF. Using this independence assumption causes the joint
KL divergence in (18) to break down to the sum of marginal per-
unlabeled-node KL divergences. The resulting utility function
can be expressed as

Ukr(vi, £) =Y I(y;,u) (19)
jeu/{i}
where
I(y;, i) == By y, [Drr 0Wilyc, vi)llp(y;lyc)))
1 _
~ 5 (ki +1)Dr(y; Ny

1
+ (1 -5+ 1)) Drr(y"~ My 0)

since for univariate distributions the expected KL divergence
between the prior and posterior is equivalent to the mutual infor-
mation between the observed random variable and its unknown
label. Note also that the KL divergence between univariate dis-
tributions is simply

= H(y ", y;) —

where H(y “‘,yj) denotes the cross-entropy, which for
Bernoulli varlables is

Drcr(y; " Ily;) H(y;") (@D

1, o, 1
H(y " y) = =5 (17" + log 5 +1)
1, ., 1
_ { _ i(ﬂjﬂf + 1)] log {1 - 5(#;‘ + 1)]'
(22)

Combining (19)-(22) yields Uk 1. Intuitively, this utility pro-
motes the sampling of nodes that are expected to induce large
change on the model (cross-entropy between old and new distri-
butions), while at the same time increasing the “confidence” on
the model (negative entropy of updated distribution). Further-
more, the mutual-information-based expressions (19) and (20)
establish a connection to the information-based metrics in [14]
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and [28], giving an expected-model-change interpretation of the
entropy reduction method.

C. EC Without Model Retraining

In this section, we introduce two measures of model change
that do not require model retraining (cf. Remark 3), and hence
are attractive in their simplicity. Specifically, retraining (i.e.,
computing g, 1> Vi € U and Vy; € J) is not required if
per-node utility U (v, £/7!) can be given in closed-form as a
function of G;_1 and gy 1|1 Two such measures are ex-
plored here: one based on the sum of total variations that a new
sample inflicts on the (approximate) marginal distributions of
the unknown labels, and one based on the mean-square deviation
that a new sample is expected to inflict on the GMRF.

The rotal variation between two probability distributions p(z)
and ¢(z) over a finite alphabet X’ is

D=3 3 ble) -

zekX

Using the approximation in (6), the total variation between the
distribution of an unknown label y; and the same label yw’
after y; becomes available is

il + 11—

Sy " ;) = (Iu“” = (1= py)))

7= - (23)

= |u;

Consequently, the sum of total variations over all the unlabeled
nodes {Uj }jeu/[{i}] is

Aly " yu) =D 8y " yy) = gl — maeln
Jjeu
1
= —yi — willlgi
Gii

where the second equality follows by concatenating all total
variations (cf. (23)) in vector form, and the last one follows by
the GMRF update rule in (9). Finally, the expected sum of total
variations utility score-function is defined as

Ury (vi, £) :=Ey, )y, [A(yayz 7YZ,{)]

1

=K,y [lyi —wil]l —l&il
Gii
and since
Eyye i — will = p(yi = Lye)|1 — il
+p(y = —1ye)l =1 — il
~ 21— prf)

it follows that the utility function based on total variation can
be expressed as

2
Uy (vi, L) = ;(1 — )il (24)

(2
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The second measure is based on the mean-square deviation
(MSD) between two RV’s X; and X,
MSD (X1, X,) := / (X1 — X5)? f( X1, X5)dX dXs
—E [(X1 - XQ)Q} .
Our next proposed utility score is the expected MSD between

the Gaussian fields 1;, and w;y’ before and after obtaining y;;
that is,

Unisp(vi, £) = Ey, 1y, [MSD (5", 4y)]

1 yi=
~ (i + DMSD(" " )

(L= 3+ 0)MSDEE )

(25)
where
MSD (4", 4by) == E [[|l9p" — tpy|I*]
= 2tr(Lgl) + s — o3
x (i — o)l (26)

The second equality in (26) is derived in Appendix A2 under
the assumption that 1, and w; Y are independent random vec-
tors. Furthermore, the term 2tr(LaL1{) is ignored since it does
not depend on y;, and the final expression of (26) is obtained us-
ing (9). Finally, substituting (26) into (25) yields the following

closed-form expression of the MSD-based utility score function

Igi13

Unrsp (vi, £) o< (1= i) 7

27

Note that Ury and Uy, g p are proportional to the expected KL
divergence of the Gaussian field Uy ¢ in the previous section
since

Ury (vi, £) < Uk ra (vi, £)||gi |1 (28)

and

Unsp (vi, £) < Ug g (vi, £)||gi |2 (29)

with the norms ||g;||; and ||g;||> quantifying the average influ-
ence of the i—th node over the rest of the unlabeled nodes.

