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Data Sketching for Large-Scale Kalman Filtering
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Abstract—In an age of exponentially increasing data genera-
tion, performing inference tasks by utilizing the available informa-
tion in its entirety is not always an affordable option. This paper
puts forth approaches to render tracking of large-scale dynamic
processes via a Kalman filter affordable, by processing a reduced
number of data. Three distinct methods are introduced for reduc-
ing the number of data involved in the correction step of the filter.
Toward this goal, the first two methods employ random projec-
tions and innovation-based censoring to effect dimensionality re-
duction and measurement selection, respectively. The third method
achieves reduced complexity by leveraging sequential processing of
observations and selecting a few informative updates based on an
information-theoretic metric. Simulations on synthetic data com-
pare the proposed methods with competing alternatives, and cor-
roborate their efficacy in terms of estimation accuracy over com-
plexity reduction. Finally, monitoring large networks is considered
as an application domain, with the proposed methods tested on
Kronecker graphs to evaluate their efficiency in tracking traffic
matrices and time-varying link costs.

Index Terms—Tracking, dimensionality reduction, censoring,
random projections, Kalman filter, traffic matrix.

I. INTRODUCTION

RACKING nonstationary dynamic processes is of
T paramount importance in various applications. In the
context of big data, being able to perform accurate and
economical state estimation may render problems of prohibitive
scale feasible. Weather prediction is an example of tracking
a slowly-varying dynamic process, from a massive volume
of observations acquired from fast-sampling sensors per time
interval; see e.g., [1]. Monitoring large and dynamically evolv-
ing networks, where nodes may join or leave and connections
may be established or lost as time progresses, provides an
exciting domain in which the acquisition and processing of
network-wide performance metrics becomes challenging as the
network size increases [2, Ch. 8]. For instance, monitoring path
metrics such as delays or loss rates is challenging primarily
because the number of paths generally grows as the square of
the number of nodes in the network. Therefore, measuring and
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storing the delays of all possible origin-destination pairs is hard
in practice, even for moderate-size networks [2].

In this context, efforts to reduce the number of measurements
used for tracking have pursued two different directions. The first
is that of optimal experimental design (OED), where the goal
is to perform model-driven sensor selection based on ensem-
ble performance metrics (e.g. the trace of the error covariance).
Channel-aware dimensionality reduction of observations was
reported in [3] and [4] using distributed wireless sensor net-
works (WSNs). Optimal and near optimal sensor schedules for
a finite time horizon estimation was dealt with in [5], while
entropy- and mutual-information-based sensor selection were
advocated in [6] and [7]. A posterior-CRLB-based method to
select sensors for tracking was introduced in [8], via convex op-
timization in [9] and [10], while a greedy algorithm leveraging
submodularity was developed in [11] for measurement selec-
tion in sequential estimation. The latter has also been advocated
as a means of reducing the complexity of Kalman filters that
operate with limited processing resources [12]. OED is nicely
attuned for designing low-dimensional observation models, but
it is data-agnostic and thus sub-optimal when observations be-
come available and need to be reduced.

The second direction is that of data-driven methods that
select available measurements for processing. Specifically, cen-
soring has recently been employed to select data for distributed
parameter estimation using resource-constrained WSNs, thus
trading off performance for tractability [13], [14]. Furthermore,
censoring has been proposed for signal estimation using WSNss,
for tracking, and control of dynamical processes [15]-[17].
However, existing works on censoring mainly aim at reducing
the rate at which sensors communicate their observations, and
pertinent methods exhibit large computational complexity and
storage requirements, which can be possibly afforded only at
the fusion center.

The goal of this paper is to perform reliable tracking using
the Kalman filter (KF), while reducing the amount of data and
the computational complexity involved. To this end, the first
two methods employ random projections and innovation-based
censoring to respectively effect dimensionality reduction and
measurement selection. The third method reduces complexity
by leveraging sequential processing of observations when the
noise is uncorrelated, and by selecting a few informative updates
based on an information-theoretic metric. Finally, an efficient
backward smoothing method is developed to mitigate the perfor-
mance degradation caused by dimensionality reduction. Corrob-
orating simulations compare with state-of-the-art greedy mea-
surement selection algorithms, and illustrate the efficacy of the
novel schemes. To demonstrate the applicability of the proposed
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update selection approach on real-world problems, traffic matrix
estimation and network link cost estimation is also considered.

The rest of the paper is organized as follows. Section II
introduces the proposed model of reduced complexity KF.
Sections III and IV present the two dimensionality reduction
modules based on RPs and censoring, respectively. The pro-
posed update selection method is introduced in Section V.
Numerical experiments are in Section VII, while Section VIII
includes experiments on network monitoring. Finally, conclud-
ing remarks are given in Section IX.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). Calligraphic symbols are reserved for
sets, while T stands for transposition. Vectors 0, 1, and e,, de-
note the all-zeros, the all-ones, and the n-th canonical vector,
respectively. Symbol 15 denotes the indicator for the event F.
Notation A (m, C) stands for the multivariate Gaussian distri-
bution with mean m and covariance matrix C, while tr(X),
Amin (X), and Ay, (X) are reserved for the trace, the minimum
and maximum eigenvalues of matrix X, respectively. Symbol
D > is used to denote that the number of observations D is
“prohibitively large” relative to the problem at hand, as well as
the computing platform.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear dynamical system model
07z =F, 971,71 + G’n, u, +wy, (1)
Yo = X,0, +v, (2

where 0,, € R? denotes the state vector at time n; F,, is the
known state-transition matrix; G,, and u,, are known, determin-
istic control-input model and control-input vector respectively;
v, € RP the measurement vector, and X,, is the known D X p
measurement matrix; while w,, and v,, are zero-mean, mutually
uncorrelated and individually uncorrelated across time random
noise vectors, with respective covariance matrices Q,, and R,,.
The initial state 8y has mean m, and covariance Py.

