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Abstract— Channel gain cartography aims at inferring the
channel gains between two arbitrary points in space based on
the measurements (samples) of the gains collected by a set of
radios deployed in the area. Channel gain maps are useful for
various sensing and resource allocation tasks essential for the
operation of cognitive radio networks. In this paper, the channel
gains are modeled as the tomographic accumulations of an
underlying spatial loss field (SLF), which captures the attenuation
in the signal strength due to the obstacles in the propagation
path. In order to estimate the map accurately with a relatively
small number of measurements, the SLF is postulated to have
a low-rank structure possibly with sparse deviations. Efficient
batch and online algorithms are derived for the resulting map
reconstruction problem. Comprehensive tests with both synthetic
and real data sets corroborate that the algorithms can accurately
reveal the structure of the propagation medium, and produce the
desired channel gain maps.

Index Terms— Channel gain cartography, cognitive radio, low
rank and sparse models, RF tomography.

I. INTRODUCTION

RECENTLY, it has been recognized that the licensed

RF spectrum is often severely under-utilized depending

on the time and location of communication, in spite of the

evident scarcity of the spectral resources due to the growing

use of wireless devices [2]. Cognitive radios (CRs) aim to

mitigate this issue by opportunistically utilizing the unused

licensed spectrum through spectrum sensing and dynamic

spectrum access. RF cartography is an instrumental concept

for such CR tasks [3]. Based on the measurements collected

by spatially distributed CR sensors, RF cartography constructs

the maps over the space, time, and frequency, portraying

the RF landscape in which the CR network is deployed.
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Notable RF maps that have been proposed include the power

spectral density (PSD) maps, which acquire the ambient inter-

ference power distribution, revealing the crowded regions that

CR transceivers need to avoid [4]; and the channel gain (CG)

maps, which capture the channel gains between any two points

in space, allowing CR networks to perform accurate spectrum

sensing and aggressive spatial reuse [5].

The present work focuses on channel gain cartography.

Prior works capitalized on experimentally validated notion of a

spatial loss field (SLF) [6], which expresses the shadow fading

over an arbitrary link as the weighted integral of the underlying

attenuation that the RF propagation experiences due to the

blocking objects in the path. Linear interpolation techniques

such as kriging were employed to estimate the shadow

fading based on spatially correlated measurements, and the

spatio-temporal dynamics were tracked using Kalman filtering

approaches [5], [7]. It is worth noting that SLF reconstruction

is tantamount to the radio tomographic imaging (RTI), useful

in a wide range of applications, from locating survivors

in rescue operations to environmental monitoring [8]–[10].

The method in [8] captures the variation of the propagation

medium by taking SLF differences at consecutive time slots

into consideration. To cope with multipath fading in a cluttered

environment, multiple channel measurements were utilized to

enhance localization accuracy in [11]. However, the methods

in [8] and [11] do not reveal static objects in the imaging area.

In contrast, a method to track moving objects using a dynamic

SLF model, as well as identifying the static ones, was reported

in [10]. Exploiting the sparse occupancy of the monitored

area by the target objects, sparsity-leveraging algorithms for

constructing obstacle maps were developed [12]–[14]. Our

work adopts a related data model, but mainly focuses on the

channel gain map construction for CR applications.

Although more sophisticated methodologies for channel

modeling do exist [15], [16], the computational cost and

requirements on various structural/geometric prior information

may hinder their use in CR applications. On the other hand,

the SLF model has been experimentally validated [6], as well

as in the present work through a real tomographic imaging

example. Our proposed approach provides a computationally

efficient solution, by capitalizing on the inherent structure of

measurement data, rather than relying heavily on the physics

of RF propagation.

Our work interpolates the channel gains based on the SLF

reconstructed from a small number of measurements using

a low-rank and sparse matrix model. The key idea is to
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postulate that the SLF has a low-rank structure potentially

corrupted by sparse outliers. Such a model is particularly

appealing for urban and indoor propagation scenarios, where

regular placement of buildings and walls renders a scene

inherently of low rank, while sparse outliers can pick up

the artifacts that do not conform to the low-rank model.

While it is true that urban and indoor environments have

distinct profiles due to the different scales and density of

obstacles, our data model can capture the structural regularity

of obstacles, possibly at different scales, as validated through

synthetic and real data examples in Section V. The sparse

term helps robustify this model by filtering out the measure-

ments that do not conform to the low-rank structure. This is

essentially the idea behind robust principal component analy-

sis [17], which is a powerful data model that has been used

widely.

In fact, since the shadow fading samples are modeled

as linear tomographic measurements of the SLF, the map

recovery task reduces to an instance of compressive principal

component pursuit (CPCP) [18]. In general, the CPCP prob-

lem recovers the low-rank and sparse matrices from a small

set of linearly projected measurements. Our algorithms are

applicable to this general problem class.

We develop efficient batch and online algorithms for the

map estimation task, suitable for CR network implementa-

tion. By replacing the nuclear norm-based regularizer with a

bi-factorization surrogate, a block coordinate descent (BCD)

algorithm becomes available to avoid costly singular value

decomposition (SVD) per iteration. Although the resulting

optimization problem is non-convex, the batch solver can

attain the global optimum under appropriate conditions. For

the online algorithm, a stochastic successive upper-bound min-

imization strategy is adopted, leading to a stochastic gradient

descent (SGD) update rule, which enjoys low computational

complexity. The iterates generated by the online algorithm

are provably convergent to the stationary point of the batch

problem.

The rest of the paper is organized as follows. In Section II,

the system model and problem statement are provided. The

map reconstruction problem is formulated and its efficient

batch solution method is derived in Section III. An online

algorithm is developed through a stochastic approximation,

and its convergence is established in Section IV. Results

from numerical tests using both synthetic and real datasets

are presented in Section V, and the conclusions are offered

in Section VI.

Notations: Bold uppercase (lowercase) letters denote matri-

ces (column vectors). Calligraphic letters are used for sets;

In is the n × n identity matrix. 0n denotes an n × 1 vector

of all zeros, and 0n×n an n × n matrix of all zeros. Operators

(·)T , tr(·), and σi (·) represent the transposition, trace, and the

i -th largest singular value of a matrix, respectively; | · | is used

for the cardinality of a set, and the magnitude of a scalar.

R � 0 signifies that R is positive semidefinite. The �1-norm

of X ∈ R
n×n is ||X||1 :=

∑n
i, j=1 |X i j |. The �∞-norm of

X ∈ R
n×n is represented by ||X||∞ := max{|X i j | : i, j =

1, . . . , n}. For two matrices X, Y ∈ R
n×n , the matrix inner

product 〈X, Y〉 := tr(XT Y). The Frobenius norm of matrix Y

is ||Y||F :=
√

tr(YYT ). The spectral norm of Y is ||Y|| :=
max||x||2=1 ||Yx||2, and ||Y||∗ :=

∑

i σi (Y) is the nuclear norm

of Y. For a function h : R
m×n → R, the directional derivative

of h at X ∈ R
m×n along a direction D ∈ R

m×n is denoted as

h′(X; D) := limt→0+[h(X + tD) − h(X)]/t .

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a set of N CRs deployed over a geographical

area represented by a two-dimensional plane A ⊂ R
2. Let

x
(t)
n ∈ A denote the position of CR n ∈ {1, 2, . . . , N} at

time t . By exchanging pilot sequences, the CR nodes can

estimate the channel gains among them. A typical channel

gain between nodes n and n′ can be modeled as the product

of pathloss, shadowing, and small-scale fading. By averaging

out the effect of the small-scale fading, the (averaged) channel

gain measurement over a link (n, n′) at time t , denoted by

G(x
(t)
n , x

(t)
n′ ), can be represented (in dB) as

G(x(t)
n , x

(t)
n′ ) = G0 − γ 10 log10 ||x(t)

n − x
(t)
n′ || + s(x(t)

n , x
(t)
n′ )

(1)

where G0 is the path gain at unit distance; ||x(t)
n − x

(t)
n′ || is the

distance between nodes n and n′; γ is the pathloss exponent;

and s(x
(t)
n , x

(t)
n′ ) is the attenuation due to the shadow fading.