It is worth mentioning that our TV- and MSD-based meth-
ods relate to the X —optimality-based active learning [12]
and the variance minimization [10] correspondingly. This be-
comes apparent upon recalling that X —optimality and variance-
minimization utility score functions are respectively given by

2
UEfopt ('07) - M
Gii
and
2
SR 1.}

Gii
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Then, further inspection reveals that the metrics are related by

1
Urv (vi) o¢ —(1 — 1 )Us—ope (v1)

i

(30)
and correspondingly

1
Untsp (vi) o< — (1 = pZ)Uy ar (v3). €1V

In fact, Ury and Up;gp may be interpreted as data-driven
versions of Us._,,; and Uy j; that are enhanced with the uncer-
tainty term gi_i1 (1 — p2). On the one hand, Us _opt and Uy
are design-of-experiments-type methods that rely on ensemble
criteria and offer offline sampling schemes more suitable for
applications where the set £ of nodes may only be labeled as
a batch. On the other hand, Ury and Uy, gp are data-adaptive
sampling schemes that adjust to the specific realization of la-
bels, and are expected to outperform their batch counterparts
in general. This connection is established due to Uy y; (v;) and
Us,_opt (v;) being Iy and Iy ensemble loss metrics on the GMRF
(see equations 2.3 and 2.5 in [ 12]); similarly, MSD (mean square
deviation) and TV (total variation) are also /5 (on the GMRF
distribution) and [, (on the binary labels pmf) metrics of change.

Remark 4: While the proposed methods were developed for
binary classification, they can easily be modified to cope with
multiple classes using the one-vs-the-rest trick. Specifically, for
any set C of possible classes, it suffices to solve |C| binary
problems, each one focused on detecting the presence or absence
of a class. Consequently, the maximum among the GMRF means
uﬁ Ve € C reveals which class is the most likely for the i—th
node. In addition, the marginal posteriors are readily given by
normalizing the binary posteriors in (6), that is

41
el +1)

Using this approximation, the TV-based scheme can be gener-
alized to

UTV(Uz', ,C) x Z [1 — (/_J,Ep))Q} M (32)

ceC v

and similarly for the MSD-based scheme.

A summary of the five different methods that were consid-
ered in the context of the proposed EC-based active learning
framework is given in Table I.

D. Computational Complexity Analysis

The present section analyzes the computational complexity
of implementing the proposed adaptive sampling methods, as
well as that of other common adaptive and non-adaptive active
learning approaches on graphs. Complexity here refers to float-
point multiplications and is given in O(-) notation as function
of the number of nodes N, number of edges |£| and number of
classes |C|. Three types of computational tasks are considered
separately: computations that can be performed offline (e.g., ini-
tialization), computations required to update model after a new
node is observed (only for adaptive methods), and the complex-
ity of selecting a new node to sample (cf. eq. (8)).
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TABLE I
SUMMARY OF EC METHODS BASED ON DIFFERENT METRICS OF CHANGE

Method Change metric Retraining Utility function

FL # of flipped labels Yes Eq. (11) and (12)
- 1 2

KLG KL divergence of GMRF No o E(l —u7)

KL KL divergence of (Bernouli) discrete labels Yes Eq. (19) - (22)
2
MSD Mean-square deviation of GMRF No oc (1—pu?) %
vV Total variation of discrete labels No oc (1—p?) %

Let as begin with the “plain-vanilla” label propagation sce-
nario where nodes are randomly (or passively) sampled. In
that case, the online framework described in Algorithm 1 and
Section II.B is not necessary and the nodes can be classified of-
fline after collecting | £| samples and obtaining (5) for each class
in C. Exploiting the sparsity of the L, (5) can be approximated
via a Power-like iteration (see, e.g., [29]) with O(|€||C|) com-
plexity. Similarly to passive sampling, non-adaptive approaches
such as the variance-minimization (VM) in [10] and X-opt de-
sign in [12] can also be implemented offline. However, unlike
passive sampling, the non-adaptive sampling methods require
computation of Gy = (L + 6I)~!, which can be approximated
with O(|€]N') multiplications via the Jacobi method. The offline
complexity of VM and X-opt is dominated by the complexity
required to design the label set £ which is equivalent to |L]
iterations of Algorithm 1 using Uy s (v;) and Uy, _, (v;) corre-
spondingly. Thus, the total offline complexity of VM and X-opt
is O(|£|N?), while O(N?) memory is required to store and
process Gy.

