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Kernel-Based Reconstruction of Space-Time

Functions on Dynamic Graphs
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Abstract—Graph-based methods pervade the inference toolkits
of numerous disciplines including sociology, biology, neuroscience,
physics, chemistry, and engineering. A challenging problem en-
countered in this context pertains to determining the attributes of
a set of vertices given those of another subset at possibly diffe-
rent time instants. Leveraging spatiotemporal dynamics can dras-
tically reduce the number of observed vertices, and hence the
sampling cost. Alleviating the limited flexibility of the existing ap-
proaches, the present paper broadens the kernel-based graph func-
tion estimation framework to reconstruct time-evolving functions
over possibly time-evolving topologies. This approach inherits the
versatility and generality of kernel-based methods, for which no
knowledge on distributions or second-order statistics is required.
Systematic guidelines are provided to construct two families of
space-time kernels with complementary strengths: the first facili-
tates judicious control of regularization on a space-time frequency
plane, whereas the second accommodates time-varying topologies.
Batch and online estimators are also put forth. The latter comprise
a novel kernel Kalman filter, developed to reconstruct space-time
functions at affordable computational cost. Numerical tests with
real datasets corroborate the merits of the proposed methods rela-
tive to competing alternatives.

Index Terms—Graph signal reconstruction, Kalman filtering,
kernel-based learning, ridge regression, time series on graphs.

I. INTRODUCTION

A
NUMBER of applications involving social, biological,

brain, sensor, transportation, or communication networks

call for efficient methods to infer the attributes of some vertices

given the attributes of other vertices [1]. For example, in a social
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network with vertices and edges respectively representing per-

sons and friendships, one may be interested in determining an

individual’s consumption trends or political orientation based

on those of their friends. This task emerges when sampling cost

constraints, such as the impossibility to poll one country’s entire

population, limit the number of vertices with known attributes.

Existing approaches typically formulate this problem as the re-

construction of a function or signal on a graph [1]–[6] and rely

on its smoothness with respect to the graph, in the sense that

neighboring vertices have similar function values. This principle

suggests, for instance, estimating one person’s age by looking

at their friends’ age.

A more challenging problem involves reconstructing time-

evolving functions on graphs, such as the ones describing the

time-dependent activity of regions in a brain network, given

their values on a subset of vertices and time instants. Efficiently

exploiting spatiotemporal dynamics can markedly impact sam-

pling costs by reducing the number of vertices that need to

be observed to attain a target estimation performance. This re-

duction is of paramount interest in applications such as invasive

electrocorticography (ECoG), where observing a vertex requires

the implantation of an intracranial electrode [7].

An extensive body of literature has dealt with reconstructing

time-invariant graph functions. Machine learning works typi-

cally rely on smoothness [2], [3], [6], [8] to reconstruct either

binary-valued (see e.g. [6]) or real-valued functions [8]–[11],

whereas the community of signal processing on graphs (SPoG)

focuses on parametric estimators for real-valued functions ad-

hering to the bandlimited model, by which those functions are

confined to the span of B eigenvectors of the graph Laplacian or

adjacency matrices [12]–[16]. Most of these approaches can be

subsumed under the encompassing framework of time-invariant

kernel-based learning [17].

Schemes tailored for time-evolving functions on graphs in-

clude [18] and [19], which predict the function values at time

t given observations up to time t − 1. However, these schemes

assume that the function of interest adheres to a specific vector

autoregression and all vertices are observed at previous time

instances. Moreover, [18] requires Gaussianity along with an ad

hoc form of stationarity.

Some methods for reconstructing time-invariant functions

can also track functions that change sufficiently slowly over

time. This is the case of the dictionary learning approach

in [20] and the distributed algorithms in [21] and [22]. Unfor-

tunately, the flexibility of these algorithms to capture spatial

information is also limited since [20] is confined to Laplacian
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regularization whereas [21] and [22] require the function to be

bandlimited. Other works investigate special instances of the

reconstruction problem with domain-specific requirements and

assumptions [23], [24]. Finally, it is worth mentioning that no

approach deals with time-evolving topologies.

The contribution of this paper is threefold. First, the exist-

ing kernel-based learning framework is naturally extended to

subsume time-evolving functions over possibly dynamic graphs

through the notion of graph extension, by which the time di-

mension receives the same treatment as the spatial dimension.

The versatility of kernel-based methods to leverage spatial in-

formation [17] is thereby inherited and broadened to account

for temporal dynamics as well. Incidentally, this vantage point

also accommodates time-varying sampling sets and topologies.

Second, two families of space-time kernels are introduced by

generalizing Laplacian kernels [3]. The first family enables ker-

nel design in a bidimensional frequency domain, whereas the

second caters for time-varying topologies. The third contribu-

tion comprises two function estimators with complementary

strengths based on the popular kernel ridge regression (KRR)

criterion; see e.g. [17], [25]. The first can handle more sophis-

ticated forms of spatiotemporal regularization by operating in

batch mode. The second estimator, termed kernel Kalman filter

(KKF), finds exact online KRR estimates by refining previous

ones as new observations become available, therefore offering

a more efficient implementation.

The major novelty of this paper is a purely deterministic

methodology that obviates the need for assumptions on data

distributions, stationarity, or knowledge of second-order statis-

tics. The proposed schemes are therefore of special interest in

absence of sufficient historical data, yet the latter can be incor-

porated if available through covariance kernels [17]. Although

more complicated dynamics can be accommodated, one may

simply rely on the assumption that the target function is smooth

over the graph and over time, which is reasonable whenever

the graph is properly constructed and the sampling interval is

attuned to the temporal dynamics of the function.

The novel online estimator constitutes the first fully determin-

istic rigorous application of the Kalman filter (KF) to kernel-

based learning. Although [26] already proposed a kernel-based

KF, this work heavily relies on heuristics and approximations

to explicitly operate in feature space. Moreover, this algorithm

needs to solve the challenging preimage problem per time step,

which increases inaccuracy and computational cost. Another

kernel-based KF was developed in [27] within the framework of

kernel-based learning, but its formulation is probabilistic and re-

quires historical data to estimate distributions. Like the schemes

in [26], [27], the proposed KKF can be derived from the frame-

work of reproducing kernel Hilbert spaces (RKHSs). However,

to simplify the exposition, this paper presents a derivation of the

proposed KKF that solely relies on linear algebra.

The rest of the paper is structured as follows. Section II formu-

lates the problem and Section III reviews kernel-based learning

for time-invariant functions. Section IV generalizes this frame-

work to reconstructing time-evolving functions and develops a

batch estimator together with the KKF. Subsequently, space-

time kernels are designed in Section V and numerical tests are

reported in Section VI to validate the performance of the pro-

posed algorithms. Finally, Section VII summarizes some closing

remarks whereas the Appendix provides the proofs of the main

results.

Notation: Scalars are denoted by lowercase letters, vec-

tors by bold lowercase, and matrices by bold uppercase.

(A)m,n is the (m,n)-th entry of matrix A. Superscripts �

and † respectively denote transpose and pseudo-inverse. If

A := [a1 , . . . ,aN ], then vec{A} := [a�
1 , . . . ,a�

N ]� := a and

unvec{a} := A. With N × N matrices {At}
T
t=1 and {Bt}

T
t=2

satisfying At = A�
t ∀t, btridiag{A1 , . . . ,AT ;B2 , . . . ,BT }

represents the symmetric block tridiagonal matrix
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1 B�
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...
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0 0 0 . . . AT −1 B�
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⎤

⎥

⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Similarly, bdiag {A1 , . . . ,AN } := btridiag{A1 , . . . , AN ;0,
. . . ,0} is a block diagonal matrix. Although it was assumed

that the matrices {An}
N
n=1 have the same sizes, the definition

of bdiag {·} can be readily extended to accommodate matrices

of different sizes. Symbols �, ⊗, and ⊕ respectively denote

element-wise (Hadamard) matrix product, Kronecker product,

and Kronecker sum, the latter being defined for A ∈ R
M ×M

and B ∈ R
N ×N as A ⊕ B := A ⊗ IN + IM ⊗ B. The n-th

column of the identity matrix IN is represented by iN,n . If

A ∈ R
N ×N is positive definite and x ∈ R

N , then ||x||2A :=
x�A−1x and ||x||2 := ||x||IN

. The cone of N × N positive

definite matrices is denoted by S
N
+ . Finally, δ[·] stands for the

Kronecker delta and E for expectation.

II. PROBLEM FORMULATION

A time-varying graph1 is a tuple G := (V, {AV [t]}T
t=1),

where V := {v1 , . . . , vN } is the vertex set and AV [t] ∈ R
N ×N

is the adjacency matrix at time t, whose (n, n′)-th entry AV
n,n ′ [t]

assigns a weight to the pair of vertices (vn , vn ′) at time t. A time-

invariant graph is a special case with AV [t] = AV [t′]∀t, t′. The

edge set is defined as E [t] := {(vn , vn ′) ∈ V × V : AV
n,n ′ [t] 	=

0}, and two vertices v and v′ are said to be adjacent, con-

nected, or neighbors at time t if (v, v′) ∈ E [t]. It is also said

that AV
n,n ′ [t] is the weight of the edge (vn , vn ′) at time t.

