
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 19, OCTOBER 1, 2018 5167

Data-Adaptive Active Sampling for Efficient

Graph-Cognizant Classification
Dimitris Berberidis , Student Member, IEEE, and Georgios B. Giannakis , Fellow, IEEE

Abstract—This paper deals with active sampling of graph nodes
representing training data for binary classification. The graph may
be given or constructed using similarity measures among nodal fea-
tures. Leveraging the graph for classification builds on the premise
that labels across neighboring nodes are correlated according to
a categorical Markov random field (MRF). This model is fur-
ther relaxed to a Gaussian (G)MRF with labels taking continuous
values—an approximation that not only mitigates the combina-
torial complexity of the categorical model, but also offers optimal
unbiased soft predictors of the unlabeled nodes. The proposed sam-
pling strategy is based on querying the node whose label disclosure
is expected to inflict the largest change on the GMRF, and in this
sense it is the most informative on average. Connections are estab-
lished to other sampling methods including uncertainty sampling,
variance minimization, and sampling based on the Σ-optimality
criterion. A simple yet effective heuristic is also introduced for in-
creasing the exploration capabilities of the sampler, and reducing
bias of the resultant classifier, by adjusting the confidence on the
model label predictions. The novel sampling strategies are based on
quantities that are readily available without the need for model re-
training, rendering them computationally efficient and scalable to
large graphs. Numerical tests using synthetic and real data demon-
strate that the proposed methods achieve accuracy that is compa-
rable or superior to the state of the art even at reduced runtime.

Index Terms—Active learning, classification, expected change,
graph-based.

I. INTRODUCTION

A
CTIVE learning has recently gained popularity for vari-

ous applications ranging from bioinformatics [1] to dis-

tributed signal classification and estimation [2]. In contrast

to traditional passive supervised and semi-supervised learning

methods, where classifiers are trained using given or randomly

drawn labeled data, active learning allows for judiciously select-

ing which data are to be queried and added to the training set.

Thus, a typical active learner begins with a small labeled set,

and proceeds to select one or more informative query instances

from a large unlabeled pool. Active learning yields markedly
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improved classification accuracy over passive or random

sampling when the number of training labels is fixed [3]–[6]. It

can be particularly appealing when unlabeled data (instances)

are readily available, but obtaining training labels is expensive.

For instance, a classifier trained to predict the presence of cancer

based on certain protein attributes requires labels that involve

costly and time-consuming medical examinations; see e.g., [1].

Even intuitively, one expects active sampling to outperform

random sampling when (un)labeled instances are correlated.

Such a case emerges with graph-aware classification, where each

instance is denoted by a node, while edges capture correlation

among connected nodes. Although graphs may arise naturally in

certain applications (e.g. social and citation networks), they can

in general be constructed from any set of nodal feature vectors

using proper similarity measures; see e.g., [7], [8]. Knowing

the graph topology, graph-cognizant classification boils down

to propagating the information from labeled nodes to unlabeled

ones through edges of neighboring nodes; see e.g., [9]. As a

result, classification on graphs is inherently semi-supervised

and thus conducive to active learning.

Prior art in graph-based active learning can be divided in

two categories. The first includes the non-adaptive design-of-

experiments-type methods, where sampling strategies are de-

signed offline depending only on the graph structure, based on

ensemble optimality criteria. The non-adaptive category also

includes the variance minimization sampling [10], as well as

the error upper bound minimization in [11], and the data non-

adaptive Σ-optimality approach in [12]. The second category

includes methods that select samples adaptively and jointly with

the classification process, taking into account both graph struc-

ture as well as previously obtained labels. Such data-adaptive

methods give rise to sampling schemes that are not optimal on

average, but adapt to a given realization of labels on the graph.

Adaptive methods include the Bayesian risk minimization [13],

the information gain maximization [14], as well as the manifold

preserving method of [15]; see also [16]–[18]. Finally, related

works deal with selective sampling of nodes that arrive sequen-

tially in a gradually augmented graph [19]–[21], as well as active

sampling to infer the graph structure [22], [23].

In this context, the present work develops data-adaptive pool

based active samplers for graph-aware classification. The pro-

posed sampling strategy relies on querying the node that is

expected to inflict the largest change on the underlying label

correlation model. Albeit in different context, a related crite-

rion was adopted for semantic segmentation of images [24],

and for regression of Gaussian processes [25]. The proposed
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approach here advocates novel metrics of expected model

change, establishing connections to existing methods such as un-

certainty sampling, variance minimization and sampling based

on the Σ−optimality criterion. A simple yet effective heuristic

is also introduced for improving the exploration capabilities,

and for reducing the bias of the resultant classifiers, by taking

into account the confidence on the model label predictions.

The rest of the paper is organized as follows. Section II states

the problem, and presents the GMRF model adopted to approxi-

mate the marginal distributions of the unknown categorical node

labels. Section III develops active learning methods based on

different measures of change, and establishes links to existing

sampling schemes. Section IV points out the issue of sampling

bias, and mitigates it by incorporating a confidence metric on

the underlying model. Finally, Section V presents numerical

experiments on real and synthetic datasets.

Notation: Lower- (upper-) case boldface letters denote col-

umn vectors (matrices). Calligraphic symbols are reserved for

sets, while T stands for transposition. Vectors 0, 1, and en de-

note the all-zeros, the all-ones, and the n-th canonical vector,

respectively. Symbol 1E denotes the indicator for the event E.

Notation N (m,C) stands for the multivariate Gaussian distri-

bution with mean m and covariance matrix C, while tr(X),
λmin(X), and λmax(X) are reserved for the trace, the minimum

and maximum eigenvalues of matrix X, respectively. Symbol

[x]i denotes the i−th entry of vector x.