By subtracting the known pathloss component in (1), the noisy

shadowing measurement

š(x(t)
n , x

(t)
n′ ) = s(x(t)

n , x
(t)
n′ ) + ε(x(t)

n , x
(t)
n′ ) (2)

is obtained, where ε(x
(t)
n , x

(t)
n′ ) denotes the measurement noise.

Let M (t) be the set of links, for which channel gain measure-

ments are made at time t , and collect those measurements in

vector š(t) ∈ R
|M (t)|. The goal of channel gain cartography is

to predict the channel gain between arbitrary points x, x′ ∈ A

at time t , based on the known nodal positions {x(t)
n } and the

channel gain measurements collected up to time t , that is,

{š(τ )}t
τ=1 [5], [7].

In order to achieve this interpolation, the structure of shadow

fading experienced by co-located radio links will be leveraged.

To this end, a variety of correlation models for shadow fading

have been proposed [6], [19], [20]. In particular, the models

in [5], [6], [9], and [10] rely on the so-termed spatial loss

field (SLF), which captures the attenuation due to obstacles in

the line-of-sight propagation.

Let f : A → R denote the SLF, which captures the

attenuation at location x̃ ∈ A, and w(x, x′, x̃) is the weight

function modeling the influence of the SLF at x̃ to the shad-

owing experienced by link x–x′. Then, s(x, x′) is expressed

as [21]

s(x, x′) =
∫

A

w(x, x′, x̃) f (x̃)d x̃. (3)

The normalized ellipse model is often used for the weight

function, with w taking the form [8]

w(x, x′, x̃) :=

⎧

⎪

⎨

⎪

⎩

1/
√

d(x, x′), if d(x, x̃) + d(x′, x̃)

< d(x, x′) + δ

0, otherwise

(4)
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where d(x, x′) := ‖x − x′‖ is the distance between positions

x and x′, and δ > 0 is a tunable parameter. The value of δ

is commonly set to half the wavelength to assign non-zero

weights only within the first Fresnel zone. The integral in (3)

can be approximated by

s(x, x′) 

Nx
∑

i=1

Ny
∑

j=1

w(x, x′, x̃i, j ) f (x̃i, j ) (5)

where {x̃i, j }
Nx ,Ny

i=1, j=1 are the pre-specified grid points over A.

Let matrix F ∈ R
Nx ×Ny denote the SLF, sampled by the

Nx -by-Ny grid. Similarly, the weight matrix Wxx′ correspond-

ing to link x–x′ is constructed. The shadow fading over link

x–x′ in (5) can then be expressed as a linear projection of the

SLF given by

s(x, x′) 
 〈Wxx′ , F〉 = tr(WT
xx′F). (6)

The goal is to form an estimate F̂(t) of F(t) at time t , based

on {x(t)
n } and {š(τ )}t

τ=1. Once F̂(t) is obtained, the shadowing

and the overall channel gain across any link x–x′ at time t can

be estimated via (6) and (1) as

ŝ(x(t), x′(t)) = 〈W(t)
xx′, F̂(t)〉 (7)

Ĝ(x(t), x′(t)) = G0 − γ 10 log10 ||x(t) − x′(t)|| + ŝ(x(t), x′(t)).

(8)

The number of unknown F(t) entries is less than Nx Ny ,

while the number of measurements is O(t N2), provided that

the SLF remains invariant for t slots. If the number of

entries to be estimated in F(t) is larger than the number of

measurements, the problem is underdetermined and cannot be

solved uniquely. To overcome this and further improve the per-

formance even in the overdetermined cases, a priori knowledge

on the structure of F(t) will be exploited next to regularize the

problem.

III. CHANNEL GAIN PREDICTION USING

LOW RANK AND SPARSITY

A. Problem Formulation

The low-rank plus sparse structure has been advo-

cated in various problems in machine learning and signal

processing [17], [22], [23]. Low-rank matrices are effective

in capturing slow variation or regular patterns, and sparsity

is instrumental for incorporating robustness against outliers.

Inspired by these, we postulate that F has a low-rank-plus-

sparse structure as

F = L + E (9)

where matrix L is low-rank, and E is sparse. This model is

particularly attractive in urban or indoor scenarios where the

obstacles often possess regular patterns, while the sparse term

can capture irregularities that do not conform to the low-rank

model.

Redefine W
(t)
nn′ := W

(t)
xnxn′ and š

(t)
nn′ := š (x

(t)
n , x

(t)
n′ ) for

brevity.1 Toward estimating F(t) that obeys (9), consider the

cost

c(t)(L, E) := 1

2

∑

(n,n′)∈M (t)

(

〈W(t)
nn′ , L + E〉 − š

(t)
nn′

)2

(10)

which fits the shadowing measurements to the model. Then,

with T denoting the total number of time slots taking mea-

surements, we adopt the following optimization criterion

(P1) min
L,E∈R

Nx ×Ny

T
∑

τ=1

βT −τ
[

c(τ )(L, E) + λ||L||∗ + µ||E||1
]

(11)

where β ∈ (0, 1] is the forgetting factor that can be optionally

put in to weigh the recent observations more heavily. The

nuclear norm regularization term promotes a low-rank L,

while the �1-norm encourages sparsity in E. Parameters λ

and µ are appropriately chosen to control the effect of these

regularizers. Conditions for exact recovery through a related

convex formulation in the absence of measurement noise can

be found in [18].

Problem (11) is convex, and can be tackled using existing

efficient solvers, such as the interior-point method. Once the

optimal L̂ and Ê are found, the desired F̂ is obtained as F̂ =
L̂ + Ê. However, the general-purpose optimization packages

tend to scale poorly as the problem size grows. Specialized

algorithms developed for related problems often employ costly

SVD operations iteratively [18]. Furthermore, such an algo-

rithm might not be amenable for an online implementation.

Building on [24] and [25], an efficient solution is proposed

next with reduced complexity.

B. Efficient Batch Solution

Without loss of generality, consider replacing L with the

low-rank product PQT , where P ∈ R
Nx ×ρ and Q ∈ R

Ny×ρ ,

and ρ is a pre-specified overestimate of the rank of L. It is

known that (e.g., [25])

||L||∗ = min
P,Q

1

2

(

||P||2F + ||Q||2F
)

subject to L = PQT . (12)

1 Prompted by [11], the benefit of multi-channel diversity for RTI may

be incorporated in the present framework. Suppose K channels K
(t)
nn′ are

available to sensors n and n′ at time t , and let ś
(t)
nn′,k denote the noisy

measurement including fading over link xn–xn′ at t in channel k ∈ K
(t)
nn′ .

Construct a new measurement as s̄
(t)
nn′ = φ(ś

(t)
nn′,1, ś

(t)
nn′,2, . . . , ś

(t)
nn′,K ), where

φ(·) is a channel selection function [11]. By replacing š
(t)
nn′ in (10) with

s̄
(t)
nn′ , the multiple channel measurements can be incorporated without altering

the method. However, the dynamic channel availability and multi-channel
measurements will increase algorithm complexity. On the other hand, it is not
clear whether such a multi-channel approach can be adopted for estimating
any channel gain over multiple frequency bands, and constitutes a future
research direction.
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Thus, a natural re-formulation of (11) is (see also [24])

(P2) min
P,Q,E

f (P, Q, E)4

:=
T
∑

τ=1

βT −τ

[

c(τ )(PQT , E)+ λ

2

(

||P||2F +||Q||2F
)

+µ||E||1
]

.

(13)

Instead of seeking the Nx Ny entries of L, the factorization

approach (13) entails only (Nx + Ny)ρ unknowns, thus reduc-

ing complexity and memory requirements significantly when

ρ � min{Nx , Ny}. Furthermore, adoption of the separable

Frobenius norm regularizer in (P2) comes with no loss of

optimality as asserted in the following lemma.

