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Kernel-Based Reconstruction of Space-Time
Functions on Dynamic Graphs
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Abstract—Graph-based methods pervade the inference toolkits
of numerous disciplines including sociology, biology, neuroscience,
physics, chemistry, and engineering. A challenging problem en-
countered in this context pertains to determining the attributes of
a set of vertices given those of another subset at possibly diffe-
rent time instants. Leveraging spatiotemporal dynamics can dras-
tically reduce the number of observed vertices, and hence the
sampling cost. Alleviating the limited flexibility of the existing ap-
proaches, the present paper broadens the kernel-based graph func-
tion estimation framework to reconstruct time-evolving functions
over possibly time-evolving topologies. This approach inherits the
versatility and generality of kernel-based methods, for which no
knowledge on distributions or second-order statistics is required.
Systematic guidelines are provided to construct two families of
space-time kernels with complementary strengths: the first facili-
tates judicious control of regularization on a space-time frequency
plane, whereas the second accommodates time-varying topologies.
Batch and online estimators are also put forth. The latter comprise
a novel kernel Kalman filter, developed to reconstruct space-time
functions at affordable computational cost. Numerical tests with
real datasets corroborate the merits of the proposed methods rela-
tive to competing alternatives.

Index Terms—Graph signal reconstruction, Kalman filtering,
kernel-based learning, ridge regression, time series on graphs.

I. INTRODUCTION

NUMBER of applications involving social, biological,
brain, sensor, transportation, or communication networks
call for efficient methods to infer the attributes of some vertices
given the attributes of other vertices [1]. For example, in a social
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network with vertices and edges respectively representing per-
sons and friendships, one may be interested in determining an
individual’s consumption trends or political orientation based
on those of their friends. This task emerges when sampling cost
constraints, such as the impossibility to poll one country’s entire
population, limit the number of vertices with known attributes.
Existing approaches typically formulate this problem as the re-
construction of a function or signal on a graph [1]-[6] and rely
on its smoothness with respect to the graph, in the sense that
neighboring vertices have similar function values. This principle
suggests, for instance, estimating one person’s age by looking
at their friends’ age.

A more challenging problem involves reconstructing time-
evolving functions on graphs, such as the ones describing the
time-dependent activity of regions in a brain network, given
their values on a subset of vertices and time instants. Efficiently
exploiting spatiotemporal dynamics can markedly impact sam-
pling costs by reducing the number of vertices that need to
be observed to attain a target estimation performance. This re-
duction is of paramount interest in applications such as invasive
electrocorticography (ECoG), where observing a vertex requires
the implantation of an intracranial electrode [7].

An extensive body of literature has dealt with reconstructing
time-invariant graph functions. Machine learning works typi-
cally rely on smoothness [2], [3], [6], [8] to reconstruct either
binary-valued (see e.g. [6]) or real-valued functions [8]-[11],
whereas the community of signal processing on graphs (SPoG)
focuses on parametric estimators for real-valued functions ad-
hering to the bandlimited model, by which those functions are
confined to the span of B eigenvectors of the graph Laplacian or
adjacency matrices [12]-[16]. Most of these approaches can be
subsumed under the encompassing framework of time-invariant
kernel-based learning [17].

Schemes tailored for time-evolving functions on graphs in-
clude [18] and [19], which predict the function values at time
t given observations up to time ¢ — 1. However, these schemes
assume that the function of interest adheres to a specific vector
autoregression and all vertices are observed at previous time
instances. Moreover, [18] requires Gaussianity along with an ad
hoc form of stationarity.

Some methods for reconstructing time-invariant functions
can also track functions that change sufficiently slowly over
time. This is the case of the dictionary learning approach
in [20] and the distributed algorithms in [21] and [22]. Unfor-
tunately, the flexibility of these algorithms to capture spatial
information is also limited since [20] is confined to Laplacian
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regularization whereas [21] and [22] require the function to be
bandlimited. Other works investigate special instances of the
reconstruction problem with domain-specific requirements and
assumptions [23], [24]. Finally, it is worth mentioning that no
approach deals with time-evolving topologies.

The contribution of this paper is threefold. First, the exist-
ing kernel-based learning framework is naturally extended to
subsume time-evolving functions over possibly dynamic graphs
through the notion of graph extension, by which the time di-
mension receives the same treatment as the spatial dimension.
The versatility of kernel-based methods to leverage spatial in-
formation [17] is thereby inherited and broadened to account
for temporal dynamics as well. Incidentally, this vantage point
also accommodates time-varying sampling sets and topologies.
Second, two families of space-time kernels are introduced by
generalizing Laplacian kernels [3]. The first family enables ker-
nel design in a bidimensional frequency domain, whereas the
second caters for time-varying topologies. The third contribu-
tion comprises two function estimators with complementary
strengths based on the popular kernel ridge regression (KRR)
criterion; see e.g. [17], [25]. The first can handle more sophis-
ticated forms of spatiotemporal regularization by operating in
batch mode. The second estimator, termed kernel Kalman filter
(KKF), finds exact online KRR estimates by refining previous
ones as new observations become available, therefore offering
a more efficient implementation.

The major novelty of this paper is a purely deterministic
methodology that obviates the need for assumptions on data
distributions, stationarity, or knowledge of second-order statis-
tics. The proposed schemes are therefore of special interest in
absence of sufficient historical data, yet the latter can be incor-
porated if available through covariance kernels [17]. Although
more complicated dynamics can be accommodated, one may
simply rely on the assumption that the target function is smooth
over the graph and over time, which is reasonable whenever
the graph is properly constructed and the sampling interval is
attuned to the temporal dynamics of the function.

The novel online estimator constitutes the first fully determin-
istic rigorous application of the Kalman filter (KF) to kernel-
based learning. Although [26] already proposed a kernel-based
KF, this work heavily relies on heuristics and approximations
to explicitly operate in feature space. Moreover, this algorithm
needs to solve the challenging preimage problem per time step,
which increases inaccuracy and computational cost. Another
kernel-based KF was developed in [27] within the framework of
kernel-based learning, but its formulation is probabilistic and re-
quires historical data to estimate distributions. Like the schemes
in [26], [27], the proposed KKF can be derived from the frame-
work of reproducing kernel Hilbert spaces (RKHSs). However,
to simplify the exposition, this paper presents a derivation of the
proposed KKF that solely relies on linear algebra.

The rest of the paper is structured as follows. Section II formu-
lates the problem and Section III reviews kernel-based learning
for time-invariant functions. Section IV generalizes this frame-
work to reconstructing time-evolving functions and develops a
batch estimator together with the KKF. Subsequently, space-
time kernels are designed in Section V and numerical tests are

reported in Section VI to validate the performance of the pro-
posed algorithms. Finally, Section VII summarizes some closing
remarks whereas the Appendix provides the proofs of the main
results.

Notation: Scalars are denoted by lowercase letters, vec-
tors by bold lowercase, and matrices by bold uppercase.
(A),, , is the (m,n)-th entry of matrix A. Superscripts '
and T respectively denote transpose and pseudo-inverse. If
A :=lay,...,ay], then vec{A} :=[a],...,ay]" :=a and
unvec{a} := A. With N x N matrices {A;}_; and {B;}]_,

satisfying A; = A/ Vt, btridiag{A,,...,Ar;Bs,...,Br}
represents the symmetric block tridiagonal matrix
(A, By 0 ... 0 0 ]
B, A, B ... 0 0
0 B; A; ... 0 0
0 0 0 Ar_; Bj
0 0 0 Br Ar
Similarly, bdiag { A1, ..., Ay} := btridiag{ A, ..., Ay;0,

...,0} is a block diagonal matrix. Although it was assumed
that the matrices {A,, })_, have the same sizes, the definition
of bdiag {-} can be readily extended to accommodate matrices
of different sizes. Symbols ®, ®, and & respectively denote
element-wise (Hadamard) matrix product, Kronecker product,
and Kronecker sum, the latter being defined for A € RM*xM
and BERY*N as A® B:= A® Iy + I, ® B. The n-th
column of the identity matrix Iy is represented by iy ,. If
A € RY*N s positive definite and = € RY, then |[|z||} :=
x' A 'z and ||z||2 := ||z||1, . The cone of N x N positive
definite matrices is denoted by S'. Finally, &[] stands for the
Kronecker delta and E for expectation.