As usual, see e.g. [1, Ch. 2], [4], [8], this paper assumes

that G (i) has non-negative weights (AV
n,n ′ [t] ≥ 0∀n, n′, t);

(ii) no self-edges (AV
n,n [t] = 0∀n, t); and, (iii) it is undirected

(AV
n,n ′ [t] = AV

n ′,n [t]∀n, n′, t).
A time-evolving function or signal on a graph,2 is a map f :

V × T → R, where T := {1, . . . , T} is the set of time indices.

The value f(vn , t) of f at vertex vn and time t, or its shorthand

1See [28] and references therein for alternative representations of time-
varying graphs.

2The entire framework can naturally be extended to accommodate complex-
valued functions f .
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version fn [t], can be thought of as the value of an attribute of

vn ∈ V at time t. In a social network, fn [t] may denote e.g. the

annual income of person vn at year t. The values of f at time t
will be collected in f [t] := [f1 [t], . . . , fN [t]]�.

At time t, the vertices with indices in the time-dependent

set S[t] := {n1 [t], . . . , nS [t][t]}, 1 ≤ n1 [t] < · · · < nS [t][t] ≤
N , are observed. The resulting samples can be expressed

as ys [t] = fn s [t][t] + es [t], s = 1, . . . , S[t], where es [t] models

observation error. In social networks, this encompasses sce-

narios where a subset of persons have been surveyed about

the attribute of interest; e.g. their annual income. By letting

y[t] := [y1 [t], . . . , yS [t][t]]
�, the observations can be conve-

niently expressed as

y[t] = S[t]f [t] + e[t], t = 1, . . . , T (1)

where e[t] := [e1 [t], . . . , eS [t][t]]
�, and the S[t] × N sampling

matrix S[t] contains ones at positions (s, ns [t]), s = 1, . . . , S[t]
and zeros elsewhere.

The broad goal of this paper is to “reconstruct” f from the

observations {y[t]}T
t=1 in (1). Two formulations will be consid-

ered. In the batch reconstruction problem, one aims at finding

{f [t]}T
t=1 given G, the sample locations {S[t]}T

t=1 , and all ob-

servations {y[t]}T
t=1 . On the other hand, the online problem is

formulated as follows: at every time t, one is given G together

with S[t] and y[t], and the goal is to find f [t]. The latter can

be obtained possibly based on a previous estimate of f [t − 1],
but the complexity per time slot t must be bounded, even if

T → ∞. To solve these problems, no explicit parametric model

for the temporal or spatial evolution of f will be adopted. For

instance, one will be able to solely rely on the assumption that f
evolves smoothly over both space and time, yet more structured

dynamics can also be incorporated if known.

III. BACKGROUND ON KERNEL-BASED RECONSTRUCTION

This section reviews the existing framework for kernel-based

reconstruction of time-invariant graph functions, which aims at

solving the batch problem in Section II when T = 1. To reflect

this scenario, the notation will be devoid of time indices. As

a result, the problem becomes finding f ∈ R
N given AV ∈

R
N ×N
+ , S ∈ {0, 1}S×N , and y = Sf + e ∈ R

S .

At first, one may feel tempted to seek a least-squares estimate

f̂ = arg minf ||y − Sf ||22 , but noting that the N unknowns in

f cannot be generally identified from the S ≤ N samples in y

dismisses such an approach. This underdeterminacy prompts es-

timates of the form f̂ = arg minf ||y − Sf ||22 + µρ(f), where

µ > 0 and the regularizer ρ(f) promotes a certain structure in f .

A customary ρ(f) encourages smooth estimates by penalizing

functions that exhibit pronounced variations among neighbor-

ing vertices, for instance by means of the so-called Laplacian

regularizer

ρLR(f) :=
1

2

N
∑

n=1

N
∑

n ′=1

AV
n,n ′(fn − fn ′)2 (2)

which heavily penalizes differences between function values

at vertices connected by strong links (large AV
n,n ′ ). Expression

(2) formalizes the notion of smoothness introduced in Section I,

according to which a function is smooth if it takes similar values

at neighboring vertices. Since ρLR(f) is small if f is smooth, and

large otherwise, ρLR(f) acts as a proxy quantifying smoothness

of f , in the sense that given two functions f and f ′, the former

is said to be smoother than the latter iff ρLR(f) < ρLR(f ′) and

vice versa. More general proxies are reviewed next.

Upon defining the N × N Laplacian matrix LV :=
diag {AV1} − AV , the functional in (2) can be rewritten af-

ter some algebra as ρLR(f) = f�LVf ; see e.g. [1, Ch. 2]. It

readily follows from (2) that ρLR(f) ≥ 0∀f , which in turn im-

plies that LV is positive semidefinite. Therefore, LV admits

an eigenvalue decomposition LV = UV diag {λV}U�
V , where

the eigenvectors in UV := [uV
1 , . . . ,uV

N ] and the eigenvalues in

λV := [λV
1 , . . . ,λV

N ] are sorted so that 0 = λ
V
1 ≤ . . . ≤ λ

V
N .

By letting f̌n := (uV
n )�f , one finds that

ρLR(f) =
N

∑

n=1

λ
V
n |f̌n |

2 (3)

which means that ρLR(f) is the weighted superposition of the

squared magnitude of the projections of f onto the eigenvectors

of LV with weights given by the corresponding eigenvalues.

As described next, (3) provides an insightful interpretation

of ρLR(f) in a transformed domain. Specifically, a number of

works advocate the term graph Fourier transform or frequency

representation of f to refer to {f̌n}
N
n=1 ; see e.g., [4]. The main

argument resides in that {uV
n}

N
n=1 play a role analogous to

complex exponentials in signal processing for time signals, in

the sense that (i) complex exponentials are eigensignals of the

continuous counterpart of the Laplacian operator f �→ LVf ,

and (ii) {uV
n}

N
n=1 are eigensignals of the so-called linear, shift-

invariant filters [5], which are the graph counterparts of lin-

ear, time-invariant filters in signal processing for time signals.

Thus, f =
∑N

n=1 f̌nuV
n resembles in some sense the synthesis

equation of the Fourier transform, and one can therefore in-

terpret {uV
n}

N
n=1 as a Fourier basis. Because λ

V
1 ≤ . . . ≤ λ

V
N ,

it follows from ρLR(uV
n ) = (uV

n )�LVuV
n = λ

V
n that ρLR(uV

1 ) ≤
. . . ≤ ρLR(uV

N ). Hence, sorting the eigenvectors {uV
n}

N
n=1 in

increasing order of their associated eigenvalue is tantamount

to sorting them in decreasing order of smoothness. Similarly,

the complex exponentials in the traditional Fourier basis are in-

dexed by their frequency, which can be thought of as an (inverse)

proxy of time-domain smoothness. Comparing both scenarios

suggests interpreting λ
V
n , or the index n, as the graph frequency

of uV
n .

Back to (3), it is seen that ρLR(f) penalizes high-frequency

components more heavily than low-frequency ones, thus pro-

moting estimates with a “low-pass” graph Fourier transform. A

finer control of how energy is distributed across frequency can

be attained upon applying a transformation r : R → R+ to λ
V
n ,

giving rise to regularizers of the form

ρLKR(f) =
N

∑

n=1

r(λV
n )|f̌n |

2 = f�K†f (4a)

where

K† := r(LV) := U�
V diag{r(λV)}UV (4b)
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TABLE I
EXAMPLES OF LAPLACIAN KERNELS AND THEIR ASSOCIATED SPECTRAL

WEIGHT FUNCTIONS

Kernel name Function Parameters

Diffusion kernel [2] r(λ) = exp{σ2
λ/2} σ2 ≥ 0

p-step random walk
kernel [3]

r(λ) = (a − λ)−p a ≥ 2, p positive
integer

Laplacian
regularization [3], [4],
[29]

r(λ) = 1 + σ2
λ σ2 sufficiently

large

Bandlimited [17] r(λ) =

{

1/β λ ≤ λmax

β otherwise
β > 0 sufficiently

large, λmax

is referred to as Laplacian kernel [3]. Table I summarizes some

well-known examples arising for specific choices of r.

Further broadening the scope of the generalized Laplacian

kernel regularizers in (4), the so-called kernel ridge regression

(KRR) estimators are given by

f̂ := arg min
f

1

S
||y − Sf ||22 + µf�K†f (5)

for an arbitrary positive semidefinite matrix K, not necessarily

a Laplacian kernel. The user-selected parameter µ > 0 balances

the importance of the regularizer relative to the fitting term

S−1 ||y − Sf ||22 . KRR estimators have well-documented merits

and solid grounds on statistical learning theory; see e.g. [25].

Different regularizers and fitting functions lead to even more

general algorithms; see e.g. [17].

IV. KERNEL-BASED RECONSTRUCTION OF TIME-VARYING

GRAPH FUNCTIONS

The framework in Section III cannot accommodate functions

evolving over both space and time. To flexibly exploit spatial and

temporal dynamics, the present section generalizes this frame-

work through the notion of graph extension.