II. MODELING AND PROBLEM STATEMENT

Consider a connected undirected graph G = {V, E}, where

V is the set of N nodes, and E contains the edges that are

also represented by the N × N weighted adjacency matrix

W whose (i, j)−th entry denotes the weight of the edge that

connects nodes vi and vj . Let us further suppose that a bi-

nary label yi ∈ {−1, 1} is associated with each node vi . The

weighted binary labeled graph can either be given, or, it can

be inferred from a set of N data points {xi , yi}N
i=1 such that

each node of the graph corresponds to a data point. Matrix

W can be obtained from the feature vectors {xi}N
i=1 using

different similarity measures. For example, one may use the

radial basis function wi,j = exp
(

−‖xi − xj‖2
2/σ2

)

that as-

signs large edge weights to pairs of points that are neigh-

bors in Euclidean space, or the Pearson correlation coefficients

wi,j = 〈xi ,xj 〉/ (‖xi‖2‖xj‖2) . If wi,j �= 0∀i, j, the resulting

graph will be fully connected, but one may obtain a more struc-

tured graph by rounding small weights to 0.

Having embedded the data on a graph, semi-supervised learn-

ing amounts to propagating an observed subset of labels to

the rest of the network. Thus, upon observing {yi}i∈L where

L ⊆ V , henceforth collected in the |L| × 1 vector yL, the goal

is to infer the labels of the unlabeled nodes {yi}i∈U concate-

nated in the vector yU , where U := V/L. Let us consider labels

as random variables that follow an unknown joint distribution

(y1 , y2 , . . . , yN ) ∼ p(y1 , y2 , . . . , yN ), or y ∼ p(y) for brevity.

For the purpose of inferring unobserved from observed labels,

it would suffice if the joint posterior distribution p (yU |yL) were

available; then, yU could be obtained as a combination of labels

that maximizes p (yU |yL). Moreover, obtaining the marginal

posterior distributions p (yi |yL) of each unlabeled node i is

often of interest, especially in the present greedy active sampling

approach. To this end, it is well documented that MRFs are

suitable for modeling probability mass functions over undirected

graphs using the generic form, see e.g., [13]

p(y) :=
1

Zβ
exp

(

−β

2
Φ(y)

)

(1a)

where the “partition function” Zβ ensures that (1a) integrates to

1, β is a scalar that controls the smoothness of p(y), and Φ(y)
is the so termed “energy” of a realization y, given by

Φ(y) :=
1

2

∑

i,j∈V
wi,j (yi − yj )

2 = yT Ly (1b)

that captures the graph-induced label dependencies through the

graph Laplacian matrix L := D − W with D := diag(W1).
This categorical MRF model in (1a) naturally incorporates the

known graph structure (through L) in the label distribution

by assuming label configurations where nearby labels (large

edge weights) are similar, and have lower energy as well as

higher likelihood. Still, finding the joint and marginal poste-

riors using (1a) and (1b) incurs exponential complexity since

yU ∈ {−1, 1}|U|. To deal with this challenge, less complex

continuous-valued models are well motivated for a scalable

approximation of the marginal posteriors. This prompts our

next step to allow for continuous-valued label configurations

ψU ∈ R
|U| that are modeled by a GMRF.

A. GMRF Relaxation

Consider approximating the binary field y ∈ {−1, 1}|U| that

is distributed according to (1a) with the continuous-valued

ψ ∼ N (0,C), where the covariance matrix satisfies C−1 = L.

Label propagation under this relaxed GMRF model becomes

readily available in closed form. Indeed, ψU|L of unlabeled

nodes conditioned on the labeled ones obeys

ψU|L ∼ N (µU|L,L−1
UU ) (2)

where LUU is the part of the graph Laplacian that corresponds

to unlabeled nodes in the partitioning

L =

[

LUU LUL
LLU LLL

]

. (3)

Given the observed ψL, the minimum mean-square error

(MMSE) estimator of ψU is given by the conditional expec-

tation

µU|L = CULC
−1
LLψL

= −L−1
UULULψL (4)

where the first equality holds because for jointly Gaussian zero-

mean vectors the MMSE estimator coincides with the linear

(L)MMSE one (see e.g., [26, p. 382]), while the second equality

is derived in Appendix A1. When binary labels yL are obtained,

they can be treated as measurements of the continuous field
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(ψL := yL), and (4) reduces to

µU|L = −L−1
UULULyL. (5)

Interestingly, the conditional mean of the GMRF in (5) may

serve as an approximation of the marginal posteriors of the

unknown labels. Specifically, for the i−th node, we adopt the

approximation

p (yi = 1|yL) =
1

2

(

E
[[

yU|L]i
]

+ 1
)

≈ 1

2

(

E
[[

ψU|L
]

i

]

+ 1
)

=
1

2

([

µU|L
]

i
+ 1

)

(6)

where the first equality follows from the fact that the expectation

of a Bernoulli random variable equals its probability. Given

the approximation of p (yi |yL) in (6), and the uninformative

prior p(yi = 1) = 0.5∀i ∈ V , the maximum a posteriori (MAP)

estimate of yi , which in the Gaussian case here reduces to the

minimum distance decision rule, is given as

ŷi =

{

1
[

µU|L
]

i
> 0

−1 else
, ∀i ∈ U (7)

thus completing the propagation of the observed yL to the un-

labeled nodes of the graph.

It is worth stressing at this point, that as the set of labeled

samples changes, so does the dimensionality of the conditional

mean in (5), along with the “auto-” and “cross-” Laplacian sub-

matrices that enable soft label propagation via (5), and hard

label propagation through (7). Two remarks are now in order.

Remark 1: It is well known that the Laplacian of a graph is

not invertible, since L1 = 0; see, e.g. [27]. To deal with this

issue, we instead use L + δI, where δ � 1 is selected arbitrar-

ily small but large enough to guarantee the numerical stabil-

ity of e.g., LUU in (5). A closer look at the energy function

Φ(y) :=
∑

i,j∈V wi,j (yi − yj )
2 + δ

∑

i∈V y2
i reveals that this

simple modification amounts to adding a “self-loop” of weight

δ to each node of the graph. Alternatively, δ can be viewed as

a regularizer that “pushes” the entries of the Gaussian field ψU
closer to 0, which also causes the (approximated) marginal pos-

teriors p(yi |yL) to be closer to 0.5 (cf. eq. (6)). In that sense, δ
enforces the priors p(yi = 1) = p(yi = −1) = 0.5.

Remark 2: The method introduced here for label propagation

(cf. (5)) is algorithmically similar to the one reported in [13].