II. PROBLEM FORMULATION

A time-varying graph! is a tuple G:= (V,{Ay[t]}],),
where V := {vy,...,vy} is the vertex set and Ay[t] € RV*N
is the adjacency matrix at time ¢, whose (n, n’)-thentry AY [t]
assigns a weight to the pair of vertices (v, , v,,/) attime ¢. A time-
invariant graph is a special case with Ay[t] = Ay[t'| Vt,t'. The
edge set is defined as E[t] := {(v,,v,) €V x V : AY | [t] #
0}, and two vertices v and v’ are said to be adjacent, con-
nected, or neighbors at time ¢ if (v,v") € £[¢]. It is also said
that AY [t] is the weight of the edge (v,,v,/) at time t.
As usuél, see e.g. [1, Ch. 2], [4], [8], this paper assumes
that G (i) has non-negative weights (A)fy_’n,[t] > 0Vn,n',t);
(ii) no self-edges (AY , [t] = 0Vn, t); and, (iii) it is undirected
(Ax,n’ [t] = A}f’,n [t] Vn,n',t).

A time-evolving function or signal on a graph,” is a map f :
V x T — R,where 7 := {1,...,T} is the set of time indices.

The value f(v,,,t) of f at vertex v,, and time ¢, or its shorthand

ISee [28] and references therein for alternative representations of time-
varying graphs.

The entire framework can naturally be extended to accommodate complex-
valued functions f.
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version f, [t], can be thought of as the value of an attribute of
v, € )V at time ¢. In a social network, f, [t] may denote e.g. the
annual income of person v,, at year ¢. The values of f at time ¢
will be collected in f[t] := [fi[t],..., fn[t]".

At time ¢, the vertices with indices in the time-dependent
set S[t] = {m[t],....ngplt]} 1< mlt] < - < ngplt] <
N, are observed. The resulting samples can be expressed
as ys[t] = fu,10[t] +es[t], s = 1,..., S[t], where e, [t] models
observation error. In social networks, this encompasses sce-
narios where a subset of persons have been surveyed about
the attribute of interest; e.g. their annual income. By letting
y[t] :==[y[t],.. ., ysiy[t]", the observations can be conve-
niently expressed as

ylt] = S[if[t] + eft],

where e[t] := [e1[t], ..., egpy[t]]
matrix S[t] contains ones at positions (s, ns[t]), s = 1,...
and zeros elsewhere.

The broad goal of this paper is to “reconstruct” f from the
observations {y[t]}7_, in (1). Two formulations will be consid-
ered. In the batch reconstruction problem, one aims at finding
{f[t]}L, given G, the sample locations {S[t]}._,, and all ob-
servations {y[t]}7_,. On the other hand, the online problem is
formulated as follows: at every time ¢, one is given G together
with S[t] and ylt], and the goal is to find f[t]. The latter can
be obtained possibly based on a previous estimate of f[t — 1],
but the complexity per time slot ¢ must be bounded, even if
T — o0. To solve these problems, no explicit parametric model
for the temporal or spatial evolution of f will be adopted. For
instance, one will be able to solely rely on the assumption that f
evolves smoothly over both space and time, yet more structured
dynamics can also be incorporated if known.

t=1,...,T (1

", and the S[t] x N sampling
, S[t]

III. BACKGROUND ON KERNEL-BASED RECONSTRUCTION

This section reviews the existing framework for kernel-based
reconstruction of time-invariant graph functions, which aims at
solving the batch problem in Section II when 7" = 1. To reflect
this scenario, the notation will be devoid of time indices. As
a result, the problem becomes finding f € RY given Ay €
RYN S e {0,1}5N, andy = Sf +e RS,

At first, one may feel tempted to seek a least-squares estimate
f =arg miny ||y — Sf|[3, but noting that the N' unknowns in
f cannot be generally identified from the S < N samples in y
dismisses such an approach. This underdeterminacy prompts es-
timates of the form f = arg ming ||y — Sf||3 + pp(f), where
1 > 0and the regularizer p( f) promotes a certain structure in f.
A customary p(f) encourages smooth estimates by penalizing
functions that exhibit pronounced variations among neighbor-
ing vertices, for instance by means of the so-called Laplacian
regularizer

PLR )2 )

ZZA

n=1n'=1

which heavily penalizes differences between function values
at vertices connected by strong links (large AY ). Expression
(2) formalizes the notion of smoothness introduced in Section I,

according to which a function is smooth if it takes similar values
atneighboring vertices. Since py g (f) is smallif f is smooth, and
large otherwise, pr (f) acts as a proxy quantifying smoothness
of f, in the sense that given two functions f and f’, the former
is said to be smoother than the latter iff p g (f) < pLr(f’) and
vice versa. More general proxies are reviewed next.

Upon defining the N x N Laplacian matrix Ly :=
diag {Ay1} — Ay, the functional in (2) can be rewritten af-
ter some algebra as pir(f) = f' Ly f; see e.g. [1, Ch. 2]. It
readily follows from (2) that prr(f) > 0V f, which in turn im-
plies that Ly, is positive semidefinite. Therefore, Ly admits
an eigenvalue decomposition Ly = Uy diag {Ay} U E, where
the eigenvectors in Uy := [u}, ..., uX] and the eigenvalues in

Ay = [Af, ..., A} ] are sorted so that 0 = A < ... < AY.
By letting f,, := (u”)" f, one finds that
N
pr(f) =D MIful? 3)

n=1

which means that pir(f) is the weighted superposition of the
squared magnitude of the projections of f onto the eigenvectors
of Ly with weights given by the corresponding eigenvalues.

As described next, (3) provides an insightful interpretation
of pLr(f) in a transformed domain. Specifically, a number of
works advocate the term graph Fourier transform or frequency
representation of f to refer to { fn Vs see e.g., [4]. The main
argument resides in that {u)}\_, play a role analogous to
complex exponentials in signal processmg for time signals, in
the sense that (i) complex exponentials are eigensignals of the
continuous counterpart of the Laplacian operator f +— Ly f,
and (i) {u” })_, are eigensignals of the so-called linear, shift-
invariant filters [5], which are the graph counterparts of lin-
ear, time-invariant filters in signal processing for time signals.
Thus, f = Zﬁle fnu) resembles in some sense the synthesis
equation of the Fourier transform, and one can therefore in-
terpret {u)}_, as a Fourier basis. Because 1} < ... < X,
it follows from prg(u”) = (u)) " Lyu? = 1Y that pLR(u)f) <

. < pr(uX ). Hence, sorting the eigenvectors {u)}Y_| in
increasing order of their associated eigenvalue is tantamount
to sorting them in decreasing order of smoothness. Similarly,
the complex exponentials in the traditional Fourier basis are in-
dexed by their frequency, which can be thought of as an (inverse)
proxy of time-domain smoothness. Comparing both scenarios
suggests interpreting 1., or the index n, as the graph frequency
of u”.