An immediate approach to reconstructing time-evolving func-

tions is to apply (5) separately for each t = 1, . . . , T . This yields

the instantaneous estimator (IE)

f̂ IE[t] := arg min
f

1

S[t]
||y[t] − S[t]f ||22 + µf�K†[t]f . (6)

Unfortunately, this estimator does not account for the possi-

ble relation between e.g. fn [t] and fn [t − 1]. If, for instance, f
varies slowly over time, an estimate of fn [t] may as well benefit

from leveraging observations ys [τ ] at time instants τ 	= t. Ex-

ploiting temporal dynamics potentially reduces the number of

vertices that have to be sampled to attain a target reconstruction

performance, which in turn can markedly reduce sampling costs.

Incorporating temporal dynamics into kernel-based recon-

struction, which can only handle a single snapshot (cf.

Section III), necessitates an appropriate reformulation of

time-evolving function reconstruction as a problem of recon-

structing a time-invariant function. An appealing possibility

is to replace G with its extended version Ḡ := (V̄,Ā), where

each vertex in V is replicated T times to yield the extended

vertex set V̄ := {vn [t], n = 1, . . . , N, t = 1, . . . , T}, and the

(n + N(t − 1), n′ + N(t′ − 1))-th entry of the TN × TN

Fig. 1. (a) Original graph G. (b) Extended graph Ḡ for diagonal BT [t]. Edges
connecting vertices at the same time instant are represented by solid lines,
whereas edges connecting vertices at different time instants are represented by
dot-dashed lines.

extended adjacency matrix Ā equals the weight of the edge

(vn [t], vn ′ [t′]). The time-varying function f can thus be replaced

with its extended time-invariant counterpart f̄ : V̄ → R with

f̄(vn [t]) = fn [t].
As captured by the following definition, this paper focuses on

graph extensions respecting the connectivity of G per time slot

t, that is, {vn [t]}N
n=1 are connected according to AV [t], ∀t:

Definition 1: Let V := {v1 , . . . , vN } denote a vertex set and

let G := (V, {AV [t]}T
t=1) be a time-varying graph. A graph Ḡ

with vertex set V̄ := {vn [t], n = 1, . . . , N, t = 1, . . . , T} and

NT × NT adjacency matrixĀ is an extended graph of G if the

t-th N × N diagonal block ofĀ equals AV [t].
In general, there exist multiple graph extensions for a given

time-varying graph. This is because only the diagonal blocks of

Ā are dictated by {AV [t]}T
t=1 , whereas the remaining entries of

Ā can be freely selected so long asĀ is a valid adjacency matrix.

In the reconstruction problem, one is interested in selecting such

off-diagonal entries to capture the space-time dynamics of f . As

an example, consider an extended graph with

Ā = btridiag{AV [1], . . . ,AV [T ];BT [2], . . . ,BT [T ]} (7)

where BT [t] ∈ R
N ×N
+ connects {vn [t − 1]}N

n=1 to {vn [t]}N
n=1 ,

t = 2, . . . , T . For instance, one can connect each vertex to

its neighbors at the previous time instant by setting BT [t] =
AV [t − 1], or one can connect each vertex to its replicas at

adjacent time instants by setting BT [t] to be diagonal. Fig. 1

pictorially illustrates the latter choice.

Notice that the extended graph treats the time dimension just

as the spatial dimension. Thus, the flexibility of graphs to convey

relational information carries over to the time domain. As a

major benefit, this approach lays the grounds for the design of

doubly-selective kernels in Section V-A. The extended graph

also enables a generalization of the estimators in Section III

to reconstruct time-evolving functions. The rest of this section

develops two KRR estimators along these lines.

Consider first the batch formulation (see Section II), where

all the S̄ :=
∑T

t=1 S[t] samples in ȳ := [y�[1], . . . ,y�[T ]]� are

available, and the goal is to estimate f̄ := [f�[1], . . . ,f�[T ]]�.

Directly applying the KRR criterion in (5) to reconstruct f̄ on

the extended graph Ḡ yields

ˆ̄f := arg min
f̄

||ȳ − S̄f̄ ||2DS
+ µf̄

�
K̄

†
f̄ (8a)
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where K̄ is now a TN × TN “space-time” kernel matrix to

be designed in Section V, S̄ := bdiag {S[1], . . . ,S[T ]}, and

DS := bdiag
{

S[1]IS [1], . . . , S[T ]IS [T ]

}

. If K̄ is invertible,

(8a) can be solved in closed form as

ˆ̄f = K̄S̄
�
(S̄K̄S̄

�
+ µDS )−1 ȳ. (8b)

Note that if K̄ is such that K̄
†
= bdiag

{

K†[1],

. . . ,K†[T ]
}

, where K[t] is an N × N kernel matrix for G
at time t, then (8a) separates into T sub-problems, each as in

(6). This implies that only matrices K̄
†

with non-zero entries

off its block diagonal are capable of accounting for temporal

dynamics.

In the online formulation (cf. Section II), one aims to es-

timate f [t] after the S̄[t] :=
∑t

τ =1 S[τ ] samples in ȳ[t] :=
[y�[1], . . . ,y�[t]]� become available. Based on these samples,

the KRR estimate of f̄ , denoted as ˆ̄f
∣

∣t], is clearly

ˆ̄f
∣

∣t] := arg minf̄ ||ȳ[t] − S̄[t]f̄ ||2
DS [t] + µf̄

�
K̄

−1
f̄ (9a)

= K̄S̄
�
[t](S̄[t]K̄S̄

�
[t] + µDS [t])−1 ȳ[t]. (9b)

where K̄ is assumed invertible for simplicity, DS [t] :=
bdiag

{

S[1]IS [1], . . . , S[t]IS [t]

}

, and S̄[t] := [diag{S[1], . . .,

S[t]},0S̄ [t]×(T −t)N ] ∈ {0, 1}S̄ [t]×T N . The estimate in (9) com-

prises the per slot estimates {f̂ [τ |t]}T
τ =1 ; that is, ˆ̄f

∣

∣t] :=

[f̂
�
[1|t], f̂

�
[2|t], . . . , f̂

�
[T |t]]� with f̂ [τ |t] = [f̂1 [τ |t], . . . ,

f̂N [τ |t]]�, where f̂ [τ |t] (respectively f̂n [τ |t]) is the KRR esti-

mate of f [τ ] (fn [τ ]) given the observations up to time t. Observe

that, with this notation, it follows that

f̂ [τ |t] = (i�T ,τ ⊗ IN )ˆ̄f
∣

∣t] (10)

for all t, τ .

Regarding t as the present, (9) therefore provides estimates of

past, present, and future values of f . The solution to the online

problem formulated in Section II comprises the sequence of

present KRR estimates for all t, that is, {f̂ [t|t]}T
t=1 . This can

be obtained by solving (9a) in closed form per t as in (9b) and

then applying (10). However, such an approach does not yield a

desirable online algorithm since its complexity per time slot is

cubic in t (see Remark 1) and therefore increasing with t. For this

reason, this approach is not satisfactory since the online problem

formulation in Section II requires the complexity per time slot

of the desired algorithm to be bounded. An algorithm that does

satisfy this bounded-complexity requirement yet provides the

exact KRR estimate is developed next for the case where the

kernel matrix is any positive definite matrix K̄ satisfying

K̄
−1

= btridiag{D[1], . . . ,D[T ];C[2], . . . ,C[T ]} (11)

for some N × N matrices {D[t]}T
t=1 and {C[t]}T

t=2 . Kernels in

this important family are designed in Section V. Broader classes

of kernels can be accommodated as described in Remark 3.

The process of developing the desired online algorithm in-

volves two steps. The first step expresses (9a) as a weighted

least-squares problem amenable to a KF solver. In the second

step, the KF is applied to solve such a problem. The first step is

accomplished by the following result.

Lemma 1: Let K̄ be of the form (11) and let ˆ̄f
∣

∣t] be the

KRR estimate defined in (9a). If {P [τ ]}T
τ =2 and {Σ[τ ]}T

τ =1 are

obtained by Algorithm 1 and σ2
e [τ ] = µS[τ ]∀τ , then

ˆ̄f
∣

∣t] = arg min
{f [τ ]}T

τ = 1

t
∑

τ =1

1

σ2
e [τ ]

||y[τ ] − S[τ ]f [τ ]||2

+

T
∑

τ =2

||f [τ ] − P [τ ]f [τ − 1]||2
Σ [τ ] + f�[1]Σ−1 [1]f [1].

(12)

Proof: See Appendix A. �

Relative to (9a), matrices {D[τ ],C[τ ]} in K̄
−1

have been

replaced in (12) with matrices {Σ[τ ],P [τ ]}, which can be found

through Algorithm 1. To enable the upcoming interpretation, the

following result establishes that {Σ[τ ]}T
τ =1 are positive definite.

Lemma 2: Let K̄ be a positive definite matrix of the form (11)

and let {P [τ ]}T
τ =2 and {Σ[τ ]}T

τ =1 be obtained by Algorithm 1.