The main differences are: i) we perform soft label propagation

by minimizing the mean-square prediction error of unlabeled

from labeled samples; and ii) our model approximates {−1, 1}
labels with a zero-mean Gaussian field, while the model in [13]

approximates {0, 1} labels also with a zero-mean Gaussian field

(instead of one centered at 0.5). Apparently, [13] treats the two

classes differently since it exhibits a bias towards class 0; thus,

simply denoting class 0 as class 1 yields different marginal

posteriors and classification results. In contrast, our model is

bias-free and treats the two classes equally.

Algorithm 1: Active Graph Sampling Algorithm.

Input: Adjacency matrix W, δ � 1

Initialize: U0 = V , L0 = ∅, µ = 0,G0 = (L + δI)−1

First query is chosen at random

for t = 1 : T do

Scan U t−1 to find best query node vk t
as in (8)

Obtain label yk t
of vk t

Update the GMRF mean as in (9)

Update Gt as in (10)

U t = U t−1/{kt}, Lt = Lt−1 ∪ {kt}
end for

Predict remaining unlabeled nodes as in (7)

B. Active Sampling With GMRFs

In passive learning, L is either chosen at random, or, it is

determined a priori. In our pool based active learning setup, the

learner can examine a set of instances (nodes in the context of

graph-cognizant classification), and can choose which instances

to label. Given its cardinality |L|, one way to approximate the

exponentially complex task of selecting L is to greedily sample

one node per iteration t with index

kt = arg max
i∈U t−1

U(vi ,Lt−1) (8)

where U t−1 is the unlabeled set at time t − 1, and U(v,Lt−1)
is a utility function that evaluates how informative node v is

while taking into account information already available in Lt−1 .

Upon disclosing label yk t
, it can be shown that instead of re-

solving (5), the GMRF mean can be updated recursively using

the “dongle node” trick in [13] as

µ
+yk t

U t−1 |Lt−1 = µU t−1 |Lt−1 +
1

gk t k t

(yk t
− [µU t−1 |Lt−1 ]k t

)gk t

(9)

where µ
+yk t

U t−1 |Lt−1 is the conditional mean of the unlabeled nodes

when node vk t
is assigned label yk t

(thus “gravitating” the

GMRF mean [µU t−1 |Lt−1 ]k t
toward its replacement yk t

); vec-

tor gk t
:= [L−1

U t−1 U t−1 ]:k t
and scalar gk t k t

:= [L−1
U t−1 U t−1 ]k t k t

are

the kt−th column and diagonal entry of the Laplacian inverse,

respectively. Subsequently, the new conditional mean vector

µU t |Lt defined over U t is given by removing the i−th entry of

µ+y i

U t−1 |Lt−1 . Using Shur’s lemma it can be shown that the inverse

Laplacian G
−k t
t when the kt−th node is removed from the un-

labeled sub-graph can be efficiently updated from Gt := L−1
U t U t

as [12]
[

G
−k t
t 0

0T 0

]

= Gt −
1

gk t k t

gk t
gT

k t
(10)

which requires only O(|U|2) computations instead of O(|U|3)
for matrix inversion. Alternatively, one may obtain G

−k t
t by

applying the matrix inversion lemma employed by the RLS-like

solver in [13]. The resultant greedy active sampling scheme for

graphs is summarized in Algorithm 1.

Remark 3: Existing data-adaptive sampling schemes, e.g.,

[13], [16], [14], often require model-retraining by examining
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candidate labels per unlabeled node (cf. (8)). Thus, even

when retraining is efficient, it still needs to be performed

|U| × #Classes times per iteration of Algorithm 1, which in

practice significantly increases runtime, especially for larger

graphs.

In summary, different sampling strategies emerge by select-

ing distinct utilities U(v,Lt−1) in (8). In this context, the goal

of the present work is to develop novel active learning schemes

within a maximum-expected change framework that achieve

high accuracy with a small number of samples. A further desir-

able attribute of the sought approach is to bypass the need for

GMRF retraining.

III. EXPECTED MODEL CHANGE

Judiciously selecting the utility function is of paramount im-

portance in designing an efficient active sampling algorithm.

In the present work, we introduce and investigate the relative

merits of different choices under the prism of expected change

(EC) measures that we advocate as information-revealing utility

functions. From a high-level vantage point, the idea is to iden-

tify and sample nodes of the graph that are expected to have the

greatest impact on the available GMRF model of the unknown

labels. Thus, contrary to the expected error reduction and en-

tropy minimization approaches that actively sample with the

goal of increasing the “confidence” on the model, our focus is

on effecting maximum perturbation of the model with each node

sampled. The intuition behind our approach is that by sampling

nodes with large impact, one may take faster steps towards an

increasingly accurate model.

A. EC of Model Predictions

An intuitive measure of expected model change for a given

node vi is the expected number of unlabeled nodes whose label

prediction will change after sampling the label of vi . To start,

consider per node i the measure

F (yi ,µU|L) :=
∑

j∈U−{i}
1{ŷ+ y i

j �= ŷ j } (11)

where ŷ+y i

j is the predicted label for the j−th node after the

label of the i−th node is revealed, denoting the number of such

“flips” in the predicted labels of (7). For notational brevity,

we henceforth let µi = [µU|L]i . The corresponding utility

function is

UF L (vi ,L) := Ey i |yL

[

F (yi ,µU|L)
]

= p(yi = 1|yL)F (yi = 1,µU|L)

+ p(yi = −1|yL)F (yi = −1,µU|L)

≈ 1

2
(µi + 1)F (yi = 1,µU|L)

+

(

1 − 1

2
(µi + 1)

)

F (yi = −1,µU|L) (12)

where the approximation is because (6) was used in place of

p(yi = 1|yL). Note that model retraining using (9) is required

to be performed twice (in general, as many as the number of

classes) for each node in U in order to obtain the labels {ŷj}+y i

in (11).

B. EC Using KL Divergence

The utility function in (12) depends on the hard label decisions

of (7), but does not account for perturbations that do not lead to

changes in label predictions. To obtain utility functions that are

more sensitive to the soft GMRF model change, it is prudent to

measure how much the continuous distribution of the unknown

labels changes after sampling. Towards this goal, we consider

first the KL divergence between two pdfs p(x) and q(x), which

is defined as

DK L (p||q) :=

∫

p(x) ln
p(x)

q(x)
dx = Ep

[

ln
p(x)

q(x)

]

.

