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Abstract—In an age of exponentially increasing data genera-
tion, performing inference tasks by utilizing the available informa-
tion in its entirety is not always an affordable option. This paper
puts forth approaches to render tracking of large-scale dynamic
processes via a Kalman filter affordable, by processing a reduced
number of data. Three distinct methods are introduced for reduc-
ing the number of data involved in the correction step of the filter.
Toward this goal, the first two methods employ random projec-
tions and innovation-based censoring to effect dimensionality re-
duction and measurement selection, respectively. The third method
achieves reduced complexity by leveraging sequential processing of
observations and selecting a few informative updates based on an
information-theoretic metric. Simulations on synthetic data com-
pare the proposed methods with competing alternatives, and cor-
roborate their efficacy in terms of estimation accuracy over com-
plexity reduction. Finally, monitoring large networks is considered
as an application domain, with the proposed methods tested on
Kronecker graphs to evaluate their efficiency in tracking traffic
matrices and time-varying link costs.

Index Terms—Tracking, dimensionality reduction, censoring,
random projections, Kalman filter, traffic matrix.

I. INTRODUCTION

T
RACKING nonstationary dynamic processes is of

paramount importance in various applications. In the

context of big data, being able to perform accurate and

economical state estimation may render problems of prohibitive

scale feasible. Weather prediction is an example of tracking

a slowly-varying dynamic process, from a massive volume

of observations acquired from fast-sampling sensors per time

interval; see e.g., [1]. Monitoring large and dynamically evolv-

ing networks, where nodes may join or leave and connections

may be established or lost as time progresses, provides an

exciting domain in which the acquisition and processing of

network-wide performance metrics becomes challenging as the

network size increases [2, Ch. 8]. For instance, monitoring path

metrics such as delays or loss rates is challenging primarily

because the number of paths generally grows as the square of

the number of nodes in the network. Therefore, measuring and
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storing the delays of all possible origin-destination pairs is hard

in practice, even for moderate-size networks [2].

In this context, efforts to reduce the number of measurements

used for tracking have pursued two different directions. The first

is that of optimal experimental design (OED), where the goal

is to perform model-driven sensor selection based on ensem-

ble performance metrics (e.g. the trace of the error covariance).

Channel-aware dimensionality reduction of observations was

reported in [3] and [4] using distributed wireless sensor net-

works (WSNs). Optimal and near optimal sensor schedules for

a finite time horizon estimation was dealt with in [5], while

entropy- and mutual-information-based sensor selection were

advocated in [6] and [7]. A posterior-CRLB-based method to

select sensors for tracking was introduced in [8], via convex op-

timization in [9] and [10], while a greedy algorithm leveraging

submodularity was developed in [11] for measurement selec-

tion in sequential estimation. The latter has also been advocated

as a means of reducing the complexity of Kalman filters that

operate with limited processing resources [12]. OED is nicely

attuned for designing low-dimensional observation models, but

it is data-agnostic and thus sub-optimal when observations be-

come available and need to be reduced.

The second direction is that of data-driven methods that

select available measurements for processing. Specifically, cen-

soring has recently been employed to select data for distributed

parameter estimation using resource-constrained WSNs, thus

trading off performance for tractability [13], [14]. Furthermore,

censoring has been proposed for signal estimation using WSNs,

for tracking, and control of dynamical processes [15]–[17].

However, existing works on censoring mainly aim at reducing

the rate at which sensors communicate their observations, and

pertinent methods exhibit large computational complexity and

storage requirements, which can be possibly afforded only at

the fusion center.

The goal of this paper is to perform reliable tracking using

the Kalman filter (KF), while reducing the amount of data and

the computational complexity involved. To this end, the first

two methods employ random projections and innovation-based

censoring to respectively effect dimensionality reduction and

measurement selection. The third method reduces complexity

by leveraging sequential processing of observations when the

noise is uncorrelated, and by selecting a few informative updates

based on an information-theoretic metric. Finally, an efficient

backward smoothing method is developed to mitigate the perfor-

mance degradation caused by dimensionality reduction. Corrob-

orating simulations compare with state-of-the-art greedy mea-

surement selection algorithms, and illustrate the efficacy of the

novel schemes. To demonstrate the applicability of the proposed
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update selection approach on real-world problems, traffic matrix

estimation and network link cost estimation is also considered.

The rest of the paper is organized as follows. Section II

introduces the proposed model of reduced complexity KF.

Sections III and IV present the two dimensionality reduction

modules based on RPs and censoring, respectively. The pro-

posed update selection method is introduced in Section V.

Numerical experiments are in Section VII, while Section VIII

includes experiments on network monitoring. Finally, conclud-

ing remarks are given in Section IX.

Notation. Lower- (upper-) case boldface letters denote col-

umn vectors (matrices). Calligraphic symbols are reserved for

sets, while T stands for transposition. Vectors 0, 1, and en de-

note the all-zeros, the all-ones, and the n-th canonical vector,

respectively. Symbol 1E denotes the indicator for the event E.

Notation N (m,C) stands for the multivariate Gaussian distri-

bution with mean m and covariance matrix C, while tr(X),
λmin(X), and λmax(X) are reserved for the trace, the minimum

and maximum eigenvalues of matrix X, respectively. Symbol

D � is used to denote that the number of observations D is

“prohibitively large” relative to the problem at hand, as well as

the computing platform.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear dynamical system model

θn = Fnθn−1 + Gnun + wn (1)

yn = Xnθn + vn (2)

where θn ∈ R
p denotes the state vector at time n; Fn is the

known state-transition matrix; Gn and un are known, determin-

istic control-input model and control-input vector respectively;

yn ∈ R
D the measurement vector, and Xn is the known D × p

measurement matrix; while wn and vn are zero-mean, mutually

uncorrelated and individually uncorrelated across time random

noise vectors, with respective covariance matrices Qn and Rn .

The initial state θ0 has mean m0 , and covariance P0 .

Given the information-bearing data In := {yn ,Xn ,Rn}
of the measurement (2) at time n, the most recent estimate

θ̂n−1|n−1 and its covariance matrix Pn−1|n−1 , the celebrated

KF yields the minimum mean-square error (MMS-E) optimal

estimate θ̂n |n in two steps. First, the state prediction θ̂n |n−1

and its covariance matrix Pn |n−1 are obtained using the model

dynamics {Fn ,Qn} as [cf. (1)]

θ̂n |n−1 = Fn θ̂n−1|n−1 + Gnun

Pn |n−1 = FnPn−1|n−1F
T
n + Qn .

(3)

Subsequently, as In becomes available, θ̂n |n is obtained as

θ̂n |n = arg min
θ

‖yn − Xnθ‖2
R−1

n
+ ‖θ − θ̂n |n−1‖2

P−1
n |n −1

. (4)

The first term of the cost in (4) is a weighted least-squares term

fitting the state θ with In that arises from the linear observation

model in (2); while the second regularization term corresponds

to treating θ̂n |n−1 as a prior of θn . Solving (4) and applying

the matrix inversion lemma (MIL) yields the well known KF

Fig. 1. Reduced-dimension filtering.

Algorithm 1: Reduced-dimension KF.

Initialization: θ̂0|0 = m0 , P0|0 = P0

for n = 1 : N do

Prediction Step

θ̂n |n−1 = Fn θ̂n−1|n−1 + Gnun

Pn |n−1 = FnPn−1|n−1F
T
n + Qn

Data Reduction

{y̌n , X̌n , Řn} = Sketching
(

{yn ,Xn ,Rn}, θ̂n |n−1

)

Correction Step

θ̂n |n = θ̂n |n−1 + Ǩn (y̌n − X̌n θ̂n |n−1)

Ǩn = Pn |n−1X̌
T
n

(

X̌nPn |n−1X̌
T
n + Řn

)−1

Pn |n =
(

Ip − ǨnX̌n

)

Pn |n−1

end for

correction step, e.g., [18, p. 205]

θ̂n |n = θ̂n |n−1 + Kn (yn − Xn θ̂n |n−1)

where the so-termed KF gain Kn and the state covariance update

are given by

Kn = Pn |n−1X
T
n

(

XnPn |n−1X
T
n + Rn

)−1

Pn |n = (Ip − KnXn )Pn |n−1 .