Back to (3), it is seen that pyr(f) penalizes high-frequency
components more heavily than low-frequency ones, thus pro-
moting estimates with a “low-pass” graph Fourier transform. A
finer control of how energy is distributed across frequency can
be attained upon applying a transformation 7 : R — R to A",
giving rise to regularizers of the form

ne

N
pukr(F) =Y rOI > = FTKTf (4a)
n=1

where

K':=r(Ly) = Uy diag{r(Azy)}Uy (4b)
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TABLE I
EXAMPLES OF LAPLACIAN KERNELS AND THEIR ASSOCIATED SPECTRAL
‘WEIGHT FUNCTIONS
Kernel name Function Parameters
Diffusion kernel [2] r(x) = exp{o?1/2} a2 >0

p-step random walk r(x)=(a—A)""? a > 2, p positive

kernel [3] integer
Laplacian r(x) =1+ 022 o? sufficiently
regularization [3], [4], large

[29]

Bandlimited [17] r(x) = { /B % < hmax

3 otherwise 5 > 0 sufficiently

large, Amax

is referred to as Laplacian kernel [3]. Table I summarizes some
well-known examples arising for specific choices of r.

Further broadening the scope of the generalized Laplacian
kernel regularizers in (4), the so-called kernel ridge regression
(KRR) estimators are given by

f= arg;nin;Iy—SfIS +uf K'f (5)
for an arbitrary positive semidefinite matrix K, not necessarily
a Laplacian kernel. The user-selected parameter ;¢ > 0 balances
the importance of the regularizer relative to the fitting term
S~y — S£||3. KRR estimators have well-documented merits
and solid grounds on statistical learning theory; see e.g. [25].
Different regularizers and fitting functions lead to even more
general algorithms; see e.g. [17].

IV. KERNEL-BASED RECONSTRUCTION OF TIME-VARYING
GRAPH FUNCTIONS

The framework in Section III cannot accommodate functions
evolving over both space and time. To flexibly exploit spatial and
temporal dynamics, the present section generalizes this frame-
work through the notion of graph extension.

Animmediate approach to reconstructing time-evolving func-
tions is to apply (5) separately foreach¢ = 1, ..., 7. This yields
the instantaneous estimator (IE)

1

gy Il = S+ nf K0S ©

fielt] == arg min
f

Unfortunately, this estimator does not account for the possi-
ble relation between e.g. f,, [t] and f, [t — 1]. If, for instance, f
varies slowly over time, an estimate of f,, [t] may as well benefit
from leveraging observations y,[7] at time instants 7 # t. Ex-
ploiting temporal dynamics potentially reduces the number of
vertices that have to be sampled to attain a target reconstruction
performance, which in turn can markedly reduce sampling costs.

Incorporating temporal dynamics into kernel-based recon-
struction, which can only handle a single snapshot (cf.
Section III), necessitates an appropriate reformulation of
time-evolving function reconstruction as a problem of recon-
structing a time-invariant function. An appealing possibility
is to replace G with its extended version G := (V,A), where
each vertex in V is replicated 7' times to yield the extended
vertex set V := {v,[t], n=1,...,N,t =1,...,T}, and the
(n+N(t—1),n + N(t' —1))-th entry of the TN x TN

V1

Fig. 1. (a) Original graph G. (b) Extended graph G for diagonal B [t]. Edges
connecting vertices at the same time instant are represented by solid lines,
whereas edges connecting vertices at different time instants are represented by
dot-dashed lines.

extended adjacency matrix A equals the weight of the edge
(0n [t], vy [t']). The time-varying function f can thus be replaced
with its extended time-invariant counterpart f : ) — R with

f(ualt]) = fult]-

As captured by the following definition, this paper focuses on
graph extensions respecting the connectivity of G per time slot
t, that is, {v,, [t]}_, are connected according to Ay[t], Vt:

Definition 1: Let V := {vy,...,vx } denote a vertex set and
let G := (V,{Ay[t]}L_,) be a time-varying graph. A graph G
with vertex set V = {v,[t], n=1,...,N,t=1,...,T} and
NT x NT adjacency matrix A is an extended graph of G if the
t-th N x N diagonal block of A equals Ayt].

In general, there exist multiple graph extensions for a given
time-varying graph. This is because only the diagonal blocks of
A are dictated by { Ay[t]}]_ |, whereas the remaining entries of
A can be freely selected so long as A is a valid adjacency matrix.
In the reconstruction problem, one is interested in selecting such
off-diagonal entries to capture the space-time dynamics of f. As
an example, consider an extended graph with

A = btridiag{ Ay[1], ..., Ay[T]; B7[2],...,B7[T]} ()

where B7[t] € RY*Y connects {v, [t — 1]}, to {v, [t]}_,,
t=2,...,T. For instance, one can connect each vertex to
its neighbors at the previous time instant by setting Br[t] =
Ayt — 1], or one can connect each vertex to its replicas at
adjacent time instants by setting Br[t] to be diagonal. Fig. 1
pictorially illustrates the latter choice.

Notice that the extended graph treats the time dimension just
as the spatial dimension. Thus, the flexibility of graphs to convey
relational information carries over to the time domain. As a
major benefit, this approach lays the grounds for the design of
doubly-selective kernels in Section V-A. The extended graph
also enables a generalization of the estimators in Section III
to reconstruct time-evolving functions. The rest of this section
develops two KRR estimators along these lines.

Consider first the batch formulation (see Section II), where
allthe S := S/, S[t]samplesing := [y [1],...,y"[T]]" are
available, and the goal is to estimate £ := [f ' [1],..., f [T]]".
Directly applying the KRR criterion in (5) to reconstruct f on
the extended graph G yields

f := arg min ||y — S’]"HQDS + u}'TI_(T}' (8a)
f
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where K is now a TN x T'N “space-time” kernel matrix to
be designed in Section V, S := bdiag {S[1],...,S[T]}, and
Dy := bdiag {S[l]Ism yoo ST g } If K is invertible,
(8a) can be solved in closed form as
f=KS8'(SK8' +uDs)'y. (8b)

Note that if K is such that K' = bdiag {K[1]

., K'[T]}, where K[t] is an N x N kernel matrix for G
at time ¢, then (8a) separates into 7' sub-problems, each as in
(6). This implies that only matrices K " with non-zero entries
off its block diagonal are capable of accounting for temporal
dynamics.

In the online formulation (cf. Section II), one aims to es-
timate f[t] after the S[t] :=>.'_, S[r] samples in g[t] :=

[y"[1],...,y"[t]]" become available. Based on these samples,
f ft], is clearly
FIt) = argming [|g[t] = S[F|I, ) +nf K F 9a)

= KS'[(S[KS ] +uDs[t)'glt].  (9b)

where K is assumed invertible for simplicity, Dglt] :=
bdiag {5[1}15[1] . ,S[ﬂ[gm }, and S[t] = [diag{S[l], [P
S[t]}, 051w (r—r)n] € {0, 1}°1TN The estimate in (9) com-
prises the per slot estimates {f[r|f]}Z_,; that is, }|t] =

AT AT AT 5
[f [, 2], F [T with flrld] = [Alrl,..
Ix[TIt]] ", where f[7|t] (respectively f,[r|t]) is the KRR esti-
mate of f[7] (f,[7]) given the observations up to time ¢. Observe
that, with this notation, it follows that

flrlt] =

(if.. @ In)f|] (10)

forall ¢, 7.

Regarding t as the present, (9) therefore provides estimates of
past, present, and future values of f. The solution to the online
problem formulated in Section II comprises the sequence of
present KRR estimates for all ¢, that is, { f[¢|t]}7_,. This can
be obtained by solving (9a) in closed form per ¢ as in (9b) and
then applying (10). However, such an approach does not yield a
desirable online algorithm since its complexity per time slot is
cubicint (see Remark 1) and therefore increasing with ¢. For this
reason, this approach is not satisfactory since the online problem
formulation in Section II requires the complexity per time slot
of the desired algorithm to be bounded. An algorithm that does
satisfy this bounded-complexity requirement yet provides the
exact KRR estimate is developed next for the case where the
kernel matrix is any positive definite matrix K satisfying

K" = btridiag{D[1],..., D[T);C[2],...,C[T]} (11)

forsome N x N matrices { D[t]}/_, and {C[t]}]_,. Kernels in
this important family are designed in Section V. Broader classes
of kernels can be accommodated as described in Remark 3.

