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Channel Gain Cartography for Cognitive Radios
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Abstract— Channel gain cartography aims at inferring the
channel gains between two arbitrary points in space based on
the measurements (samples) of the gains collected by a set of
radios deployed in the area. Channel gain maps are useful for
various sensing and resource allocation tasks essential for the
operation of cognitive radio networks. In this paper, the channel
gains are modeled as the tomographic accumulations of an
underlying spatial loss field (SLF), which captures the attenuation
in the signal strength due to the obstacles in the propagation
path. In order to estimate the map accurately with a relatively
small number of measurements, the SLF is postulated to have
a low-rank structure possibly with sparse deviations. Efficient
batch and online algorithms are derived for the resulting map
reconstruction problem. Comprehensive tests with both synthetic
and real data sets corroborate that the algorithms can accurately
reveal the structure of the propagation medium, and produce the
desired channel gain maps.

Index Terms— Channel gain cartography, cognitive radio, low
rank and sparse models, RF tomography.

I. INTRODUCTION

ECENTLY, it has been recognized that the licensed

RF spectrum is often severely under-utilized depending
on the time and location of communication, in spite of the
evident scarcity of the spectral resources due to the growing
use of wireless devices [2]. Cognitive radios (CRs) aim to
mitigate this issue by opportunistically utilizing the unused
licensed spectrum through spectrum sensing and dynamic
spectrum access. RF cartography is an instrumental concept
for such CR tasks [3]. Based on the measurements collected
by spatially distributed CR sensors, RF cartography constructs
the maps over the space, time, and frequency, portraying
the RF landscape in which the CR network is deployed.

Manuscript received December 13, 2016; revised April 12, 2017; accepted
June 9, 2017. Date of publication June 23, 2017; date of current ver-
sion September 8, 2017. This work was supported in part by NSF under
Grant 1247885, Grant 1343248, Grant 1442686, and Grant 1547347, and in
part by ARO under Grant W911NF-15-1-0492. This paper was presented at
the 48th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, November 2-5, 2014 [1]. The associate editor coordinating
the review of this paper and approving it for publication was P. Mihonen.
(Corresponding author: Georgios B. Giannakis.)

D. Lee and G. B. Giannakis are with the Department of Electrical
and Computer Engineering and the Digital Technology Center, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: leex6962@umn.edu;
georgios@umn.edu).

S.-J. Kim is with the Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore County, MD 21250 USA
(e-mail: sjkim@umbc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2017.2717822

Notable RF maps that have been proposed include the power
spectral density (PSD) maps, which acquire the ambient inter-
ference power distribution, revealing the crowded regions that
CR transceivers need to avoid [4]; and the channel gain (CG)
maps, which capture the channel gains between any two points
in space, allowing CR networks to perform accurate spectrum
sensing and aggressive spatial reuse [5].

The present work focuses on channel gain cartography.
Prior works capitalized on experimentally validated notion of a
spatial loss field (SLF) [6], which expresses the shadow fading
over an arbitrary link as the weighted integral of the underlying
attenuation that the RF propagation experiences due to the
blocking objects in the path. Linear interpolation techniques
such as kriging were employed to estimate the shadow
fading based on spatially correlated measurements, and the
spatio-temporal dynamics were tracked using Kalman filtering
approaches [5], [7]. It is worth noting that SLF reconstruction
is tantamount to the radio tomographic imaging (RTT), useful
in a wide range of applications, from locating survivors
in rescue operations to environmental monitoring [8]-[10].
The method in [8] captures the variation of the propagation
medium by taking SLF differences at consecutive time slots
into consideration. To cope with multipath fading in a cluttered
environment, multiple channel measurements were utilized to
enhance localization accuracy in [11]. However, the methods
in [8] and [11] do not reveal static objects in the imaging area.
In contrast, a method to track moving objects using a dynamic
SLF model, as well as identifying the static ones, was reported
in [10]. Exploiting the sparse occupancy of the monitored
area by the target objects, sparsity-leveraging algorithms for
constructing obstacle maps were developed [12]-[14]. Our
work adopts a related data model, but mainly focuses on the
channel gain map construction for CR applications.

Although more sophisticated methodologies for channel
modeling do exist [15], [16], the computational cost and
requirements on various structural/geometric prior information
may hinder their use in CR applications. On the other hand,
the SLF model has been experimentally validated [6], as well
as in the present work through a real tomographic imaging
example. Our proposed approach provides a computationally
efficient solution, by capitalizing on the inherent structure of
measurement data, rather than relying heavily on the physics
of RF propagation.

Our work interpolates the channel gains based on the SLF
reconstructed from a small number of measurements using
a low-rank and sparse matrix model. The key idea is to
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postulate that the SLF has a low-rank structure potentially
corrupted by sparse outliers. Such a model is particularly
appealing for urban and indoor propagation scenarios, where
regular placement of buildings and walls renders a scene
inherently of low rank, while sparse outliers can pick up
the artifacts that do not conform to the low-rank model.
While it is true that urban and indoor environments have
distinct profiles due to the different scales and density of
obstacles, our data model can capture the structural regularity
of obstacles, possibly at different scales, as validated through
synthetic and real data examples in Section V. The sparse
term helps robustify this model by filtering out the measure-
ments that do not conform to the low-rank structure. This is
essentially the idea behind robust principal component analy-
sis [17], which is a powerful data model that has been used
widely.

In fact, since the shadow fading samples are modeled
as linear tomographic measurements of the SLF, the map
recovery task reduces to an instance of compressive principal
component pursuit (CPCP) [18]. In general, the CPCP prob-
lem recovers the low-rank and sparse matrices from a small
set of linearly projected measurements. Our algorithms are
applicable to this general problem class.

We develop efficient batch and online algorithms for the
map estimation task, suitable for CR network implementa-
tion. By replacing the nuclear norm-based regularizer with a
bi-factorization surrogate, a block coordinate descent (BCD)
algorithm becomes available to avoid costly singular value
decomposition (SVD) per iteration. Although the resulting
optimization problem is non-convex, the batch solver can
attain the global optimum under appropriate conditions. For
the online algorithm, a stochastic successive upper-bound min-
imization strategy is adopted, leading to a stochastic gradient
descent (SGD) update rule, which enjoys low computational
complexity. The iterates generated by the online algorithm
are provably convergent to the stationary point of the batch
problem.

The rest of the paper is organized as follows. In Section II,
the system model and problem statement are provided. The
map reconstruction problem is formulated and its efficient
batch solution method is derived in Section III. An online
algorithm is developed through a stochastic approximation,
and its convergence is established in Section IV. Results
from numerical tests using both synthetic and real datasets
are presented in Section V, and the conclusions are offered
in Section VI.