Lemma 1: If {L̂, Ê} minimize (P1) and we choose ρ ≥
rank(L̂), then, (P2) is equivalent to (P1) at the minimum.

Proof: It is clear that the minimum of (P1) is no larger

than that of

min
P,Q,E

T
∑

τ=1

βT −τ
[

c(τ )(PQT , E) + λ||PQT ||∗ + µ||E||1
]

(14)

since the search space is reduced by the reparameterization

L = PQT with ρ ≤ min{Nx , Ny}. Now (12) implies that

the minimum of (14) is no larger than that of (P2). However,

the inequality is tight since the objectives of (P1) and (P2) are

identical for E := Ê, P := Û�̂
1/2

, and Q := V̂�̂
1/2

, where

L̂ = Û�̂V̂T is the SVD. Consequently, (P1) and (P2) have

identical costs at the minimum. �

Although (P1) is a convex optimization problem, (P2) is not.

Thus, in general, one can obtain only a locally optimal solution

of (P2), which may not be the globally optimal solution

of (P1). Interestingly, under appropriate conditions, global

optimality can be guaranteed for the local optima of (P2),

as claimed in the following proposition.

Proposition 1: If {P̄, Q̄, Ē} is a stationary point of (P2),

β̄ :=
∑T

τ=1 βT−τ , and || f̃ (P̄Q̄T , Ē)|| ≤ λβ̄ with

f̃ (L̂, Ê)

:=
T
∑

τ=1

βT −τ

⎡

⎣

∑

(n,n′)∈M (τ )

(

〈W(τ )
nn′ , L̂ + Ê〉 − š

(τ )
nn′

)

W
(τ )
nn′

⎤

⎦

(15)

then {L̂ := P̄Q̄T , Ê := Ē} is a globally optimal solution

to (P1).

Proof: See Appendix A.

A stationary point of (P2) can be obtained through a block

coordinate-descent (BCD) algorithm, where the optimization

is performed in a cyclic fashion over one of {E, P, Q} with

the remaining two variables fixed. In fact, since the term

µ||E||1 is separable in the individual entries as well, the cyclic

update can be stretched all the way up to the individual

entries of E without affecting convergence [26]. The proposed

solver entails an iterative procedure comprising three steps per

iteration k = 1, 2, . . .

[S1] Update E:

E[k + 1] = arg min
E

T
∑

τ=1

βT −τ
[

c(τ )(P[k]QT [k], E) + µ||E||1
]

[S2] Update P:

P[k + 1]

= arg min
P

T
∑

τ=1

βT−τ

[

c(τ )(PQT [k], E[k + 1]) + λ

2
||P||2F

]

[S3] Update Q:

Q[k + 1]

= arg min
Q

T
∑

τ=1

βT−τ

[

c(τ )(P[k+1]QT , E[k+1]) + λ

2
||Q||2F

]

.

To update each block variable, the cost in (P2) is minimized

while fixing the other block variables to their up-to-date

iterates.

To detail the update rules, let WWW (t) ∈ R
Nx Ny×|M (t)| be a

matrix with columns equal to vec
(

W
(t)
nn′

)

for (n, n′) ∈ M (t),

where vec (·) produces a column vector by stacking the

columns of a matrix one below the other (unvec(·) denotes the

reverse process). Define WWW := [
√

βT−1WWW (1) . . .
√

β0WWW (T )],
š := [

√

βT −1š(1)T . . .
√

β0š(T )T ]T , and e := vec(E). Then,

one can write
∑T

τ=1 βT −τ c(τ )(PQT , E) = ‖WWW T vec(PQT +
E) − š‖2

2. Let el denote the l-th entry of e, and e−l represent

the replica of e without its l-th entry. Similarly, let ωT
l denote

the l-th row of the matrix WWW , and WWW −l denote the matrix

WWW with its l-th row removed. The soft-thresholding function

soft_th(·; µ) is defined as

soft_th(x; µ) := sgn(x) max{0, |x | − µ}. (16)

Minimization in [S1] proceeds sequentially over the individual

entries of e. At iteration k, each entry is updated via

el[k + 1] = arg min
el

1

2
||elωl − ˇ̌s||22 + µβ̄|el |, l = 1, . . . , Nx Ny

(17)
where ˇ̌sl [k] := š−WWW T vec (P[k]QT [k])−WWW T

−le−l . The closed-

form solution for el is obtained as

el [k + 1] =
soft_th(ωT

l
ˇ̌sl [k]; µβ̄)

||ωl ||22
. (18)

Matrices P and Q are similarly updated over their rows

through [S2] and [S3]. Let pi be the i -th row of P, transposed

to a column vector; i.e., P := [p1, p2, . . . , pNx ]T . Define

W̃WW
(t)

i ∈ R
|M (t)|×Ny to be the matrix whose rows are the i -th

rows of {W(t)
nn′}(n,n′)∈M (t) denoted as w̃

(t)T

nn′,i , and s̃
(t)
i ∈ R

|M (t)|

a vector with entries equal to

s̃
(t)
nn′,i := š

(t)
nn′ − 〈W(t)

nn′ , E[k + 1]〉 −
Nx
∑

j �=i

w̃
(t)T

nn′, j
Q[k]p j (19)

for (n, n′) ∈ M (t). Define also W̃WW i :=
[
√

βT −1W̃WW
(1)T

i . . .
√

β0W̃WW
(T )T

i ]T and s̃i := [
√

βT−1s̃
(1)T

i . . .
√

β0s̃
(T )T

i ]T . Then, pi is updated by solving
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TABLE I

BATCH SOLVER OF (P2)

a ridge-regression problem as

pi [k + 1] = arg min
pi

[

1

2
||W̃WW i Q[k]pi − s̃i ||22 + λβ̄

2
||pi ||22

]

whose solution is given in closed form by

pi [k + 1] =
[

QT [k]W̃WW T

i W̃WW i Q[k] + λβ̄Iρ

]−1

QT [k]W̃WW T

i s̃i

(20)

which involves matrix inversion of dimension only ρ-by-

ρ. Likewise, let qi denote the i -th row of Q, transposed

to a column vector; i.e., Q := [q1, . . . , qNy ]T . Define

also W̆WW i := [
√

βT −1W̆WW
(1)T

i . . .
√

β0W̆WW
(T )T

i ]T and s̆i :=
[
√

βT −1s̆
(1)T

i . . .
√

β0s̆
(T )T

i ]T , where W̆WW
(t)

i ∈ R
|M (t)|×Nx is the

matrix whose rows are the transpositions of the i -th columns

of {W(t)
nn′}(n,n′)∈M (t), denoted as w̆

(t)
nn′,i , and s̆

(t)
i ∈ R

|M (t)| has

entries

s̆
(t)
nn′,i := š

(t)
nn′ −〈W(t)

nn′ , E[k+1]〉−
Ny
∑

j �=i

w̆
(t)T

nn′, j
P[k+1]q j (21)

for (n, n′) ∈ M (t). The update for qi is then given by solving

another ridge regression problem to obtain

qi [k + 1] = arg min
qi

[

1

2
||W̆WW i P[k + 1]qi − s̆i ||22 + λβ̄

2
||qi ||22

]

whose solution is given also in closed form by

qi [k + 1] =
[

PT [k + 1]W̆WW T

i W̆WW i P[k + 1] + λβ̄Iρ

]−1

× PT [k + 1]W̆WW T

i s̆i (22)

which again involves matrix inversion of dimension ρ-by-ρ.

The overall algorithm is tabulated in Table I.

Although the proposed batch algorithm exhibits low compu-

tational and memory requirements, it is not suitable for online

processing, since (13) must be re-solved every time a new set

of measurements arrive, incurring major computational bur-

den. Thus, the development of an online recursive algorithm

is well motivated.