The process of developing the desired online algorithm in-
volves two steps. The first step expresses (9a) as a weighted
least-squares problem amenable to a KF solver. In the second
step, the KF is applied to solve such a problem. The first step is
accomplished by the following result.

Lemma 1: Let K be of the form (]]) and let f’t | be the
KRR estimate defined in (9a). If { P[t]}L_, and {Z[7]}1_, are

obtained by Algorithm 1 and o?|1] = ,uS [T] VT, then
¢
1
£|t] = arg min lylr] = S[rl I
| U, Zl oclr]
T
+ 3 Ifl7) = PlIflr = Ul + £ U (1] f (1)
T=2
(12)
Proof: See Appendix A. |

Relative to (9a), matrices {D][r], C[r]} in K ! have been
replaced in (12) with matrices {3 [7], P[7]}, which can be found
through Algorithm 1. To enable the upcoming interpretation, the
following result establishes that {X[7]}1_, are positive definite.

Lemma 2: Let Kbea posmve definite matrix of the form (11)
and let { P[7]}1_, and {Z[7]}L_, be obtained by Algorithm 1.
Then, the matrices {X[7]}L_, are posmve definite.

Proof: The proof follows by noting that ' [r] is the Schur
complement of a submatrix of K that comprises its last 7' —
T + 1 block rows and columns. Since this submatrix is positive
definite, so is ' [r] and therefore X[r]. |

Although no probabilistic assumption is required throughout
the derivation of the proposed online algorithm, exploring the
connections between (12) and the conventional probabilistic
setup for state estimation provides the intuition behind why
(12) can be solved through Kalman filtering. To this end, suppose
that f[7] adheres to the model f[r] = P[r]f[r — 1] + w[r] for
T =2,...,T,initialized by f[1] = w][1], with zero-mean noise
w|7] having covariance X[7], and that the observations follow
the model y[7] = S[t]f[r] + e[r] for 7 = 1,...,T, with e|[7]
zero-mean noise having covariance o2 [7]I. Note that P[r] is
commonly referred to as the state-transition matrix within this
framework. In this scenario, one can easily see that obtaining the
maximum a posteriori (MAP) and the minimum mean square
error (MMSE) estimators of f given the observations up to time
T when {w]r],e[r]}1_, are Gaussian distributed reduces to
minimizing (12). ThlS link informally reveals that (12) can be
minimized using the celebrated KF [30, Ch. 17].

The following theorem formalizes the latter claim. The re-
sulting algorithm, termed KKF, is summarized as Algorithm 2.
In the probabilistic KF terminology, step 2 yields the prediction
of f[t], step 2 provides the covariance matrix of the prediction
error, step 2 yields the Kalman gain, step 2 returns the posterior
estimate upon correcting the prediction with the innovations
scaled by the Kalman gain, and step 2 finds the error of this
posterior estimate.

Theorem 1: Let K be of the form (II) and let f|t] be the
KRR estimate defined in (9a). If {P[r]}1_, and {Z[r]}L
are obtained by Algorithm 1 and o?[1] = uS|[7| V7, then the
kernel Kalman filter (KKF) in Algorithm 2 returns the sequence
{FItIT_ |, where f[t|t] is given by (10).

Proof: See Appendix B B

Recapitulating, given K “in (11), one just has to run Algo-
rithms 1 and 2 to find the online KRR estimate of f given by (10).
As in the explanation after Lemma 2, probabilistic notions such
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Algorithm 1: Recursion to set the parameters of the KKF.
Input: Djt],t=1,...,7,C[t],t=2,...,T.
1: Set =7 '[T] = DI[T]
2: fort=T,T—-1,...,2do
3: P[t] = —X[t|Ct]
4: X 'Mt—-1]=D[t—-1]- P [t]='[{]P[Y
Output: X[t],t=1,...,T, P[t],t=2,...,T

Algorithm 2: Kernel Kalman filter (KKF).
Input: {X[t] € ST}, {P[t] e RVN}L,,
{y[t] e RSV, {S[1] € {0, 135N},
{o2[t] > 0},
1: Set £[0/0] = 0, M[0[0] =0, P[1]] =0
2: fort=1,...,Tdo
32 fltt—1) = P[t)f]t — 1]t — 1]
4:  MIJt|t — 1] = P[t]M[t — 1|t — 1)P"[t] + 3[t]
50 G[t] = M[t|t — 1]8"[{]
x (o2[t]T + S[t|M[t|t — 1]ST[t])~!
6:  Fltlt] = Fltt — 1) + Glt](y[t] — S[t]f[t]t — 1))
7. MiJtlt] = (I — G[t)S[t]) Mt|t — 1]
Output: f[t|t],t=1,...,7; M[t],t =1,...,T.

as mean, covariance, statistical independence, or mean-square
error, can be used to elucidate connections with the classical KF.
Nonetheless, they are not required at any point of the deriva-
tion, which involves fully deterministic notions. Furthermore,
the proposed KKF does not explicitly involve any state-space
model, which is a major novelty and surprising result of the
present paper.

The proposed KKF generalizes the probabilistic KF since the
latter is recovered upon setting K to be the covariance matrix of
f in the probabilistic setup alluded to previously. It is therefore
natural that the assumptions required by the probabilistic KF
are stronger than those involved in the KKF. Specifically, in the
probabilistic KF, f[t] must adhere to a linear state-space model
with known transition matrix P/[t], where the state noise w/t] is
uncorrelated over time and has known covariance matrix 3[t].
Furthermore, the observation noise e[t] must be uncorrelated
over time and have known covariance matrix. Correspondingly,
the performance guarantees of the probabilistic KF are also
stronger: the resulting estimate is optimal in the mean-square
error sense among all linear estimators. Furthermore, if w(t] and
y[t] arejointly Gaussian, ¢ = 1, ..., T, then the probabilistic KF
estimate is optimal in the mean-square error sense among all (not
necessarily linear) estimators. In contrast, the requirements of
the proposed KKF are much weaker since they only specify that
f must evolve smoothly with respect to a given extended graph.
As expected, the performance guarantees are similarly weaker;
see e.g. [25, Ch. 5]. However, since the KKF generalizes the
probabilistic KF, the reconstruction performance of the former
for judiciously selected K cannot be worse than the reconstruc-
tion performance of the latter for any given criterion. The caveat,
however, is that such a selection is not necessarily easy.

Remark 1: Algorithm 2 requires O(NN*) operations per time
slot, whereas the complexity of evaluating (9b) for the ¢-th time
slot is at least O(S®[t]), which increases with ¢ and becomes
eventually prohibitive. For large ¢, Algorithm 2 is computation-
ally more efficient than a single plain evaluation of (9b): whereas
the overall complexity of the former is O(tN?), the latter is
O(NTS?[t]), which e.g. for constant S[t] = S is O(NTt>S?).

Remark 2: Algorithm 2 provides estimates of the form f/[t|{]
and f[t|t — 1]. To obtain estimates f[t|t'] for ¢ > ' 4 1, one
may set S[r] = () for 7 > ¢’ + 1 and execute Algorithm 2 up to
time ¢. Conversely, to obtain estimates f|[t|t'] for which ¢ < ¢/,
one may extend Algorithm 2 along the lines of the Kalman
smoother [31] to also operate backwards.

Remark 3: Similar to the probabilistic KF, which requires
the inverse covariance matrix of f to be block tridiagonal,
the proposed KKF requires the inverse kernel matrix to be
of the form (11). Fortunately, it is straightforward to extend
both algorithms to accommodate inverse covariance or ker-
nel matrices with any number of non-zero diagonals at the
price of increasing the time interval between consecutive es-
timates. To illustrate such an approach, suppose that K s
not block tridiagonal when blocks are of size N x N, but it
is block tridiagonal if blocks are of size 2N x 2N. In such a
case, one can use the proposed KKF to estimate {f’[t'] tT,i 21,
where f'[t'] .= [f'[2t' — 1], f'[2t']]" € R*N, just by re-
placing y[t] with y'[t'] := [y"[2t' — 1],y [2¢']]T, S[t] with
S'[t'] := bdiag {S[2t' — 1], S[2t']}, and e[t] with €'[t'] :=
[e"[2t' —1],e"[2¢']]",#' = 1,...,T/2. Note that the sampling
interval associated with the index ¢’ is twice the one associated
with ¢.