Then, the matrices {Σ[τ ]}T
τ =1 are positive definite.

Proof: The proof follows by noting that Σ−1 [τ ] is the Schur

complement of a submatrix of K̄
−1

that comprises its last T −
τ + 1 block rows and columns. Since this submatrix is positive

definite, so is Σ
−1 [τ ] and therefore Σ[τ ]. �

Although no probabilistic assumption is required throughout

the derivation of the proposed online algorithm, exploring the

connections between (12) and the conventional probabilistic

setup for state estimation provides the intuition behind why

(12) can be solved through Kalman filtering. To this end, suppose

that f [τ ] adheres to the model f [τ ] = P [τ ]f [τ − 1] + w[τ ] for

τ = 2, . . . , T , initialized by f [1] = w[1], with zero-mean noise

w[τ ] having covariance Σ[τ ], and that the observations follow

the model y[τ ] = S[t]f [τ ] + e[τ ] for τ = 1, . . . , T , with e[τ ]
zero-mean noise having covariance σ2

e [τ ]I . Note that P [τ ] is

commonly referred to as the state-transition matrix within this

framework. In this scenario, one can easily see that obtaining the

maximum a posteriori (MAP) and the minimum mean square

error (MMSE) estimators of ˆ̄f given the observations up to time

T when {w[τ ],e[τ ]}T
τ =1 are Gaussian distributed reduces to

minimizing (12). This link informally reveals that (12) can be

minimized using the celebrated KF [30, Ch. 17].

The following theorem formalizes the latter claim. The re-

sulting algorithm, termed KKF, is summarized as Algorithm 2.

In the probabilistic KF terminology, step 2 yields the prediction

of f [t], step 2 provides the covariance matrix of the prediction

error, step 2 yields the Kalman gain, step 2 returns the posterior

estimate upon correcting the prediction with the innovations

scaled by the Kalman gain, and step 2 finds the error of this

posterior estimate.

Theorem 1: Let K̄ be of the form (11) and let ˆ̄f
∣

∣t] be the

KRR estimate defined in (9a). If {P [τ ]}T
τ =2 and {Σ[τ ]}T

τ =1

are obtained by Algorithm 1 and σ2
e [τ ] = µS[τ ]∀τ , then the

kernel Kalman filter (KKF) in Algorithm 2 returns the sequence

{f̂ [t|t]}T
t=1 , where f̂ [t|t] is given by (10).

Proof: See Appendix B �.

Recapitulating, given K̄
−1

in (11), one just has to run Algo-

rithms 1 and 2 to find the online KRR estimate of f given by (10).

As in the explanation after Lemma 2, probabilistic notions such



ROMERO et al.: KERNEL-BASED RECONSTRUCTION OF SPACE-TIME FUNCTIONS ON DYNAMIC GRAPHS 861

Algorithm 1: Recursion to set the parameters of the KKF.

Input: D[t], t = 1, . . . , T , C[t], t = 2, . . . , T .

1: Set Σ
−1 [T ] = D[T ]

2: for t = T, T − 1, . . . , 2 do

3: P [t] = −Σ[t]C[t]
4: Σ

−1 [t − 1] = D[t − 1] − P�[t]Σ−1 [t]P [t]
Output: Σ[t], t = 1, . . . , T , P [t], t = 2, . . . , T

Algorithm 2: Kernel Kalman filter (KKF).

Input: {Σ[t] ∈ S
N
+ }T

t=1 , {P [t] ∈ R
N ×N }T

t=2 ,

{y[t] ∈ R
S [t]}T

t=1 , {S[t] ∈ {0, 1}S [t]×N }T
t=1 ,

{σ2
e [t] > 0}T

t=1 .

1: Set f̂ [0|0] = 0, M [0|0] = 0, P [1] = 0

2: for t = 1, . . . , T do

3: f̂ [t|t − 1] = P [t]f̂ [t − 1|t − 1]
4: M [t|t − 1] = P [t]M [t − 1|t − 1]P�[t] + Σ[t]
5: G[t] = M [t|t − 1]S�[t]

× (σ2
e [t]I + S[t]M [t|t − 1]S�[t])−1

6: f̂ [t|t] = f̂ [t|t − 1] + G[t](y[t] − S[t]f̂ [t|t − 1])
7: M [t|t] = (I − G[t]S[t])M [t|t − 1]

Output: f̂ [t|t], t = 1, . . . , T ; M [t], t = 1, . . . , T .

as mean, covariance, statistical independence, or mean-square

error, can be used to elucidate connections with the classical KF.

Nonetheless, they are not required at any point of the deriva-

tion, which involves fully deterministic notions. Furthermore,

the proposed KKF does not explicitly involve any state-space

model, which is a major novelty and surprising result of the

present paper.

The proposed KKF generalizes the probabilistic KF since the

latter is recovered upon setting K̄ to be the covariance matrix of

f̄ in the probabilistic setup alluded to previously. It is therefore

natural that the assumptions required by the probabilistic KF

are stronger than those involved in the KKF. Specifically, in the

probabilistic KF, f [t] must adhere to a linear state-space model

with known transition matrix P [t], where the state noise w[t] is

uncorrelated over time and has known covariance matrix Σ[t].
Furthermore, the observation noise e[t] must be uncorrelated

over time and have known covariance matrix. Correspondingly,

the performance guarantees of the probabilistic KF are also

stronger: the resulting estimate is optimal in the mean-square

error sense among all linear estimators. Furthermore, if w[t] and

y[t] are jointly Gaussian, t = 1, . . . , T , then the probabilistic KF

estimate is optimal in the mean-square error sense among all (not

necessarily linear) estimators. In contrast, the requirements of

the proposed KKF are much weaker since they only specify that

f must evolve smoothly with respect to a given extended graph.

As expected, the performance guarantees are similarly weaker;

see e.g. [25, Ch. 5]. However, since the KKF generalizes the

probabilistic KF, the reconstruction performance of the former

for judiciously selected K̄ cannot be worse than the reconstruc-

tion performance of the latter for any given criterion. The caveat,

however, is that such a selection is not necessarily easy.

Remark 1: Algorithm 2 requires O(N 3) operations per time

slot, whereas the complexity of evaluating (9b) for the t-th time

slot is at least O(S̄3 [t]), which increases with t and becomes

eventually prohibitive. For large t, Algorithm 2 is computation-

ally more efficient than a single plain evaluation of (9b): whereas

the overall complexity of the former is O(tN 3), the latter is

O(NTS̄2 [t]), which e.g. for constant S[t] = S is O(NTt2S2).

Remark 2: Algorithm 2 provides estimates of the form f̂ [t|t]

and f̂ [t|t − 1]. To obtain estimates f̂ [t|t′] for t > t′ + 1, one

may set S[τ ] = ∅ for τ � t′ + 1 and execute Algorithm 2 up to

time t. Conversely, to obtain estimates f̂ [t|t′] for which t < t′,
one may extend Algorithm 2 along the lines of the Kalman

smoother [31] to also operate backwards.

Remark 3: Similar to the probabilistic KF, which requires

the inverse covariance matrix of f̄ to be block tridiagonal,

the proposed KKF requires the inverse kernel matrix to be

of the form (11). Fortunately, it is straightforward to extend

both algorithms to accommodate inverse covariance or ker-

nel matrices with any number of non-zero diagonals at the

price of increasing the time interval between consecutive es-

timates. To illustrate such an approach, suppose that K̄
−1

is

not block tridiagonal when blocks are of size N × N , but it

is block tridiagonal if blocks are of size 2N × 2N . In such a

case, one can use the proposed KKF to estimate {f ′[t′]}
T /2
t ′=1 ,

where f ′[t′] := [f�[2t′ − 1],f�[2t′]]� ∈ R
2N , just by re-

placing y[t] with y′[t′] := [y�[2t′ − 1],y�[2t′]]�, S[t] with

S′[t′] := bdiag {S[2t′ − 1],S[2t′]}, and e[t] with e′[t′] :=
[e�[2t′ − 1],e�[2t′]]�, t′ = 1, . . . , T/2. Note that the sampling

interval associated with the index t′ is twice the one associated

with t.

V. DESIGN OF SPACE-TIME KERNELS

Section IV assumed that the kernel matrix K̄ is given and

described no methodology to address its design. An immedi-

ate approach is to mimic the Laplacian kernels of Section III

by setting K̄ = r†(L̄), where L̄ := diag{Ā1} −Ā denotes the

Laplacian matrix of the extended graph. Unfortunately, such a

design prevents separate control of the spatial and temporal vari-

ability of the estimates, thus limiting the user’s ability to flexibly

account for spatial and temporal information. For instance, sam-

pling intervals that are small relative to the time dynamics of

f , meaning that f does not vary significantly between samples

t − 1 and t, favors estimates that sacrifice spatial smoothness to

increase temporal smoothness.

This section proposes families of space-time kernels for

which temporal and spatial smoothness can be separately tuned.

Section V-A describes designs for time-invariant topologies,

whereas Section V-B deals with the time-varying case.