IV. ONLINE ALGORITHM

A. Stochastic Approximation Approach

In practice, it is often the case that a new set of data

becomes available sequentially in time. Then, it is desirable

to have an algorithm that can process the newly acquired data

incrementally and refine the previous estimates, rather than

re-computing the batch solution, which may incur pro-

hibitively growing computational burden. Furthermore, when

the channel is time-varying due to, e.g., mobile obstacles,

online algorithms can readily track such variations.

Stochastic approximation (SA) is an appealing strategy

for deriving online algorithms [27], [28]. Recently, tech-

niques involving minimizing majorized surrogate functions

were developed to handle nonconvex cost functions in online

settings [24], [29]–[31]. An online algorithm to solve a dic-

tionary learning problem was proposed in [30]. A stochastic

gradient descent algorithm was derived for subspace tracking

and anomaly detection in [24]. Here, an online algorithm

for the CPCP problem is developed. The proposed approach

employs quadratic surrogate functions with diagonal weighting

so as to capture disparate curvatures in the directions of

different block variables.

For simplicity, let the number of measurements per time

slot t be constant M := |M (t)| for all t . Define X :=
(P, Q, E) ∈ X ⊂ X ′ := R

(Nx ×ρ) ×R
(Ny×ρ) ×R

(Nx ×Ny ), where

X is a compact convex set, and X ′ a bounded open set, and

ξ (t) := [{š(t)
m }M

m=1, {W
(t)
m }M

m=1] ∈ �, where � is assumed to be

bounded. Define with slight abuse of notation

g1(X, ξ (t)) = g1(P, Q, E, ξ (t))

:= 1

2

M
∑

m=1

(

〈W(t)
m , PQT + E〉 − š(t)

m

)2

(23)

g2(X) = g2(P, Q, E) := λ

2

(

||P||2F + ||Q||2F
)

+ µ||E||1.
(24)

A quadratic surrogate function for g1(X, ξ (t)) is then

constructed as

ǧ1(X, X(t−1), ξ (t))

:= g1(X
(t−1), ξ (t))

+ 〈P − P(t−1),∇Pg1(X
(t−1), ξ (t))〉 +

η
(t)
P

2
‖P − P(t−1)‖2

F

+ 〈Q − Q(t−1),∇Qg1(X
(t−1), ξ (t))〉 +

η
(t)
Q

2
‖Q − Q(t−1)‖2

F

+ 〈E − E(t−1),∇Eg1(X
(t−1), ξ (t))〉 + η

(t)
E

2
‖E − E(t−1)‖2

F

(25)
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TABLE II

ONLINE SGD SOLVER OF (P2)

where η
(t)
P , η

(t)
Q , and η

(t)
E are positive constants, and with

˜̃
f
(t)
m (P, Q, E) := 〈W(t)

m , PQT + E〉 − š
(t)
m it can be readily

verified that

∇Pg1(X
(t−1), ξ (t))

=
M
∑

m=1

˜̃
f (t)
m (P(t−1), Q(t−1), E(t−1))W(t)

m Q(t−1) (26)

∇Qg1(X
(t−1), ξ (t))

=
M
∑

m=1

˜̃
f (t)
m (P(t−1), Q(t−1), E(t−1))W(t)

m

T
P(t−1) (27)

∇Eg1(X
(t−1), ξ (t)) =

M
∑

m=1

˜̃
f (t)
m (P(t−1), Q(t−1), E(t−1))W(t)

m .

(28)

Let us focus on the case without the forgetting factor,

i.e., β = 1. A convergent SA algorithm for (P2) is obtained

by considering the following surrogate problem

(P3) min
X

1

t

t
∑

τ=1

[

ǧ1(X, X(τ−1), ξ (τ )) + g2(X)
]

. (29)

In fact, solving (P3) yields a stochastic gradient descent (SGD)

algorithm. In particular, since variables P, Q, and E can be

separately optimized in (P3), the proposed algorithm updates

the variables in parallel in each time slot t as

P(t) = arg min
P

t
∑

τ=1

[

〈P − P(τ−1),∇Pg1(X
(τ−1), ξ (τ ))〉

+ η
(τ )
P

2
||P − P(τ−1)||2F + λ

2
||P||2F

]

(30)

Q(t) = arg min
Q

t
∑

τ=1

[

〈Q − Q(τ−1),∇Qg1(X
(τ−1), ξ (τ ))〉

+
η

(τ )
Q

2
||Q − Q(τ−1)||2F + λ

2
||Q||2F

]

(31)

E(t) = arg min
E

t
∑

τ=1

[

〈E − E(τ−1),∇Eg1(X
(τ−1), ξ (τ ))〉

+
η

(τ )
E

2
||E − E(τ−1)||2F + µ||E||1

]

. (32)

By checking the first-order optimality conditions, and defining

η̄
(t)
P :=

∑t
τ=1 η

(τ )
P and η̄

(t)
Q :=

∑t
τ=1 η

(τ )
Q , the update rules for

P and Q are obtained as

P(t) = 1

η̄
(t)
P + λt

t
∑

τ=1

[

η
(τ )
P P(τ−1) − ∇Pg1(X

(τ−1), ξ (τ ))
]

(33)

Q(t) = 1

η̄
(t)
Q + λt

t
∑

τ=1

[

η
(τ )
Q Q(τ−1) − ∇Qg1(X

(τ−1), ξ (τ ))
]

(34)

which can be written in recursive forms as

P(t) = P(t−1) − 1

η̄
(t)
P + λt

(

∇Pg1(X
(t−1), ξ (t)) + λP(t−1)

)

(35)

Q(t) = Q(t−1) − 1

η̄
(t)
Q + λt

(

∇Qg1(X
(t−1), ξ (t)) + λQ(t−1)

)

.

(36)

Due to the non-smoothness of ||E||1, the update for E

proceeds in two steps. First, an auxiliary variable Z(t) is

introduced, which is computed as

Z(t) = 1

η̄
(t)
E

[

t
∑

k=1

η
(k)
E E(k−1) − ∇Eg1(X

(k−1), ξ (k))

]

. (37)

Again defining η̄
(t)
E :=

∑t
τ=1 η

(τ )
E , matrix Z(t) can be obtained

recursively as

Z(t) = 1

η̄
(t)
E

[

η
(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) − ∇Eg1(X

(t−1), ξ (t))
]

.

(38)

Then, E(t) is updated as

E(t) = soft_th(Z(t); µt/η̄
(t)
E ). (39)

The overall online algorithm is listed in Table II.

Remark 1 (Computational Complexity): In the batch algo-

rithm of Table I, the complexity orders for computing the

updates for each of pi and qi are O(Ny MT ) and O(Nx MT ),
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TABLE III

RECONSTRUCTION ERROR AT T = 130 AND COMPUTATIONAL COMPLEXITY PER ITERATION

Fig. 1. True SLF.

respectively, due to the computation of W̃WW
T

s̃i and W̆WW
T

i s̆i . Thus,

the complexity orders for updating P and Q per iteration k

are both O(Nx Ny MT ). The update of el incurs complexity

O(MT ) for computing ωT
l
ˇ̌sl . Thus, the complexity order for

updating E per iteration k is O(Nx Ny MT ). Accordingly,

the overall per-iteration complexity of the batch algorithm

becomes O(Nx Ny MT ). On the other hand, the complexity of

the online algorithm in Table II is dominated by the gradient

computations, which require O(ρNx Ny M). Since ρ is smaller

than Nx and Ny , and the per-iteration complexity does not

grow with T , the online algorithm has a much more affordable

complexity than its batch counterpart, and it is scalable for

large network scenarios.

B. Convergence

The iterates {X(t)}∞t=1 generated from the algorithm

in Table II converge to a stationary point of (P2), as asserted

in the following proposition. First define

Ct (X) := 1

t

t
∑

τ=1

[

g1(X, ξ (τ )) + g2(X)
]

(40)

Čt (X) := 1

t

t
∑

τ=1

[

ǧ1(X, X(τ−1), ξ (τ )) + g2(X)
]

(41)

C(X) := Eξ

[

g1(X, ξ ) + g2(X)
]

. (42)

Note that Ct (X) is essentially identical to the cost of (P2).