Notations: Bold uppercase (lowercase) letters denote matri-
ces (column vectors). Calligraphic letters are used for sets;
I, is the n x n identity matrix. 0, denotes an n x 1 vector
of all zeros, and 0, , an n x n matrix of all zeros. Operators
()7, tr(-), and o;(-) represent the transposition, trace, and the
i-th largest singular value of a matrix, respectively; || is used
for the cardinality of a set, and the magnitude of a scalar.
R > 0 signifies that R is positive semidefinite. The £1-norm
of X € R™ is [X|i := >;_;|1Xij|. The {so-norm of
X e R™" is represented by [|X]||eo 1= max{|X;;| : i,j =
1,...,n}. For two matrices X, Y € R"*", the matrix inner
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product (X, Y) := tr(X7Y). The Frobenius norm of matrix Y
is ||Y||F := +/tr(YYT). The spectral norm of Y is ||Y]| :=
max|x|,,=1 ||[YX]||2, and || Y]], := >°; 0;(Y) is the nuclear norm
of Y. For a function A : R"™*" — R, the directional derivative
of h at X € R™*" along a direction D € R™*" is denoted as
R (X; D) := lim;— o+ [A(X + D) — h(X)]/1.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a set of N CRs deployed over a geographical
area represented by a two-dimensional plane 4 C RZ. Let
xf,') € 4 denote the position of CR n € {1,2,..., N} at
time ¢. By exchanging pilot sequences, the CR nodes can
estimate the channel gains among them. A typical channel
gain between nodes n and n’ can be modeled as the product
of pathloss, shadowing, and small-scale fading. By averaging
out the effect of the small-scale fading, the (averaged) channel
gain measurement over a link (n,n’) at time 7, denoted by

G(x,(,t), xr(lt,)), can be represented (in dB) as

G, x1)) = Go — y 101og;o [1x¢) — x| + sx{), x)

ey
where Gy is the path gain at unit distance; ||x,(f) — x,(f,)|| is the
distance between nodes n and n'; y is the pathloss exponent;
and s(x,(f), xf:,) ) is the attenuation due to the shadow fading.
By subtracting the known pathloss component in (1), the noisy
shadowing measurement

SO, xih = s, x(1) + e(x), x ) @)
(1) (O

is obtained, where €(x;,’, X,,') denotes the measurement noise.
Let ) be the set of links, for which channel gain measure-
ments are made at time ¢, and collect those measurements in
vector §0 € RI™”I. The goal of channel gain cartography is
to predict the channel gain between arbitrary points x, X' € 4
at time ¢, based on the known nodal positions {x,(f)} and the
channel gain measurements collected up to time ¢, that is,
FOY_, 151, 7).

In order to achieve this interpolation, the structure of shadow
fading experienced by co-located radio links will be leveraged.
To this end, a variety of correlation models for shadow fading
have been proposed [6], [19], [20]. In particular, the models
in [5], [6], [9], and [10] rely on the so-termed spatial loss
field (SLF), which captures the attenuation due to obstacles in
the line-of-sight propagation.

Let f : 2 — R denote the SLF, which captures the
attenuation at location X € 4, and w(x, X, X) is the weight
function modeling the influence of the SLF at X to the shad-
owing experienced by link x—x'. Then, s(x, x’) is expressed
as [21]

s(x,x') = / w(x, X, X) f(X)dX. 3)
a

The normalized ellipse model is often used for the weight
function, with w taking the form [8]

1//d(x,x), if d(x,X) +d(x,X)
<dx,x)+0
0, otherwise

w(x, X, X) =

“)
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where d(x,x) := ||x — x/|| is the distance between positions
x and X/, and J > 0 is a tunable parameter. The value of &
is commonly set to half the wavelength to assign non-zero
weights only within the first Fresnel zone. The integral in (3)
can be approximated by

Ny N}'

s X) 2 D> w(x, X, %) f X)) 5

i=1 j=1

where {X;, j}li_V:xif\;y:1 are the pre-specified grid points over 4.
Let matrix F € RM >Ny denote the SLF, sampled by the
N-by-N, grid. Similarly, the weight matrix Wy, correspond-
ing to link x—x’ is constructed. The shadow fading over link
x-X’ in (5) can then be expressed as a linear projection of the
SLF given by

s(x,X') = (Wyy, F) = tr(WLF). (6)

The goal is to form an estimate F®) of F®) at time ¢, based

on {X,(,t)} and {§(’)}’T:1. Once F® is obtained, the shadowing
and the overall channel gain across any link x—x’ at time ¢ can
be estimated via (6) and (1) as

3, x0) = (W, FO) @)
GV, x Dy = Go — y10logyq |[x — x| 4+ §(x©, x'D).
®)

The number of unknown F®) entries is less than NNy,
while the number of measurements is O(t N?), provided that
the SLF remains invariant for ¢ slots. If the number of
entries to be estimated in F®) is larger than the number of
measurements, the problem is underdetermined and cannot be
solved uniquely. To overcome this and further improve the per-
formance even in the overdetermined cases, a priori knowledge
on the structure of F®) will be exploited next to regularize the
problem.

III. CHANNEL GAIN PREDICTION USING
Low RANK AND SPARSITY

A. Problem Formulation

The low-rank plus sparse structure has been advo-
cated in various problems in machine learning and signal
processing [17], [22], [23]. Low-rank matrices are effective
in capturing slow variation or regular patterns, and sparsity
is instrumental for incorporating robustness against outliers.
Inspired by these, we postulate that F has a low-rank-plus-
sparse structure as

F=L+E )

where matrix L is low-rank, and E is sparse. This model is
particularly attractive in urban or indoor scenarios where the
obstacles often possess regular patterns, while the sparse term
can capture irregularities that do not conform to the low-rank
model.
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Redefine ng, = W,((?xn/ and Er(l’n), =g (xﬁ,’),x;’/)) for
brevity.! Toward estimating F) that obeys (9), consider the

cost

1
® —
c’(L,E) := > E

(n,n)em®

2
((WS,}, L+E)— 5,(,’,3,) (10)

which fits the shadowing measurements to the model. Then,
with 7 denoting the total number of time slots taking mea-
surements, we adopt the following optimization criterion

T

min 3 70 [OL,B) + 2L + Bl

(P1)
L, EcRNxxNy —
(11)

=1

where f € (0, 1] is the forgetting factor that can be optionally
put in to weigh the recent observations more heavily. The
nuclear norm regularization term promotes a low-rank L,
while the £{-norm encourages sparsity in E. Parameters A
and u are appropriately chosen to control the effect of these
regularizers. Conditions for exact recovery through a related
convex formulation in the absence of measurement noise can
be found in [18].

Problem (11) is convex, and can be tackled using existing
efficient solvers, such as the interior-point method. Once the
optimal L. and E are found, the desired F is obtained as F =
L + E. However, the general-purpose optimization packages
tend to scale poorly as the problem size grows. Specialized
algorithms developed for related problems often employ costly
SVD operations iteratively [18]. Furthermore, such an algo-
rithm might not be amenable for an online implementation.
Building on [24] and [25], an efficient solution is proposed
next with reduced complexity.