In the context of adaptive methods, computational effi-
ciency largely depends on whether matrix G is used for
sampling and updating. Simple methods such as uncertainty
sampling based on minimum margin do not require G and
have soft labels updated after each new sample using itera-
tive label-propagation (see, e.g., [14]) with O(|€||C|) complex-
ity. Uncertainty-sampling-based criteria are also typically very
lightweight requiring for instance sorting class-wise the soft la-
bels of each node (O(log |C|N) per sample). While uncertainty-
based methods are faster and more scalable, their accuracy is
typically significantly lower than that of more sophisticated
methods that use G. Methods that use G such as the proposed
EC algorithms in Section III, the expected-error minimization
(EER) in [13], and the two-step approximation (TSA) algorithm
in [16] all require O(N?) to perform the update in (10). How-
ever, TSA and EER use retraining (cf. Remark 3) that incurs
complexity O(|C|> N?) to perform one sample selection; com-
puting the “expected error” requires fictitiously labeling every
unlabeled node, and re-computing the metric by treating the
fictitious label as the true label. More specifically, consider the
normalization of the binary posteriors that is required (similar
to the one discussed in Remark 4) in order to define a posterior
pmf over multiple classes (|C| > 2). Normalization entails |C|
divisions, and happens |C| times (once for every possible label
of an unlabeled node). This gives rise to a nested loop where
the outer loop repeats |C| times and the inner loop requires |C| N
computations, yielding a total complexity O(|C|> N) for com-

puting the expected error score for one node. Since these scores
have to be computed over all unlabeled nodes (in order to select
the best one), the overall complexity to obtain a sample accord-
ing to EER or TSA is O(|C|* N?). In contrast, the proposed
MSD and TV methods (cf. (24), (27)) only require O(|C|N)
for sampling. Note that the performance gap between EER and
TSA on the one hand, and TV and MSD on the other grows as
the number of classes |C| increases.

The complexity analysis is summarized in Table II and indi-
cates that the proposed retraining-free adaptive methods exhibit
lower overall complexity than EER and TSA. An important
modification is proposed in the ensuing section in order to deal
with the challenge of bias that is inherent to all data-adaptive
sampling schemes.

IV. PROMOTING EXPLORATION BY ADJUSTING
MODEL CONFIDENCE

It has been observed that active learning schemes may be-
come “myopic” [30], meaning that they become overly focus
on exploiting (focusing on) a small region of the sample space,
and neglect exploration. Uncertainty sampling in particular can
be prone to such behavior, due to the fact that it is more “my-
opic,” in the sense that it does not take into account the effect of a
potential sample on the generalization capabilities of the classi-
fier. Since the TV- and MSD-based utility score functions in (24)
and (26) are influenced by the uncertainty factor (1 — p?), it is
important to mitigate this effect before testing the performance
of the proposed approaches.

Let us begin by observing that most active learning methods,
including those based on EC we introduced here, are based on
utility score functions that take the general form

U(vi, £) = By, 1y, [Clyir £)] 33)

where C(y;, £) is any metric that evaluates the effect of node
v; on the model, given that its label is y;. Using the existing
probability model to predict how the model itself will change,
induces “myopic” behavior especially in the early stages of the
sampling process when the inferred model is most likely far
from the true distribution.

One possible means of reducing bias is by complementing
greedy active learning strategies with random sampling. That
is, instead of selecting the index k; of the node to be sampled at
the ¢t—th iteration according to (8), one can opt for a two-branch
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TABLE II
COMPUTATIONAL AND MEMORY COMPLEXITY OF VARIOUS METHODS

Offline Sampling Update Memory
Random O(|€]|cl) * * O(|€] + N|c|)
VM [10], X-opt [12] O(|L|N?) s * O(N?)
Uncertainty (min. margin) * O(log|CIN) | O(€lIC]) | Ol + N|C))
EER [9], TSA [16] O(IEIN) | O(|Cc|>N?) O(N?) O(N?)
FL O(EIN) | o(cin?) | ow?) O(N?)
TV, MSD O(|E|N) O(|C|N) O(N?) O(N?)
hybrid rule score function
_ {arg maXjeg Ulvi, £71), wep. (1—7) (34) Unsp (v, £ya0) o< Jag + (1= a) (1 — pif)] w (37)
C \Unif{1,.. L), wp. Ji

where 7' is the probability that at iteration ¢ the sampling strat-
egy switches to uniform random sampling over the unlabeled
nodes. Naturally, one should generally select a sequence {7’}
such that 7 — 0 as ¢ increases the model becomes more ac-
curate. Upon testing the simple heuristic in (34) we observed
that it can significantly improve the performance of the more
“myopic” active sampling strategies. Specifically, uncertainty
sampling which relies purely on exploitation can be greatly en-
hanced by completing it with the exploration queries introduced
by (34).