A dual form of the KF known as the information filter (IF) relies

on the MIL to offer a more efficient solver of (4) as D grows

large [18, Ch. 7]. Nevertheless, even the low-complexity IF

requires O(Dp2) multiplications to solve (4) in the case of un-

correlated observations (Rn diagonal), and O(D2p) in general.

Therefore, for large-scale KF problems where D �, dimension-

ality reduction of the datasets In is well motivated for rendering

the solution of (4) computationally tractable, while also reduc-

ing other data-related costs, such as storage and transmission.

Towards this goal, we introduce a reduced-complexity

Kalman-like filter (see Algorithm 1) that extracts a reduced (size

d < D), yet informative dataset Id
n := {y̌n , X̌n , Řn} from the

original In , where y̌n ∈ R
d , X̌n ∈ R

d×p and Řn ∈ R
d×d are

the corresponding reduced-dimension observation vector, mea-

surement matrix, and covariance matrix; see also Fig. 1. Con-

sequently, the problem reduces to the design of low-complexity

sketching modules for informative dimensionality reduction. In

the ensuing two sections, a data-agnostic method based on RPs

followed by a data-adaptive method based on censoring are

developed.

III. RP-BASED KF

RP-based dimensionality reduction amounts to premulti-

plying measurements and regressors {yn ,Xn} with a random
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Algorithm 2: RP sketching module.

Dimensionality reduction with RPs

y̌n = SdHΓyn

X̌n = SdHΓXn

Řn = SdHΓRn (SdHΓ)T

matrix H, and a diagonal matrix Γ, whose entries take the

values {+1/
√

D,−1/
√

D} equiprobably. The net result is a

linear transformation of the measurement equations so that all

rows convey “comparable information”. A subset of d rows

of the transformed system is then extracted by simple random

sampling, implemented by left multiplication with a random

d × D selection matrix Sd .

Originally developed for linear regressions [19]–[21], the

novelty here is RP-based reduced-dimensionality tracking of dy-

namical processes. Applying the Hadamard preconditioning and

random sampling matrices on (2) yields the reduced-dimension

observation model

y̌n := SdHΓyn = SdHΓ(Xnθn + vn ) = X̌nθn + v̌n

where v̌n := SdHΓvn is zero mean with covariance Řn =
SdHΓRn (SdHΓ)T . Given θ̂n |n−1 and the reduced data Id

n ,

state estimate θ̂n |n can be obtained as [cf. (4)]

θ̂n |n = arg min
θ

‖y̌n − X̌nθ‖2
Ř−1

n
+ ‖θ − θ̂n |n−1‖2

P−1
n |n −1

. (5)

Solving (5) and applying the MIL yields the novel RP-based

KF, which is summarized as Algorithm 1 using Algorithm 2 as

sketching module.

Implementing RPs can have affordable O(Dp log d) com-

plexity if H is chosen to be a pseudo-random Hadamard matrix

of size D = 2ν for ν ∈ Z+ . Different from the more elaborate

approaches in [3] and [4], the proposed RP-KF is an easy-to-

implement, “one-size-fits-all” reduced-complexity tracker, us-

ing data-agnostic dimensionality reduction. Furthermore, RP-

KF’s estimation performance can be guaranteed as asserted in

the ensuing proposition, which provides a benchmark for the

data-driven methods introduced in the following section.

Proposition 1: With Rn = σ2
nID , let An := [P

−1/2
n |n−1 ,

σ−1
n XT

n ]T , bn := [P
−1/2
n |n−1 θ̂n |n−1 , σ−1

n yT
n ]T , and An = Un

ΛnVT
n the singular value decomposition of An . If

‖UnUT
n bn‖2 ≥ γ‖bn‖2 for some γ ∈ (0, 1], then by choos-

ing d = O(p ln(pD)/ε) the following bound for the RP-KF

estimates holds w.h.p.

‖θ̂n |n − θ̂
�

n |n‖2 ≤ √
ε
(

κ(An )
√

γ−2 − 1
)

‖θ̂�

n |n‖2

where κ(An ) denotes the condition number of An , and θ̂
�

n |n is

the full-data KF estimate.

Proof: See Appendix 1. �

Proposition 1 asserts that, per time slot n, the estimate θ̂n |n
of the RP-KF can be guaranteed to be close enough, in the

relative squared-error sense, to the estimate θ̂
�

n |n of the full

KF, if the reduced dimension d is chosen to be large enough.

Note that Proposition 1 only provides a per-step error guarantee,

meaning that the error between the estimates of the RP-KF

and the full-data KF at slot n is bounded, given that the two

filters share a common estimate at slot n − 1. Bounding the

RP-KF error across multiple time slots is a more challenging

task that goes beyond the scope and claims of the present paper.

Naturally, the quality of the approximation also depends on other

parameters such as the observation matrix, noise variance and

covariance of prediction. Nevertheless, being data-agnostic and

requiring storage and processing of In in batch form per time

slot renders the RP-KF less attractive in practice, and motivates

the algorithms presented in the following two sections.

IV. CENSORING-BASED KF

Measurement censoring for estimating dynamical processes

has been advocated as a means of reducing the inter-sensor

transmission overhead when WSNs are deployed for distributed

tracking [16], [17]; see also [15], [22], where censoring is em-

ployed for event-based estimation. Since the goal in the afore-

mentioned applications is saving communication resources, cen-

soring is performed solely on measurements yn , with Xn and

Rn assumed known and used even for the censored entries of

yn ; thus, [14]–[16], [22], and [17] rely on reducing the dimen-

sionality of a dataset that only consists of observations; that is,

In := {yn}. A subset of d observations Id
n := {yn,Sn

} is ob-

tained, where yn,i is the i-th entry of yn , and Sn ⊆ {1, . . . , D}
denotes a set collecting the indices of uncensored observations.

Given yn,Sn
,Xn and Rn , [14]–[17], [22] develop sequential es-

timators to optimally estimate θn . Targeting reduction of com-

munication load, optimal (in the maximum likelihood or MMSE

sense) estimation from (un)censored observations comes with

complexity comparable to that of using the full set of D mea-

surements. For our big-data setups, this is not affordable.

Since the aim is dimensionality and complexity reduction,

the starting point is on censoring entire rows of the full dataset

ID
n := {yn ,Xn ,Rn}, in order to obtain a reduced set Id

n :=
{yn,Sn

,Xn,Sn
,Rn,Sn

}, where xT
n,i denotes the i-th row of Xn

and Rn,Sn
:= cov(vn,Sn

). The goal here is to develop censoring

rules in order to obtain Sn , so that Id
n is an “informative” subset

of In . Most existing censoring schemes adopt the innovation

ỹn := yn − Xn θ̂n |n−1 as a measure of information contained

in yn .

One approach–henceforth termed block censoring (BC)–is

to censor the entire vector yn . From an information-theoretic

viewpoint [17], the optimal BC rule relies on the magnitude of

the prewhitened innovation Σ−1/2
n ỹn , where Σn := cov(ỹn ) =

XnPn |n−1X
T
n + Rn ; thus, Sn is found as

Sn :=

{

{1, . . . , D}, ‖Σ−1/2
n ỹn‖2 > τn

∅, otherwise
. (6)

Clearly, having Sn = ∅ corresponds to skipping the correction

step of the KF. A major shortcoming of (6) is the cubic complex-

ity O(D3) associated with inverting Σn . Furthermore, BC-KF

can only reduce the data cost on average across iterations by

entirely skipping correction steps.