B. Efficient Batch Solution

Without loss of generality, consider replacing L. with the
low-rank product PQ7, where P € RN*# and Q € RM*7,
and p is a pre-specified overestimate of the rank of L. It is
known that (e.g., [25])

1
L||, = mi _( P|? 2)
[1LI]« Il‘iflélz P[] + 11QI|%

subject to L = PQ7. (12)

1 Prompted by [11], the benefit of multi-channel diversity for RTI may
be incorporated in the present framework. Suppose K channels ?(n;, are
(1)

available to sensors n and n’ at time ¢, and let Sl

X denote the noisy
' 0}

measurement including fading over link x,—x,, at ¢ in channel k € w

] f(f) S'(f)

-(1) <(
Construct a new measurement as s( =¢(s where
nn’ ¢ nn’,1° “nn’,2° ’ nn’,K)’

¢(-) is a channel selection function [11]. By replacing Entn), in (10) with

E(I),, the multiple channel measurements can be incorporated without altering
the method. However, the dynamic channel availability and multi-channel
measurements will increase algorithm complexity. On the other hand, it is not
clear whether such a multi-channel approach can be adopted for estimating
any channel gain over multiple frequency bands, and constitutes a future
research direction.
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Thus, a natural re-formulation of (11) is (see also [24])

(P2) min f(P, Q. E)4

T
=2 8" [“)(PQT E)+5 (IIPIIF+|IQIIF)+;¢IIEII1}
=1

13)

Instead of seeking the NyN, entries of L, the factorization
approach (13) entails only (Ny + Ny)p unknowns, thus reduc-
ing complexity and memory requirements significantly when
p <K min{Ny, Ny}. Furthermore, adoption of the separable
Frobenius norm regularizer in (P2) comes with no loss of
optimality as asserted in the following lemma.

Lemma 1: If {I:,E} minimize (P1) and we choose p >
rank(I:), then, (P2) is equivalent to (P1) at the minimum.

Proof: 1t is clear that the minimum of (P1) is no larger

than that of

T
min 3" 7 [ (PQ7. B) + 21IPQ” I + ulIEIL | (14

P.Q.E
T=

since the search space is reduced by the reparameterization
L = PQ7 with p < min{Ny, Ny}. Now (12) implies that
the minimum of (14) is no larger than that of (P2). However,
the inequality is tlght since the ob]]ectlves of (Pl) and (P2) are
1dentlcal for E := E P.= U2 ,and Q := VE , where
L = UXV7 is the SVD. Consequently, (P1) and (P2) have
identical costs at the minimum. |

Although (P1) is a convex optimization problem, (P2) is not.
Thus, in general, one can obtain only a locally optimal solution
of (P2), which may not be the globally optimal solution
of (P1). Interestingly, under appropriate conditions, global
optimality can be guaranteed for the local optima of (P2),
as claimed in the following proposition.

Proposmon 1: If {P,Q,E} is a stationary point of (P2),

Bi=31_, 7", and || f(PQT,E)|| < A with
f(L

)
T
-3
=1

A
>

> (Wi L) -5 W)
/s nn/ nn/
(n,n")em @)
5)

then {I: = I_’QT,E
to (P1).
Proof: See Appendix A.

A stationary point of (P2) can be obtained through a block
coordinate-descent (BCD) algorithm, where the optimization
is performed in a cyclic fashion over one of {E, P, Q} with
the remaining two variables fixed. In fact, since the term
1||El|1 is separable in the individual entries as well, the cyclic
update can be stretched all the way up to the individual
entries of E without affecting convergence [26]. The proposed
solver entails an iterative procedure comprising three steps per

= E} is a globally optimal solution
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iteration k = 1,2, ...

[S1] Update E:

T
Bk + 1] = argmin > 47~ [ PIKIQIA]

=1

JE)+ [E|1 ]

[S2] Update P:
Plk+ 1]

T
. I PR y!
= argmlgn;ﬁT [c< '(PQTIA]. Elk + 1) + 5||P||%}
[S3] Update Q:

Qlk + 1]

= argmmZﬁT [ O @[k+11Q”, Elk+1]) + —||Q||F}

=1

To update each block variable, the cost in (P2) is minimized
while fixing the other block variables to their up-to-date
iterates.

To detail the update rules, let W) e RNVxNyxIMOI pe o
matrix with columns equal to vec (W,(f,?,) for (n,n") € M(¢),
where vec (-) produces a column vector by stacking the
columns of a matrix one below the other (unvec(-) denotes the
reverse process). Define W = [\/ﬁT*I‘W(l)...\/ﬁ‘W(T)L
§ = [\/ﬁT—1§(1)T...m§(TW]T, and e := vec(E). Then,
one can write >/ _, T 7c(PQT,E) = | W7 vec(PQT +
E) — §||%. Let ¢; denote the /-th entry of e, and e_; represent
the replica of e without its /-th entry. Similarly, let w}r denote
the [-th row of the matrix W, and W_; denote the matrix
W with its [-th row removed. The soft-thresholding function
soft_th(-; u) is defined as

soft_th(x; u) := sgn(x) max{0, |x| — u}. (16)

Minimization in [S1] proceeds sequentially over the individual
entries of e. At iteration k, each entry is updated via

1 v _
ellk + 1] = argmin ~[les@; = S|I3 + uBlel, L=1,..., NeNy

. (17)
where §;[k] := §— W7 vec (P[k]QT[k])—‘WZle_l. The closed-

form solution for ¢; is obtained as

soft_th(w; §/[k

ek +1] = lup) (18)

o113
Matrices P and Q are similarly updated over their rows
through [S2] and [S3]. Let p; be the i-th row of P, transposed

to a column vector; ie., P = [pl,pz,...,pNx]T. Define
‘I:V;I) € RIMOPMNy o be the matrix whose rows are the i-th
rows of {Wi?,}(n,n/)eM(,) denoted as w( )/ ;»and 8 N(t) e RIM®I
a vector with entries equal to
Ny
§U) =50 — (WO Bk +10) = > WO Qlklp;  (19)
J#
for (n,n ) € M(t). Define also =
VBT~ I‘W( 7 .\/E‘WET) and §; := [\/,[)’T I3 (1)T ..
\/_ fT)T]T. Then, p; is updated by solvmg
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TABLE I
BATCH SOLVER OF (P2)

1: Initialize E[1] := On, xn,, P[1] and Q[1] at random.
2:For k=1,2,...
[S1] Update E:
Set e = vec(E[k])
For [ =1,2,..., Nz Ny
Set §;[k] := 5 — W7 vec(Pk]Q7 [k]) — W7 e,
eulk + 1] = softh(w] & [K]; 1B) /I w1l 3
Next [
Set E[k + 1] = unvec(e[k + 1])
[S2] Update P:
9: Fori=1,2,...,N,
10:  Set W; and §; )
e palk+ 1] = [QTE WiQIK + A3L,] (@7 IW] 5)
12:  Next ¢
132 Plk+1]=[pik+1],p2lk+1],...
[S3] Update Q:
14 Fori=1,2,...,N,
15: Set W, and §;

e A A

o T v _ -1
16 qilk+1] = [PT[k + W] WPk +1] + )\ﬁlp]
x(PT [k + W] &)
17:  Next 7
18: Qk+1] =[ailk+1], a2k +1],...,an, [k + 1]
19: Next k£

a ridge-regression problem as

ST . P
pilk + 1] = arg min [EII‘WI-Q[k]pz — Sl + 7ﬁ||l)i||%i|

whose solution is given in closed form by
. ~ T ~ — -1 ~ T
pilk + 11 = [ Q"KW WiQIkI + 281, | Q"IkIw; s
(20)

which involves matrix inversion of dimension only p-by-
p. Likewise, let q; denote the i-th row of Q, transposed

to a column vector; ie., Q := [q1,...,qu]T. Define
. - (1) . , .
also W; = [\/ﬁT*I‘Wf)T...\/,[J’O‘WET)T]T and § =