For the special case where p(x) and q(x) are Gaussian with

identical covariance matrix C and corresponding means mp

and mq , their KL divergence is expressible in closed form as

DK L (p||q) =
1

2
(mp − mq )

T C−1(mp − mq ) (13)

Upon recalling that ψU defined over the unlabeled nodes is

Gaussian [cf. (2)], and since the Gaussian field obtained after

node vi ∈ U is designated label yi is also Gaussian, we have

ψ
+y i

U ∼ N (µ+y i

U|L ,L−1
UU ). (14)

It thus follows that the KL divergence induced on the GMRF

after sampling yi is (cf. (13))

DKL (ψ+y i

U ||ψU) =
1

2

[

(µ+y i

U|L − µU|L)T LUU (µ+y i

U|L − µU|L)
]

=
1

2g2
ii

(yi − µi)
2gT

i LUUgi =
1

2gii
(yi − µi)

2

(15)

where the second equality relied on (9), and the last equality

used the definition of gii . The divergence in (15) can be also

interpreted as the normalized innovation of observation yi . Av-

eraging (15) over the candidate values of yi yields the expected

KL divergence of the GMRF utility as

UK LG (vi ,L) := Ey i |yL

[

DK L (ψ+y i

U ||ψU )
]

= p(yi = 1|yL)DK L (ψ+y i =1
U ||ψU )

+ p(yi = −1|yL)DK L (ψ+y i =−1
U ||ψU )

≈ 1

2

[

1

2gii
(µi + 1)(1 − µi)

2

+

(

1 − 1

2
(µi + 1)

)

1

gii
(−1 − µi)

2

]

=
1

2gii
(1 − µ2

i ). (16)

Interestingly, the utility in (16) leads to a form of uncertainty

sampling, since (1 − µ2
i ) is a measure of uncertainty of the

model prediction for node vi , further normalized by gii , which

is the variance of the Gaussian field (cf. [10]). Note also that the
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expected KL divergence in (16) also relates to the information

gain between {ψj}j∈U/{i} and yi .

Albeit easy to compute since model retraining is not required,

UK LG quantifies the impact of disclosing yi on the GMRF, but

not the labels {yj}j∈U/{i} themselves. To account for the labels

themselves, an alternative KL-based utility function could treat

{yj}j∈U−{i} as Bernoulli variables [c.f. (6)]; that is

yj ∼ Ber((µj + 1)/2). (17)

In that case, one would ideally be interested in obtaining the

expected KL divergence between the true posteriors, that is

Ey i |yL [DK L (p(yU |yL, yi)||p(yU |yL))] . (18)

Nevertheless, the joint pdfs of the labels are not available

by the GMRF model; in fact, any attempt at evaluating the

joint posteriors incurs exponential complexity as mentioned in

Section II. One way to bypass this limitation is by approximat-

ing the joint posterior p(yU |yL) with the product of marginal

posteriors
∏

j∈U p(yj |yL), since the later are readily given by

the GMRF. Using this independence assumption causes the joint

KL divergence in (18) to break down to the sum of marginal per-

unlabeled-node KL divergences. The resulting utility function

can be expressed as

UK L (vi ,L) :=
∑

j∈U/{i}
I(yj , yi) (19)

where

I(yj , yi) := Ey i |yL [DK L (p(yj |yL, yi)||p(yj |yL))]

≈ 1

2
(µi + 1)DK L (y+y i =1

j ||yj )

+

(

1 − 1

2
(µi + 1)

)

DK L (y+y i =−1
j ||yj ) (20)

since for univariate distributions the expected KL divergence

between the prior and posterior is equivalent to the mutual infor-

mation between the observed random variable and its unknown

label. Note also that the KL divergence between univariate dis-

tributions is simply

DK L (y+y i

j ||yj ) = H(y+y i

j , yj ) − H(y+y i

j ) (21)

where H(y+y i

j , yj ) denotes the cross-entropy, which for

Bernoulli variables is

H(y+y i

j , yj ) = −1

2
(µ+y i

j + 1) log
1

2
(µj + 1)

−
[

1 − 1

2
(µ+y i

j + 1)

]

log

[

1 − 1

2
(µj + 1)

]

.

(22)

Combining (19)–(22) yields UK L . Intuitively, this utility pro-

motes the sampling of nodes that are expected to induce large

change on the model (cross-entropy between old and new distri-

butions), while at the same time increasing the “confidence” on

the model (negative entropy of updated distribution). Further-

more, the mutual-information-based expressions (19) and (20)

establish a connection to the information-based metrics in [14]

and [28], giving an expected-model-change interpretation of the

entropy reduction method.

C. EC Without Model Retraining

In this section, we introduce two measures of model change

that do not require model retraining (cf. Remark 3), and hence

are attractive in their simplicity. Specifically, retraining (i.e.,

computing µ
+y i

U t−1 |Lt−1 , ∀i ∈ U and ∀yi ∈ Y) is not required if

per-node utility U(v,Lt−1) can be given in closed-form as a

function of Gt−1 and µU t−1 |Lt−1 . Two such measures are ex-

plored here: one based on the sum of total variations that a new

sample inflicts on the (approximate) marginal distributions of

the unknown labels, and one based on the mean-square deviation

that a new sample is expected to inflict on the GMRF.

The total variation between two probability distributions p(x)
and q(x) over a finite alphabet X is

δ(p, q) :=
1

2

∑

x∈X
|p(x) − q(x)|.