Our idea of a more attractive alternative is to possibly censor

separately each entry of In . Such an entry-wise censoring rule
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yields Sn as

Sn := {1 ≤ i ≤ D
∣

∣ |σ−1
n,i ỹn,i | > τn} (7)

where σ2
n,i = [Rn ]ii , and τn can be tuned so that the set car-

dinality |Sn | ≈ d. Note that normalization in (6) includes pre-

whitening of the innovation vector that is effected through left

multiplication with Σ
−1/2
n . In contrast, any low-complexity per-

entry adaptive censoring rule cannot explicitly consider the

cross-correlation between different measurements, meaning that

Σn is not utilized. Instead, (7) uses the diagonal entries of Rn

as an approximate measure of the per-entry innovation variance

and therefore it serves as a normalization factor. Compared to

BC-KF, the innovation-based entry-wise rule of (7) is more

flexible in reducing the available data, since it can censor any

subset of observations at slot n at much lower complexity. Nev-

ertheless, to accurately perform measurement selection with

(7), |ỹn,i | must reflect how informative yn,i is for the purpose

of tracking θn . Using for this purpose the entry-wise predictor-

based innovations ỹn,i := yn,i − xT
n,i θ̂n |n−1 is a possibility, but

turns out to be unsuitable for the proposed reduced-complexity

KF, due to the fact that censoring rule (7) tends to yield “biased”

observations for a given θ̂n |n−1 . Correction of this bias is possi-

ble through the incorporation of a maximum likelihood criterion

(see, e.g. [23]). Since such an approach requires the additional

knowledge of Xn and incurs computational complexity at least

as high as that of the full-data KF, it is only suitable for reducing

the communication overhead.

Targeting a more suitable censoring rule, the adaptive cen-

soring least mean-square (AC-LMS) algorithm we introduced

in [23] for non-dynamical regressions can be employed to dis-

card uninformative rows of In . Within time slot n, rows of

(yn ,Xn ) are processed sequentially; given a temporary esti-

mate θ̂n |n−1,i , the i-th row is discarded when indicated so by

the censoring variable (1. denotes the indicator function)

ci := 1{|yn,i − xT
n,i θ̂n |n−1,i−1 | ≤ τnσ−1

n,i}. (8)

Given {xT
n,i , θ̂n |n−1,i−1 , τn}, a “censoring slab” is specified in

R
p+1 to determine whether (xn,i , yn,i) will be censored (if in-

side this slab) or not (if outside this slab). If deemed informative

enough (ci = 0), the i-th row is added to Sn , and subsequently

involved in updating θ̂n |n−1,i as

θ̂n |n−1,i = θ̂n |n−1,i−1 + (1 − ci)µxn,i

(

yn,i − xT
n,i θ̂n |n−1,i−1

)

.

(9)

The role of the first-order update in (9) is to perturb the cen-

soring slab towards the direction of (xn,i , yn,i), thus making

it less likely for future measurements conveying information

“close to” (xn,i , yn,i) to be retained. Intuitively speaking, such

updates eliminate measurement redundancies and reduce esti-

mation error due to the bias of uncensored observations. The

AC sketching module is summarized as Algorithm 3, and when

plugged into Algorithm 1, it yields the proposed adaptive cen-

soring (AC)-KF scheme. With regards to its performance, we

have the following result.

TABLE I
PER TIME-SLOT SKETCHING MODULE COMPLEXITY FOR d < D DATA

Algorithm 3: AC sketching module.

Measurement selection with AC-LMS

Input: θ̂n |n−1 , {yn ,Xn ,Rn}
Initialization: θ̂n |n−1,0 = θ̂n |n−1 , Sn,0 = ∅
for i = 1 : D do

Obtain ci as in (8)

if ci = 0, then

Sn,i = Sn,i−1 ∪ {i}
Update θ̂n |n−1,i−1 as in (9)

end if

end for

Return:{y̌n , X̌n , Řn} = {yn,Sn , D
,Xn,Sn , D

,Rn,Sn , D
}

Proposition 2: If Rn = σ2
nI, σ2

n � tr(Pn |n−1), and wn , vn

are zero-mean Gaussian, then the AC-KF with µ = 0 yields

unbiased estimates ∀τ .

Proof: See Appendix 2. �

The assumptions in Proposition 2 were made to simplify the

proof and are not necessary. Extensive simulations indicate that

the AC-KF remains unbiased even for low σ2
n and correlated

noise, and also for µ > 0. Nevertheless, the variance of AC-KF

largely depends on the choice of µ. Tuning µ to optimize the

MSE performance of AC-KF is a challenging task. Accurate

rules for selecting µ is part of our ongoing research. However,

even for possibly suboptimal values of µ, the proposed scheme

yields promising results. Simulations in Section VII will demon-

strate that the proposed AC-KF attains estimation accuracy close

to that of the KF using the greedy measurement selection method

in [11]. In addition, the proposed sketching module performs a

single pass over the data, and requires O(Dp) computations,

which is markedly lower than the O(Ddp2) required to perform

greedy selection. Furthermore, AC-KF is suitable for online im-

plementation by processing rows of In sequentially. Table I

summarizes the per-slot computational complexity of applying

the sketching modules corresponding to AC-KF, RP-KF and

random sampling.

Remark 1: Note that (9) does not pertain to a filter update.

Instead, it is an update of θ̂n |n−1,i within the AC sketching mod-

ule (Algorithm 3) that leverages uncensored entries per slot, and

it is only used for censoring entries within In of slot n. Note

also that for µ > 0 Algorithm 3 performs adaptive censoring on

In . If µ = 0, then θ̂n |n−1,i = θ̂n |n−1∀i ∈ 1, . . . , D, and thus

the censoring rule in (8) becomes non-adaptive across measure-

ments at slot n. For AC-KF with non-adaptive censoring, scalar

entries of the measurement vector yn can also be censored in a

decentralized fashion across distributed sensors.
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V. UPDATE-SELECTION KF

In the last two sections, dimensionality reduction schemes

were proposed for KF, by reducing the number of observations

processed. The resulting algorithms can be used to reduce the

complexity of filtering as well as other data-related costs such

as storage and transmission by reducing the dimensionality of

In . Specifically, if the observations need to be transmitted from

a remote location, one could be interested in reducing the com-

munication overhead as well computations; the RP-KF (where

no feedback is required between the filter and the sensors) or

the AC-KF (that requires θ̂n |n−1 as feedback) would be prefer-

able in such cases, with their dimensionality-reduction modules

reducing the amount of data that need to be transmitted. On the

other hand, if D observations become available to the computing

platform (block-by block or entry-by-entry) at each time-slot,

reduction of computational complexity is the main concern, as

well as the focus of the present section.

Suppose that the observation noise has diagonal covariance

matrix with [Rn ]ii = σ2
i ∀n. Then, the KF correction step at

time n can be obtained by solving

θ̂n |n = arg min
θ

‖θ − θ̂n |n−1‖2
P−1

n |n −1

+

D
∑

i=1

1

σ2
i

(

yn,i − xT
n,iθ

)2
. (10)

A sequential (across entries of yn ) solution of (10) can also

be obtained using the recursive least-squares (RLS) algo-

rithm with parameter estimate and error covariance matrix ini-

tialized at θ̂n |n−1 and Pn |n−1 , respectively. Specifically, let

θ̂n |n,i := E [θn|θ̂n |n−1 ,yn,1:i ] and Pn |n,i := cov(θ̂n |n,i), for

i ∈ {0, . . . , D}; clearly, θ̂n |n,0 = θ̂n |n−1 and θ̂n |n,D = θ̂n |n .

The following RLS-like iteration, corresponding to the i-th en-

try of yn , updates the state estimate as

θ̂n |n,i = θ̂n |n,i−1 + kn,ien,i (11)

where en,i := yn,i − xT
n,i θ̂n |n,i−1 and

kn,i = Pn |n,i−1xn,is
−1
n,i (12)

with

sn,i := xT
n,iPn |n,i−1xn,i + σ2

i . (13)

The state covariance matrix is then updated as

Pn |n,i = Pn |n,i−1 − Pn |n,i−1xn,ix
T
n,iPn |n,i−1s

−1
n,i (14)

and the process is repeated until i = D, and all the measure-

ments have been processed.