\/F“(lﬁ \/_“(T)T T where ‘I:V(I) RIMOIXNx ig the
matrlx whose rows are the transposmons of the i-th columns
of {Wnn’}(n nyead(r), denoted as W and s(t) RIMOI hasg
entries

nn/ i’

v(t)

Vlnl

=350 (WY E[k+11) Plk+1lq; (1)

Sy
n'’ Won' ]

J#

for (n,n") € M(¢). The update for q; is then given by solving
another ridge regression problem to obtain

qik + 1] = argmin Bll‘ft’iP[k + Uai — 8113 + %qu%}

whose solution is given also in closed form by

Qlk -+ 11 = [P71k + 1199] WPl + 11+ w‘lp]*l
<PTlk+ 11, &  (22)

which again involves matrix inversion of dimension p-by-p.
The overall algorithm is tabulated in Table 1.
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Although the proposed batch algorithm exhibits low compu-
tational and memory requirements, it is not suitable for online
processing, since (13) must be re-solved every time a new set
of measurements arrive, incurring major computational bur-
den. Thus, the development of an online recursive algorithm
is well motivated.

IV. ONLINE ALGORITHM

A. Stochastic Approximation Approach

In practice, it is often the case that a new set of data
becomes available sequentially in time. Then, it is desirable
to have an algorithm that can process the newly acquired data
incrementally and refine the previous estimates, rather than
re-computing the batch solution, which may incur pro-
hibitively growing computational burden. Furthermore, when
the channel is time-varying due to, e.g., mobile obstacles,
online algorithms can readily track such variations.

Stochastic approximation (SA) is an appealing strategy
for deriving online algorithms [27], [28]. Recently, tech-
niques involving minimizing majorized surrogate functions
were developed to handle nonconvex cost functions in online
settings [24], [29]-[31]. An online algorithm to solve a dic-
tionary learning problem was proposed in [30]. A stochastic
gradient descent algorithm was derived for subspace tracking
and anomaly detection in [24]. Here, an online algorithm
for the CPCP problem is developed. The proposed approach
employs quadratic surrogate functions with diagonal weighting
so as to capture disparate curvatures in the directions of
different block variables.

For simplicity, let the number of measurements per time
slot ¢ be constant M := |M©| for all ¢. Define X :=
(P,Q,E) € x C X' := RWxxp) x RINyxp) 5 RWNxXNy) ' where
X is a com%)act convex set, and X" a bounded open set, and
E(t) = {54 1> {W }nﬂf:l] € E, where E is assumed to be
bounded. Deﬁne with slight abuse of notation

g1(X, &) = g/(P,Q,E, ")

M
1 e\ 2
=52 (W0, PQ” +B) -5

m=1

(23)

N >

22(X) = £@ Q) := 2 (IIPI} + 1QII}) + ul Bl

(24)
A quadratic surrogate function for gl(X,E(I)) is then
constructed as
s1(X, X(tfl)’ E(f))
= (XU, D)

(t)
(P — PUD, Vg  (XUD, g0y 4 ”lnP —PUD|2

(t)

+(Q-QU ™V, Vg (X1, £My) + IIQ QY2

(
+(E—ECD, Vg1 (X0, £)) + BB — EC)

(25)
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TABLE 11
ONLINE SGD SOLVER OF (P2)

1: Initialize E(©) .= 0N, x N, PO and Q@ at random.

2:Fort=1,2,... N
3 SetLp =3 HW(”QU—UH

Lq = ZM Hw“)Tpu 1>H

Le =2 m= HW(t)H and Lin = min{Lp, Lq, LE}.
L2
4:  Set n(t) > ,778) > ;. and 77<t) > LLE .
5 Set ﬁg) - tT 1M <T) _<t) th 1 "I(T) and ﬁ(t) tT:l 771<3T).

6 PO =pt-1

(t-1) g(®) (t-1)
ﬁg)+)\t (VPgl (X vg ) + AP )
. (t) — (t—1) _ 1 (t—1) ¢(t) (t—1)
7. QW =q QY (ngl(X LEM) +Q )

8 Z) = n(lif) [ngmu—n +alDze- vEgl(Xu—l),ga))]
E

9: E® = soft_th(z(t)§ﬂt/7_7g))

10: Next ¢
where r]g), 778) , and 77(') are positive constants, and with
f(t)(P,Q,E) = Wﬁf,),PQT + E) — s,(,,) it can be readily

verified that

Ve (XD £0)

M ~
— Z fnst)(l)(t—l), Q(f—l)’ E(t_l))wirtz)Q(t_l)

(26)
m=1
Vogi (X7, &)
M ~
= Z fngo(P(r—l),Q(r—n,E(t—l))Wg)’f pi—D 27)
m=1
M ~
Vet XUV ED) =" FO@D, QU E )WY,
m=1
(28)

Let us focus on the case without the forgetting factor,
ie., f = 1. A convergent SA algorithm for (P2) is obtained
by considering the following surrogate problem

t

1 ¥ T— T
®3) min - >[5 (XX 60) +0:0)].

=1

(29)

In fact, solving (P3) yields a stochastic gradient descent (SGD)
algorithm. In particular, since variables P, Q, and E can be
separately optimized in (P3), the proposed algorithm updates
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the variables in parallel in each time slot ¢ as

'
PO — argmlin Z; |:(P — PO vpg (XD, gy
T=

(r
- lp— PED2 4 —||P||%}

(30)

Q" = argmin Z [(Q — QU Vo1 (XU, £y

=1

(r)
IIQ QU VI + ||Q||2F} (1)
EO — - _gG-D (t=1) g(0)
argménZ[(E E , VEg1(X ,EY%)
=1
”(r)
E IIE — E”‘”II%JruIIEIIl} (32)

By checking the first-order optimality conditions, and defining
771(,’) =>"_, ;7(’) and 17(’) =>'_, ’73)7 the update rules for
P and Q are obtained as

t

1
PO = >[4 P = Vg (X6 33)
'(t)+/1tz p
t
Q) = > [15Q" ) — Vo (x5

—(t
7]Q) + At ;5
(34

which can be written in recursive forms as

1
PO — pi-1 _ — (Vpgl(X(’*”,E(’)) + ip(ffl))
np’ + At
(35)
Q" = QY _ SR (Vle(X(r—n, £0) 4 AQ(r—l)) .
ng + At
(36)

Due to the non-smoothness of ||E||;, the update for E
proceeds in two steps. First, an auxiliary variable Z®) is
introduced, which is computed as

1 '
7O — = |:Z ,]gf)E(kfl) _ VEg1(X(k71), E(k)):| . (37

Mg Li=1

Again defining 77() : Zt, 1 ’7£:)

recursively as

matrix Z® can be obtained

20 = 5 [ECD 43 IZ0) - Ve (XD, 60
. (38)

Then, E®) is updated as
E® = soft_th(Z®; ut/7"). (39)

The overall online algorithm is listed in Table II.