Using the approximation in (6), the total variation between the

distribution of an unknown label yj and the same label y+y i

j

after yi becomes available is

δ(y+y i

j , yj ) =
1

2

(

|µ+y i

j − µj | + |1 − µ+y i

j − (1 − µj )|
)

= |µ+y i

j − µj |. (23)

Consequently, the sum of total variations over all the unlabeled

nodes {vj}j∈U/ [{i}] is

∆(y+y i

U ,yU ) :=
∑

j∈U
δ(y+y i

j , yj ) = ‖µ+y i

U|L − µU|L‖1

=
1

gii
|yi − µi |‖gi‖1

where the second equality follows by concatenating all total

variations (cf. (23)) in vector form, and the last one follows by

the GMRF update rule in (9). Finally, the expected sum of total

variations utility score-function is defined as

UT V (vi ,L) := Ey i |yL

[

∆(y+y i

U ,yU )
]

= Ey i |yL [|yi − µi |]
1

gii
‖gi‖1

and since

Ey i |yL [|yi − µi |] = p(yi = 1|yL)|1 − µi |
+ p(yi = −1|yL)| − 1 − µi |

≈ 2(1 − µ2
i )

it follows that the utility function based on total variation can

be expressed as

UT V (vi ,L) =
2

gii
(1 − µ2

i )‖gi‖1 . (24)
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The second measure is based on the mean-square deviation

(MSD) between two RV’s X1 and X2

MSD(X1 , X2) :=

∫

(X1 − X2)
2 f(X1 , X2)dX1dX2

= E

[

(X1 − X2)
2
]

.

Our next proposed utility score is the expected MSD between

the Gaussian fields ψU and ψ
+y i

U before and after obtaining yi ;

that is,

UM SD (vi ,L) = Ey i |yL

[

MSD(ψ+y i

U ,ψU )
]

≈ 1

2
(µi + 1)MSD(ψ+y i =1

U ,ψU )

+

(

1 − 1

2
(µi + 1)

)

MSD(ψ+y i =−1
U ,ψU)

(25)

where

MSD(ψ+y i

U ,ψU ) := E
[

‖ψ+y i

U − ψU‖2
]

= 2tr(L−1
UU ) + ‖µ+y i

U|L − µU|L‖2
2

∝ 1

g2
ii

(yi − µi)
2‖gi‖2

2 . (26)

The second equality in (26) is derived in Appendix A2 under

the assumption that ψU and ψ
+y i

U are independent random vec-

tors. Furthermore, the term 2tr(L−1
UU ) is ignored since it does

not depend on yi , and the final expression of (26) is obtained us-

ing (9). Finally, substituting (26) into (25) yields the following

closed-form expression of the MSD-based utility score function

UM SD (vi ,L) ∝ (1 − µ2
i )
‖gi‖2

2

g2
ii

. (27)

Note that UT V and UM SD are proportional to the expected KL

divergence of the Gaussian field UK LG in the previous section

since

UT V (vi ,L) ∝ UK LG (vi ,L)‖gi‖1 (28)

and

UM SD (vi ,L) ∝ UK LG (vi ,L)‖gi‖2 (29)

with the norms ‖gi‖1 and ‖gi‖2 quantifying the average influ-

ence of the i−th node over the rest of the unlabeled nodes.

It is worth mentioning that our TV- and MSD-based meth-

ods relate to the Σ−optimality-based active learning [12]

and the variance minimization [10] correspondingly. This be-

comes apparent upon recalling that Σ−optimality and variance-

minimization utility score functions are respectively given by

UΣ−opt(vi) =
‖gi‖2

1

gii

and

UV M (vi) :=
‖gi‖2

2

gii
.

Then, further inspection reveals that the metrics are related by

UT V (vi) ∝
1

gii
(1 − µ2

i )UΣ−opt(vi) (30)

and correspondingly

UM SD (vi) ∝
1

gii
(1 − µ2

i )UV M (vi). (31)

In fact, UT V and UM SD may be interpreted as data-driven

versions of UΣ−opt and UV M that are enhanced with the uncer-

tainty term g−1
ii (1 − µ2

i ). On the one hand, UΣ−opt and UV M

are design-of-experiments-type methods that rely on ensemble

criteria and offer offline sampling schemes more suitable for

applications where the set L of nodes may only be labeled as

a batch. On the other hand, UT V and UM SD are data-adaptive

sampling schemes that adjust to the specific realization of la-

bels, and are expected to outperform their batch counterparts

in general. This connection is established due to UV M (vi) and

UΣ−opt(vi) being l2 and l1 ensemble loss metrics on the GMRF

(see equations 2.3 and 2.5 in [12]); similarly, MSD (mean square

deviation) and TV (total variation) are also l2 (on the GMRF

distribution) and l1 (on the binary labels pmf) metrics of change.

Remark 4: While the proposed methods were developed for

binary classification, they can easily be modified to cope with

multiple classes using the one-vs-the-rest trick. Specifically, for

any set C of possible classes, it suffices to solve |C| binary

problems, each one focused on detecting the presence or absence

of a class. Consequently, the maximum among the GMRF means

µ
(c)
i ∀c ∈ C reveals which class is the most likely for the i−th

node. In addition, the marginal posteriors are readily given by

normalizing the binary posteriors in (6), that is

p(yi = c) = µ̄
(c)
i =

µ
(c)
i + 1

∑

c∈C(µ
(c)
i + 1)

.

Using this approximation, the TV-based scheme can be gener-

alized to

UT V (vi ,L) ∝
∑

c∈C

[

1 − (µ̄
(c)
i )2

]‖gi‖1

gii
(32)

and similarly for the MSD-based scheme.

A summary of the five different methods that were consid-

ered in the context of the proposed EC-based active learning

framework is given in Table I.

D. Computational Complexity Analysis

The present section analyzes the computational complexity

of implementing the proposed adaptive sampling methods, as

well as that of other common adaptive and non-adaptive active

learning approaches on graphs. Complexity here refers to float-

point multiplications and is given in O(·) notation as function

of the number of nodes N , number of edges |E| and number of

classes |C|. Three types of computational tasks are considered

separately: computations that can be performed offline (e.g., ini-

tialization), computations required to update model after a new

node is observed (only for adaptive methods), and the complex-

ity of selecting a new node to sample (cf. eq. (8)).
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TABLE I
SUMMARY OF EC METHODS BASED ON DIFFERENT METRICS OF CHANGE

Let as begin with the “plain-vanilla” label propagation sce-

nario where nodes are randomly (or passively) sampled. In

that case, the online framework described in Algorithm 1 and

Section II.B is not necessary and the nodes can be classified of-

fline after collecting |L| samples and obtaining (5) for each class

in C. Exploiting the sparsity of the L, (5) can be approximated

via a Power-like iteration (see, e.g., [29]) with O(|E||C|) com-

plexity. Similarly to passive sampling, non-adaptive approaches

such as the variance-minimization (VM) in [10] and Σ-opt de-

sign in [12] can also be implemented offline. However, unlike

passive sampling, the non-adaptive sampling methods require

computation of G0 = (L + δI)−1 , which can be approximated

withO(|E|N) multiplications via the Jacobi method. The offline

complexity of VM and Σ-opt is dominated by the complexity

required to design the label set L which is equivalent to |L|
iterations of Algorithm 1 using UV M (vi) and UΣ−opt(vi) corre-

spondingly. Thus, the total offline complexity of VM and Σ-opt

is O(|L|N 2), while O(N 2) memory is required to store and

process G0 .