Furthermore, the minimizer of Ct (X) approaches that of C(X)

when t → ∞, provided ξ obeys the law of large numbers,

which is clearly the case when e.g., {ξ (t)} is i.i.d.

Assume that ∇Pg1(·, Q, E, ξ ), ∇Q(P, ·, E, ξ ) and

∇E(P, Q, ·, ξ) are Lipschitz with respect to P, Q,

and E, respectively, with constants LP , LQ, and LE,

respectively (which will be shown in Appendix B).

Furthermore, let ᾱ
(t)
i := (

∑t
τ=1(η

(τ )
i + λ))−1 for i ∈ {P, Q},

and ᾱ
(t)
E := (η̄

(t)
E )−1 denote step sizes.

Proposition 2: If (a1) {ξ (t)}∞t=1 is an independent and iden-

tically distributed (i.i.d) random sequence; (a2) {X(t)}∞t=1 are

in a compact set X ; (a3) � is bounded; (a4) For i ∈ {P, Q, E},
η̄i

(t) ≥ ct ∀t for some c ≥ 0; and (a5) c′ ≥ η
(t)
i ≥ L2

i /Lmin ∀t

for some c′ > 0 and Lmin := min{LP, LQ, LE}, then the

iterates {X(t)}∞t=1 generated by the algorithm in Table II

converge to the set of stationary points of (P2) with

Fig. 2. SLFs reconstructed by the batch algorithms.

β = 1, i.e.,

lim
t→∞

inf
X̄∈X̄

‖X(t) − X̄‖F = 0 a.s. (43)

where X̄ is the set of stationary points of C(X).

Proof: See Appendix B.

V. NUMERICAL TESTS

Performance of the proposed batch and online algorithms

was assessed through numerical tests using both synthetic and

real datasets. A few existing methods were also tested for

comparison. The ridge-regularized least-squares (LS) scheme

estimates the SLF as vec(F̂) = (WWWWWW T + ωC−1
f )−1WWW š,

where C f is the spatial covariance matrix of the SLF, and

ω is a regularization parameter [8], [11], [21]. The total

variation (TV)-regularized LS scheme in [32] was also tested,

which solves min f ‖š −WWW T f ‖2
2 + ω

(∑Nx −1
i=1

∑Ny

j=1 | fi+1, j −
fi, j | +

∑Nx

i=1

∑Ny −1

j=1 | fi, j+1 − fi, j |
)

where f := vec(F)

and fi, j corresponds to the (i, j)-th element of F. Finally,

the LASSO estimator was obtained by solving (P1) with

λ = 0.

A. Test With Synthetic Data

Random tomographic measurements were taken by sensors

deployed uniformly over A := [0.5, 40.5] × [0.5, 40.5], from

which the SLF with Nx = Ny = 40 was reconstructed.

Per-time slot, 10 measurements were taken, corrupted by zero-

mean white Gaussian noise with variance σ 2 = 0.1. The

regularization parameters were set to λ = 0.05 and µ = 0.01

through cross-validation by minimizing the normalized error

‖F̂−F0‖F/‖F0‖F , where F0 is the ground-truth SLF depicted

in Fig. 1. Other parameters were set to ρ = 13, β = 1, and

δ = 0.06; while C f = INx Ny and ω = 0.13 were used for the

ridge-regularized LS.
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Fig. 3. SLF reconstruction using the batch and online algorithms. (a) Cost versus iterations (batch). (b) Reconstruction error versus CR location error (batch).
(c) Average cost over time slots (online).

Fig. 4. SLFs reconstructed by the online algorithm. (a) and (b) correspond

to using η̄
(t)
P

= η̄
(t)
Q

= 300 and η̄
(t)
E

= 10. (c) and (d) use η̄
(t)
P

= η̄
(t)
Q

=
η̄
(t)
E

= 300.

To validate the batch algorithm in Table I, two cases were

tested. In the first case, the measurements were generated for

T = 130 time slots using N = 52 sensors, while in the second

case, T = 260 and N = 73 were used. As a comparison,

the accelerated proximal gradient (APG) algorithm was also

derived for (P1) [33]. Note that the APG requires the costly

SVD operation of an Nx -by-Ny matrix per iteration, while

only the inversion of a ρ-by-ρ matrix is necessary in the

proposed BCD algorithm. Fig. 2 shows the SLFs reconstructed

by APG and BCD algorithms for the two cases. Apparently,

the reconstructed SLFs capture well the features of the ground-

truth SLF in Fig. 1. Note that (P2) is underdetermined when

T = 130 since the total number of unknowns in (P2) is 2, 640

while the total number of measurements is only 1, 300. This

verifies that the channel gain maps can be accurately inter-

polated with a small number of measurements by leveraging

the attributes of the low rank and sparsity. Fig. 3(a) shows

the convergence of the BCD and APG algorithms. The cost

of (P2) from the BCD algorithm converges to that of (P1) from

APG after k = 550 iterations, showing that the performance of

solving (P1) directly is achievable by the proposed algorithm

solving (P2) instead. This can also be corroborated from the

reconstructed SLFs in Fig. 2 as well.

Fig. 5. (a) and (b) are true SLFs; (c) and (d) show reconstructed SLFs at
different time slots.

Fig. 6. Configuration of the testbed.

Table III lists the reconstruction error when T = 130 and

the per-iteration complexity of the batch algorithms. It is seen

that the proposed method outperforms benchmark algorithms

in terms of the reconstruction error. Note that the ridge-

regularized LS has a one-shot (non-iterative) complexity of

O((Nx Ny)
3), but its reconstruction capability is worse than

the proposed algorithm as the true SLF is not smooth.

To test robustness of the proposed algorithm against impre-

cise CR location estimates, the reconstruction error versus

the maximum sensor location error is depicted in Fig. 3(b).
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Fig. 7. Reconstructions by the proposed batch algorithm.

Fig. 8. Reconstructions by the ridge-regularized LS.

Fig. 9. Reconstructions by the proposed online algorithm.

To reconstruct F matrix, WWW was computed via a set of

erroneous sensor locations x̌
(t)
n obtained by adding uniformly

random perturbations to true locations x
(t)
n . It is seen that the

SLF could be accurately reconstructed when the location error

was small.

The numerical tests for the online algorithm were carried out

with the same parameter setting as the batch experiments with

N = 317. Fig. 3(c) depicts the evolution of the average cost

in (40) for two sets of values for (η̄
(t)
P , η̄

(t)
Q , η̄

(t)
E ). The green

dotted curve corresponds to using η̄
(t)
P = η̄

(t)
Q = η̄

(t)
E = 300,

while the blue solid curve is for η̄
(t)
P = η̄

(t)
Q = 300, and

η̄
(t)
E = 10. It can be seen that the uniform step sizes for all

variables result in convergence rate that is slower than that with

the disparate step sizes. Fig. 4 shows the SLFs reconstructed

via the online algorithm at t = 1, 000 and t = 5, 000

using the two choices of step sizes. It can be seen that for a

given time slot t , flexibly choosing the step sizes yields much

more accurate reconstruction. As far as reconstruction error,

the online algorithm with disparate step sizes yields 6.3×10−2

at t = 5, 000, while its batch counterpart has 2.4 × 10−2.

Although slightly less accurate SLF is obtained by the online

algorithm, it comes with greater computational efficiency.

To assess the tracking ability of the online algorithm,

the slow channel variation was simulated. The measurements

were generated using the SLF in Fig. 1 with three addi-

tional objects slowly moving in the rate of unit pixel width

per 70 time slots. Fig. 5 depicts instances of the true and

reconstructed SLFs at t = 2, 400 and t = 3, 200, respectively,

obtained by the online algorithm. The moving objects are

marked by the red circles. It is seen that the reconstructed

SLFs correctly capture the moving objects, while the stationary

objects are estimated more clearly as t increases.