Remark 1 (Computational Complexity): In the batch algo-
rithm of Table I, the complexity orders for computing the
updates for each of p; and q; are O(N,MT) and O(N.MT),
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TABLE III
RECONSTRUCTION ERROR AT 7' = 130 AND COMPUTATIONAL COMPLEXITY PER ITERATION
Algorithm Proposed (BCD) | Ridge-regularized LS Total variation (ADMM) LASSO
[[Fo —F||F/\\F0||F 0.1064 0.1796 0.1196 0.1828
Complexity per iteration | O(NN,MT) N/A O((NzNy)? + (NoNy)2MT) | O(N;N,MT)
5 g A A e
N ] i | |] i | [ ;
2 - ' 0o 25 - ‘ 25 - .
35 L = 35 HE " 35 HE "

40 -150
5 10 15 20 25 3 3 40

Fig. 1. True SLE.

respectively, due to the computation of ‘fV’T§i and ‘I:V;T§l Thus,
the complexity orders for updating P and Q per iteration k
are both O(NxN,MT). The update of e; incurs complexity
O(MT) for computing wfgz Thus, the complexity order for
updating E per iteration k is O(NyNy,MT). Accordingly,
the overall per-iteration complexity of the batch algorithm
becomes O(NyNy,MT). On the other hand, the complexity of
the online algorithm in Table II is dominated by the gradient
computations, which require O(p Ny Ny M). Since p is smaller
than N, and Ny, and the per-iteration complexity does not
grow with T, the online algorithm has a much more affordable
complexity than its batch counterpart, and it is scalable for
large network scenarios.

B. Convergence

The iterates {X(t)};’i | generated from the algorithm
in Table II converge to a stationary point of (P2), as asserted
in the following proposition. First define

t
Q00 = > [0 57 + 0200 (40)
=1
t
00 = 3 [ 0CXO 6 1 0] @
=1
C(X) 1= Eg [01(X,§) + £2%)]. “2)

Note that C;(X) is essentially identical to the cost of (P2).
Furthermore, the minimizer of C;(X) approaches that of C(X)
when t — oo, provided & obeys the law of large numbers,
which is clearly the case when e.g., {E(')} is i..d.

Assume that  Vpgi(-,Q,E,§), Vo(P,-,E,§) and
VEP,Q, -, &) are Lipschitz with respect to P, Q,
and E, respectively, with constants Lp, Lg, and Lg,
respectively (which will be shown in Appendix B).
Furthermore, let &l.(') = (Z;zl(nl.(r) +2)~! fori € {P,Q},
and &g) = (7_7;5))*1 denote step sizes.

Proposition 2: If (al) {5(’)};’21 is an independent and iden-
tically distributed (i.i.d) random sequence; (a2) {X(’)}fi1 are
in a compact set X; (a3) Z is bounded; (a4) Fori € {P,Q, E},
i ® > ct Vt for some ¢ > 0; and (a5) ¢’ > nl-(t) > Ll-z/Lmin Vi
for some ¢’ > 0 and Luyin = min{Lp, Lg, Lg}, then the
iterates {X(’)};’i1 generated by the algorithm in Table II
converge to the set of stationary points of (P2) with

40 -150 40 -150
5 10 15 20 25 30 35 40 5 10 15 20 25 80 3 40

(a) BCD (T = 130, N = 52) (b) APG (T = 130, N = 52)

0 0
° = | ° = |
Jn ™ [l Jn ™~ [l

2 . 25 '

35 LIy | u 35 nm ]

40 -150 40 -150
5 10 15 20 25 30 3 40 5 10 15 20 25 8 3 40

(c) BCD (T = 260, N = 73)
Fig. 2.

(d) APG (T =260, N = 73)
SLFs reconstructed by the batch algorithms.

p=1,ie,
lim inf [X® —X||p =0
—00 XE)_(
where X is the set of stationary points of C(X).
Proof: See Appendix B.

a.s. 43)

V. NUMERICAL TESTS

Performance of the proposed batch and online algorithms
was assessed through numerical tests using both synthetic and
real datasets. A few existing methods were also tested for
comparison. The ridge-regularized least-squares (LS) scheme
estimates the SLF as vec(F) = (ww? + wC;l)’l‘Wé,
where Cy is the spatial covariance matrix of the SLF, and
w is a regularization parameter [8], [11], [21]. The total
variation (TV)-regularized LS scheme in [32] was also tested,
which solves miny [|$ — ‘W'IfH% —i—w( lN:‘fl 27;1 | fit1,j —
fiil + X S e = figl) where f = vec(F)
and f; ; corresponds to the (i, j)-th element of F. Finally,
the LASSO estimator was obtained by solving (P1) with
A=0.

A. Test With Synthetic Data

Random tomographic measurements were taken by sensors
deployed uniformly over 4 := [0.5, 40.5] x [0.5, 40.5], from
which the SLF with Ny = N, = 40 was reconstructed.
Per-time slot, 10 measurements were taken, corrupted by zero-
mean white Gaussian noise with variance 62 = 0.1. The
regularization parameters were set to 4 = 0.05 and x = 0.01
through cross-validation by minimizing the normalized error
||f‘—F0|| r/|IFollr, where Fy is the ground-truth SLF depicted
in Fig. 1. Other parameters were set to p = 13, f = 1, and
6 = 0.06; while Cy = I N, and w = 0.13 were used for the
ridge-regularized LS.
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Fig. 3. SLF reconstruction using the batch and online algorithms. (a) Cost versus iterations (batch). (b) Reconstruction error versus CR location error (batch).

(c) Average cost over time slots (online).
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Fig. 4. SLFs reconstructed by the online algorithm. (a) and (b) correspond

to using 7 = ﬁg) = 300 and 7 = 10. (¢) and (d) use 7y = ng) =
) = 300.

To validate the batch algorithm in Table I, two cases were
tested. In the first case, the measurements were generated for
T = 130 time slots using N = 52 sensors, while in the second
case, T = 260 and N = 73 were used. As a comparison,
the accelerated proximal gradient (APG) algorithm was also
derived for (P1) [33]. Note that the APG requires the costly
SVD operation of an N,-by-N, matrix per iteration, while
only the inversion of a p-by-p matrix is necessary in the
proposed BCD algorithm. Fig. 2 shows the SLFs reconstructed
by APG and BCD algorithms for the two cases. Apparently,
the reconstructed SLFs capture well the features of the ground-
truth SLF in Fig. 1. Note that (P2) is underdetermined when
T = 130 since the total number of unknowns in (P2) is 2, 640
while the total number of measurements is only 1, 300. This
verifies that the channel gain maps can be accurately inter-
polated with a small number of measurements by leveraging
the attributes of the low rank and sparsity. Fig. 3(a) shows
the convergence of the BCD and APG algorithms. The cost
of (P2) from the BCD algorithm converges to that of (P1) from
APG after k = 550 iterations, showing that the performance of
solving (P1) directly is achievable by the proposed algorithm
solving (P2) instead. This can also be corroborated from the
reconstructed SLFs in Fig. 2 as well.
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40 ~150 40 -150
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Fig. 5. (a) and (b) are true SLFs; (c) and (d) show reconstructed SLFs at
different time slots.
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Fig. 6. Configuration of the testbed.