Another option is to sample nodes that maximize the mini-
mum over all possible labels change. That is, instead of (33) one
can adopt utility scores of the general form

U(Ui7 ‘C) =

min  C(y;, £). (35

yie{-1,1}
Albeit intuitive, (34) is not as appropriate for promoting explo-
ration in more sophisticated strategies such as the ones presented
in this work, because it does not account for the graph structure,
and it is somewhat aggressive in assuming that with probability
7t the model is completely uninformative. For similar reasons,
(35) also does not produce satisfactory results.

In the present section, we introduce a “softer” heuristic that
is better tailored to the sampling strategies at hand. The main
idea is to implement U (v;, £) in (33) using a different set of
probabilities than the ones provided by the model (cf. (6)).
Specifically, we suggest to use label predictions that are closer
to a “non-informative” prior early on, and gradually converge
to the ones provided by the trained model as our confidence on
the latter increases. Thus, instead of taking the expectation in
(33) over p (y;|y ), one may instead use a convex combination
of the latter and a node prior 7(y; ), that is

PWilye; ar) = aum(yi) + (1 — a)p (yilye) — (36)
where 0 < oy <1 is a constant that quantifies the confidence
on the current estimate of the posterior. If no prior is avail-
able, one may simply use 7(y; = 1) = 7(y; = —1) = 1/2. In-
tuitively pleasing results were obtained when combining (36)
with EC methods. For instance, combining (36) with our pro-
posed TV method yields the following modified MSD utility

where a; tunes the sensitivity of the sampling process to the
uncertainty metric (1 — ;7). As more samples become avail-
able, the confidence that the current estimate of the posterior is
close to the true distribution may increase. Thus, instead of us-
ing a constant « throughout the sampling process, one may use
a sequence {c; }I_,, where t is the iteration index, T the total
number of samples, and a; is inversely proportional to t. Finally,
note that by setting oy = 1V¢ the uncertainty terms vanish with
MSD and TV becoming non-adaptive.

V. EXPERIMENTAL RESULTS

The present section includes numerical experiments carried to
assess the performance of the proposed methods in terms of pre-
diction accuracy. Specifically, the ensuing subsections present
plots of accuracy

Z 1{’!7:1:3/1'}

el

1
Accuracy ]
as a function of the number of nodes sampled by the GMRF-
based active learning algorithms (cf. Algorithm 1). We compare
the proposed methods (number of flips (FL), KL divergence,
MSD, sum of TVs) with the variance minimization (VM) [10],
Y —optimality [12], expected error minimization (EER) [13],
and two-step approximation method (TSA) [16]. Furthermore,
we compare with the minimum-margin uncertainty sampling
(UNC) scheme that samples the node with smallest difference
between the largest soft labels, which is equivalent to using
the utility function Uy y ¢ (v;, £) 1= — \uﬁ."l) — MECZ) |, where ¢;
and ¢ is the most-probable and second-most probable class for
node v; correspondingly. Finally, all methods are compared to
the predictions that are given by the GMRF method used here
(cf. (2)—(7)) with nodes sampled randomly (passive learning).
For all graph tested the prediction accuracy remained high for
a large range of § € [0.1,0.001] with the exact value tuned for
every graph in order to maximize accuracy for passive (random)
sampling.

A. Synthetic Graphs

Following [16], we first considered a 10 x 10 rectangular grid
similar to the one in Fig. 1, where each node is connected to
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L
Fig. 1. Rectangular grid synthetic graph with two separate class 1 regions.
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Fig. 2. Adjacency matrix of LFR graph with 1,000 nodes and 3 classes.
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Fig. 3. Test results for synthetic grid in Fig. 1.

four neighboring nodes. Red dots correspond to nodes belong-
ing to class 1, and uncolored intersections correspond to nodes
belonging to class — 1. To make the classification task more chal-
lenging, the class 1 region was separated into two 3 X 3 squares
(upper left and lower right) and additional class 1 nodes were
added w.p. 0.5 along the dividing lines. Plotted in Fig. 3 is the
accuracy-vs-number of samples performance averaged over 50
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Fig. 4.  Test results for synthetic LFR graph in Fig. 2.