A common approach to dealing with D � is to simply pro-

cess as many data within time slot n as the available com-

putational resources allow for; see, e.g. [18, Ch. 7]. In the

present work however, to reduce computational complexity,

we propose judiciously skipping correction updates. The cri-

terion according to which the i-th row of {yn ,Xn} will be

used to update θ̂n |n,i−1 is based on how much the distribu-

tion p(θn |θ̂n |n−1 , [yn ]1:i) after the update will diverge from

the posterior p(θn |θ̂n |n−1 , [yn ]1:i−1) before the update. A com-

monly used measure of difference between probability density

functions (pdfs) is the KullbackLeibler (KL) divergence, also

known as relative entropy (see, e.g. [24]). The KL divergence

between two pdfs p(x) and q(x) is defined as

DK L (p||q) :=

∫

p(x) ln
p(x)

q(x)
dx = E p

[

ln
p(x)

q(x)

]

and is not symmetric with respect to its arguments. In fact, one

can interpret p(x) as being the “true” pdf of x while q(x) is an

approximate one. Then, DK L (p||q) is a measure of how far the

approximation is from reality.

Aiming at carrying out only “useful” updates, DK L

(pn,i ||pn,i−1) can be used as an indicator of how informative

the update that involves the i-th row of {yn ,Xn} is, where

pn,i(θn ) := p(θn |θ̂n |n−1 , [yn ]1:i)

and

pn,i−1(θn ) := p(θn |θ̂n |n−1 , [yn ]1:i−1).

Proposition 3: Let observations be generated according to

(1)–(2) with wn and vn Gaussian. Then, for the sequential

estimator in (11)–(14) it holds that

DK L (pn,i ||pn,i−1) =
1

2

(

ē2
n,i − 1

) γn,i

γn,i + σ2
i

+ ln

√

γn,i + σ2
i

σ2
i

where γn,i := xT
n,iPn |n,i−1xn,i , and ēn,i := en,is

−1/2
n,i is the

per-entry normalized innovation.

Proof: See Appendix 3. �

Proposition 3 offers a simple expression ofDK L (pn,i ||pn,i−1)
that will come handy in performing informative updates. Con-

sider first the quantities involved in DK L (pn,i ||pn,i−1), namely

the normalized innovation (residual) ēn,i , which is a random

variable and γn,i that is deterministic. Interestingly, γn,i :=
‖xn,i‖2

Pn |n , i
is an ensemble quantity capturing the expected

power of the i-th observation across the main directions of state

uncertainty, while ēn,i is a random data-dependent variable that

measures how important the i-th update is for a specific re-

alization of the problem. Depicted in Fig. 2(a) is a simulated

sequence of DK L (pn,i ||pn,i−1) as a function of index i for an

arbitrary time-slot n. Immediately noticeable is that the per-step

divergence decreases with an approximate rate of 1/i following

the rate of decrease of Pn |n,i . One may also observe that certain

updates yield higher KL divergence compared to the baseline.

Fast and computationally efficient estimation may be achieved

by isolating and performing only such informative updates.

While DK L (pn,i ||pn,i−1) offers a measure of difference

between the posteriors prior and after updating, it lacks

symmetry and it is not conveniently interpreted as distance.

Consequently, we considered the modified metric

D(pn,i , pn,i−1) := DK L (pn,i ||pn,i−1) + DK L (pn,i ||pn,i−1)
(15)
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Fig. 2. Example of (a) KL divergence and (b) symmetric KL divergence evolu-
tion across sequential correction updates. Both metrics converge to 0 following
a ∝ 1/i trend.

also known as the symmetric KL divergence. As seen in

Figs. 2(a) and 2(b), both metrics follow a similar trend and con-

verge to 0 as the state estimate converges in probability. Never-

theless, D(pn,i , pn,i−1) enjoys symmetry as well as a more sim-

ple expression which as given in Proposition 4. Subsequently,

the following rule is proposed for selecting informative updates

D(pn,i ||pn,i−1)

{

≥ τn,i , Update θ̂n |n,i ,Pn |n,i

< τn,i , Skip updates.
(16)

Proposition 4: Let observations be generated according to

(1)–(2) with wn and vn Gaussian. Then, for the sequential

estimator in (11)–(14) it holds that

D(pn,i , pn,i−1) =
1

2
ē2

n,i

(

2γn,i +

(

γn,i

σi

)2
)

s−1
n,i . (17)

Proof: See Appendix 4. �

Using (17), rule (16) can be readily implemented. Regarding

the sequence of thresholds {τn,i}D
i=1 , a judicious choice is

τn,i = τn
1

i
(18)

which promotes updates with large informational value relative

to the stage of the estimation process. The total number of

updates per slot n can be tuned by τn . A couple of remarks are

now in order.

Remark 2: KL divergence induced by a measurement was

also employed by [17] to offer an alternative viewpoint

on a distributed censoring rule for reducing the communi-

cation load in WSNs. Specifically, it was shown that the

KL divergence of p(θn ) with p(θn |yn,i)) as reference
(

i.e.

DK L (p(θn )||p(θn |yn,i))
)

is proportional to the magnitude of

en,i , which implies that the latter is related to the informational

value of a measurement. Apart from the different goals and

context, a major difference of the present section’s contribu-

tion relative to [17] is the explicit calculation, and use of the

(symmetric) KL divergence in the proposed update selection

rule.

Remark 3: Interestingly, our proposed data-driven update

selection using DK L (pn,i ||pn,i−1) is also related to OED-type

sensor selection schemes that are based on the mutual informa-

tion between a sensor and the model (e.g., [7]). This relation can

be observed upon recalling that the mutual information I(X;Y )
between two random variables X and Y can be expressed as

I(X;Y ) = E Y [DK L (p(X|Y )||p(X))]. (19)

In the present context, (19) implies that the mutual information

between the i-th “sensor” at time slot n and θn in a sequential

processing setting, equals its DK L (pn,i ||pn,i−1) averaged over

all possible measurements yn,i .

A. Reduced-Complexity Censoring Rule

In the previous section, an update selection rule was intro-

duced in (16) relying on the information metric in (17). Prac-

tical implementation of (16) requires careful consideration of

the computational complexity needed to obtain D(pn,i , pn,i−1).
As seen in (17), to obtain the latter it suffices to compute en,i

and γn,i (since sn,i = γn,i + σ2
i ). While computing en,i re-

quires only O(p) products, obtaining γn,i := xT
n,iPn |n,i−1xn,i

requires a matrix-vector product that comes with O(p2) com-

plexity. Thus, even though checking whether an update is in-

formative or not has smaller complexity than the update itself

(cf. (11)–(14)), both tasks are of the same order of O(p2) com-

plexity. Ideally, checking the update should be less costly than

performing the update by an order of magnitude.

For this purpose, a low-complexity approximation of γn,i is

highly desirable. One way to approximate γn,i is to use the

eigen-decomposition Pn |n,i−1 = Vn,i−1Λn,i−1V
T
n,i−1 to pro-

duce the best k-rank approximation of Pn |n,i−1 as

P̂k
n |n,i−1 = Vk

n,i−1Λ
k
n,i−1(V

k
n,i−1)

T

where Λk
n,i−1 is a k × k diagonal matrix containing the k ≤ p

largest eigenvalues of Pn |n,i−1 , and Vk
n,i−1 is the p × k matrix

of the corresponding eigenvectors. Using P̂k
n |n,i−1 to approxi-

mate γn,i , yields

gk
n,i := xT

n,iP̂
k
n |n,i−1xn,i

= xT
n,iV

k
n,i−1Λ

k
n,i−1(x

T
n,iV

k
n,i−1)

T (20)

which can be obtained with O(pk) complexity. Although gk
n,i

exactly captures the power of xT
n,i along the principal directions

of Pn |n,i−1 , it is in general a poor estimate of γn,i . In fact,

ignoring the power of the p − k smallest eigenvalues of Pn |n,i−1
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leads to under-estimation; that is gk
n,i ≤ γk

n,i . To mitigate this

problem, let us denote the power of xn,i that is not captured by

the first k principal directions as

g−k
n,i := ‖xn,i‖2

2 − ‖xT
n,iV

k
n,i−1‖2

2 .