Table III lists the reconstruction error when 7 = 130 and
the per-iteration complexity of the batch algorithms. It is seen
that the proposed method outperforms benchmark algorithms
in terms of the reconstruction error. Note that the ridge-
regularized LS has a one-shot (non-iterative) complexity of
O((NxNy)3), but its reconstruction capability is worse than
the proposed algorithm as the true SLF is not smooth.

To test robustness of the proposed algorithm against impre-
cise CR location estimates, the reconstruction error versus
the maximum sensor location error is depicted in Fig. 3(b).
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20
15
g 10 g
5
(a) SLF
Fig. 8. Reconstructions by the ridge-regularized LS.
-0.03
~0.035 15
~0.04
g 10
-0.045
-0.05
5
-0.055
5 10 15 20 00
[ft]
(a) SLF
Fig. 9. Reconstructions by the proposed online algorithm.

To reconstruct F matrix, W was computed via a set of
erroneous sensor locations )V(,(,t) obtained by adding uniformly
random perturbations to true locations xf,t) . It is seen that the
SLF could be accurately reconstructed when the location error
was small.

The numerical tests for the online algorithm were carried out
with the same parameter setting as the batch experiments with
N = 317. Fig. 3(c) depicts the evolution of the average cost
in (40) for two sets of values for (ﬁl(,t), 7'7([), ﬁg)). The green
dotted curve corresponds to using ﬁ{f) = 778) = ﬁg) = 300,
while the blue solid curve is for 7y’ = 73 = 300, and
ﬁg) = 10. It can be seen that the uniform step sizes for all
variables result in convergence rate that is slower than that with
the disparate step sizes. Fig. 4 shows the SLFs reconstructed
via the online algorithm at ¢+ = 1,000 and ¢ 5,000
using the two choices of step sizes. It can be seen that for a
given time slot ¢, flexibly choosing the step sizes yields much
more accurate reconstruction. As far as reconstruction error,

(b) Shadow fading map

(b) Shadow fading map

(b) Shadow fading map
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the online algorithm with disparate step sizes yields 6.3 x 1072
at t 5,000, while its batch counterpart has 2.4 x 1072,
Although slightly less accurate SLF is obtained by the online
algorithm, it comes with greater computational efficiency.

To assess the tracking ability of the online algorithm,
the slow channel variation was simulated. The measurements
were generated using the SLF in Fig. 1 with three addi-
tional objects slowly moving in the rate of unit pixel width
per 70 time slots. Fig. 5 depicts instances of the true and
reconstructed SLFs at r = 2,400 and ¢ = 3, 200, respectively,
obtained by the online algorithm. The moving objects are
marked by the red circles. It is seen that the reconstructed
SLFs correctly capture the moving objects, while the stationary
objects are estimated more clearly as ¢ increases.

B. Test With Real Data

To validate the performance of the proposed framework
for SLF and channel gain map estimation in realistic sce-
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narios, real received signal strength (RSS) measurements
were also processed. The data were collected by a set of
N = 20 sensors deployed in the perimeter of a square-
shaped testbed as shown in Fig. 6, where the crosses indi-
cate the sensor positions. Data collection was performed in
two steps [21]. First, free-space measurements were taken
to obtain estimates of the path gain Go and the pathloss
exponent y via least-squares. The estimated y was approx-
imately 2, and Go was found to be 75. Then, tomographic
measurements were formed with the artificial structure shown
in Fig. 6. For the both measurements, 100 measurements
were taken per time slot, in the 2.425 GHz frequency band,
across 24 time slots. The shadowing measurements were
obtained by subtracting the estimated pathloss from the RSS
measurements.

The SLFs of size Ny = N, = 61 were reconstructed by
the proposed batch algorithm. The regularization parameters
were set to A = 4.5 and u = 3.44, which were determined
by cross-validation. The parameter J in (4) was set to 0.2 feet
to capture the non-zero weights within the first Fresnel zone,
and p = 10 and f = 1 were used.

For comparison, the ridge-regularized LS estimator was also
tested. To construct Cy, the exponential decay model in [6]

was used, which models the covariance between points x and

~Ix=XlIp
x' as Cp(x,x') = g2¢” = , where g2 and x > 0 are

model parameters. In our tests, asz =k =1,and w = 79.9
were used.

The SLF, shadow fading map, and channel gain map
reconstructed by the proposed BCD algorithm are depicted
in Fig. 7. The shadow fading and channel gain maps portray
the gains in dB between any point in the map and the fixed
CR location at (10.2,7.2) (marked by the cross). Fig. 8 shows
the results from the ridge-regularized LS estimation. It can be
seen from Fig. 7(a) and Fig. 8(b) that the proposed low-rank
plus sparse model produces a somewhat sharper SLF image
than the ridge-regularized LS approach. Although the latter
yields a smooth SLF image, it produces more artifacts near
the isolated block and the boundary of the SLF. Such artifacts
may lead to less accurate shadowing and channel gain maps.
For instance, Fig. 7(b) and Fig. 8(b) both show that the shadow
fading is stronger as more building material is crossed in the
communication path. However, somewhat strong attenuations
are observed near the cinder block location and the interior of
the oriented strand board (OSB) wall only in Fig. 8(b), which
seems anomalous.

The online algorithm was also tested with the real data.
Parameters ﬁl(,t ) = 778) = 620 and ﬁg) = 200 were
selected, and 6 x 10° measurements were uniformly drawn
from the original dataset with replacement to demonstrate the
asymptotic performance. Fig. 9 depicts the reconstructed SLF,
shadow fading and channel gain maps obtained from the online
algorithm. It can be seen that the SLF shown in Fig. 9(a) is
close to that depicted in Fig. 7(a). Similar observations can
be made for the shadow fading and channel gain maps as
well. Thus, the online algorithm is a viable alternative to the
batch algorithm with reduced computational complexity, and
affordable memory requirement.
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Fig. 10. NMSE of channel gain prediction by (a) the batch; and (b) online
algorithms.

Channel gain estimation performance of the proposed
algorithms was assessed via 5-fold cross-validation. Let
Ziest and g denote RSS measurement vectors in the test
set and its estimate, respectively. Prediction performance
is measured by the normalized mean-square error (NMSE)
18 est—&rest*/ | ZestlI*. Fig. 10(a) displays the NMSE of batch
algorithms with 480 test samples versus the number of training
samples. It is shown that the proposed algorithm outperforms
competing alternatives, particularly when a small number of
training samples are available, validating the usefulness of the
proposed model. The online algorithm was also tested with
2.85x 10° measurements uniformly drawn from 1, 920 training
samples with replacement. Fig. 10(b) depicts the evolution
of the NMSE measured on 480 test samples at every t.
It is observed that the online algorithm attains the batch
performance as ¢ increases.

VI. CONCLUSION

A low-rank plus sparse matrix model was proposed for
channel gain cartography, which is instrumental for various CR
spectrum sensing and resource allocation tasks. The channel
gains were modeled as the sum of the distance-based pathloss
and the tomographic accumulation of shadowing due to the
underlying SLF. The SLF was postulated to have a low-
rank structure corrupted by sparse outliers. Efficient batch and
online algorithms were derived by leveraging a bifactor-based
characterization of the matrix nuclear norm. The algorithms
enjoy low computational complexity and a reduced memory
requirement, without sacrificing the optimality, with provable
convergence properties. Tests with both synthetic and real
measurement datasets corroborated the claims and showed that
the algorithms could accurately reveal the structure of the
propagation medium.