Monte Carlo runs. As expected, most algorithms outperform
random sampling. In addition, one observes that purely ex-
ploratory non-adaptive methods (VM and > —optimality) enjoy
relatively high accuracy for a small number of samples, but
are eventually surpassed by adaptive methods. It can also be
observed that the novel TV method with a; = t~'/2 performs
equally well to the state-of-the-art TSA method. Interestingly, it
does so while using a much simpler criterion that avoids model
retraining, and therefore requires significantly shorter runtime.
Note finally that the performance of ERR is poor because the
sampler easily becomes “trapped” in one of the two class 1
regions, and does not explore the graph.

The purpose of the experiment in Fig. 1 was to simulate
problems where a complex label distribution appears on a simple
uniform graph (e.g., image segmentation). To simulate more
structured graphs, we generated a 1000-node network using
the Lancichinetti—-Fortunato—Radicchi (LFR) method [31]. The
LFR algorithm is widely used to generate benchmark graphs
that resemble real world networks by exhibiting community
structure and degree distributions that follow the power law.
Figure 2 reveals the sparsity pattern of the adjacency matrix of
the LFR graph that was used, while the 3 clearly visible clusters
correspond to groups of nodes in the same class, that is

1, ie[1,250]
yi =142, i€ [251,600]
3, i€ [601,1000]

Note that, unlike the one in Fig. 1, the graph used here is charac-
terized by a community structure that matches the nodes labels.
This is a highly favorable scenario for the non-adaptive VM and
Y-opt approaches that rely solely on the graph structure. Indeed,
as seen in Fig. 4, VM and X-opt quickly reach 90% accuracy
by selecting 5 most influential samples. Nevertheless, between
5 and 10 samples our proposed MSD and TV adaptive methods
enjoy superior accuracy before converging to 100% accuracy.

B. Similarity Graphs From Real Datasets

Real binary classification datasets taken from the UC Irvine
Machine Learning Repository [32] and the LibSVM webpage
[33] were used for further testing of the proposed methods. First,
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TABLE III
DATASET LIST
Dataset # of nodes | Baseline Accuracy
Coloncancer 62 0.64
Tonosphere 351 0.64
Leukemia 70 0.65
Australian 690 0.55
Parkinsons 191 0.75
Ecoli 326 0.57
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Fig. 5. Coloncancer dataset.

each entry of the feature vectors was normalized to lie between
—1 and 1. Then, a graph was constructed using the Pearson cor-
relations among pairs of normalized feature vectors as weights
of the adjacency matrix W thresholding was also applied to
negative and small weights leading to sparse adjacency matri-
ces. It was observed that sparsification generally improves the
prediction accuracy, while also reducing the computational bur-
den. In the presented experiments, thresholds were tuned until
one of the methods achieved the highest possible classification
accuracy.

Having constructed the graphs, the proposed expected model
change sampling schemes were compared with UNC, TSA,
EER, VM and Y —optimality on seven real datasets listed in
Table III; in the latter, “baseline accuracy” refers to the propor-
tion of the largest class in each dataset, and thus the highest
accuracy that can be achieved by naively assuming that all la-
bels belong to the majority class. Plotted in Figs. 5 to 11 are
the results of the numerical tests, where it is seen that the per-
formance of the proposed low-complexity TV- and MSD-based
scheme is comparable or superior to that of competing alterna-
tives. The confidence parameter was set to a; = 1/+/¢ for the
smaller datasets, where only few data were sampled, and the
model was expected to be less accurate, whereas for the larger
ones it was set to a; = 0.

C. Real Graphs

Experiments were also performed on real labeled graphs.
Specifically, the CORA and CITESEER [34] citation networks
with 2708 and 3312 nodes correspondingly were used; simi-
larly to [12], we isolated the largest connected components. In
citation networks, each node corresponds to a scientific pub-
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Fig. 8. Australian dataset.

lication and is linked only with cited or citing papers. Nodal
labels correspond to the scientific field that each paper belongs
to (6 classes for CITESEER and 7 for CORA). Lately, CORA
and CITESEER have been used as benchmarks for graph con-
volutional neural networks (GCNSs) [35], as well as for classifi-
cation based on node embeddings (Planetoid-G) [36]. For this
reason, together with the GMRF-based passive (random) sam-
pling benchmark, we also use GCNs and Planetoid-G as passive
benchmarks. Note that the latter two methods require validation
samples for early stopping during training, while GMRF does
not. In order to proceed with comparisons, a set of validation
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CITESEER citation network.
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Fig. 11. CORA citation network.