B. Test With Real Data

To validate the performance of the proposed framework

for SLF and channel gain map estimation in realistic sce-
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narios, real received signal strength (RSS) measurements

were also processed. The data were collected by a set of

N = 20 sensors deployed in the perimeter of a square-

shaped testbed as shown in Fig. 6, where the crosses indi-

cate the sensor positions. Data collection was performed in

two steps [21]. First, free-space measurements were taken

to obtain estimates of the path gain G0 and the pathloss

exponent γ via least-squares. The estimated γ was approx-

imately 2, and G0 was found to be 75. Then, tomographic

measurements were formed with the artificial structure shown

in Fig. 6. For the both measurements, 100 measurements

were taken per time slot, in the 2.425 GHz frequency band,

across 24 time slots. The shadowing measurements were

obtained by subtracting the estimated pathloss from the RSS

measurements.

The SLFs of size Nx = Ny = 61 were reconstructed by

the proposed batch algorithm. The regularization parameters

were set to λ = 4.5 and µ = 3.44, which were determined

by cross-validation. The parameter δ in (4) was set to 0.2 feet

to capture the non-zero weights within the first Fresnel zone,

and ρ = 10 and β = 1 were used.

For comparison, the ridge-regularized LS estimator was also

tested. To construct C f , the exponential decay model in [6]

was used, which models the covariance between points x and

x′ as C f (x, x′) = σ 2
s e− ‖x−x′‖2

κ , where σ 2
s and κ > 0 are

model parameters. In our tests, σ 2
s = κ = 1, and ω = 79.9

were used.

The SLF, shadow fading map, and channel gain map

reconstructed by the proposed BCD algorithm are depicted

in Fig. 7. The shadow fading and channel gain maps portray

the gains in dB between any point in the map and the fixed

CR location at (10.2, 7.2) (marked by the cross). Fig. 8 shows

the results from the ridge-regularized LS estimation. It can be

seen from Fig. 7(a) and Fig. 8(b) that the proposed low-rank

plus sparse model produces a somewhat sharper SLF image

than the ridge-regularized LS approach. Although the latter

yields a smooth SLF image, it produces more artifacts near

the isolated block and the boundary of the SLF. Such artifacts

may lead to less accurate shadowing and channel gain maps.

For instance, Fig. 7(b) and Fig. 8(b) both show that the shadow

fading is stronger as more building material is crossed in the

communication path. However, somewhat strong attenuations

are observed near the cinder block location and the interior of

the oriented strand board (OSB) wall only in Fig. 8(b), which

seems anomalous.

The online algorithm was also tested with the real data.

Parameters η̄
(t)
P = η̄

(t)
Q = 620 and η̄

(t)
E = 200 were

selected, and 6 × 105 measurements were uniformly drawn

from the original dataset with replacement to demonstrate the

asymptotic performance. Fig. 9 depicts the reconstructed SLF,

shadow fading and channel gain maps obtained from the online

algorithm. It can be seen that the SLF shown in Fig. 9(a) is

close to that depicted in Fig. 7(a). Similar observations can

be made for the shadow fading and channel gain maps as

well. Thus, the online algorithm is a viable alternative to the

batch algorithm with reduced computational complexity, and

affordable memory requirement.

Fig. 10. NMSE of channel gain prediction by (a) the batch; and (b) online
algorithms.

Channel gain estimation performance of the proposed

algorithms was assessed via 5-fold cross-validation. Let

ǧtest and ĝtest denote RSS measurement vectors in the test

set and its estimate, respectively. Prediction performance

is measured by the normalized mean-square error (NMSE)

‖ ǧtest− ĝtest‖2/‖ ǧtest‖2. Fig. 10(a) displays the NMSE of batch

algorithms with 480 test samples versus the number of training

samples. It is shown that the proposed algorithm outperforms

competing alternatives, particularly when a small number of

training samples are available, validating the usefulness of the

proposed model. The online algorithm was also tested with

2.85×105 measurements uniformly drawn from 1, 920 training

samples with replacement. Fig. 10(b) depicts the evolution

of the NMSE measured on 480 test samples at every t .

It is observed that the online algorithm attains the batch

performance as t increases.

VI. CONCLUSION

A low-rank plus sparse matrix model was proposed for

channel gain cartography, which is instrumental for various CR

spectrum sensing and resource allocation tasks. The channel

gains were modeled as the sum of the distance-based pathloss

and the tomographic accumulation of shadowing due to the

underlying SLF. The SLF was postulated to have a low-

rank structure corrupted by sparse outliers. Efficient batch and

online algorithms were derived by leveraging a bifactor-based

characterization of the matrix nuclear norm. The algorithms

enjoy low computational complexity and a reduced memory

requirement, without sacrificing the optimality, with provable

convergence properties. Tests with both synthetic and real

measurement datasets corroborated the claims and showed that

the algorithms could accurately reveal the structure of the

propagation medium.

APPENDIX

A. Proof of Proposition 1

A stationary point P̄, Q̄ and Ē of (P2) must satisfy the

following first-order optimality conditions [34]

0Nx ×Ny ∈ ∂E f (P̄, Q̄, Ē) =
{

f̃ (P̄Q̄T , Ē) + µβ̄
[

sgn(Ē) + Ẽ0
]

∣

∣

∣

∣

Ē � Ẽ = 0, ‖Ẽ‖∞ ≤ 1
}

(44)
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∇P f (P̄, Q̄, Ē) = f̃ (P̄Q̄T , Ē)Q̄ + λβ̄P̄ = 0Nx ×ρ

(45)

∇QT f (P̄, Q̄, Ē) = P̄T f̃ (P̄Q̄T , Ē) + λβ̄Q̄T = 0ρ×Ny

(46)

where � denotes the element-wise (Hadamard) product.

Through post-multiplying (45) by P̄T and pre-multiplying (46)

by Q̄, one can see that

f̃ (P̄Q̄T , Ē) = −µβ̄(sgn(Ē) + Ẽ)

tr
(

f̃ (P̄Q̄T , Ē)Q̄P̄T
)

= −λβ̄tr(P̄P̄T ) = −λβ̄tr(Q̄Q̄T ). (47)

Define now κ(R1, R2) := 1
2 (tr (R1) + tr (R2)), and consider

the following convex problem

(P4) min
L,E∈R

Nx ×Ny ,
R1∈R

Nx ×Nx ,

R2∈R
Ny ×Ny

T
∑

τ=1

βT −τ c(τ )(L, E)

+λβ̄ κ(R1, R2) + µβ̄ ||E||1
subject to R :=

(

R1 L

LT R2

)

� 0 (48)

which is equivalent to (P1). Equivalence can be easily inferred

by minimizing (P4) with respect to {R1, R2} and noting an

alternative characterization of the nuclear norm given by [25]

‖L‖∗ = min
R1,R2

κ(R1, R2)

subject to R � 0. (49)

In what follows, the optimality conditions of the conic pro-

gram (P4) are explored. Introducing a Lagrange multiplier

matrix M ∈ R
(Nx +Ny )× (Nx +Ny ) associated with the conic

constraint in (48), the Lagrangian is first formed as

L(L, E, R1, R2; M) =
T
∑

τ=1

βT −τ c(τ )(L, E)

+ λβ̄ κ(R1, R2)+µβ̄ ||E||1−〈M, R〉.
(50)

For notational convenience, partition M as

M :=
(

M1 M2

M4 M3

)

(51)

in accordance with the block structure of R in (48), where

M1 ∈ R
Nx ×Nx and M3 ∈ R

Ny ×Ny . The optimal solution

to (P4) must satisfy: (i) the stationarity conditions

∇LL(L, E, R1, R2; M) = f̃ (L, E) − M2 − MT
4 = 0

(52)

0 ∈ ∂EL(L, E, R1, R2; M) =
{

f̃ (L, E) + µβ̄
[

sgn(E) + Ẽ
]

∣

∣

∣

∣

E � Ẽ = 0, ‖Ẽ‖∞ ≤ 1

}

(53)

∇R1 L(L, E, R1, R2; M) = λβ̄

2
INx − M1 = 0 (54)

∇R2 L(L, E, R1, R2; M) = λβ̄

2
INy − M3 = 0 (55)

(ii) complementary slackness condition 〈M, R〉 = 0; (iii)

primal feasibility R � 0; and (iv) dual feasibility M � 0.