V. DESIGN OF SPACE-TIME KERNELS

Section IV assumed that the kernel matrix K is given and
described no methodology to address its design. An immedi-
ate approach is to mimic the Laplacian kernels of Section III
by setting K = r(L), where L := diag{A1} — A denotes the
Laplacian matrix of the extended graph. Unfortunately, such a
design prevents separate control of the spatial and temporal vari-
ability of the estimates, thus limiting the user’s ability to flexibly
account for spatial and temporal information. For instance, sam-
pling intervals that are small relative to the time dynamics of
f, meaning that f does not vary significantly between samples
t — 1 and ¢, favors estimates that sacrifice spatial smoothness to
increase temporal smoothness.

This section proposes families of space-time kernels for
which temporal and spatial smoothness can be separately tuned.
Section V-A describes designs for time-invariant topologies,
whereas Section V-B deals with the time-varying case.

A. Doubly-Selective Space-Time Kernels

In Section III, the frequency interpretation of (3) proved de-
cisive to interpret and design Laplacian kernels for reconstruct-
ing time-invariant functions. Introducing the time dimension
in Section IV prompts an analogous methodology, where ker-
nels are specified in a bidimensional plane of spatio-temporal
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frequency.® This section accomplishes this task by generalizing
the Laplacian kernels from Section III in such a way that the
weight that the regularizers p(f) = f K'F associated with
the proposed kernels confer to each spatial and temporal fre-
quency component of f can be separately prescribed. Through-
out this section, a time-invariant topology will be assumed, i.e.,
Ayft)] = Ay, t=1,...,T.

Clearly, (4a) can be rewritten as pigr(f) =7 (f© f)
for f:= U]I f the frequency transform of f and r:=
[r(AY),...,7(AX)]T. One can separately weight each frequency
component by selecting r, which can therefore be thought of as
the “frequency response” of the regularizer. For instance, one
may promote low-pass estimates by setting the first entries of r
to low values and the rest to high values.

Inspired by this view, one may seek kernels K for which

p(f) = K'f =T (R'(FoF)) (13)

where R and F are N x T matrices to be specified later re-
spectively containing the frequency response of the regularizer
and the bidimensional transform of f. The (7,)-th entry of
these matrices corresponds to the 71-th spatial frequency and £-
th temporal frequency. Kernels satisfying the second equality in
(13) will be termed doubly (frequency) selective. Such kernels
preserve the flexibility of their counterparts for time-invariant
functions. For instance, if K promotes doubly low-pass esti-
mates, then the top left entries of R are small whereas the rest
are large.

To determine the form of a doubly-selective kernel, let F' :=
[f[1],..., fIT]] and recall that any linear bidimensional trans-
form can be expressed as F = U;FU 7, where the N x N
matrix Uy and the 7" x T" matrix Uy stand for orthogonal
transformations along space and time, respectively. On the other
hand, vectorizing the rightmost term of (13) yields

p(F)=F K'F=7 dag{r}F (14)
where r := vec{ R} and
fi= vec{j;‘} =vec{Uy,FU7s} = (UroUy)' f. (15)

Any doubly-selective kernel, or equivalently any kernel satisfy-
ing the second equality of (14), is therefore of the form

K'=(UroUy)diag{r} (UraUy)"  (16)

for some orthogonal 7" x T' matrix Uy, some orthogonal
N x N matrix Uy, and some entrywise non-negative vector r.

Expression (16) provides the general form of a doubly-
selective kernel, but a specific construction for U, Uy, and
T capturing the spatiotemporal dynamics of f is still required.
The next procedure serves this purpose by paralleling the ap-
proach in Section III. This involves the following two steps.
S1: Since a Laplacian kernel matrix shares eigenvectors with
the Laplacian matrix, one should construct an extended graph
G so that its Laplacian matrix L is diagonalizable by a matrix
of the form Uy ® Uy for some orthogonal U € RT*T and

3See [32] for graph filter designs in this domain.

Uy € RY*N_ 82: One must design a spectral weight map r to
obtain the eigenvalues of K from those of L.

Regarding S1, an explicit construction of an extended graph
whose Laplacian matrix is diagonalizable by a matrix of the form
U7 ® Uy with orthogonal U7 € R™*T and Uy € RV*V is
provided next. To this end, consider the extended adjacency
matrix

A=A7r Ay (17)
where Ay is the given adjacency matrix of G and the T x T'
adjacency matrix A7 is selected to capture temporal dynam-
ics. Specifically, with A as in (17), the definition of extended
adjacency matrix in Section IV dictates that the weight of the
edge (vy, [t], vn, [t]) for all ¢ is given by the (n1, ng)-th entry of
Ay, whereas the weight of the edge (v, [t1], v, [t2]) for all n is
given by the (t1,1;)-th entry of A7. A simple choice for Az
will be described later. Note that (17) differs from Kronecker
graphs [33], for whichA = A7 @ Ay, although it can be inter-
preted as the Cartesian graph of V and {1,...,T} [34], [35].
Cartesian graphs have been considered in the graph signal pro-
cessing literature for graph filtering and Fourier transforms of
time-varying functions [35], but not for signal reconstruction.

With A as in (17), it can be readily seen that L :=
diag{A1} —A = L7 @ Ly, where L7 := diag{A71} — Ar
and Ly := diag{Ay1} — Ay are the Laplacian matrices asso-
ciated with A7 and Ay, respectively. If now one sets U and
Uy to be respectively the eigenvector matrices of Ly and Ly,
then Ly = Uz diag{A7r}U; and Ly = Uy diag {Ay} Uy,
for some A7 and Ay. This implies that

L= (U7 ®Uy)|[diag {Ar} @ diag {Ay}] (U @ Uy)’
=(Ur@Uy)diag{Ar @1y + 17 @Ay} (Ur @ Uy) .

This expression reveals that the graph extension proposed in
(17) indeed satisfies the objective of S1, which requires the
eigenvector matrix of L to be of the form U7 @ Uy,. Thus, it
is always possible to construct a graph extension satisfying the
goal of S1.

For S2, one must construct a spectral map r that yields r
upon entrywise application to A7 ® 15 + 17 ® Ay. To sepa-
rately control the frequency response along the spatial and tem-
poral frequencies Ay and A7, such a map must take two argu-
ments as (A7, Ay). This results in 7 = r(Ar @ 1,17 @ Ay)
and (16) becomes

K'=(U;aUy)
x diag {r(Ar ® 1y, 17 ® M)} (U7 @ Uy) .

(18)

Kernels of this form will be referred to as Kronecker space-
time kernels. The transformation r can be selected in several
ways. For instance, the immediate construction at the beginning
of Section V is recovered for r(Ar,iy) = r(Ar + Ay), with
r(1) a one-dimensional spectral weight map such as the ones
in Table I. Another possibility is to focus on separable maps of
the form r (A7, Ay) = r7(A7)ry(Ay) where r7 and 7 denote
one-dimensional spectral maps. The resulting Kronecker kernel
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can expressed as4

K=K;oK)y (19)

where K7 :=Ugrdiag{rr(A7)}U and Ky =
Uy diag{ry(Ay)}U,,. For example, doubly bandlimited
estimates can be obtained by setting both K and Ky to
be bandlimited kernels (Table I). A further possibility is to
consider maps of the form r(Ar,Ay) =r7r(A7) + rv(Ay),
which clearly result in kernels of the form

K'= K| o K, (20)

To sum up, the proposed Kronecker kernels arise from an
intuitive graph extension and can afford flexible adjustment of
their frequency response. Unfortunately, not any Kronecker ker-
nel is suitable for the online algorithm in Section IV since the
latter requires the inverse of the kernel matrix K to be block
tridiagonal. The rest of this section describes a subfamily of
Kronecker kernels that is suitable for this algorithm.