A. Doubly-Selective Space-Time Kernels

In Section III, the frequency interpretation of (3) proved de-

cisive to interpret and design Laplacian kernels for reconstruct-

ing time-invariant functions. Introducing the time dimension

in Section IV prompts an analogous methodology, where ker-

nels are specified in a bidimensional plane of spatio-temporal
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frequency.3 This section accomplishes this task by generalizing

the Laplacian kernels from Section III in such a way that the

weight that the regularizers ρ(f̄) = f̄
�
K̄

†
f̄ associated with

the proposed kernels confer to each spatial and temporal fre-

quency component of f̄ can be separately prescribed. Through-

out this section, a time-invariant topology will be assumed, i.e.,

AV [t] = AV , t = 1, . . . , T .

Clearly, (4a) can be rewritten as ρLKR(f) = r�( f̌ � f̌)
for f̌ := U�

Vf the frequency transform of f and r :=
[r(λV

1 ), . . . , r(λV
N )]�. One can separately weight each frequency

component by selecting r, which can therefore be thought of as

the “frequency response” of the regularizer. For instance, one

may promote low-pass estimates by setting the first entries of r

to low values and the rest to high values.

Inspired by this view, one may seek kernels K̄ for which

ρ(f̄) = f̄
�
K̄

†
f̄ = Tr

(

R�( ˇ̄F � ˇ̄F )
)

(13)

where R and ˇ̄F are N × T matrices to be specified later re-

spectively containing the frequency response of the regularizer

and the bidimensional transform of f . The (ň, ť)-th entry of

these matrices corresponds to the ň-th spatial frequency and ť-
th temporal frequency. Kernels satisfying the second equality in

(13) will be termed doubly (frequency) selective. Such kernels

preserve the flexibility of their counterparts for time-invariant

functions. For instance, if K̄ promotes doubly low-pass esti-

mates, then the top left entries of R are small whereas the rest

are large.

To determine the form of a doubly-selective kernel, let F̄ :=
[f [1], . . . ,f [T ]] and recall that any linear bidimensional trans-

form can be expressed as ˇ̄F := U�
V F̄UT , where the N × N

matrix UV and the T × T matrix UT stand for orthogonal

transformations along space and time, respectively. On the other

hand, vectorizing the rightmost term of (13) yields

ρ(f̄) = f̄
�
K̄

†
f̄ = ˇ̄f

�
diag {r} ˇ̄f (14)

where r := vec{R} and

ˇ̄f := vec{ ˇ̄F } = vec{U�
V F̄U T } = (U T ⊗ UV)�f̄ . (15)

Any doubly-selective kernel, or equivalently any kernel satisfy-

ing the second equality of (14), is therefore of the form

K̄
†
= (U T ⊗ UV) diag {r} (UT ⊗ UV)� (16)

for some orthogonal T × T matrix UT , some orthogonal

N ×N matrix UV , and some entrywise non-negative vector r.

Expression (16) provides the general form of a doubly-

selective kernel, but a specific construction for U T , UV , and

r capturing the spatiotemporal dynamics of f is still required.

The next procedure serves this purpose by paralleling the ap-

proach in Section III. This involves the following two steps.

S1: Since a Laplacian kernel matrix shares eigenvectors with

the Laplacian matrix, one should construct an extended graph

Ḡ so that its Laplacian matrix L̄ is diagonalizable by a matrix

of the form UT ⊗ UV for some orthogonal UT ∈ R
T ×T and

3See [32] for graph filter designs in this domain.

UV ∈ R
N ×N . S2: One must design a spectral weight map r to

obtain the eigenvalues of K̄ from those of L̄.

Regarding S1, an explicit construction of an extended graph

whose Laplacian matrix is diagonalizable by a matrix of the form

UT ⊗ UV with orthogonal UT ∈ R
T ×T and UV ∈ R

N ×N is

provided next. To this end, consider the extended adjacency

matrix

Ā = AT ⊕ AV (17)

where AV is the given adjacency matrix of G and the T × T
adjacency matrix AT is selected to capture temporal dynam-

ics. Specifically, with Ā as in (17), the definition of extended

adjacency matrix in Section IV dictates that the weight of the

edge (vn1
[t], vn2

[t]) for all t is given by the (n1 , n2)-th entry of

AV , whereas the weight of the edge (vn [t1 ], vn [t2 ]) for all n is

given by the (t1 , t2)-th entry of AT . A simple choice for AT

will be described later. Note that (17) differs from Kronecker

graphs [33], for whichĀ = AT ⊗ AV , although it can be inter-

preted as the Cartesian graph of V and {1, . . . , T} [34], [35].

Cartesian graphs have been considered in the graph signal pro-

cessing literature for graph filtering and Fourier transforms of

time-varying functions [35], but not for signal reconstruction.

With Ā as in (17), it can be readily seen that L̄ :=
diag{Ā1} −Ā = LT ⊕ LV , where LT := diag{AT 1} − AT

and LV := diag{AV1} − AV are the Laplacian matrices asso-

ciated with AT and AV , respectively. If now one sets UT and

UV to be respectively the eigenvector matrices of LT and LV ,

then LT = U T diag {λT }U�
T and LV = UV diag {λV}U�

V

for some λT and λV . This implies that

L̄ = (U T ⊗ UV) [diag {λT } ⊕ diag {λV}] (U T ⊗ UV)�

= (U T ⊗ UV) diag {λT ⊗ 1N + 1T ⊗ λV} (UT ⊗ UV)�.

This expression reveals that the graph extension proposed in

(17) indeed satisfies the objective of S1, which requires the

eigenvector matrix of L̄ to be of the form UT ⊗ UV . Thus, it

is always possible to construct a graph extension satisfying the

goal of S1.

For S2, one must construct a spectral map r that yields r

upon entrywise application to λT ⊗ 1N + 1T ⊗ λV . To sepa-

rately control the frequency response along the spatial and tem-

poral frequencies λV and λT , such a map must take two argu-

ments as r(λT , λV). This results in r = r(λT ⊗ 1N ,1T ⊗ λV)
and (16) becomes

K̄
†
= (U T ⊗ UV) (18)

× diag {r(λT ⊗ 1N ,1T ⊗ λV)} (U T ⊗ UV)�.

Kernels of this form will be referred to as Kronecker space-

time kernels. The transformation r can be selected in several

ways. For instance, the immediate construction at the beginning

of Section V is recovered for r(λT , λV) = r(λT + λV), with

r(λ) a one-dimensional spectral weight map such as the ones

in Table I. Another possibility is to focus on separable maps of

the form r(λT , λV) = rT (λT )rV(λV) where rT and rV denote

one-dimensional spectral maps. The resulting Kronecker kernel
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can expressed as4

K̄ = KT ⊗ KV (19)

where KT := U T diag{rT (λT )}U�
T and KV :=

UV diag{rV(λV)}U�
V . For example, doubly bandlimited

estimates can be obtained by setting both KT and KV to

be bandlimited kernels (Table I). A further possibility is to

consider maps of the form r(λT , λV) = rT (λT ) + rV(λV),
which clearly result in kernels of the form

K̄
†
= K

†
T ⊕ K

†
V . (20)

To sum up, the proposed Kronecker kernels arise from an

intuitive graph extension and can afford flexible adjustment of

their frequency response. Unfortunately, not any Kronecker ker-

nel is suitable for the online algorithm in Section IV since the

latter requires the inverse of the kernel matrix K̄ to be block

tridiagonal. The rest of this section describes a subfamily of

Kronecker kernels that is suitable for this algorithm.

Clearly, in order for K̄
†

as in (19) or (20) to be block tridi-

agonal, it is necessary that K
†
T be tridiagonal, i.e., the (t, t′)-th

entry of K
†
T must be zero if |t − t′| > 1. Such a K

†
T can be

obtained if, for instance, one sets the (t, t′)-th entry of AT to be

0 unless |t − t′| = 1. In this extended graph construction, vertex

vn [t], 1 < t < T , is connected to vn [t − 1] and vn [t + 1], which

are its replicas in adjacent time slots. For K
†
T to be tridiagonal,

one may set rT (λT ) = λT + ε, where ε > 0 ensures that KT is

invertible.

Thus, the price to be paid for an online implementation with

the KKF from Section IV is limited flexibility in specifying the

temporal frequency response. Note that this is not an intrinsic

limitation of the proposed algorithm, but it is inherent to the clas-

sical KF as well; just recall that the latter assumes vector autore-

gressive processes of order 1. Remark 3 describes a technique

to alleviate this limitation. In any case, the temporal frequency

response of a kernel for which (AT )t,t ′ = δ[|t − t′| − 1] can be

obtained analytically by approximating the resulting Laplacian

LT for sufficiently large T with a circulant matrix. This implies

that (i) the eigenvectors in U T are approximately those in the

conventional Fourier basis and therefore the notion of temporal

frequency embodied in UT preserves its conventional meaning;

and (ii), upon applying [17, Example 3], the resulting frequency

response is low pass. Both (i) and (ii) are intuitively reasonable.

Thus, although the KKF solves only a subset of KRR problems,

this subset is of practical relevance.