APPENDIX
A. Proof of Proposition 1

A stationary point P, Q and E of (P2) must satisfy the
following first-order optimality conditions [34]

On, <, € 6/ (P, Q. B) = {F(PQ”, E) + uf sen(E) + 0|
‘ EOE=0, |[Eo < 1}
(44)
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Vef(P,Q,E) = f(PQ",E)Q + 25P = Oy, ,
(45
Vor f(P,Q,E) = P” f(PQ", E) + 28Q" = 0,,xw,
(46)
where © denotes the element-wise (Hadamard) product.
Through post-multiplying (45) by P” and pre-multiplying (46)
by Q, one can see that
fPQ",E) = —uf(sen(E) + E)
w (F®QT, E)QP7) = —1fu®P”) = —1fu(QQT). (47)
Define now x (R, Rp) := % (tr (Ry) +tr (Ry)), and consider
the following convex problem

T

ZﬁT*‘[C(‘[)(L, E)

=1

(P4)

min
L,EcRNxxNy
R, ERNX XNy 5
RycRNy xNy

+i8 k(Ri,R2) + up |Ell)

subject to R := (Rl L) >0

LT R, (48)

which is equivalent to (P1). Equivalence can be easily inferred
by minimizing (P4) with respect to {R;, R>} and noting an
alternative characterization of the nuclear norm given by [25]

L|. = min x(R;,R
(1L« I{nl,lf{lzk( 1, R2)

subject to R > 0. (49)

In what follows, the optimality conditions of the conic pro-
gram (P4) are explored. Introducing a Lagrange multiplier
matrix M e RWrHN)x (NetNy) - ae50ciated with the conic
constraint in (48), the Lagrangian is first formed as

T
L(L,E,R,Ry; M) = D g7 7L, E)
=1
+ 48 k(Ri,Ro)+uf |[Elli — (M, R).
(50)
For notational convenience, partition M as
(M M
M = (M4 M3) (29

in accordance with the block structure of R in (48), where
M; € RM>Ne and M3 € RM >Ny The optimal solution
to (P4) must satisfy: (i) the stationarity conditions
VLL(L,E, R, R M) = f(L,E) - My — M} =
(52)

0copL(L,E.,R;,Ry; M) = [f(L, E) + uf [sgn(E) + E]

‘Eeﬁzo, IEllso < 1] (53)

y
VR, L(L,E, R, Ry; M) = Tﬁlm ~M; =0 (54)
AB
VR, L(L,E,R{,Ry; M) = —INy —M3=0 (55)

2
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(i) complementary slackness condition (M, R) = 0; (iii)
primal feasibility R > 0; and (iv) dual feasibility M > 0.

Using the stationary point P, Q and E of (P2), construct
a candidate solution for (P4) as L = PQ7, E = E,
R; := PP7, and Ry := QQ7, as well as M; := %INX,
M, := %f(f’QT,E), M; = %IN},, and My := sz After
substituting these into (52)—(55), it can be readily verified that
condition (i) holds. Condition (ii) also holds since

(M,R) = (M1, Ry) + (Mp, L) + (M3, Rp) + (M4, L7)
2 w@®P7 +QQ7) +u(FPQT. EYQP")

2
=0 (56)

where the last equality follows from (47). Condition (iii) is
met since R can be rewritten as

PPT QT _ (P (P)”
= (G g0r)= (o) (o) =0 @

For (iv), according to the Schur complement condition for
positive semidefinite matrices, M > 0 holds if and only if

M3 — M4M;1M2 >0 (58)
whic_h_ is _equivalent to imax(l\A/[zT Mz) < (p /2)2, or
I1fPQT,E)|| < . L

B. Proof of Proposition 2

The proof uses the technique similar to the one employed
in [30], where the convergence of online algorithms for
optimizing objectives involving non-convex bilinear terms and
sparse matrices was established in the context of dictionary
learning.

In order to proceed with the proof, three lemmata are
first established. The first lemma concerns some properties
of g(X, £) 1= g1(X, ) + g2(X), and g(X, X7, £1) :=
SIX XD E0) 4 gr(X).

Lemma 2: If the assumptions (al)—(a5) in Proposition 2
hold, then
(D) 1 (X, XD DY majorizes g1(X, D), ie.,

HX XD ED) = g (X, V) ¥ X € X;

g1 is locally tight, i.e.,

S (XD x=D, E(f)) =g (XD, g(t)),.

ngl(X(’_l), X(t—l), g(l)) — Vgl(X(t_l), E(I)),

g XD 6Dy = g1 (X, XU, 60) + g2(X) is uni-
formly strongly convex in X, i.e.,

V(X, XD M) e x x x x B, it holds that

(02)

(P3)
(p4)

X +D, XD g0y — g(x, XD £0)
. _ ¢
> ¢(X, XD, £0: p) 4 EIIDII%

where ¢ > 0 is a constant and §'(X,XU~D, 0. D) is
a directional derivative of g at X along the direction D;

(p5) g1 and &1, their derivatives, and their Hessians are
uniformly bounded;
(p6) g2 and its directional derivative g5 are uniformly

bounded; and
(p7) there exists g € R such that |§(X, XD gDy < 3.
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Proof: For (pl), let us first show that Vpg (P, Q, E, £®),
Vogi(P,Q,E, ), and Vgg (P, Q,E, &) are Lipschitz
continuous for X := (P, Q, E) € X’ and E(’) € E. For arbitrary
X := (P, Q,Ey), X; := (P2, Q2, Ey) € X/, the variation of
Vg in (26) can be bounded as

IVegi(P1,Q,E, £V) — Vpg (P2, Q,E, D)

M
= > (W9, @ - P)QT)WIQ
m=1 F
iy &
= D UWL, @1 = P)QT)IWS QI

3
I
-

—
=

Mvs

Py — P2l ¢ IWOQI3

2
=

m

where (i1) and (i2) are due to the triangle and Cauchy-Schwarz
inequalities, respectrvely Since X’ and E are assumed to be
bounded, zm 1 ||W(I)Q|| % is bounded. Therefore, there exists
a positive constant Lp such that

IVpg1(P1, Q. E, V) — Vpg (P2, Q,E, £M)||f
< Lp||P1 —P2lr (59)

meaning that Vpg (P, Q, E, E(’ )) is Lipschitz continuous with
constant Lp. Similar arguments hold for Vqgi(P,Q,E, & (’))
and Veg(P,Q,E,£®) as well, with Lipschitz constants
Lg and Lg, respectively. Then, upon defining [X|a :=

\/L%,||P||F + L2 ||Q||F + LZ|IE||%, it is easy to verify

IVe1(X1, £D) — Vg (X2, EDN|IF < X1 — X2l .