In the context of adaptive methods, computational effi-

ciency largely depends on whether matrix G is used for

sampling and updating. Simple methods such as uncertainty

sampling based on minimum margin do not require G and

have soft labels updated after each new sample using itera-

tive label-propagation (see, e.g., [14]) with O(|E||C|) complex-

ity. Uncertainty-sampling-based criteria are also typically very

lightweight requiring for instance sorting class-wise the soft la-

bels of each node (O(log |C|N) per sample). While uncertainty-

based methods are faster and more scalable, their accuracy is

typically significantly lower than that of more sophisticated

methods that use G. Methods that use G such as the proposed

EC algorithms in Section III, the expected-error minimization

(EER) in [13], and the two-step approximation (TSA) algorithm

in [16] all require O(N 2) to perform the update in (10). How-

ever, TSA and EER use retraining (cf. Remark 3) that incurs

complexity O(|C|2N 2) to perform one sample selection; com-

puting the “expected error” requires fictitiously labeling every

unlabeled node, and re-computing the metric by treating the

fictitious label as the true label. More specifically, consider the

normalization of the binary posteriors that is required (similar

to the one discussed in Remark 4) in order to define a posterior

pmf over multiple classes (|C| > 2). Normalization entails |C|
divisions, and happens |C| times (once for every possible label

of an unlabeled node). This gives rise to a nested loop where

the outer loop repeats |C| times and the inner loop requires |C|N
computations, yielding a total complexity O(|C|2N) for com-

puting the expected error score for one node. Since these scores

have to be computed over all unlabeled nodes (in order to select

the best one), the overall complexity to obtain a sample accord-

ing to EER or TSA is O(|C|2N 2). In contrast, the proposed

MSD and TV methods (cf. (24), (27)) only require O(|C|N)
for sampling. Note that the performance gap between EER and

TSA on the one hand, and TV and MSD on the other grows as

the number of classes |C| increases.

The complexity analysis is summarized in Table II and indi-

cates that the proposed retraining-free adaptive methods exhibit

lower overall complexity than EER and TSA. An important

modification is proposed in the ensuing section in order to deal

with the challenge of bias that is inherent to all data-adaptive

sampling schemes.

IV. PROMOTING EXPLORATION BY ADJUSTING

MODEL CONFIDENCE

It has been observed that active learning schemes may be-

come ”myopic” [30], meaning that they become overly focus

on exploiting (focusing on) a small region of the sample space,

and neglect exploration. Uncertainty sampling in particular can

be prone to such behavior, due to the fact that it is more “my-

opic,” in the sense that it does not take into account the effect of a

potential sample on the generalization capabilities of the classi-

fier. Since the TV- and MSD-based utility score functions in (24)

and (26) are influenced by the uncertainty factor (1 − µ2
i ), it is

important to mitigate this effect before testing the performance

of the proposed approaches.

Let us begin by observing that most active learning methods,

including those based on EC we introduced here, are based on

utility score functions that take the general form

U(vi ,L) = Ey i |yL [C(yi ,L)] (33)

where C(yi ,L) is any metric that evaluates the effect of node

vi on the model, given that its label is yi . Using the existing

probability model to predict how the model itself will change,

induces “myopic” behavior especially in the early stages of the

sampling process when the inferred model is most likely far

from the true distribution.

One possible means of reducing bias is by complementing

greedy active learning strategies with random sampling. That

is, instead of selecting the index kt of the node to be sampled at

the t−th iteration according to (8), one can opt for a two-branch
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TABLE II
COMPUTATIONAL AND MEMORY COMPLEXITY OF VARIOUS METHODS

hybrid rule

kt =

{

arg maxi∈U t−1 U(vi ,Lt−1), w.p. (1 − πt)

Unif{1, . . . , |Lt−1 |}, w.p. πt
. (34)

where πt is the probability that at iteration t the sampling strat-

egy switches to uniform random sampling over the unlabeled

nodes. Naturally, one should generally select a sequence {πt}
such that πt → 0 as t increases the model becomes more ac-

curate. Upon testing the simple heuristic in (34) we observed

that it can significantly improve the performance of the more

“myopic” active sampling strategies. Specifically, uncertainty

sampling which relies purely on exploitation can be greatly en-

hanced by completing it with the exploration queries introduced

by (34).

Another option is to sample nodes that maximize the mini-

mum over all possible labels change. That is, instead of (33) one

can adopt utility scores of the general form

U(vi ,L) = min
y i ∈{−1,1}

C(yi ,L). (35)

Albeit intuitive, (34) is not as appropriate for promoting explo-

ration in more sophisticated strategies such as the ones presented

in this work, because it does not account for the graph structure,

and it is somewhat aggressive in assuming that with probability

πt the model is completely uninformative. For similar reasons,

(35) also does not produce satisfactory results.

In the present section, we introduce a “softer” heuristic that

is better tailored to the sampling strategies at hand. The main

idea is to implement U(vi ,L) in (33) using a different set of

probabilities than the ones provided by the model (cf. (6)).