Clearly, in order for K' as in (19) or (20) to be block tridi-
agonal, it is necessary that K TT be tridiagonal, i.e., the (¢,t')-th
entry of KTT must be zero if |t — /| > 1. Such a KTT can be
obtained if, for instance, one sets the (¢, ¢')-th entry of A7 to be
Ounless |t — t'| = 1. In this extended graph construction, vertex
vy [t], 1 < t < T,1is connected to vy, [t — 1] and vy, [t + 1], which
are its replicas in adjacent time slots. For K 17 to be tridiagonal,
one may set 77 (A7) = A7 + ¢, where € > 0 ensures that K7 is
invertible.

Thus, the price to be paid for an online implementation with
the KKF from Section IV is limited flexibility in specifying the
temporal frequency response. Note that this is not an intrinsic
limitation of the proposed algorithm, but it is inherent to the clas-
sical KF as well; just recall that the latter assumes vector autore-
gressive processes of order 1. Remark 3 describes a technique
to alleviate this limitation. In any case, the temporal frequency
response of a kernel for which (A7), = d[|t — t'| — 1] can be
obtained analytically by approximating the resulting Laplacian
L7 for sufficiently large 7" with a circulant matrix. This implies
that (i) the eigenvectors in U7 are approximately those in the
conventional Fourier basis and therefore the notion of temporal
frequency embodied in U 7 preserves its conventional meaning;
and (ii), upon applying [17, Example 3], the resulting frequency
response is low pass. Both (i) and (ii) are intuitively reasonable.
Thus, although the KKF solves only a subset of KRR problems,
this subset is of practical relevance.

Remark 4: In this paper, the rows of F' can be thought of as
graph functions over a graph with adjacency matrix A, whereas
the columns of F' can be thought of as graph functions over the
graph with adjacency matrix Ay . In principle, each column of F
does not need to correspond to a different time instant, but e.g.
to a different movie in a recommender system application. The
estimators (8a)-(9b) can therefore be used for matrix completion
upon properly constructing an extended graph and graph kernel

4The notion of Kronecker kernels together with (19) shows up in the literature
of pairwise classification [34], but the resemblance is merely illusional since
the underlying kernel is a function of two pairs of vertices.

matrix. Towards this end, the space-time kernels defined in (19)
and (20) readily generalize to space-space kernels that promote
smoothness over both graphs.

B. Space-Time Kernels for Time-Varying Topologies

For time-invariant topologies, Section V-A proposed kernels
that can be designed and interpreted on a two-dimensional fre-
quency plane. This section deals with changing topologies, for
which no bidimensional frequency notion can be defined.

To recognize this claim, suppose that Ay[t] = Ay remains
constant over ¢ and recall that u” is the 7-th eigenvector of Ly,
or, equivalently, the 72-th column of Uy,. In this case, a bidimen-
sional transform exists and can be expressed as F' := U, FU 1,
whose (7, f)-th entry corresponds to the 7i-th spatial frequency
and #-th temporal frequency; see section V-A. Fundamentally,
the precise meaning of the latter statement is that (F'), ; is the
{-th temporal frequency component of the 7i-th spatial frequency
component of £, i.e., the £-th temporal frequency component of
the time series { 5 [t] := (wY)" f[t]}]_,, which is the time evo-
lution of the 7ni-th spatial frequency component of f. However,
for changing topologies one cannot generally conceive the tem-
poral evolution of a specific spatial frequency component since
the eigenvectors of Ly [t] generally differ from those of Ly [t'],
which precludes any natural definition of the aforementioned
sequence and therefore of a bidimensional frequency transform.
Nonetheless, it is shown next that the notion of spatial frequency
per slot ¢ can still be utilized to design space-time kernels for
time-varying topologies.

To this end, consider the extended graph defined by (7) for
arbitrary Br[t] € RY N 1t then follows that

L := diag{A1} — A = bdiag {Ly[1],..., Ly[T]}
+ btridiag { diag {b7[1]},...,diag {br[T]};

- Br[2],...,-B7[T]} (21)
where
Br[2]1 ift =1
brlt] := < (Bf[t+1]+ B7[t)1 ifl<t<T
B7[T]1 ift =1T.

The rationale behind this graph extension is that, for L as in
(21) and diagonal { B7[t]}]_,, one can show that

(22)

When J_”Tflf is used as a regularizer, the first and second sums
on the right-hand side of (22) respectively penalize spatial and
temporal variations. As a special case, if one sets Br[t] = br 1
vt for some by > 0, the second sum becomes by ZtT:Q [|f[t] —
£t — 1]||3, which would promote estimates with small changes
over time.
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Applying the notion of Laplacian kernels along the spatial
dimension (see Section III), but not along time, suggests gener-
alizing (22) to obtain the regularizer

EZ

H,\

p(f) = [t]£[t] (23)

— flt — 1) Brl)(f11) — flt - 1))
where KL[t} = (Lyft]), t=1,...,T, for {r;}_, a collec-
tion of user-selected spectral maps such as those in Table . In
that case, (23) corresponds to the kernel matrix

K'= bdiag{KTv[l],...,KL[T]}
+ btridiag { diag {b7[1]},...,diag {b7[T]};
— Br[2),...,—Bz[T]}. (24)

Although kernels of this form do not offer a frequency-domain
control of reconstruction along time, they still enjoy the spatial
flexibility of the kernels in Section V-A.

Remark 5: To guarantee that K "in (24) qualifies for online
implementation, it suffices to guarantee that K is invertible
since it is already block tridiagonal. This holds e.g. if Ky [t] is
invertible for all ¢.

VI. SIMULATED TESTS

This section compares the performance of the proposed
schemes with state-of-the-art alternatives and illustrates some of
the trade-offs inherent to time-varying function reconstruction
through real-data experiments. The source code for the simula-
tions is available at the authors’ websites.

Unless otherwise stated, the compared estimators include dis-
tributed least squares reconstruction (DLSR) [21] with step size
upLsr and parameter Oppsg; the least mean-squares (LMS) al-
gorithm in [22] with step size ppms; the bandlimited instanta-
neous estimator (BL-IE), which results from applying [12]-[14]
separately per ¢; the KRR instantaneous estimator (KRR-IE)
in (6) with a diffusion kernel with parameter o; and the pro-
posed KKF (Algorithms 1 and 2) with kernel given by (24) for
B7[T] = b7 I and Ky[t] a diffusion kernel with parameter o.
DLSR, LMS, and BL-IE also use a bandwidth parameter B. The
parameters of competing algorithms, such as pyys and B, were
set to values approximately achieving the best performance. Yet,
the latter is not highly sensitive to the choice of B within a wide
interval since most of the spatial signals f[t] utilized turn out
not to be markedly bandlimited.

The first data set comprises hourly temperature measurements
at NV = 109 stations across the continental U.S. in 2010 [36].
Temperature reconstruction has been extensively employed in
the literature to analyze the performance of inference tools over
graphs (see e.g. [18], [19], [21]). A time-invariant graph was
constructed following the approach in [19], which relies on
geographical distances, with 7 nearest neighbors. Function f,, [¢]
represents the temperature at the n-th station and ¢-th sampling
instant. In the first experiment, the latter corresponds to the ¢-th
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Fig. 2. True temperature and estimates across time at a randomly picked
unobserved station (1 = 1077, 0 = 1.8, b7 = 0.01, pprsg = 1.2, ApLsr =
0.5, HILMS = 2, S = 44).
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Fig.3. NMSE of daily temperature estimates over 2010 (1 = 1077, 0 = 1.8,

b7 = 0.01, uprsr = 1.2, Bprsr = 0.5, ppms = 2, S = 44).

hour, whereas for the rest, it corresponds to the temperature at
12:00 PM of the ¢-th day.