Then, if the the remaining power g−k
n,i is distributed evenly along

the p − k directions that correspond to the smallest eigenvalues

of Pn |n,i−1 , an improved approximation of γk
n,i is

γ̂k
n,i = gk

n,i +
1

p − k
g−k

n,i

p
∑

j=k+1

[Λn,i−1 ]jj

= gk
n,i +

1

p − k
g−k

n,i

[

tr(Pn |n,i−1) − tr(Λk
n,i−1)

]

(21)

where for the second equality we used that tr(Pn |n,i−1) =
tr(Λn |n,i−1). Essentially, by ignoring the angle of xT

n,i along

the p − k least important directions of uncertainty, an estimate

γ̂k
n,i ≈ γn,i can be found with O(pk) complexity. Simulations

will demonstrate that for most cases k need not be very large for

the purpose of obtaining a reliable approximation of γn,i , and

thus of the update selection rule in (16).

Finally, let us consider the computational burden of re-

computing the eigen-decomposition of Pn |n,i−1 when an up-

date is performed. Fortunately, the decomposition needs only

be fully computed once for Pn |n,0 , after the prediction step.

Then, exploiting that Pn |n,i−1 is given as a sequence of rank-

one updates of symmetric positive matrices (cf. (14)) allows for

low-complexityO(p2) updates of the eigen-decompositions, see

e.g. [25] and [26], while the fact that only the first k eigen-pairs

are required can further reduce the complexity of the updates.

The need for tracking the principal eigen-pairs of Pn |n,i−1 can

be completely eliminated by setting k = 0, which yields the

estimate

γ̂0
n,i =

1

p
‖xn,i‖2

2tr(Pn |n,i−1) (22)

with O(p) complexity, at the cost of ignoring information given

by the angle of xn,i . For cases where the eigenvalues of Pn |n,i−1

are approximately uniform, (22) provides a practical and suf-

ficiently accurate estimate of γn,i . Generally, obtaining (21)

requires O(p(k + 1)) computations. Overall, the complexity of

the correction step using the iterative method in (11)–(14) with

the update selection rule in (16) and the approximation in (21)

is O(dp2) + O(Dp(k + 1)), where d � D is the number of

updates. Depending on the size of p, d and D, the overall com-

plexity of the proposed scheme can be considerably less than

the standard O(Dp2).

B. First-Order Updates

The fact that the update selection rule in (16) requires at least

O(p) computations hints at possible modifications of the present

scheme, that are considered in this section. Specifically, instead

of using (16) to completely skip updates, one may incorporate

a simple O(p) update without noticeably increasing the overall

complexity of the algorithm. For instance, having computed en,i

which is required in (16), the following LMS-like parameter

update can readily be implemented

θ̂n |n,i = θ̂n |n,i−1 + µn,ixn,ien,i (23)

where µn,i denotes a user selected stepsize. Given the update in

(23), consider the difference

∆n (µn,i) := MSE(θ̂n |n,i) − MSE(θ̂n |n,i−1) (24)

where MSE(θ) := E [‖θ − θn‖2
2 ]. Clearly, µn,i should be cho-

sen such that ∆n (µn,i) ≤ 0, or, ideally such that ∆n (µn,i) is

minimized. But first, it is useful to derive an explicit expression

for ∆n (µn,i).
Proposition 5: For an update of the form (23) that follows

an update of (11)–(14) it holds that

∆n (µn,i) = ‖xn,i‖2
2(γn,i + σ2

i )µ2
n,i − 2γn,iµn,i . (25)

Proof: See Appendix 5. �

To guarantee ∆n (µn,i) ≤ 0, it suffices to choose µn,i as

0 ≤ µn,i ≤
2γn,i

‖xn,i‖2
2(γn,i + σ2

i )
(26)

while for

µ∗
n,i =

γn,i

‖xn,i‖2
2(γn,i + σ2

i )
(27)

the minimum of ∆n (·) is attained

∆n (µ∗
n,i) = − (γn,i)

2

‖xn,i‖2
2(γn,i + σ2

i )
. (28)

Although the LMS-like iteration (23) reduces the MSE by

as much as −∆n (µ∗
n,i), updating Pn |n,i−1 incurs complexity

O(p2), and it is thus skipped. Skipping covariance updates

for first-order updates is also well motivated by the fact that

−∆n (µ∗
n,i) is generally significantly smaller than the reduction

achieved by the second-order updates (11)–(14). Nevertheless,

one may in practice use µn,i ≤ µ∗
n,i , to compensate for the

(slow) decrease in estimation variance. Finally, while the exact

value of γn,i is generally not available, µn,i can be selected after

using the estimate γ̂n,i from (21) in (26) or (27). The overall pro-

posed reduced-complexity update-selection (US) KF described

in Section V is tabulated as Algorithm 4.

VI. BUDGETED FIXED-INTERVAL SMOOTHING

The methods introduced in Sections III, IV and V utilize di-

mensionality reduction, measurement selection, and update se-

lection, in order to promote low-complexity correction updates

of the KF. In the present section, we briefly explore another

direction that allows for reliable tracking with smaller data us-

age and computational complexity. Specifically, consider the

“smoothed” estimate θ̂
KS

n := E [θn |{yn}N
n=1 ], and let θ̂

KS
be

formed by concatenating all such smoothed estimates. This can

also be written as

θ̂
KS

= arg min
{θn }N

n = 1

1

2

N
∑

n=1

‖yn − Xnθn‖2
R−1

n

+ ‖θn − Fnθn−1‖2
Q−1

n
+ ‖θ0 − m0‖2

P−1
n

(29)
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Algorithm 4: US-KF.

Initialization: θ̂0|0 = m0 , P0|0 = P0

for n = 1 : N do

Prediction Step:

θ̂n |n−1 = Fn θ̂n−1|n−1 + Gnun

Pn |n−1 = FnPn−1|n−1F
T
n + Qn

Correction Step:

Set parameters: k, τn

Initialize: θ̂n |n,0 = θ̂n |n−1 ,Pn |n,0 = Pn |n−1

Compute k first eigenpairs: {Vk
n,0 ,Λ

k
n,0}

for i = 1 : D do

Obtain γ̂n,i as in (21)

Obtain D(pn,i , pn,i−1) as in (17)

if D(pn,i , pn,i−1) ≥ τn/i then

Update {θ̂n |n,i ,Pn |n,i} as in (11)–(14)

Update {Vk
n,i ,Λ

k
n,i} of rank-1 update of Pn |n,i

else

Obtain µn,i by plugging γ̂n,i in (26) or (27)

Update θ̂n |n,i as in (23)

end if

end for

end for

which is optimal in the linear minimum mean-square error

(LMMSE) sense.

Aiming at a recursive solver of (29), one can rely on

the Rauch-Tung-Stribel (RTS) forward-backward KS algo-

rithm [27]. In its forward pass, the RTS algorithm is identical

to the KF. The KF estimates {θ̂n |n}N
n=1 are then stored and

processed by the backward pass of the KS, while the error co-

variance matrices {Pn |n}N
n=1 are computed off-line.

Given θ̂n+1|N , the backward iteration solves

θ̂n |N := arg min
θ

‖θ̂n+1|N − Fnθ‖2
Q−1

n
+ ‖θ − θ̂n |n‖2

P−1
n |n

.

(30)

Similar to filtering, the minimizer of (30) is also given in closed

form as

θ̂n |N =
(

FT
n Q−1

n Fn + P−1
n |n

)−1(

FT
n Q−1

n θ̂n+1|N + P−1
n |n θ̂n |n

)

.