Specifically, we suggest to use label predictions that are closer

to a “non-informative” prior early on, and gradually converge

to the ones provided by the trained model as our confidence on

the latter increases. Thus, instead of taking the expectation in

(33) over p (yi |yL), one may instead use a convex combination

of the latter and a node prior π(yi), that is

p̌ (yi |yL;αt) = αtπ(yi) + (1 − αt)p (yi |yL) (36)

where 0 ≤ αt ≤ 1 is a constant that quantifies the confidence

on the current estimate of the posterior. If no prior is avail-

able, one may simply use π(yi = 1) = π(yi = −1) = 1/2. In-

tuitively pleasing results were obtained when combining (36)

with EC methods. For instance, combining (36) with our pro-

posed TV method yields the following modified MSD utility

score function

UM SD (vi ,L, at) ∝
[

at + (1 − at)(1 − µ2
i )

] ‖gi‖2
2

g2
ii

(37)

where at tunes the sensitivity of the sampling process to the

uncertainty metric (1 − µ2
i ). As more samples become avail-

able, the confidence that the current estimate of the posterior is

close to the true distribution may increase. Thus, instead of us-

ing a constant α throughout the sampling process, one may use

a sequence {αt}T
t=1 , where t is the iteration index, T the total

number of samples, and at is inversely proportional to t. Finally,

note that by setting αt = 1∀t the uncertainty terms vanish with

MSD and TV becoming non-adaptive.

V. EXPERIMENTAL RESULTS

The present section includes numerical experiments carried to

assess the performance of the proposed methods in terms of pre-

diction accuracy. Specifically, the ensuing subsections present

plots of accuracy

Accuracy =
1

|U|
∑

i∈U
1{ŷ i =y i }

as a function of the number of nodes sampled by the GMRF-

based active learning algorithms (cf. Algorithm 1). We compare

the proposed methods (number of flips (FL), KL divergence,

MSD, sum of TVs) with the variance minimization (VM) [10],

Σ−optimality [12], expected error minimization (EER) [13],

and two-step approximation method (TSA) [16]. Furthermore,

we compare with the minimum-margin uncertainty sampling

(UNC) scheme that samples the node with smallest difference

between the largest soft labels, which is equivalent to using

the utility function UU N C (vi ,L) := −|µ(c1 )
i − µ

(c2 )
i |, where c1

and c2 is the most-probable and second-most probable class for

node vi correspondingly. Finally, all methods are compared to

the predictions that are given by the GMRF method used here

(cf. (2)–(7)) with nodes sampled randomly (passive learning).

For all graph tested the prediction accuracy remained high for

a large range of δ ∈ [0.1, 0.001] with the exact value tuned for

every graph in order to maximize accuracy for passive (random)

sampling.

A. Synthetic Graphs

Following [16], we first considered a 10 × 10 rectangular grid

similar to the one in Fig. 1, where each node is connected to
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Fig. 1. Rectangular grid synthetic graph with two separate class 1 regions.

Fig. 2. Adjacency matrix of LFR graph with 1,000 nodes and 3 classes.

Fig. 3. Test results for synthetic grid in Fig. 1.

four neighboring nodes. Red dots correspond to nodes belong-

ing to class 1, and uncolored intersections correspond to nodes

belonging to class−1. To make the classification task more chal-

lenging, the class 1 region was separated into two 3 × 3 squares

(upper left and lower right) and additional class 1 nodes were

added w.p. 0.5 along the dividing lines. Plotted in Fig. 3 is the

accuracy-vs-number of samples performance averaged over 50

Fig. 4. Test results for synthetic LFR graph in Fig. 2.

Monte Carlo runs. As expected, most algorithms outperform

random sampling. In addition, one observes that purely ex-

ploratory non-adaptive methods (VM and Σ−optimality) enjoy

relatively high accuracy for a small number of samples, but

are eventually surpassed by adaptive methods. It can also be

observed that the novel TV method with at = t−1/2 performs

equally well to the state-of-the-art TSA method. Interestingly, it

does so while using a much simpler criterion that avoids model

retraining, and therefore requires significantly shorter runtime.

Note finally that the performance of ERR is poor because the

sampler easily becomes “trapped” in one of the two class 1

regions, and does not explore the graph.

The purpose of the experiment in Fig. 1 was to simulate

problems where a complex label distribution appears on a simple

uniform graph (e.g., image segmentation). To simulate more

structured graphs, we generated a 1000-node network using

the Lancichinetti–Fortunato–Radicchi (LFR) method [31]. The

LFR algorithm is widely used to generate benchmark graphs

that resemble real world networks by exhibiting community

structure and degree distributions that follow the power law.

Figure 2 reveals the sparsity pattern of the adjacency matrix of

the LFR graph that was used, while the 3 clearly visible clusters

correspond to groups of nodes in the same class, that is

yi =

⎧

⎪

⎨

⎪

⎩

1, i ∈ [1, 250]

2, i ∈ [251, 600]

3, i ∈ [601, 1000]

Note that, unlike the one in Fig. 1, the graph used here is charac-

terized by a community structure that matches the nodes labels.

This is a highly favorable scenario for the non-adaptive VM and

Σ-opt approaches that rely solely on the graph structure. Indeed,

as seen in Fig. 4, VM and Σ-opt quickly reach 90% accuracy

by selecting 5 most influential samples. Nevertheless, between

5 and 10 samples our proposed MSD and TV adaptive methods

enjoy superior accuracy before converging to 100% accuracy.

B. Similarity Graphs From Real Datasets

Real binary classification datasets taken from the UC Irvine

Machine Learning Repository [32] and the LibSVM webpage

[33] were used for further testing of the proposed methods. First,



5176 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 19, OCTOBER 1, 2018

TABLE III
DATASET LIST

Fig. 5. Coloncancer dataset.

each entry of the feature vectors was normalized to lie between

−1 and 1. Then, a graph was constructed using the Pearson cor-

relations among pairs of normalized feature vectors as weights

of the adjacency matrix W; thresholding was also applied to

negative and small weights leading to sparse adjacency matri-

ces. It was observed that sparsification generally improves the

prediction accuracy, while also reducing the computational bur-

den. In the presented experiments, thresholds were tuned until

one of the methods achieved the highest possible classification

accuracy.