Remark 4: In this paper, the rows of F̄ can be thought of as

graph functions over a graph with adjacency matrix AT , whereas

the columns of F̄ can be thought of as graph functions over the

graph with adjacency matrix AV . In principle, each column of F̄

does not need to correspond to a different time instant, but e.g.

to a different movie in a recommender system application. The

estimators (8a)-(9b) can therefore be used for matrix completion

upon properly constructing an extended graph and graph kernel

4The notion of Kronecker kernels together with (19) shows up in the literature
of pairwise classification [34], but the resemblance is merely illusional since
the underlying kernel is a function of two pairs of vertices.

matrix. Towards this end, the space-time kernels defined in (19)

and (20) readily generalize to space-space kernels that promote

smoothness over both graphs.

B. Space-Time Kernels for Time-Varying Topologies

For time-invariant topologies, Section V-A proposed kernels

that can be designed and interpreted on a two-dimensional fre-

quency plane. This section deals with changing topologies, for

which no bidimensional frequency notion can be defined.

To recognize this claim, suppose that AV [t] = AV remains

constant over t and recall that uV
ň is the ň-th eigenvector of LV

or, equivalently, the ň-th column of UV . In this case, a bidimen-

sional transform exists and can be expressed as ˇ̄F := U�
V F̄UT ,

whose (ň, ť)-th entry corresponds to the ň-th spatial frequency

and ť-th temporal frequency; see section V-A. Fundamentally,

the precise meaning of the latter statement is that ( ˇ̄F )ň ,ť is the

ť-th temporal frequency component of the ň-th spatial frequency

component of f , i.e., the ť-th temporal frequency component of

the time series {f̌ň [t] := (uV
ň )�f [t]}T

t=1 , which is the time evo-

lution of the ň-th spatial frequency component of f . However,

for changing topologies one cannot generally conceive the tem-

poral evolution of a specific spatial frequency component since

the eigenvectors of LV [t] generally differ from those of LV [t′],
which precludes any natural definition of the aforementioned

sequence and therefore of a bidimensional frequency transform.

Nonetheless, it is shown next that the notion of spatial frequency

per slot t can still be utilized to design space-time kernels for

time-varying topologies.

To this end, consider the extended graph defined by (7) for

arbitrary BT [t] ∈ R
N ×N
+ . It then follows that

L̄ := diag{Ā1} −Ā = bdiag {LV [1], . . . ,LV [T ]}

+ btridiag
{

diag {bT [1]} , . . . ,diag {bT [T ]} ;

− BT [2], . . . ,−BT [T ]
}

(21)

where

bT [t] :=

⎧

⎪

⎨

⎪

⎩

B�
T [2]1 if t = 1

(B�
T [t + 1] + BT [t])1 if 1 < t < T

BT [T ]1 if t = T.

The rationale behind this graph extension is that, for L̄ as in

(21) and diagonal {BT [t]}T
t=1 , one can show that

f̄
�
L̄f̄ =

T
∑

t=1

f�[t]LV [t]f [t] (22)

+
T

∑

t=2

(f [t] − f [t − 1])�BT [t](f [t] − f [t − 1]).

When f̄
�
L̄f̄ is used as a regularizer, the first and second sums

on the right-hand side of (22) respectively penalize spatial and

temporal variations. As a special case, if one sets BT [t] = bT I

∀t for some bT > 0, the second sum becomes bT
∑T

t=2 ||f [t] −
f [t − 1]||22 , which would promote estimates with small changes

over time.



864 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 6, SEPTEMBER 2017

Applying the notion of Laplacian kernels along the spatial

dimension (see Section III), but not along time, suggests gener-

alizing (22) to obtain the regularizer

ρ(f̄) = f̄
�
K̄

†
f̄ =

T
∑

t=1

f�[t]K†
V [t]f [t] (23)

+
T

∑

t=2

(f [t] − f [t − 1])�BT [t](f [t] − f [t − 1])

where K
†
V [t] = rt(LV [t]), t = 1, . . . , T , for {rt}

T
t=1 a collec-

tion of user-selected spectral maps such as those in Table I. In

that case, (23) corresponds to the kernel matrix

K̄
†
= bdiag

{

K
†
V [1], . . . ,K†

V [T ]
}

+ btridiag
{

diag {bT [1]} , . . . ,diag {bT [T ]} ;

− BT [2], . . . ,−BT [T ]
}

. (24)

Although kernels of this form do not offer a frequency-domain

control of reconstruction along time, they still enjoy the spatial

flexibility of the kernels in Section V-A.

Remark 5: To guarantee that K̄
†

in (24) qualifies for online

implementation, it suffices to guarantee that K̄ is invertible

since it is already block tridiagonal. This holds e.g. if KV [t] is

invertible for all t.

VI. SIMULATED TESTS

This section compares the performance of the proposed

schemes with state-of-the-art alternatives and illustrates some of

the trade-offs inherent to time-varying function reconstruction

through real-data experiments. The source code for the simula-

tions is available at the authors’ websites.

Unless otherwise stated, the compared estimators include dis-

tributed least squares reconstruction (DLSR) [21] with step size

µDLSR and parameter βDLSR; the least mean-squares (LMS) al-

gorithm in [22] with step size µLMS; the bandlimited instanta-

neous estimator (BL-IE), which results from applying [12]–[14]

separately per t; the KRR instantaneous estimator (KRR-IE)

in (6) with a diffusion kernel with parameter σ; and the pro-

posed KKF (Algorithms 1 and 2) with kernel given by (24) for

BT [T ] = bT I and KV [t] a diffusion kernel with parameter σ.

DLSR, LMS, and BL-IE also use a bandwidth parameter B. The

parameters of competing algorithms, such as µLMS and B, were

set to values approximately achieving the best performance. Yet,

the latter is not highly sensitive to the choice of B within a wide

interval since most of the spatial signals f [t] utilized turn out

not to be markedly bandlimited.

The first data set comprises hourly temperature measurements

at N = 109 stations across the continental U.S. in 2010 [36].

Temperature reconstruction has been extensively employed in

the literature to analyze the performance of inference tools over

graphs (see e.g. [18], [19], [21]). A time-invariant graph was

constructed following the approach in [19], which relies on

geographical distances, with 7 nearest neighbors. Function fn [t]
represents the temperature at the n-th station and t-th sampling

instant. In the first experiment, the latter corresponds to the t-th

Fig. 2. True temperature and estimates across time at a randomly picked
unobserved station (µ = 10−7 , σ = 1.8, bT = 0.01, µDLSR = 1.2, βDLSR =
0.5, µLMS = 2, S = 44).

Fig. 3. NMSE of daily temperature estimates over 2010 (µ = 10−7 , σ = 1.8,
bT = 0.01, µDLSR = 1.2, βDLSR = 0.5, µLMS = 2, S = 44).

hour, whereas for the rest, it corresponds to the temperature at

12:00 PM of the t-th day.

Fig. 2 depicts the true temperature at an unobserved randomly

picked station over the first 300 hours of 2010 along with its

estimates for a typical realization of the time-invariant sampling

set S = S[t], ∀t, drawn uniformly at random within all sam-

pling sets with S = 44 elements.5 Different from instantaneous

alternatives, whose error does not decrease with time, KKF

is observed to successfully leverage time dynamics to track the

temperature at the unobserved station. On the other hand, DLSR

and LMS are unable to track the rapid variations of f since their

design assumes slowly changing functions.

The next experiments compare the cumulative normalized

mean-square error (NMSE), defined as

NMSE(t, {S[τ ]}t
τ =1) :=

∑t
τ =1 ||S

c [τ ](f [τ ] − f̂ [τ |τ ])||22
∑t

τ =1 ||S
c [τ ]f [τ ]||22

where Sc [τ ] is an N − S[τ ] × N matrix comprising the rows

of IN whose indices are not in S[t].
Fig. 3 shows the NMSE for S[t] = S, ∀t, averaged over all

possible S with S = 44 elements. It is observed that the instan-

taneous estimators outperform DLSR and LMS, which can only

5Note that the performance of all methods would improve if one could decide
which sampling set to use.
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Fig. 4. NMSE for increasing sampling size (µ = 10−7 , σ = 1.6, bT = 0.01,
µDLSR = 1.2, βDLSR = 0.5, µLMS = 2).

Fig. 5. NMSE for different kernels versus scale parameter bT (µ = 10−7 ).

cope with slow variations of f . Furthermore, the error of KKF

is nearly half the error of the nearest alternative, demonstrating

the importance of exploiting time dynamics.

Fig. 4 shows the impact of the number of observed vertices S
in NMSE(T, {S[τ ]}T

τ =1), with T = 365 days, averaged over all

sets S[τ ] = S ∀τ with S elements. Observe that KKF consis-

tently outperforms all alternatives. Still, the advantage of KKF

is more pronounced for small S, since in that case exploiting

the time dynamics is more critical.