On the other hand, the proof of the Descent Lemma [35]
can be adopted to show

g1(X, £0) — g (XD, £

1
<= (X=XOD v XD, £0)) + / IX = XDy
0

(60)

x [|Vg1 (XD +a(X — XDy, £0)
— Vg (XD, D) rda. (61)

Note that

IXlF < X1 (62)

min
where Ly, := min{Lp, Lg, Lg}. Then, substitution of (60)
into (61) with X; = XD 4o (X=X~ and X, = XD
yields

g1 (X0, D) + <X — XD, Vg (X071, £0))

+ IX - XD)% > g1(X, D) (63)

2141’1’111’1

which completes the proof by the construction of g;, provided
that 771.(') > Ll.z/Lmin for all i € {P,Q, E}.
To show (p2) and (p3), let us first denote

Va1 (X, D) = (Vpg1(X, &), Vogi1 (X, D),

Vegi (X, 1)) (64)
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VX, XD EO) = (Vpgi (X, D) + ) @ — PUY),
Vg1 (X, §) + 175/ Q - Q")

Vegi (X, £9) + ) (B~ EC71)).
(65)

Then, it suffices to evaluate g;(X,§& (¢ )) and
VX, XD gDy at X0 o see that (p2) and (p3)
hold.

To show (p4), let us first find g and g). Along
a direction D := (Dp,Dg,Dg) € X', it holds that
& (X, XD LED: D) = (Vg (X, XD E(t)) D) since g is
differentiable. Similarly, g/ (X; D) = A((P, Dp) + (Q, Dq)) +
uh'(E; Dg) where h(E) := |E||(, dg := vec(Dg) with its /-th
entry being dg, and

h'(E; Dg)
. hW(E+Dg)—h(E)
= lim
t—0+ 1
— lm 2o z0ller +tdegl —lel) + 22, o 1tdE.]
t—0+ t
= > sgn(eNdes+ . dul. (66)
l,e1#0 l,e;=0
On the other hand, the variation of g can be written as
gX+D, XD 1) —gx, XD, £0)
(t)
= HX XN 0D+ >
ie(P,Q,E}
+ (X +D) — g (X). (67)

(’) ®
Note that >°; %5~ ||D; |3 > £ain||D||2 since #;" > L?/Luin by
algorithmic construction. Furthermore X +D) — g(X) >
8,(X; D) since g2 is convex [36]. Then, the variation of g
in (67) can be lower-bounded as
(X, x (=D E(f))

(X, x(=D g(f) D) + =2

X+ D, XD, s“b

mrn

IIDIIF (68)

where §'(X,X¢D 0Dy = g (X,X(f”),g(f); D) +
8,(X; D). Therefore, (p4) holds for a positive constant { <
Lin.

By the compactness of X and boundedness of = by (a3),
(p5) is automatically satisfied since g and g1 are continuously
twice differentiable in X [31]. In addition, one can easily
show (p6) since g and g5 are also uniformly bounded by
the compactness of X.

Let K| and K, denote constants where |g1| < K and |g2| <
K>, respectively, by (p5) and (p6). Then, (p7) readily follows
since

18X, XD Oy = |3, (X, XD, D) 4 gr(X))
181X, XD O] 4 162(X)|
Ki+ Ky =:g.

=
=

(69)

|
The next lemma asserts that a distance between two subse-
quent estimates asymptotically goes to zero, which will be
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used to show lim;_, o Cv‘ljt(X(t)) — C1,(X®) = 0, almost
surely.

Lemma 3: If (a2)—(a5) hold, then || XUtD) — XO||p =
o(1/1).

Proof: See [31, Lemma 2]. A proof of Lemma 3 is omitted
to avoid duplication of the proof of [31, Lemma 2]. Hence,
it suffices to mention that Lemma 2 guarantees the formulation
of the proposed work satisfying the general assumptions on the
formulation in [31]. |

Lemma 3 does not guarantee convergence of the iterates to
the stationary point of (P2). However, the final lemma asserts
that the overestimated cost sequence converges to the cost
of (P2), almost surely. Before proceeding to the next lemma,
let us first define

1 t
Cli(X) = - > 21X, &) (70)
=1
. 1 <
Cli(X) = - > 8 X, XD, £0) (71)
=1

and C2(X) := g2(X). Note also that é,(X) -G X) =
C1,/(X) = C1,+(X).
Lemma 4: If (al)-(a5) hold, G (XY converges almost
surely, and lim;_, o Cv’ljt(X(’)) —C1,(XD) =0, almost surely.
Proof: See [31, Lemma 1]. A proof of Lemma 4 is omitted
to avoid duplication of the proof of [31, Lemma 1]. Instead,
a sketch of the proof is following. It is firstly shown that
the sequence {Cv't (X ))};’i | Tollows a quasi-martingale process
and converges almost surely. Then, the lemma on positive
converging sums (see [30, Lemma 8]) and Lemma 3 are used
to claim that lim;_ oo él,,(X(’)) - Cl,,(X(’)) = 0, almost
surely. ]
The last step of the proof for Proposition 2 is inspired
by [31]. Based on Lemma 4, it will be shown that the
sequence {VC (X®) — V1, (X1)}%2, goes to zero, almost
surely. Together with CJ, it follows that lim;_, o C; (X®; D) >
0 VD, a.s. by algorithmic construction, implying convergence
of a sequence {X{ )};’il to the set of stationary points of C(X).
By the compactness of X, it is always possible to find a
convergent subsequence {X(’)};’i1 to a limit point X € X.
Then, by the strong law of large numbers [37] under (al) and
equicontinuity of a family of functions {C;,(-)}{2, due to the
uniform boundedness of Vg in (p5) [38], upon restricting to
the subsequence, one can have

Jim C1,(XY) =EglaX. )] =C1(X).  (72)

Similarly, a family of functions (C 1,:(1)}72, is equicontinuous
due to the uniform boundedness of Vg; in (p5). Further-
more, {Cv‘ljt(o)};’i1 is pointwisely bounded by (al)—(a3). Thus,
Arzeld-Ascoli theorem (see [38, Corollary 2.5] and [39])
implies that there exists a uniformly continuous function
él(X) such that lim;_, Cv‘l,,(X) = él (X) V X € X and after
restricting to the subsequence

Jlim Cr: (X)) = ¢ 1(X). (73)
—00
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Furthermore, since g1 (X, XD, £0) > ¢;(X, £V as in (p1),
it follows that

C1.,(X) — C14(X) > 0 VX. (74)

By letting t — oo on (74) and combining Lemma 4 with (72)
and (73), one deduces that

CiX) - Ci1(X) =0, as. (75)

meaning that Cv’ljt(X) — C1,4(X) takes its minimum at X and

vCi(X) - VCi(X) =0, as. (76)

by the first-order optimality condition. 5
On the other hand, the fact that X) minimizes C:(X) by
algorithmic construction and g} exists (so does C3), yields

Cii XN+ X)) < €1, (X)+ Ca(X) ¥Xex (77)

and lim; 00 C1,(XD) 4+ C2(XD) < limjmeo C1i(X) +
C>(X) VX € x, which implies

lim (VCL(XD), D) + C,XD: D) =0 VD. (78)
—00

Using the result in (76), (78) can be re-written as
(VC1(X),D) + C5(X; D) > 0 VD, a.s. or

C'X;D)>0 VD, as. (79)

Thus, the subsequence {X{ )};’il asymptotically coincides with
the set of stationary points of C(X). |
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