Having constructed the graphs, the proposed expected model

change sampling schemes were compared with UNC, TSA,

EER, VM and Σ−optimality on seven real datasets listed in

Table III; in the latter, “baseline accuracy” refers to the propor-

tion of the largest class in each dataset, and thus the highest

accuracy that can be achieved by naively assuming that all la-

bels belong to the majority class. Plotted in Figs. 5 to 11 are

the results of the numerical tests, where it is seen that the per-

formance of the proposed low-complexity TV- and MSD-based

scheme is comparable or superior to that of competing alterna-

tives. The confidence parameter was set to at = 1/
√

t for the

smaller datasets, where only few data were sampled, and the

model was expected to be less accurate, whereas for the larger

ones it was set to at = 0.

C. Real Graphs

Experiments were also performed on real labeled graphs.

Specifically, the CORA and CITESEER [34] citation networks

with 2708 and 3312 nodes correspondingly were used; simi-

larly to [12], we isolated the largest connected components. In

citation networks, each node corresponds to a scientific pub-

Fig. 6. Ionosphere dataset.

Fig. 7. Leukemia dataset.

Fig. 8. Australian dataset.

lication and is linked only with cited or citing papers. Nodal

labels correspond to the scientific field that each paper belongs

to (6 classes for CITESEER and 7 for CORA). Lately, CORA

and CITESEER have been used as benchmarks for graph con-

volutional neural networks (GCNs) [35], as well as for classifi-

cation based on node embeddings (Planetoid-G) [36]. For this

reason, together with the GMRF-based passive (random) sam-

pling benchmark, we also use GCNs and Planetoid-G as passive

benchmarks. Note that the latter two methods require validation

samples for early stopping during training, while GMRF does

not. In order to proceed with comparisons, a set of validation
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Fig. 9. Parkinsons dataset.

Fig. 10. Ecoli dataset.

Fig. 11. CORA citation network.

samples was given to GCN and Planetoid-G equal in size to the

training set. The benchmark political-blog network [37] with

1490 nodes and two classes was also used. The confidence

sequence αt = t−1/2 was used for all graphs, with δ = 0.005
similarly to [11]. The results of the experiments are depicted in

Figs. 11–13 and demonstrate the effectiveness of the proposed

MSD and TV algorithms on these social graphs. For the CORA

network, TV achieves state of the art performance equal to EER,

TSA and Σ-opt, while for the CITESEER network its accuracy

slightly surpasses that of competing methods. Note that for both

Fig. 12. CITESEER citation network.

Fig. 13. Political blogs network.

Fig. 14. Relative runtime of different adaptive methods for experiments on
real social graphs.

citation networks and given randomly selected samples, the per-

formance of GCNs and Planetoid-G barely reaches that of the

simple GMRF classifier. This is mostly attributed to the latter be-

ing more suitable for the graph-only setting that we are dealing

with here, whereas the former mostly exploit node features that

are available for citation networks (bag-of-words description
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of abstracts). For the political-blogs network, non-adaptive TV

and Σ-opt methods perform poorly, while the proposed MSD

method performs at least as good as the significantly more com-

plex TSA. The bar plot in Fig. 14 depicts the relative runtimes

of different adaptive methods. Observe that MSD and TV are

two orders of magnitude faster than EER and TSA for the larger

multilabel citation graphs, and one order of magnitude faster for

the smallest binary-labeled political blogs network.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper unified existing and developed novel utility func-

tions for data-adaptive graph-cognizant active classification us-

ing GMRFs. These utility functions rely on metrics that capture

expected changes in GMRF models. Specifically, the proposed

samplers query the node that is expected to inflict the largest

change on the model. Towards this direction, several measures

of expected model change were introduced, sharing similari-

ties and connections with existing methods such as uncertainty

sampling, variance minimization, and sampling based on the

Σ−optimality criterion. A simple yet effective heuristic was

also introduced for increasing the exploration capabilities and

reducing bias of the proposed methods, by taking into account

the confidence on the model label predictions. Numerical tests

using synthetic and real data confirm that the proposed methods

achieve accuracy that is comparable or superior to state of the

art at smaller runtime.

Future research directions will focus on developing even more

efficient adaptive sampling schemes for graphs by finding the

sweet spot of how a given graph structure attains the desir-

able exploration versus exploitation trade-off. Furthermore, our

research agenda includes developing adaptive sampling meth-

ods tailored for Markov-chain-Monte-Carlo-based and random-

walk-based inference on graphs.

APPENDIX

A1. Since C−1 = L and upon partitioning the two matrices

according to labeled and unlabeled nodes, we have

[

LUU LUL
LLU LLL

] [

CUU CUL
CLU CLL

]

=

[

I|U| 0

0 I|L|

]

(38)

which gives rise to four matrix equations. Specifically, the equa-

tion that corresponds to the upper right part of (38) is

LUUCUL + LULCLL = 0. (39)

Multiplying (39) from the left by L−1
UU and from the right by

C−1
LL yields CULC

−1
LL = −L−1

UULUL, which verifies (4).

A2. Let x1 ∼ N (m1 ,C) and x2 ∼ N (m2 ,C), and assume

that x1 and x2 are uncorrelated. Then,

MSD(x1 ,x2) := E
[

‖x1 − x2‖2
2

]

= E
[

‖x1‖2
2 + ‖x2‖2

2 − 2xT
1 x2

]

(40)

where

E
[

‖x1‖2
2

]

= E
[

‖(x1 − m1) + m1‖2
2

]

= E
[

‖x1 − m1‖2
2

]

+ 2E
[

(x1 − m1)
T m1

]

+ ‖m1‖2
2

= tr (C) + ‖m1‖2
2 (41)

and similarly for E
[

‖x2‖2
2

]

. Finally, note that

E
[

(x1 − m1)
T (x2 − m2)

]

= E
[

xT
1 x2 − xT

1 m2

− mT
1 x2 + mT

1 m2

]

= E
[

xT
1 x2

]

− mT
1 m2 (42)

and since x1 and x2 are uncorrelated it follows that (42) equals

to 0; hence,

E
[

xT
1 x2

]

= mT
1 m2 . (43)

Substituting (41) and (43) into (40) yields

MSD(x1 ,x2) = 2tr(C) + ‖m1‖2
2 + ‖m2‖2

2 − 2mT
1 m2

= 2tr(C) + ‖m1 − m2‖2
2

which implies that the MSD between two Gaussian fields with

the same covariance matrix is proportional to the Euclidean

norm of the difference of their means.
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