samples was given to GCN and Planetoid-G equal in size to the
training set. The benchmark political-blog network [37] with
1490 nodes and two classes was also used. The confidence
sequence a; = ¢t~/ was used for all graphs, with § = 0.005
similarly to [11]. The results of the experiments are depicted in
Figs. 11-13 and demonstrate the effectiveness of the proposed
MSD and TV algorithms on these social graphs. For the CORA
network, TV achieves state of the art performance equal to EER,
TSA and Y-opt, while for the CITESEER network its accuracy
slightly surpasses that of competing methods. Note that for both

0.9
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Fig. 13.  Political blogs network.
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Fig. 14.  Relative runtime of different adaptive methods for experiments on

real social graphs.

citation networks and given randomly selected samples, the per-
formance of GCNs and Planetoid-G barely reaches that of the
simple GMREF classifier. This is mostly attributed to the latter be-
ing more suitable for the graph-only setting that we are dealing
with here, whereas the former mostly exploit node features that
are available for citation networks (bag-of-words description
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of abstracts). For the political-blogs network, non-adaptive TV
and Y-opt methods perform poorly, while the proposed MSD
method performs at least as good as the significantly more com-
plex TSA. The bar plot in Fig. 14 depicts the relative runtimes
of different adaptive methods. Observe that MSD and TV are
two orders of magnitude faster than EER and TSA for the larger
multilabel citation graphs, and one order of magnitude faster for
the smallest binary-labeled political blogs network.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper unified existing and developed novel utility func-
tions for data-adaptive graph-cognizant active classification us-
ing GMRFs. These utility functions rely on metrics that capture
expected changes in GMRF models. Specifically, the proposed
samplers query the node that is expected to inflict the largest
change on the model. Towards this direction, several measures
of expected model change were introduced, sharing similari-
ties and connections with existing methods such as uncertainty
sampling, variance minimization, and sampling based on the
Y —optimality criterion. A simple yet effective heuristic was
also introduced for increasing the exploration capabilities and
reducing bias of the proposed methods, by taking into account
the confidence on the model label predictions. Numerical tests
using synthetic and real data confirm that the proposed methods
achieve accuracy that is comparable or superior to state of the
art at smaller runtime.

Future research directions will focus on developing even more
efficient adaptive sampling schemes for graphs by finding the
sweet spot of how a given graph structure attains the desir-
able exploration versus exploitation trade-off. Furthermore, our
research agenda includes developing adaptive sampling meth-
ods tailored for Markov-chain-Monte-Carlo-based and random-
walk-based inference on graphs.

APPENDIX

Al. Since C! = L and upon partitioning the two matrices
according to labeled and unlabeled nodes, we have

Ty

(38)
0 Iy

{Luu LM] [Cuu Cuﬁ] _
Ly Lee | [ Cou Crc

which gives rise to four matrix equations. Specifically, the equa-
tion that corresponds to the upper right part of (38) is
Lo Cuyr + LycCre = 0. (39)
Multiplying (39) from the left by Lz;zlx and from the right by
CZ} yields CuECZE = —L;lllLug, which verifies (4).
A2. Let x; ~ N(mp, C) and x5 ~ N (my, C), and assume
that x; and x9 are uncorrelated. Then,

MSD(x1,x2) :=E [||X1 - X2||§]

=E [[lx1 13 + l[x2]3 — 2x{ xo] (40)
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where
E [[x:[3] =E [(x1 —my) 4+ my 3]

= E “|X1 — m1||§] + 2E [(Xl — ml)Tml]

+ [y [[3
= tr (C) + [[my |3 (41)
and similarly for E [||x,||3]. Finally, note that
E [(x; —m)" (xo — my)] =E[x{xs — x{ my
—mj x5 + mj m,|
=E[x{x] —mimy, (42)

and since x; and x5 are uncorrelated it follows that (42) equals
to 0; hence,

E [xlTxQ] =m! my. (43)

Substituting (41) and (43) into (40) yields
MSD(x1,%2) = 2tr(C) + [lmy |3 + [m2f3 — 2m] m,
= 2tr(C) + [y — mylf3

which implies that the MSD between two Gaussian fields with
the same covariance matrix is proportional to the Euclidean
norm of the difference of their means.
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