After invoking the MIL and letting Bn := Pn |nFT
n P−1

n+1|n , the

estimate θ̂n |N is given in the correction form of θ̂n |n as

θ̂n |N = θ̂n |n + Bn

(

θ̂n+1|N − Fn θ̂n |n
)

(31)

with corresponding error covariance matrix

Pn |N = Pn |n + Bn

(

Pn+1|N − Pn+1|n
)

BT
n . (32)

A key property of the backward KS iteration, is that it improves

KF performance using from {In}N
n=1 only the information en-

capsulated in the output θ̂n |n of the forward filter. Therefore,

backward iterations can be readily applied on filtered estimates

of RP-KF, AC-KF or the US-KF to limit the tracker’s perfor-

mance loss caused by the measurement reduction.

Algorithm 5: The budgeted Kalman smoother (Bud-KS).

for n = N − 1 : 0 do

if θ̂n |n ∈ ΘS
n then

θ̂n |N = θ̂n |n
Pn |N = Pn |n

else

θ̂n |N = θ̂n |n + Bn

(

θ̂n+1|N − Fn θ̂n |n
)

Bn = Pn |nFT
n P−1

n+1|n
Pn |N = Pn |n + Bn

(

Pn+1|N − Pn+1|n
)

BT
n

end if

end for

In addition, the backward iteration can also be modified to op-

erate within a limited computational budget. Given the smoothed

estimate at time n + 1, let us define the set

Θb
n :=

{

θ
∣

∣‖θ̂n+1|N − Fnθ‖2
Q−1

n
≤ τb

}

(33)

of states at time n that are consistent enough with the transition

model in the WLS sense. Based on (33), the Bud-KS estimate

at time n is given as

θ̂n |N =

{

θ̂n |n , θ̂n |n ∈ Θb
n

θ̂n |n + Bn

(

θ̂n+1|N − Fn θ̂n |n
)

, θ̂n |n /∈ Θb
n .

(34)

Clearly, for θ̂n |n ∈ Θb
n , it holds that Pn |N = Pn |n ; while for

θ̂n |n /∈ Θb
n , the error covariance is given by (32). Essentially,

KS estimates that are consistent enough with the system model

are not smoothed, thus saving the computations required. Here,

the threshold τb in (33) can be tuned to control the amount of

“acceptable” deviation from the model. The novel economical,

fixed-interval smoother on a budget, that we abbreviate as Bud-

KS, is tabulated as Algorithm 5.

Regarding the computational complexity of Bud-KS, it is

worth noting that implementing the rule (33) in the general case

requires O(p3) computations in order to invert Qn . The com-

plexity of Bud-KS updates in (31) and (32) are on the same order

of magnitude. Thus, Bud-KS is preferable when the covariance

matrix of wn is time-invariant, meaning that Qn = Q ∀n. In

such cases, inversion of Q is performed once offline, thus reduc-

ing complexity in (33) to O(p2); likewise, when Qn is diagonal.

In such scenarios, an update of O(p3) complexity is skipped at

the cost of an O(p2) complexity rule, leading to computational

savings that become more significant as p increases.

VII. NUMERICAL TESTS

The novel AC-KF, RP-KF, US-KF and Bud-KS algorithms

are tested here on a simulated linear dynamical system. For

this experiment, a simple state transition model that performs

cyclical shifting of the entries of the state was implemented. The

state transition matrix is

Fn,ij

{

1, i = j − 1

0, otherwise
, ∀n
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Fig. 3. Average RMSE for the US-KF, AC-KF, Greedy algorithm, RP-KF and
random sampling as a function of d/D.

and F1p = 1, while the state dimension is set to p = 50.

The state noise {wn}N
n=1 was generated i.i.d. with wn ∼

N (0, σ2
wQn ), where Qn,ij = 0.5|i−j | and σw = 0.01. Finally,

the initial state is θ0 ∼ N (m0 ,P0), with m0 set to have two

non-zero values 20 and −30 in its first and fifth entry, and

P0 = 0.04I. Per time instant n ∈ {1, . . . , N} with N = 100,

D = 500 measurements are obtained and concatenated in yn =
Xnθn + vn , where rows of Xn are generated as i.i.d. stan-

dardized Gaussian vectors and then weighted independently

by coefficients α drawn from α ∼ Unif{0.5, 1.5}. For this ex-

periment, observations are correlated; thus, vn ∼ N (0, σ2
vRn ),

where Rn,ij = 0.5|i−j |. For the following experiments, we set

σ2
v = 1, upon observing that the results remain qualitatively

similar for different noise levels.

A. AC-KF, RP-KF, and US-KF

To determine the average performance in terms of estimation

error and computational complexity of AC-KF and RP-KF for

different values of d/D, 20 Monte Carlo realizations were run

on the same simulated linear dynamical system. The estimation

performance was measured in terms of root mean-square error

(RMSE) of the estimates across iterations; that is,

RMSE =

√

√

√

√

1

N

N
∑

n=1

‖θ̂n |n − θn‖2
2 .

AC-KF and US-KF were run first, with thresholds tuned such

that a constant number of approximately d observations were

selected per time slot; RP-KF and the greedy algorithm were

then set to obtain d measurements per time slot. As a perfor-

mance benchmark for the three algorithms, KF was also run

with d randomly sampled observations per time step.

The average RMSE of the five methods as a function of

d/D is plotted in Fig. 3. These plots confirm that the proposed

data-agnostic RP-KF is useful for increasing the accuracy (com-

pared to plain random sampling) when estimating dynamic pro-

cesses. With regards to the more elaborate algorithms, AC-KF

has comparable performance with the KF using greedy OED

TABLE II
AVERAGE RUNTIME OF ALGORITHMS FOR D = 1000

Fig. 4. Average RMSE for US-KF for different values of k.

measurement selection, while being orders of magnitude faster

in terms of runtime. Last but not least, the US-KF with k = 0
outperforms the other methods while maintaining O(dp2) com-

plexity, even when the observation noise is correlated. Finally,

the experiment was re-run with D = 1000 and for varying d/D,

with the runtime of the algorithms listed in Table II. The greedy

ODE algorithm is excluded from this experiment since it is an of-

fline benchmark with runtime larger than that of the full-data KF.

In comparison to random sampling, the proposed methods carry

a certain computational overhead which becomes less significant

as d/D (or D) increases. More importantly, the proposed algo-

rithms enjoy a significantly lower runtime than the full-data KF.

Additional experiments were performed to assess sensitivity

of the US-KF to the choice of parameter k. Recall that k deter-

mines the accuracy of the approximation of γn,i (cf. (20)–(21)),

and therefore how accurately the update selection rule in (16) is

implemented; at the same time, the computational complexity of

implementing (16) increases with k at a rate of O(p(k + 1)). In-

terestingly, experiments indicate that k � p can be sufficient in

practice, while sensitivity to k only manifests itself for relatively

small values of the compression ratio d/D. As seen in Fig. 4,

RMSE of US-KF with k = 1 is almost as low as the one achieved

with k = p, while setting k = 0 still yields reliable estimates,

with the gap becoming smaller as d/D increases. Recall that

using k = 0 leads to the simple rule in (22), and bears the addi-

tional advantage that no eigenpairs of Pn |n−1,i need be tracked.

B. Bud-KS

In the last experiment, the extent to which backward smooth-

ing iterations can improve reduced-observation filtering was

examined. The AC-KF algorithm was first run with d/D
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Fig. 5. RMSE of AC-KF versus Bud-KS, as a function of d/D.

ranging from 0.0095 up to 0.65; Bud-KF was then run with τb =
0 in order to smooth all N filtered estimates. Fig. 5 depicts the

average RMSE of the AC-KF with and without smoothing. Evi-

dently, smoothing can significantly reduce RMSE over the entire

range of dimensionality reduction, while its effect becomes more

prominent as d/D decreases. Upon examining Fig. 5, the AC-KF

using < 1% of the data followed by Bud-KS, attains the same

RMSE as the AC-KF using 5% of the data; a surprising five-fold

decrease. Thus, at the cost of introducing non-causality (or delay

if a fixed-lag KS is used), smoothing offers room for significant

decrease in the data requirements and complexity of tracking.