Using the stationary point P̄, Q̄ and Ē of (P2), construct

a candidate solution for (P4) as L̂ := P̄Q̄T , Ê := Ē,

R̂1 := P̄P̄T , and R̂2 := Q̄Q̄T , as well as M̂1 := λβ̄
2

INx ,

M̂2 := 1
2

f̃ (P̄Q̄T , Ē), M̂3 := λβ̄
2

INy , and M̂4 := M̂T
2 . After

substituting these into (52)–(55), it can be readily verified that

condition (i) holds. Condition (ii) also holds since

〈M̂, R̂〉 = 〈M̂1, R̂1〉 + 〈M̂2, L̂〉 + 〈M̂3, R̂2〉 + 〈M̂4, L̂T 〉

= λβ̄

2
tr(P̄P̄T + Q̄Q̄T ) + tr

(

f̃ (P̄Q̄T , Ē)Q̄P̄T
)

= 0 (56)

where the last equality follows from (47). Condition (iii) is

met since R can be rewritten as

R =
(

P̄P̄T P̄Q̄T

Q̄P̄T Q̄Q̄T

)

=
(

P̄

Q̄

)(

P̄

Q̄

)T

� 0. (57)

For (iv), according to the Schur complement condition for

positive semidefinite matrices, M � 0 holds if and only if

M̂3 − M̂4M̂−1
1 M̂2 � 0 (58)

which is equivalent to λmax(M̂
T
2 M̂2) ≤ (λβ̄/2)2, or

|| f̃ (P̄Q̄T , Ē)|| ≤ λβ̄. �

B. Proof of Proposition 2

The proof uses the technique similar to the one employed

in [30], where the convergence of online algorithms for

optimizing objectives involving non-convex bilinear terms and

sparse matrices was established in the context of dictionary

learning.

In order to proceed with the proof, three lemmata are

first established. The first lemma concerns some properties

of g(X, ξ (t)) := g1(X, ξ (t))+ g2(X), and ǧ(X, X(t−1), ξ (t)) :=
ǧ1(X, X(t−1), ξ (t)) + g2(X).

Lemma 2: If the assumptions (a1)–(a5) in Proposition 2

hold, then

(p1) ǧ1(X, X(t−1), ξ (t)) majorizes g1(X, ξ (t)), i.e.,

ǧ1(X, X(t−1), ξ (t)) ≥ g1(X, ξ (t)) ∀ X ∈ X ′;
(p2) ǧ1 is locally tight, i.e.,

ǧ1(X
(t−1), X(t−1), ξ (t)) = g1(X

(t−1), ξ (t));

(p3) ∇ ǧ1(X
(t−1), X(t−1), ξ (t)) = ∇g1(X

(t−1), ξ (t));

(p4) ǧ(X, X(t−1), ξ (t)) := ǧ1(X, X(t−1), ξ (t)) + g2(X) is uni-

formly strongly convex in X, i.e.,

∀(X, X(t−1), ξ (t)) ∈ X × X × �, it holds that

ǧ(X + D, X(t−1), ξ (t)) − ǧ(X, X(t−1), ξ (t))

≥ ǧ′(X, X(t−1), ξ (t); D) + ζ

2
||D||2F

where ζ > 0 is a constant and ǧ′(X, X(t−1), ξ (t); D) is

a directional derivative of ǧ at X along the direction D;

(p5) g1 and ǧ1, their derivatives, and their Hessians are

uniformly bounded;

(p6) g2 and its directional derivative g′
2 are uniformly

bounded; and

(p7) there exists ḡ ∈ R such that |ǧ(X, X(t−1), ξ (t))| ≤ ḡ.
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Proof: For (p1), let us first show that ∇Pg1(P, Q, E, ξ (t)),

∇Qg1(P, Q, E, ξ (t)), and ∇Eg1(P, Q, E, ξ (t)) are Lipschitz

continuous for X := (P, Q, E) ∈ X ′ and ξ (t) ∈ �. For arbitrary

X1 := (P1, Q1, E1), X2 := (P2, Q2, E2) ∈ X ′, the variation of

∇g1 in (26) can be bounded as

‖∇Pg1(P1, Q, E, ξ (t)) − ∇Pg1(P2, Q, E, ξ (t))‖F

=
∥

∥

∥

∥

∥

M
∑

m=1

〈W(t)
m , (P1 − P2)Q

T 〉W(t)
m Q

∥

∥

∥

∥

∥

F

(i1)
≤

M
∑

m=1

|〈W(t)
m , (P1 − P2)Q

T 〉|‖W(t)
m Q‖F

(i2)
≤

M
∑

m=1

‖P1 − P2‖F ‖W(t)
m Q‖2

F

where (i1) and (i2) are due to the triangle and Cauchy-Schwarz

inequalities, respectively. Since X ′ and � are assumed to be

bounded,
∑M

m=1 ‖W
(t)
m Q‖2

F is bounded. Therefore, there exists

a positive constant LP such that

‖∇Pg1(P1, Q, E, ξ (t)) − ∇Pg1(P2, Q, E, ξ (t))‖F

≤ LP‖P1 − P2‖F (59)

meaning that ∇Pg1(P, Q, E, ξ (t)) is Lipschitz continuous with

constant LP. Similar arguments hold for ∇Qg1(P, Q, E, ξ (t))

and ∇Eg1(P, Q, E, ξ (t)) as well, with Lipschitz constants

LQ and LE, respectively. Then, upon defining ‖X‖� :=
√

L2
P‖P‖2

F + L2
Q‖Q‖2

F + L2
E‖E‖2

F , it is easy to verify

‖∇g1(X1, ξ
(t)) − ∇g1(X2, ξ

(t))‖F ≤ ‖X1 − X2‖�. (60)

On the other hand, the proof of the Descent Lemma [35]

can be adopted to show

g1(X, ξ (t)) − g1(X
(t−1), ξ (t))

≤ 〈X − X(t−1),∇g1(X
(t−1), ξ (t))〉 +

∫ 1

0

‖X − X(t−1)‖F

× ‖∇g1(X
(t−1) + α(X − X(t−1)), ξ (t))

− ∇g1(X
(t−1), ξ (t))‖F dα. (61)

Note that

‖X‖F ≤ 1

Lmin
‖X‖� (62)

where Lmin := min{LP, LQ, LE}. Then, substitution of (60)

into (61) with X1 = X(t−1) +α (X−X(t−1)) and X2 = X(t−1)

yields

g1(X
(t−1), ξ (t)) + 〈X − X(t−1),∇g1(X

(t−1), ξ (t))〉

+ 1

2Lmin
‖X − X(t−1)‖2

� ≥ g1(X, ξ (t)) (63)

which completes the proof by the construction of ǧ1, provided

that η
(t)
i ≥ L2

i /Lmin for all i ∈ {P, Q, E}.
To show (p2) and (p3), let us first denote

∇g1(X, ξ (t)) =
(

∇Pg1(X, ξ (t)),∇Qg1(X, ξ (t)),

∇Eg1(X, ξ (t))
)

(64)

∇ ǧ1(X, X(t−1), ξ (t)) =
(

∇Pg1(X, ξ (t)) + η
(t)
P (P − P(t−1)),

∇Qg1(X, ξ (t)) + η
(t)
Q (Q − Q(t−1)),

∇Eg1(X, ξ (t)) + η
(t)
E (E − E(t−1))

)

.