To illustrate the trade-off between reliance on temporal ver-

sus spatial information, the next experiment analyzes the ef-

fects of the scaling parameter bT in the kernel adopted by KRR

(cf. (24)). A large value of bT leads to an estimator that relies

more heavily on time dynamics and vice versa. Fig. 5 shows

NMSE(T, {S[τ ]}T
τ =1), with T = 100 days, averaged over all

sets S[τ ] = S ∀τ with S = 44 elements. The kernel in (24) is

adopted with KV [t] being the regularized Laplacian (KKF-L) or

diffusion kernels (KKF-DF) from Table I, while BT [t] = bT I .

It is observed that there exists an optimum value for bT which

leads to the best reconstruction performance. This corresponds

to the optimal trade-off point between reliance on temporal and

spatial information. The optimal NMSE is achieved by a diffu-

sion kernel with σ = 1.5 and bT = 0.01.

The second data set is provided by the Bureau of Eco-

nomic Analysis of the U.S. Department of Commerce and

contains the annual investments between each pair of sec-

tors among N = 61 economic sectors in the interval 1997-

2014 [37]. Each entry AV
n,n ′ [t] of AV [t] contains the investment

in trillions of dollars between sectors n and n′ for the year

Fig. 6. NMSE for the economic sectors dataset (σ = 6.2, µ = 10−4 , bT =
0.01, µDLSR = 1.2, βDLSR = 0.5, µLMS = 2).

1995 + 2t with t = 1, 2, . . . , T , where T = 9. DLSR and LMS

adopt AV = (1/T )
∑T

τ =1 AV [τ ] since they cannot handle time-

varying topologies. The value fn [t] corresponds to the total pro-

duction of the n-th sector in year 1996 + 2t, t = 1, 2, . . . , T .

The sampling interval was set to two years, so that disjoint sub-

sets of years are used for generating the signal and constructing

the graphs.

The next experiment demonstrates the ability of KKF to

handle time-varying topologies. To this end, Fig. 6 plots

NMSE(t, {S[τ ]}t
τ =1), averaged over all sets S[t] = S, ∀t, with

S = 37 elements. KKF utilizes the kernel in (24) with KV [t]
a diffusion kernel constructed from LV [t] per t and BT [t] =
bT I, ∀t. Again, Fig. 6 showcases the superior performance of

the proposed KKF, whose error is significantly less than the

error of competing alternatives.

The third data set is obtained from an epilepsy study [7].

Diagnosis of epilepsy is heavily based on analysis of ECoG

data; see Section I. The next experiments utilize the ECoG

time series obtained in [7] from N = 76 electrodes implanted

in a patient’s brain before and after the onset of a seizure. A

symmetric time-invariant adjacency matrix AV was obtained

using the method in [38] with ECoG data before the onset of

the seizure. Function fn [t] comprises the electrical signal at the

n-th electrode and t-th sampling instant after the onset of the

seizure, for a period of T = 250 samples. The values of fn [t]
were normalized by subtracting the temporal mean of each time

series before the onset of the seizure. The goal of the experiment

is to illustrate the reconstruction performance of the proposed

KKF in capturing the complex spatio-temporal dynamics of

brain signals.

Fig. 7 depicts the NMSE(t, {S[τ ]}t
τ =1), averaged over all

sets S[t] = S, ∀t, of size S = 53. For the proposed KKF, a

space-time kernel was created using (24) with KV [t] a time-

invariant covariance kernel KV [t] = Σ̂tr, where Σ̂tr was set to

the sample covariance matrix of the time series before the on-

set of the seizure, and with a time-invariant BT = bT I . Fig. 7

showcases the superior reconstruction performance of the KKF,

which successfully exploits the statistics of the signal when

available, among competing approaches, even with a small num-

ber of samples. This result suggests that the ECoG diagnosis
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Fig. 7. NMSE for the ECoG dataset (σ = 1.2, µ = 10−4 , µDLSR = 1.2,
bT = 0.01, βDLSR = 0.5, µLMS = 0.6).

technique could be efficiently conducted even with a smaller

number of intracranial electrodes, which may positively impact

the patient’s experience.

VII. CONCLUSION

This paper investigated kernel-based reconstruction of space-

time functions on graphs. The adopted approach relied on the

construction of an extended graph, which regards the time di-

mension just as a spatial dimension. Several kernel designs were

introduced together with a batch and an online function esti-

mators. The latter is a kernel Kalman filter developed from a

purely deterministic standpoint without any need to adopt any

state-space model. Future research will deal with multi-kernel

and distributed versions of the proposed algorithms.

APPENDIX

A. Proof of Lemma 1

Start by expanding the norm in the second term of (12) to

obtain

T
∑

τ =2

||f [τ ] − P [τ ]f [τ − 1]||2
Σ [τ ]

=

T
∑

τ =2

(f [τ ] − P [τ ]f [τ − 1])�Σ
−1 [τ ](f [τ ] − P [τ ]f [τ − 1])

=

T
∑

τ =2

(

f�[τ ]Σ−1 [τ ]f [τ ] − 2f�[τ ]Σ−1 [τ ]P [τ ]f [τ − 1]

+ f�[τ−1]P�[τ ]Σ−1 [τ ]P [τ ]f [τ−1]

)

. (25)

Noting that

T
∑

τ =2

f�[τ ]Σ−1 [τ ]f [τ ] =

T
∑

τ =2

f�[τ − 1]Σ−1 [τ − 1]f [τ − 1]

− f�[1]Σ−1 [1]f [1] + f�[T ]Σ−1 [T ]f [T ]

it readily follows from (25) that

T
∑

τ =2

||f [τ ] − P [τ ]f [τ − 1]||2
Σ [τ ]

=

T
∑

τ =2

(

f�[τ − 1]
(

Σ
−1 [τ − 1] + P�[τ ]Σ−1 [τ ]P [τ ]

)

f [τ − 1]

− 2f�[τ ]Σ−1 [τ ]P [τ ]f [τ − 1]

)

− f�[1]Σ−1 [1]f [1] + f�[T ]Σ−1 [T ]f [T ].

From Algorithm 1, it follows that Σ
−1 [τ − 1] +

P�[τ ]Σ−1 [τ ]P [τ ] = D[τ − 1] and −Σ
−1 [τ ]P [τ ] = C[τ ],

which in turn imply that

T
∑

τ =2

||f [τ ] − P [τ ]f [τ − 1]||2
Σ [τ ]

=

T
∑

τ =2

(

f�[τ − 1]D[τ − 1]f [τ − 1] + 2f�[τ ]C[τ ]f [τ − 1]

)

− f�[1]Σ−1 [1]f [1] + f�[T ]D[T ]f [T ]

= f̄
�
K̄

−1
f̄ − f�[1]Σ−1 [1]f [1] (26)

where the last equality follows from (11). After substituting (26)

into (12) and recognizing that the first summand in (12) equals

||ȳ[t] − S̄[t]f̄ ||2
DS [t] , expression (9a) is recovered and the proof

is completed.

B. Proof of Theorem 1

The first step is to simplify the objective in (12). To this end,

note that minimizing (12) with respect to {f [τ ]}T
τ =t ′+1 for any

t and t′ with t′ ≥ t yields

f̂ [τ |t] = P [τ ]f̂ [τ − 1|t], τ = t′ + 1, . . . , T, (27a)

{f̂ [τ |t]}t ′

τ =1 = arg min
{f [τ ]}t ′

τ = 1

t
∑

τ =1

1

σ2
e [τ ]

||y[τ ] − S[τ ]f [τ ]||2

+

t ′
∑

τ =2

||f [τ ] − P [τ ]f [τ − 1]||2
Σ [τ ]

+ f�[1]Σ−1 [1]f [1]. (27b)

The goal is therefore to show that the t-th iteration

of Algorithm 2 returns f̂ [t|t] as given by (27b). To sim-

plify notation, collect the function values up to time t
as f̄ [t] := [f�[1],f�[2], . . . ,f�[t]]� ∈ R

N t and their es-

timates given observations up to time t′ as ˆ̄f [t|t′] :=

[f̂
�
[1|t′], f̂

�
[2|t′], . . . , f̂

�
[t|t′]]� ∈ R

N t . The rest of the proof

proceeds along the lines in [30, Ch. 17] by expressing ˆ̄f [t|t]

and ˆ̄f [t|t − 1] as the solutions to two least-squares problems.
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To this end, define the Nt + S̄[t] × Nt matrix

Ā[t] :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IN 0 0 . . . 0 0 0

S[1] 0 0 . . . 0 0 0

−P [2] IN 0 . . . 0 0 0

0 S[2] 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 0 S[t − 1] 0

0 0 0 . . . 0 −P [t] IN

0 0 0 . . . 0 0 S[t]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(28)

the Nt + S̄[t] × Nt + S̄[t] matrix Σ̄[t] := bdiag{Σ[1], σ2
e [1]