Fig. 2 depicts the true temperature at an unobserved randomly
picked station over the first 300 hours of 2010 along with its
estimates for a typical realization of the time-invariant sampling
set S = SJt], Vt, drawn uniformly at random within all sam-
pling sets with S = 44 elements.’ Different from instantaneous
alternatives, whose error does not decrease with time, KKF
is observed to successfully leverage time dynamics to track the
temperature at the unobserved station. On the other hand, DLSR
and LMS are unable to track the rapid variations of f since their
design assumes slowly changing functions.

The next experiments compare the cumulative normalized
mean-square error (NMSE), defined as

S IS = FlrIrDI3
> IS FIr]I
where S°[7] is an N — S[r] x N matrix comprising the rows
of Iy whose indices are not in S[t].
Fig. 3 shows the NMSE for S[t] = S, V¢, averaged over all
possible S with S = 44 elements. It is observed that the instan-
taneous estimators outperform DLSR and LMS, which can only

NMSE(t, {S[r]}._,) ==

SNote that the performance of all methods would improve if one could decide
which sampling set to use.
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Fig. 5. NMSE for different kernels versus scale parameter b7 (1 = 1077).
cope with slow variations of f. Furthermore, the error of KKF
is nearly half the error of the nearest alternative, demonstrating
the importance of exploiting time dynamics.

Fig. 4 shows the impact of the number of observed vertices .S
in NMSE(T,, {S[7]}1_,), with T' = 365 days, averaged over all
sets S[r] = S V7 with S elements. Observe that KKF consis-
tently outperforms all alternatives. Still, the advantage of KKF
is more pronounced for small .S, since in that case exploiting
the time dynamics is more critical.

To illustrate the trade-off between reliance on temporal ver-
sus spatial information, the next experiment analyzes the ef-
fects of the scaling parameter by in the kernel adopted by KRR
(cf. (24)). A large value of by leads to an estimator that relies
more heavily on time dynamics and vice versa. Fig. 5 shows
NMSE(T, {S[]}1_,), with T = 100 days, averaged over all
sets S[r] = SV with S = 44 elements. The kernel in (24) is
adopted with Ky, [t] being the regularized Laplacian (KKF-L) or
diffusion kernels (KKF-DF) from Table I, while Br[t] = br1.
It is observed that there exists an optimum value for b7 which
leads to the best reconstruction performance. This corresponds
to the optimal trade-off point between reliance on temporal and
spatial information. The optimal NMSE is achieved by a diffu-
sion kernel with o = 1.5 and by = 0.01.

The second data set is provided by the Bureau of Eco-
nomic Analysis of the U.S. Department of Commerce and
contains the annual investments between each pair of sec-
tors among N = 61 economic sectors in the interval 1997-
2014 [37]. Each entry A) |, [t] of Ay[t] contains the investment
in trillions of dollars between sectors n and n’ for the year
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Fig. 6. NMSE for the economic sectors dataset (o = 6.2, = 1074, br =
0.01, pprsr = 1.2, BpLsr = 0.5, pirms = 2).

1995 4+ 2t witht =1,2,...,T, where T' = 9. DLSR and LMS
adopt Ay = (1/T) S°F_ | Ay[r] since they cannot handle time-
varying topologies. The value f;, [t] corresponds to the total pro-
duction of the n-th sector in year 1996 4+ 2¢, t =1,2,...,T.
The sampling interval was set to two years, so that disjoint sub-
sets of years are used for generating the signal and constructing
the graphs.

The next experiment demonstrates the ability of KKF to
handle time- Varying topologies. To this end, Fig. 6 plots
NMSE(t, {S[7]}L_,), averaged over all sets S[t] = S, Vt, with
S =37 elements. KKF utilizes the kernel in (24) with Ky [t]
a diffusion kernel constructed from Ly[t] per ¢ and Br[t] =
brI, Vt. Again, Fig. 6 showcases the superior performance of
the proposed KKF, whose error is significantly less than the
error of competing alternatives.

The third data set is obtained from an epilepsy study [7].
Diagnosis of epilepsy is heavily based on analysis of ECoG
data; see Section I. The next experiments utilize the ECoG
time series obtained in [7] from N = 76 electrodes implanted
in a patient’s brain before and after the onset of a seizure. A
symmetric time-invariant adjacency matrix Ay, was obtained
using the method in [38] with ECoG data before the onset of
the seizure. Function f, [t|] comprises the electrical signal at the
n-th electrode and ¢-th sampling instant after the onset of the
seizure, for a period of 7' = 250 samples. The values of f,, [t]
were normalized by subtracting the temporal mean of each time
series before the onset of the seizure. The goal of the experiment
is to illustrate the reconstruction performance of the proposed
KKF in capturing the complex spatio-temporal dynamics of
brain signals.

Fig. 7 depicts the NMSE(¢, {S[7]}._,), averaged over all
sets S[t] = S, Vt, of size S = 53. For the proposed KKF, a
space-time kernel was created using (24) with Ky[t] a time-
invariant covariance kernel Ky[t] = 3, where 3, was set to
the sample covariance matrix of the time series before the on-
set of the seizure, and with a time-invariant By = by I. Fig. 7
showcases the superior reconstruction performance of the KKF,
which successfully exploits the statistics of the signal when
available, among competing approaches, even with a small num-
ber of samples. This result suggests that the ECoG diagnosis
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Fig. 7. NMSE for the ECoG dataset (0 = 1.2, u = 1074, UpLSR = 1.2,

b7 = 0.01, BpLsr = 0.5, prms = 0.6).

technique could be efficiently conducted even with a smaller
number of intracranial electrodes, which may positively impact
the patient’s experience.

VII. CONCLUSION

This paper investigated kernel-based reconstruction of space-
time functions on graphs. The adopted approach relied on the
construction of an extended graph, which regards the time di-
mension just as a spatial dimension. Several kernel designs were
introduced together with a batch and an online function esti-
mators. The latter is a kernel Kalman filter developed from a
purely deterministic standpoint without any need to adopt any
state-space model. Future research will deal with multi-kernel
and distributed versions of the proposed algorithms.

APPENDIX
A. Proof of Lemma 1

Start by expanding the norm in the second term of (12) to
obtain

]~

1£[7] = Pl flr = Iy

3
Il
o

[
™~

(flr] = Plrlflr — 1) =7 7)(f[7] - Plrlf[r — 1))

3
Il
)

I
]~

(fT[T]El [71£[r] = 2f T [7| =) P[] f[m — 1]

3
I
o

+ fT[T—l]PT[T]E_l[T]P[T]f[T—l]). (25)

Noting that

it readily follows from (25) that

~2f 1= F1PEl Al - 1)
— ST + F TR TFT
From Algorithm 1, it follows that X~ '[r—1]+

P[] '[7]P[r] = D[r —1] and —X'[7]P[r] = CI7],
which in turn imply that

Y FE = Pl fir =l

M~

<fT[T D[~ ffr - 1) + 2T FCH flr 1D

Il
o

— FTSTRFA) + £ T)D[T)£[T]

=F K- T A (26)

where the last equality follows from (11). After substituting (26)
into (12) and recognizing that the first summand in (12) equals
l|lg[t] — S[t] f] Py (1]» expression (9a) is recovered and the proof
is completed.

B. Proof of Theorem 1
The first step is to simplify the objective in (12). To this end,

note that minimizing (12) with respect to { f[7]}1_, . | for any
t and t' with t' > t yields
flrlt] = Plrlflr — 1], 7=t +1,....,T, (27a)

t

N , 1
(FlrlY_ = argmin 3
{f[T]}r%/—l T=1 O.g [T]

lylr] = SirlfIrIP?