VIII. APPLICATION TO MONITORING DYNAMIC GRAPHS

Dynamically evolving graphs offer a promising application

domain for our proposed algorithms. In this context, measure-

ments are obtained from a graph of known and constant topol-

ogy in order to infer a set of hidden time-varying properties.

Specifically, traffic matrix estimation and link cost estimation

are two tasks that involve tracking of large-scale dynamical

processes from linearly obtained observations. To demonstrate

the applicability of US-KF in reducing the complexity of such

tasks, a Kronecker graph G = (V, E) with |V| = 50 vertices

was generated. The adjacency matrix Ak of a Kronecker graph

can be generated recursively as Ak = Ak−1 ⊗ Ak−1 , and is

completely determined by the initiator graph A1 . As shown in

[28], Kronecker graphs exhibit many real-word graph proper-

ties such as power-law degree distributions, and are thus highly

recommended for simulating algorithms. For our experiments,

a Kronecker graph was generated with initiator

A1 =

⎡

⎣

1 1 0
1 1 1
0 1 1

⎤

⎦

until 100 nodes become available. Nodes adjacent to all other

nodes were removed in order to decrease the connectivity of the

graph to more realistic levels. The resulting adjacency matrix is

depicted in Fig. 6.

Fig. 6. Adjacency matrix of a Kronecker graph with 100 nodes.

A. Traffic Matrix Estimation

Consider the task of measuring the traffic volume at the links

of a network, in order to estimate the volume of origin-to-

destination (OD) flows, a very important task in many networks

ranging from the Internet to transportation. Since OD flows are

defined by a set of origins O ⊆ V and a set of destinations

D ⊆ V , they can be represented as the entries an |O| × |D| traf-

fic matrix F. Similar to [29], [30] and [31], the following linear

state-transition and observation models is considered

fn = fn−1 + wn (35)

ln = Rfn + vn (36)

where fn := vec(Fn ) is the vectorized traffic matrix at time slot

n that is assumed to evolve according to a random walk with

driving Gaussian noise wn with known covariance matrix σ2
f Q

such that Qi,j = 0.2|i−j |; ln contains the link measurements at

time slot n; and, vn is the observation noise with cov(vn ) =
σ2I. The choice of a non-diagonal Qn was made to reflect

the fact that flows tend to be highly correlated (see e.g. [2]).

For this experiment, we set σf = 0.02, σ = 0.5, and generated

the initial state as f0 ∼ N (2 · 1,Q) In this model, the role of

the measurement matrix is played by the routing matrix R ∈
{0, 1}|E|×|O||D|, each column of which corresponds to an OD

flow with entries taking the value 1, if the corresponding links are

part of the flow. Simply put, each column of R describes the path

that the corresponding OD flow takes through the graph. For this

experiment, OD paths were chosen to be the shortest possible

using Dijkstra’s algorithm. To make this experiment even more

challenging, flows with paths that consist of a single link were

not considered; flows with no sampled links and irrelevant links

were also removed from the model. Overall, 189 edges were

sampled in order to track 689 OD flows.

Plotted in Fig. 7 is the MSE (E [‖fn − f̂n‖2
2 ]) of the estimated

traffic matrix across time, for the proposed US-KF (Alg. 4),
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Fig. 7. Traffic matrix MSE vs time plot for the proposed Update selection KF
(Alg.4) and the random sampling KF. Both algorithms were tuned to utilize 6%
of edge measurements per time slot.

and the KF with random sampling. The algorithms were run

for N = 100 time slots and the results were averaged across

100 runs. Both algorithms were tuned to utilize 6% of edge

measurements per time slot, and require approximately the same

runtime. As seen in the plot, the estimates f̂n of the proposed

US-KF converge faster than those of the sub-sampled KF, and

keep a closer track of the true traffic matrix fn . It should be

noted that, due to the large state dimension, other methods such

as the RP-KF or greedy OED become impractical.

B. Estimation of Link Costs From Path-Cost Measurements

Consider now that every edge ε of the graph is associated

with a cost c(ε), and that the concatenation of all such costs

forms the link cost vector c. A common task associated with

networks is inference of c by measuring path costs pij , where

pij is the total cost of a flow between nodes vi and vj (see

e.g., [2, Ch. 9.4.1]). Since pij is the aggregation of all costs of

the edges that the corresponding path crosses, it can be expressed

as the inner product between c and the corresponding row of

the routing matrix. Consequently, path costs and link costs are

linked through the linear observation model p = RT c, where

p is the vector with all the available path cost measurements.

Considering dynamic graphs where the link costs cn and path

costs pn evolve across time slots n, leads to the familiar linear

state-transition and state-observation models

cn = cn−1 + wn (37)

pn = RT cn + vn (38)

where w ∼ N (0, σ2
c I), v ∼ N (0, σ2I), and the initial state is

c0 ∼ N (m, σ2
0 I). For this experiment, we used the same graph

and routing matrix as in the traffic estimation experiment, and

generated cn and pn according to (37) and (38) correspondingly,

with σc = 0.04, σ = 0.1, m = 1 and σ0 = 0.1.

Plotted in Fig. 8 is the MSE (E [‖cn − ĉn‖2
2 ]) of the estimated

link costs across time, for the proposed US-KF (Alg. 4) and the

KF with random sampling, for N = 100 time slots and averaged

Fig. 8. Link-cost MSE vs time plot for US-KF (Alg.4) and the random sam-
pling KF. Both algorithms were tuned to utilize 4% of flow measurements per
time slot.

across 100 runs. Both algorithms were tuned to utilize 4% of

path cost measurements per time slot, and require approximately

the same runtime. As seen in the plot, the proposed US-KF suc-

cessfully tracks the slowly evolving link costs by judiciously

selecting and using a small fraction of the available path cost

observations. Furthermore, it can be observed that if the same

fraction (4%) of measurements is selected at random, then the

KF fails to track the link costs, with its estimate diverging from

the true value as time progresses. The divergence of the KF with

random sampling is consistent with the results in [32], where it

is shown that there exists a cut-off value for the data rate, below

which the error covariance may become unbounded. Interest-

ingly, the proposed reduced-complexity US-KF appears to be

much more robust to divergence; as discussed in the following

remark.

Remark 4: While KF based on random sampling (as well

RP-KF) diverges when the compression ratio d/D becomes

smaller than a certain threshold, this is not the case for the advo-

cated censoring-based alternatives (AC-KF and US-KF) since

diverging estimates prohibit censoring. This becomes evident

upon realizing that a diverging estimate (i.e., ‖θ̂n − θn‖2 →
∞) would imply infinitely large innovations that cannot be

smaller than finite thresholds such as the ones used in cen-

soring rules (7) and (16). This in turn implies that if AC-KF and

US-KF were divergent, they would become equivalent to the

full data KF. In a nutshell, if the ordinary KF is not divergent,

the same holds for the proposed AC-KF and US-KF, since the

latter will always obtain sets of observations that guarantee a

bounded tracking error.

IX. CONCLUDING REMARKS

We introduced random projections and censoring as dimen-

sionality reduction and measurement selection methods for

tracking dynamical processes with generally time-varying pa-

rameters. The proposed methods are simple routines that can

be used as dimensionality reduction modules coupled with an

ordinary KF. Furthermore, we introduced a reduced-complexity
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KF that processes measurements sequentially and performs

updates that are deemed informative based on the informa-

tion gain of corresponding measurements. Performance was

not analytically performed, but simulations provide surprisingly

strong evidence that the proposed methods perform close to the

greedy measurement selection method in terms of estimation

error. Furthermore, censoring-based measurement selection en-

joys much lower computational complexity than greedy OED.

To demonstrate applicability of the proposed update selection

approach on real-world problems, we examined the network-

related applications of traffic matrix estimation and network flow

estimation.