(65)

Then, it suffices to evaluate ǧ1(X, ξ (t)) and

∇ ǧ1(X, X(t−1), ξ (t)) at X(t−1) to see that (p2) and (p3)

hold.

To show (p4), let us first find ǧ′
1 and g′

2. Along

a direction D := (DP, DQ, DE) ∈ X ′, it holds that

ǧ′
1(X, X(t−1), ξ (t); D) = 〈∇ ǧ1(X, X(t−1), ξ (t)), D〉 since ǧ1 is

differentiable. Similarly, g′
2(X; D) = λ(〈P, DP〉 + 〈Q, DQ〉) +

µh′(E; DE) where h(E) := ‖E‖1, dE := vec(DE) with its l-th

entry being dE,l , and

h′(E; DE)

:= lim
t→0+

h(E + tDE) − h(E)

t

= lim
t→0+

∑

l,el �=0(|el + tdE,l | − |el |) +
∑

l,el =0 |tdE,l |
t

=
∑

l,el �=0

sgn(el)dE,l +
∑

l,el=0

|dE,l |. (66)

On the other hand, the variation of ǧ can be written as

ǧ(X + D, X(t−1), ξ (t)) − ǧ(X, X(t−1), ξ (t))

= ǧ′
1(X, X(t−1), ξ (t); D) +

∑

i∈{P,Q,E}

η
(t)
i

2
‖Di‖2

F

+ g2(X + D) − g2(X). (67)

Note that
∑

i

η
(t)
i

2
‖Di‖2

F ≥ Lmin
2

||D||2F since η
(t)
i ≥ L2

i /Lmin by

algorithmic construction. Furthermore, g2(X + D) − g2(X) ≥
g′

2(X; D) since g2 is convex [36]. Then, the variation of ǧ

in (67) can be lower-bounded as

ǧ(X + D, X(t−1), ξ (t)) − ǧ(X, X(t−1), ξ (t))

≥ ǧ′(X, X(t−1), ξ (t); D) + Lmin

2
||D||2F (68)

where ǧ′(X, X(t−1), ξ (t); D) = ǧ′
1(X, X(t−1), ξ (t); D) +

g′
2(X; D). Therefore, (p4) holds for a positive constant ζ ≤

Lmin.

By the compactness of X and boundedness of � by (a3),

(p5) is automatically satisfied since g1 and ǧ1 are continuously

twice differentiable in X [31]. In addition, one can easily

show (p6) since g2 and g′
2 are also uniformly bounded by

the compactness of X .

Let K1 and K2 denote constants where |ǧ1| ≤ K1 and |g2| ≤
K2, respectively, by (p5) and (p6). Then, (p7) readily follows

since

|ǧ(X, X(t−1), ξ (t))| = |ǧ1(X, X(t−1), ξ (t)) + g2(X)|
≤ |ǧ1(X, X(t−1), ξ (t))| + |g2(X)|
≤ K1 + K2 =: ḡ. (69)

�

The next lemma asserts that a distance between two subse-

quent estimates asymptotically goes to zero, which will be
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used to show limt→∞ Č1,t (X
(t)) − C1,t (X

(t)) = 0, almost

surely.

Lemma 3: If (a2)–(a5) hold, then ||X(t+1) − X(t)||F =
O(1/t).

Proof: See [31, Lemma 2]. A proof of Lemma 3 is omitted

to avoid duplication of the proof of [31, Lemma 2]. Hence,

it suffices to mention that Lemma 2 guarantees the formulation

of the proposed work satisfying the general assumptions on the

formulation in [31]. �

Lemma 3 does not guarantee convergence of the iterates to

the stationary point of (P2). However, the final lemma asserts

that the overestimated cost sequence converges to the cost

of (P2), almost surely. Before proceeding to the next lemma,

let us first define

C1,t (X) := 1

t

t
∑

τ=1

g1(X, ξ (τ )) (70)

Č1,t (X) := 1

t

t
∑

τ=1

ǧ1(X, X(τ−1), ξ (τ )) (71)

and C2(X) := g2(X). Note also that Čt (X) − Ct (X) =
Č1,t (X) − C1,t (X).

Lemma 4: If (a1)–(a5) hold, Čt (X
(t)) converges almost

surely, and limt→∞ Č1,t (X
(t))−C1,t (X

(t)) = 0, almost surely.

Proof: See [31, Lemma 1]. A proof of Lemma 4 is omitted

to avoid duplication of the proof of [31, Lemma 1]. Instead,

a sketch of the proof is following. It is firstly shown that

the sequence {Čt (X
(t))}∞t=1 follows a quasi-martingale process

and converges almost surely. Then, the lemma on positive

converging sums (see [30, Lemma 8]) and Lemma 3 are used

to claim that limt→∞ Č1,t (X
(t)) − C1,t (X

(t)) = 0, almost

surely. �

The last step of the proof for Proposition 2 is inspired

by [31]. Based on Lemma 4, it will be shown that the

sequence {∇Č1,t (X
(t))−∇C1,t (X

(t))}∞t=1 goes to zero, almost

surely. Together with C ′
2, it follows that limt→∞ C ′

t (X
(t); D) ≥

0 ∀D, a.s. by algorithmic construction, implying convergence

of a sequence {X(t)}∞t=1 to the set of stationary points of C(X).

By the compactness of X , it is always possible to find a

convergent subsequence {X(t)}∞t=1 to a limit point X̄ ∈ X .

Then, by the strong law of large numbers [37] under (a1) and

equicontinuity of a family of functions {C1,t (·)}∞t=1 due to the

uniform boundedness of ∇g1 in (p5) [38], upon restricting to

the subsequence, one can have

lim
t→∞

C1,t (X
(t)) = Eξ [g1(X̄, ξ )] =: C1(X). (72)

Similarly, a family of functions {Č1,t(·)}∞t=1 is equicontinuous

due to the uniform boundedness of ∇ ǧ1 in (p5). Further-

more, {Č1,t (·)}∞t=1 is pointwisely bounded by (a1)–(a3). Thus,

Arzelá-Ascoli theorem (see [38, Corollary 2.5] and [39])

implies that there exists a uniformly continuous function

Č1(X) such that limt→∞ Č1,t (X) = Č1(X) ∀ X ∈ X and after

restricting to the subsequence

lim
t→∞

Č1,t (X
(t)) = Č1(X̄). (73)

Furthermore, since ǧ1(X, X(t−1), ξ (t)) ≥ g1(X, ξ (t)) as in (p1),

it follows that

Č1,t (X) − C1,t (X) ≥ 0 ∀X. (74)

By letting t → ∞ on (74) and combining Lemma 4 with (72)

and (73), one deduces that

Č1(X̄) − C1(X̄) = 0, a.s. (75)

meaning that Č1,t (X) − C1,t (X) takes its minimum at X̄ and

∇Č1(X̄) − ∇C1(X̄) = 0, a.s. (76)

by the first-order optimality condition.

On the other hand, the fact that X(t) minimizes Čt (X) by

algorithmic construction and g′
2 exists (so does C ′

2), yields

Č1,t (X
(t)) + C2(X

(t)) ≤ Č1,t (X) + C2(X) ∀X ∈ X (77)

and limt→∞ Č1,t (X
(t)) + C2(X

(t)) ≤ limt→∞ Č1,t (X) +
C2(X) ∀X ∈ X , which implies

lim
t→∞

〈∇Č1,t (X
(t)), D〉 + C ′

2(X
(t); D) ≥ 0 ∀D. (78)

Using the result in (76), (78) can be re-written as

〈∇C1(X̄), D〉 + C ′
2(X̄; D) ≥ 0 ∀D, a.s. or

C ′(X̄; D) ≥ 0 ∀D, a.s. (79)

Thus, the subsequence {X(t)}∞t=1 asymptotically coincides with

the set of stationary points of C(X). �
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