+ S IIf7 — PlSl -1l

+ I e (27b)

The goal is therefore to show that the ¢-th iteration
of Algorithm 2 returns f[t|t] as given by (27b). To sim-
plify notation, collect the function values up to time ¢
as f[t]:=[f [, F"[2],....F [t]]T € RN' and their es-
timates given observations up to time ¢ as }[t|t’] =
[j‘T[1|t’}, }T[2\t’], e fT[t|t’]]T € R™*. The rest of the proof
proceeds along the lines in [30, Ch. 17] by expressing }'[t|t]
and }'[t|t — 1] as the solutions to two least-squares problems.
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To this end, define the Nt + S[t] x Nt matrix
[ Iy 0O o0 ... 0 0 0
S[1] 0 0O 0 0 0
—P[2] Iy O 0 0 0
0 S[2] 0O 0 0 0
Alt]:= (28)
0 0O 0 ... 0 St—1 o0
0 0 -—-P[t] Ix
0 0O o0 ... 0 0 S|t]
the Nt + S[t] x Nt + S[t] matrix X[t] := bdiag{E[ ], 02[1]
IS[I]’E[QLUS[Q]IS[?]?'"7 e[t_l]IS[t 1] EH []IS[t }’
and note from (27b) that
Flel) = avgminl[pl) — AW PG, @9)
Flt]
where 12}[75] = [Oj—l\rfvyT[l}v();ayT[Q]?Oj\rf’ 0N7y [ ]] €

RV+S1 Indeed, expression (29) corresponds to the weighted
least-squares solution to

Plt] = Aft)F[t] + €ft]

where €[t] € RV!*51 is an error vector, and admits the closed-
form solution

(30)

it = (AT s AR T ATHE el 6D
Similarly, define the Nt + S[t — 1] x Nt matrix
A'll] =
M Iy 0 0 0 0 0
S[1] 0 o0 0 0 0
-P2] Iy O 0 0 0
0 S[2] o 0 0 0
0 0 o0 —-Pt—1] Iy 0
0 0 0 0 S[t—1 o0
0 0 0 0 —P[t] Iy
' (32)

which is a submatrix of LA[¢] that results from removing the last
block-row, together with the Nt + S[t — 1] x Nt + S[t — 1]
matrix X'[t] := bdiag{X[1], 02[1]T 51}, £[2], 02[2] L 52}, - - -,
[t — 1],02[t — 1] g1}, [t]}, which is a submatrix of %[t]
resulting from removing the last block-row and block-column.
Now, replace ¢t with ¢ — 1 and ¢’ with ¢ in (27b) to obtain

Fltlt = 1] = arg min]|9'[f] — A [ FE]1
Fltl

(33)

where{b/[t] = [OJTVvyT[l]v O—I\FI’yT[ﬂ’ OL) B 7yT[t —1], OJ—HT
€ RV1+51-1 is a submatrix of %) [¢] that results from removing
its last block-row. In this case, }[t|t — 1] in (33) corresponds to
the least-squares solution to (30) after removing the last S[t]
equations, and can be obtained in closed form as

Flel = 1) = (AT A ) A S (9.

(34)

The rest of the proof utilizes (31) and (34) to express f [t[¢] in
terms of f[t|t — 1] and f[t|t — 1] in terms of f[t — 1|t — 1]. To
this end, define J[t] := 4, , ® Iy, which can be used to select
the last NV x NN block-row or block-column of a matrix, as well
as

MItlt — 1] = FHA (= WAL T 1]

and

(35)

THA S (DAL T 1,
which respectively correspond to the bottom right N x
N blocks of T']:=A [ '[]Af] and T[t] :=
A" [t]S ' [t]A]t]. Expressions (36) and (35) will be used next
to express M [t|t — 1] in terms of M [t — 1|t — 1], and M [t|t]
in terms of M [t|t — 1]. B B

Assume for simplicity that 33[¢] and 3'[¢] equal the identity
matrices of appropriate sizes, although the proof easily carries

over to arbitrary positive definite matrices X[t] and X'[t]. Note
that

Mit|t] == (36)

o [Tt=1+ VIV V]
Tl = V] Iy

where V[t] := —P[t]J[t — 1] € RV*N(*=1) and observe that
Mt|t — 1] is the bottom right N' x N block of T/~ [¢]. Thus,
applying block matrix inversion to (37) yields

(37

Mtlt = 1) = FHT (11T 11
= (Iy = VT~ )+ VTV V) " 68
Moreover, the matrix inversion lemma yields,
(Tt -1+ VT HINV]) =T [t -1 T '[t —1]x
VI(Iy+ VT 't -1V Ti]) VT [t —1]. (39)

Substituting (39) into (38), applying the definition of V'[t], and
using (36) to identify M [t — 1|t — 1] enables one to express
Mt|t — 1] in terms of M [t — 1|t — 1] as

M|t —1] = Iy + P[t]M][t — 1|t — 1]P"[t]. (40)
On the other hand, to express M [t|t] in terms of M [t|t — 1],

note that A[t] = [fl/T[t], W [t]]7, where Wt] := S[t]Tt] €
RS[H*Nt Therefore,
T[] = A'[f]Alf
= A AW+ W W
=T'[t] + W [t]Wt] (41)
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Applying the matrix inversion lemma to (41) yields
T 'Y =17""}t] -7 ' W [t]x (42)
— -1 —
(Isp +WHT (W [t]) " W T [1].
Substituting the definition of W [t] into (42) leads to

THT ') = TUT [ - THT [T [11ST[1)x
(Isi + SHTHT ' [T 1S [1) " ST HT [t
= JWT (1) - M[tlt - 1S x

(Isiy + SHIMItlt —1)ST[1) " S[THT " [1
= (Iy — G[)S[) T T [t] 43)
where the second equality follows from (35), and the third from

G[t] .= M[t|t — 1)ST[t](Ispy + S[LIM[t|t — 1]ST[t]) "
(44)

Finally, multiplying both sides of (43) with J ! [t] and using (36)
to identify M [t|t] enables one to express M [t|t] in terms of
M|t — 1] as

Miilt] = (Iy — G[t]S[t) M]t]t — 1]. (45)
If 3[t] and X'[¢] are not identity matrices, then one obtains

MI[t|t — 1] = Z[t] + P[t]M[t — 1|t — 1] P [t] (46)

instead of (40), and

G[t]=Mt|t — 1S [t](o? [t] L5y + SHIM[t]t — 1]ST[t]) !
(47)

instead of (44), whereas (45) remains the same. These equations
are precisely those in steps 4, 5 and 7 of Algorithm 2.

To obtain the rest of the steps, set¢ tot — 1 and 7 to ¢ in (27a)
to obtain

Fltlt =1 = P[F[t — 1]t — 1] (48)

which coincides with step 3 of Algorithm 2. Finally, since f]¢|t]
is the last block vector of f][t|t], then

Fltt] == THFlE[Y
= JUT A [ [l
= (I - GUSITWT A S [0l (49

where the second equality follows from (31) and the third
from (43). From the definitions of \A[t], 3[t] and )[t], one
obtains that

1
o2[t]

€

ANE Pl = A ST 01 + =W [y,

(50)

Substituting (50) into (49) yields
Fltlt) = (I — GHSI T T~ 1)

(AT ) + g W i)

= (I - G[{|SH)(F[tlt - 1]

+ = MItlt = 1)S T[t]y[t])

o t]

= fltlt — 1]+ Glt](y[t] - S[F[tle — 1)) (5D

where the second equality follows from (34), f[t|t —1] =
J [t fIt|lt — 1] and (35); whereas the third follows from

(In = GIt]S[)Mt|t = 1]S[t] = o? [t]GIt]

e

(52)

which results from rearranging the terms in (47). Noting that
expression (51) coincides with step 6 of Algorithm 2 concludes
the proof.
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