APPENDIX

Proof of Proposition 1: Follows readily from [33, Th. 2]. �

Proof of Proposition 2: From the assumption of large and

uncorrelated noise Rn = σ2
nI, the inverse reduced innovation

covariance matrix can be approximated as

(

X̌nPn |n−1X̌
T
n + Řn

)−1 ≈ σ−2
n I

and hence the correction update as

θ̂n |n = θ̂n |n−1 + σ−2
n Pn |n−1

D
∑

i=1

xn,i ỹn,i(1 − cn,i) (39)

where ỹn,i := xT
n,i(θn − θ̂n |n−1) + vn,i . Furthermore, for µ =

0 the censoring rule in (8) simplifies to 1 − cn,i = 1|{ỹn , i |≥τn σn },

where ỹn,i ∼ N (0,xT
n,iPn |n−1,ixn,i + σ2

n ). If θ̂n−1|n−1 is un-

biased, then it readily follows that θ̂n |n−1 is also unbiased,

and (39) yields

E [θ̂n |n − θn ] = σ−2
n Pn |n−1

D
∑

i=1

xn,iE [ỹn,i(1 − cn,i)]. (40)

Since

E [ỹn,i(1 − cn,i)] = E
[

ỹn,i1|{ỹn , i |≥τn σn }
]

= E [ỹn,i ] − E
[

ỹn1|{ỹn , i |≤τn σn , i }
]

∝ −
∫ τn σn

−τn σn

ỹn,ie
−c(ỹn , i )

2

d(ỹn,i)

=
1

2c

(

e−cτ 2
n σ 2

n − e−c(−τn σn )2
)

= 0 (41)

where c := 0.5(xT
n,iPn |n−1,ixn,i + σ2

n )−1 , it follows from (41)

and (40) that E [θ̂n |n − θn ] = 0, and the AC-KF is unbiased.

�

Proof of Proposition 3: For observations generated according

to the linear Gaussian model, and since θ̂n |n,i is the MMSE

estimator of θn given θ̂n |n−1 and yn,1:i , it follows that the pos-

terior of θn is also Gaussian with pn,i(θn ) = N (θ̂n |n,i ,Pn |n,i).

Similarly, one can obtain pn,i−1(θn ) = N (θ̂n |n,i−1 ,Pn |n,i−1).
Using the closed-form identity for the KL divergence between

two multivariate normal pdfs, we arrive at

DK L (pn,i ||pn,i−1) =
1

2

[

tr
(

P−1
n |n,i−1Pn |n,i

)

+ (θ̂n |n,i−1 − θ̂n |n,i)
T P−1

n |n,i−1

× (θ̂n |n,i−1 − θ̂n |n,i)

− p + ln

( |Pn |n,i−1 |
|Pn |n,i |

) ]

(42)

where tr(P) denotes the trace of matrix P and |P| its determi-

nant.

Using (14), the first summand in (42) can be expressed as

tr
(

P−1
n |n,i−1Pn |n,i

)

= tr
(

Ip − xn,ix
T
n,iPn |n,i−1s

−1
n,i

)

= p − xT
n,iPn |n,i−1xn,is

−1
n,i . (43)

Upon observing that for the RLS-like iteration in (11) the

inverse of the covariance matrix is updated as

P−1
n |n,i = P−1

n |n,i−1 + xn,ix
T
n,iσ

−2
i (44)

the fourth summand in (42) can be expressed as

ln

( |Pn |n,i−1 |
|Pn |n,i |

)

= ln
(

|Pn |n,i−1 |
)

+ ln
(

|P−1
n |n,i |

)

= ln
(

|Pn |n,i−1 |
)

+ ln
(

|P−1
n |n,i−1 + xn,ix

T
n,iσ

−2
i |

)

= ln
(

|Pn |n,i−1 |
)

+ ln
(

|P−1
n |n,i−1 + xn,ix

T
n,iσ

−2
i |

)

= ln
(

|Pn |n,i−1 |
)

+ ln
(

|P−1
n |n,i−1 |

(

1 + xT
n,iPn |n,i−1xn,iσ

−2
i

)

)

= ln
(

1 + xT
n,iPn |n,i−1xn,iσ

−2
i

)

= ln(sn,i) − ln(σ2
i ) (45)

where in the first equality we used the fact that |P−1 | = 1/|P|,
and in the fourth one we applied the matrix determinant lemma

for rank-one updates.

Finally, since θ̂n |n,i−1 − θ̂n |n,i = −kn,ien,i , the second

summand in (42) becomes

(θ̂n |n,i−1 − θ̂n |n,i)
T P−1

n |n,i−1(θ̂n |n,i−1 − θ̂n |n,i)

= (kn,ien,i)
T P−1

n |n,i−1kn,ien,i

= e2
n,ix

T
n,iPn |n,i−1xn,is

−2
n,i . (46)

Substituting (43)–(46) into (42) and with γn,i =
xT

n,iPn |n,i−1xn,i , we arrive at the result of Proposition 3. �

Proof of Proposition 4: By the definition of D(pn,i , pn,i−1) in

(15) and expressing DK L (pn,i−1 ||pn,i) using arguments similar
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to (43) and (45), it follows that

D(pn,i , pn,i−1) =
1

2
(θ̂n |n,i−1 − θ̂n |n,i)

T

×
(

P−1
n |n,i−1 + P−1

n |n,i

)

× (θ̂n |n,i−1 − θ̂n |n,i). (47)

Utilizing (44) and that θ̂n |n,i−1 − θ̂n |n,i = −kn,ien,i yields

D(pn,i , pn,i−1) =
1

2
e2

n,ik
T
n,i

×
(

2P−1
n |n,i−1 + xn,ix

T
n,iσ

−2
i

)

kn,i

=
1

2

e2
n,i

s2
n,i

(

xT
n,iPn |n,i−1xn,i

+ (xT
n,iPn |n,i−1xn,i)

2σ−2
i

)

and since γn,i := xT
n,iPn |n,i−1xn,i and ēn,i := en,is

−1/2
n,i the

proposition holds. �

Proof of Proposition 5: Recalling that en,i := yn,i −
xT

n,i θ̂n |n,i−1 and yn,i = xT
n,iθn + vn,i , (23) yields

θ̂n |n,i = θ̂n |n,i−1 − µn,ixn,ix
T
n,i(θ̂n |n,i−1 − θn )

+ µn,ixn,ivn,i . (48)

With θ̃n,i := θ̂n |n,i − θn denoting the error vector, (48) can be

expressed as

θ̃n,i =
(

Ip − µn,ixn,ix
T
n,i

)

θ̃n,i−1 + µn,ixn,ivn,i . (49)

The outer product of both sides in (49) yields

θ̃n,i θ̃
T

n,i =
(

Ip − µn,ixn,ix
T
n,i

)

θ̃n,i−1

× θ̃
T

n,i−1

(

Ip − µn,ixn,ix
T
n,i

)

+ 2
(

Ip − µn,ixn,ix
T
n,i

)

θ̃n,i−1µn,ix
T
n,ivn,i

+ (µn,i)
2xn,ix

T
n,i(vn,i)

2 . (50)

Since θ̂n |n,i−1 is unbiased, it follows that θ̂n |n,i is unbiased too,

and therefore the MSE equals the trace of the covariance matrix.

Since the expected value of the second summand in (50) is zero,

the trace of the expectation in (50) yields

tr
(

P̄n |n,i

)

= tr
(

(

Ip − µn,ixn,ix
T
n,i

)2
Pn |n,i−1

)

+ µ2
n,i‖xn,i‖2

2σ
2
i

= tr
(

Pn |n,i−1

)

+ µ2
n,itr

(

(xn,ix
T
n,i)

2Pn |n,i−1

)

− 2µn,itr
(

xn,ix
T
n,iPn |n,i−1

)

+ µ2
n,i‖xn,i‖2

2σ
2
i .

(51)

where P̄n |n,i is the covariance matrix after the first-order up-

date in (23). Given that ∆n (µn,i) := tr(P̄n |n,i) − tr(Pn |n,i−1),
and upon observing that tr(xn,ix

T
n,iPn |n,i−1) = γn,i and

tr((xn,ix
T
n,i)

2Pn |n,i−1) = ‖xn,i‖2
2γn,i , the proof is complete

after using (51). �
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