IS [1],Σ[2], σ2
e [2]IS [2], . . . , σ

2
e [t − 1]IS [t−1],Σ[t], σ2

e [t]IS [t]},

and note from (27b) that

ˆ̄f [t|t] = arg min
f̄ [t]

||ψ̄[t] − Ā[t]f̄ [t]||2
Σ̄ [t] (29)

where ψ̄[t] := [0�
N ,y�[1],0�

N ,y�[2],0�
N , . . . ,0�

N ,y�[t]]� ∈

R
N t+ S̄ [t] . Indeed, expression (29) corresponds to the weighted

least-squares solution to

ψ̄[t] = Ā[t]f̄ [t] + ε̄[t] (30)

where ε̄[t] ∈ R
N t+ S̄ [t] is an error vector, and admits the closed-

form solution

ˆ̄f [t|t] = (Ā
�
[t]Σ̄

−1
[t]Ā[t])−1Ā

�
[t]Σ̄

−1
[t]ψ̄[t]. (31)

Similarly, define the Nt + S̄[t − 1] × Nt matrix

Ā
′
[t] :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IN 0 0 . . . 0 0 0

S[1] 0 0 . . . 0 0 0

−P [2] IN 0 . . . 0 0 0

0 S[2] 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . −P [t − 1] IN 0

0 0 0 . . . 0 S[t − 1] 0

0 0 0 . . . 0 −P [t] IN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

which is a submatrix of Ā[t] that results from removing the last

block-row, together with the Nt + S̄[t − 1] × Nt + S̄[t − 1]
matrix Σ̄

′
[t] := bdiag{Σ[1], σ2

e [1]IS [1],Σ[2], σ2
e [2]IS [2], . . . ,

Σ[t − 1],σ2
e [t − 1]IS [t−1],Σ[t]}, which is a submatrix of Σ̄[t]

resulting from removing the last block-row and block-column.

Now, replace t with t − 1 and t′ with t in (27b) to obtain

ˆ̄f [t|t − 1] = arg min
f̄ [t]

||ψ̄
′
[t] − Ā

′
[t]f̄ [t]||2

Σ̄
′
[t]

(33)

where ψ̄
′
[t] := [0�

N ,y�[1],0�
N ,y�[2],0�

N , . . . ,y�[t − 1],0�
N ]�

∈ R
N t+ S̄ [t−1] is a submatrix of ψ̄[t] that results from removing

its last block-row. In this case, ˆ̄f [t|t − 1] in (33) corresponds to

the least-squares solution to (30) after removing the last S[t]
equations, and can be obtained in closed form as

ˆ̄f [t|t − 1] = (Ā′�[t]Σ̄′−1
[t]Ā

′
[t])−1Ā′�[t]Σ̄′−1

[t]ψ̄′[t].
(34)

The rest of the proof utilizes (31) and (34) to express f̂ [t|t] in

terms of f̂ [t|t − 1] and f̂ [t|t − 1] in terms of f̂ [t − 1|t − 1]. To

this end, define J̄ [t] := i�t,t ⊗ IN , which can be used to select

the last N × N block-row or block-column of a matrix, as well

as

M [t|t − 1] := J̄ [t](Ā′�[t]Σ̄′−1
[t]Ā

′
[t])−1J̄

�
[t] (35)

and

M [t|t] := J̄ [t](Ā
�
[t]Σ̄

−1
[t]Ā[t])−1J̄

�
[t], (36)

which respectively correspond to the bottom right N ×

N blocks of T̄ ′[t] := Ā
′�

[t]Σ̄′−1
[t]Ā

′
[t] and T̄ [t] :=

Ā
�
[t]Σ̄

−1
[t]Ā[t]. Expressions (36) and (35) will be used next

to express M [t|t − 1] in terms of M [t − 1|t − 1], and M [t|t]
in terms of M [t|t − 1].

Assume for simplicity that Σ̄[t] and Σ̄′[t] equal the identity

matrices of appropriate sizes, although the proof easily carries

over to arbitrary positive definite matrices Σ̄[t] and Σ̄′[t]. Note

that

T̄ ′[t] =

[

T̄ [t − 1] + V �[t]V [t] V �[t]
V [t] IN

]

(37)

where V [t] := −P [t]J̄ [t − 1] ∈ R
N ×N (t−1) and observe that

M [t|t − 1] is the bottom right N × N block of T̄ ′−1
[t]. Thus,

applying block matrix inversion to (37) yields

M [t|t − 1] = J̄ [t]T̄ ′−1
[t]J̄

�
[t]

=
(

IN − V [t]
(

T̄ [t − 1] + V �[t]V [t])−1V �[t]
)−1

. (38)

Moreover, the matrix inversion lemma yields,

(T̄ [t − 1] + V �[t]IN V [t]
)−1

= T̄
−1

[t − 1] − T̄
−1

[t − 1]×

V �[t]
(

IN + V [t]T̄
−1

[t − 1]V �[t]
)−1

V [t]T̄
−1

[t − 1]. (39)

Substituting (39) into (38), applying the definition of V [t], and

using (36) to identify M [t − 1|t − 1] enables one to express

M [t|t − 1] in terms of M [t − 1|t − 1] as

M [t|t − 1] = IN + P [t]M [t − 1|t − 1]P�[t]. (40)

On the other hand, to express M [t|t] in terms of M [t|t − 1],

note that Ā[t] = [Ā
′�

[t],W�[t]]�, where W [t] := S[t]J̄ [t] ∈
R

S [t]×N t . Therefore,

T̄ [t] = Ā
�
[t]Ā[t]

= Ā
′�

[t]Ā
′
[t] + W�[t]W [t]

= T̄ ′[t] + W�[t]W [t]. (41)
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Applying the matrix inversion lemma to (41) yields

T̄
−1

[t] = T̄ ′−1
[t] − T̄ ′−1

[t]W�[t]× (42)

(

IS [t] + W [t]T̄ ′−1
[t]W�[t]

)−1
W [t]T̄ ′−1

[t].

Substituting the definition of W [t] into (42) leads to

J̄ [t]T̄
−1

[t] = J̄ [t]T̄ ′−1
[t] − J̄ [t]T̄ ′−1

[t]J̄
�
[t]S�[t]×

(

IS [t] + S[t]J̄ [t]T̄ ′−1
[t]J̄

�
[t]S�[t]

)−1
S[t]J̄ [t]T̄ ′−1

[t]

= J̄ [t]T̄ ′−1
[t] − M [t|t − 1]S�[t]×

(

IS [t] + S[t]M [t|t − 1]S�[t]
)−1

S[t]J̄ [t]T̄ ′−1
[t]

= (IN − G[t]S[t])J̄ [t]T̄ ′−1
[t] (43)

where the second equality follows from (35), and the third from

G[t] := M [t|t − 1]S�[t](IS [t] + S[t]M [t|t − 1]S�[t])−1 .
(44)

Finally, multiplying both sides of (43) with J̄
�
[t] and using (36)

to identify M [t|t] enables one to express M [t|t] in terms of

M [t|t − 1] as

M [t|t] = (IN − G[t]S[t])M [t|t − 1]. (45)

If Σ̄[t] and Σ̄′[t] are not identity matrices, then one obtains

M [t|t − 1] = Σ[t] + P [t]M [t − 1|t − 1]P�[t] (46)

instead of (40), and

G[t]=M [t|t − 1]S�[t](σ2
e [t]IS [t] + S[t]M [t|t − 1]S�[t])−1

(47)

instead of (44), whereas (45) remains the same. These equations

are precisely those in steps 4, 5 and 7 of Algorithm 2.

To obtain the rest of the steps, set t to t − 1 and τ to t in (27a)

to obtain

f̂ [t|t − 1] = P [t]f̂ [t − 1|t − 1] (48)

which coincides with step 3 of Algorithm 2. Finally, since f̂ [t|t]

is the last block vector of ˆ̄f [t|t], then

f̂ [t|t] := J̄ [t]ˆ̄f [t|t]

= J̄ [t]T̄
−1

[t]Ā
�
[t]Σ̄

−1
[t]ψ̄[t]

= (I − G[t]S[t])J̄ [t]T̄ ′−1
[t]Ā

�
[t]Σ̄

−1
[t]ψ̄[t] (49)

where the second equality follows from (31) and the third

from (43). From the definitions of Ā[t], Σ̄[t] and ψ̄[t], one

obtains that

Ā
�
[t]Σ̄

−1
[t]ψ̄[t] = Ā

′�
[t]Σ̄′−1

[t]ψ̄′[t] +
1

σ2
e [t]

W�[t]y[t].

(50)

Substituting (50) into (49) yields

f̂ [t|t] = (I − G[t]S[t])J̄ [t]T̄ ′−1
[t]×

(Ā
′�

[t]Σ̄′−1
[t]ψ̄′[t] +

1

σ2
e [t]

W�[t]y[t])

= (I − G[t]S[t])(f̂ [t|t − 1]

+
1

σ2
e [t]

M [t|t − 1]S�[t]y[t])

= f̂ [t|t − 1] + G[t](y[t] − S[t]f̂ [t|t − 1]) (51)

where the second equality follows from (34), f̂ [t|t − 1] =

J̄ [t]ˆ̄f [t|t − 1] and (35); whereas the third follows from

(IN − G[t]S[t])M [t|t − 1]S�[t] = σ2
e [t]G[t] (52)

which results from rearranging the terms in (47). Noting that

expression (51) coincides with step 6 of Algorithm 2 concludes

the proof.
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