Given the information-bearing data 7, := {y,,X,,R,}
of the measurement (2) at time n, the most recent estimate
én,l‘n,l and its covariance matrix P, _;,_;, the celebrated
KF yields the minimum mean-square error (MMS-E) optimal
estimate 9n|n in two steps. First, the state prediction én\nq
and its covariance matrix P,,,_; are obtained using the model
dynamics {F,,, Q,, } as [cf. (1)]

077,\71—1 = Fnen,—l\n—l + Guu,

3)
Pn\nfl = FnPnfl\nleg + Q.

Subsequently, as Z,, becomes available, 9"‘” is obtained as

Bn\n = argn%in HYrL - X7L0||%{;1 + ||0 - Hn\nfl ||§D;1” . 4)
The first term of the cost in (4) is a weighted least-squares term
fitting the state @ with Z,, that arises from the linear observation
model in (2); while the second regularization term corresponds
to treating én|n—l as a prior of 8,,. Solving (4) and applying
the matrix inversion lemma (MIL) yields the well known KF
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Fig. I. Reduced-dimension filtering.

Algorithm 1: Reduced-dimension KF.

Initialization: 90‘0 =my, Pyy =Py
forn=1: N do
Prediction Step
én\nfl = Fnén71|nfl +Gyu,
Pn\nfl = F7LP7L71|7L71F%1 +Qn
{S’n X, Rn} = SketChing({Yn X, Ry }a 071\71 —1)
Correction Step
Bn\n = 9n|n71 + Kn (yn - X7L0n|n71)
Kn = Pn\nleZ (X71Pn|n71Xz; + Rn>71
Pn\n = (Ip - Kan) Pn\nfl
end for

correction step, e.g., [18, p. 205]
én,\n = én,\n—l +K, (yn - Xnén\n—l)

where the so-termed KF gain K, and the state covariance update
are given by

K, = Pn\nflle (XnPn\nflxz: + Rn)71
Pn\n = (Ip -K, Xn) Pn\nfl-

A dual form of the KF known as the information filter (IF) relies
on the MIL to offer a more efficient solver of (4) as D grows
large [18, Ch. 7]. Nevertheless, even the low-complexity IF
requires O(Dp?*) multiplications to solve (4) in the case of un-
correlated observations (R,, diagonal), and O(D?p) in general.
Therefore, for large-scale KF problems where D >, dimension-
ality reduction of the datasets Z,, is well motivated for rendering
the solution of (4) computationally tractable, while also reduc-
ing other data-related costs, such as storage and transmission.

Towards this goal, we introduce a reduced-complexity
Kalman-like filter (see Algorithm 1) that extracts a reduced (size
d < D), yet informative dataset Z¢ := {y,,,X,,, R,,} from the
original Z,,, where y,, € R?, X,, € R“*? and R,, € R?*? are
the corresponding reduced-dimension observation vector, mea-
surement matrix, and covariance matrix; see also Fig. 1. Con-
sequently, the problem reduces to the design of low-complexity
sketching modules for informative dimensionality reduction. In
the ensuing two sections, a data-agnostic method based on RPs
followed by a data-adaptive method based on censoring are
developed.

III. RP-BASED KF

RP-based dimensionality reduction amounts to premulti-
plying measurements and regressors {y,, X, } with a random
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Algorithm 2: RP sketching module.

Dimensionality reduction with RPs
Yn == Sd Hry n

X, = S;HI'X,
R, = S,HT'R, (S,HT)"

matrix H, and a diagonal matrix I', whose entries take the
values {+1/v/D,—1/v/D} equiprobably. The net result is a
linear transformation of the measurement equations so that all
rows convey ‘“‘comparable information”. A subset of d rows
of the transformed system is then extracted by simple random
sampling, implemented by left multiplication with a random
d x D selection matrix S,.

Originally developed for linear regressions [19]-[21], the
novelty here is RP-based reduced-dimensionality tracking of dy-
namical processes. Applying the Hadamard preconditioning and
random sampling matrices on (2) yields the reduced-dimension
observation model

yn = SdHFYn = SdH]-‘(Xn, an + Vn) = Xn, en + {’n

where v,, := S;HI'v,, is zero mean with covariance R,, =
S,;HTR,, (S;HI)”. Given 0,,—1 and the reduced data T,

state estimate 9n|n can be obtained as [cf. (4)]

On\n = arg mein ||yn - XH,GH%;' + Hg - on\n,fl HZP;‘lu . (%)
Solving (5) and applying the MIL yields the novel RP-based
KF, which is summarized as Algorithm 1 using Algorithm 2 as
sketching module.

Implementing RPs can have affordable O(Dplogd) com-
plexity if H is chosen to be a pseudo-random Hadamard matrix
of size D = 2" for v € Z. . Different from the more elaborate
approaches in [3] and [4], the proposed RP-KF is an easy-to-
implement, “one-size-fits-all” reduced-complexity tracker, us-
ing data-agnostic dimensionality reduction. Furthermore, RP-
KF’s estimation performance can be guaranteed as asserted in
the ensuing proposition, which provides a benchmark for the
data-driven methods introduced in the following section.

~1/2

Proposition 1: With R, = 02Ip, let A, := [Pn‘n71,
UQIXZ]T, b, = [P71/2 én\n,—l? JflyZ]T’ and A, =T,

nin—1 0
A,LVZ the singular value decomposition of A,. If
U, ULb,|2 > v|b,]|2 for some 7 € (0,1], then by choos-
ing d = O(pIn(pD)/e¢) the following bound for the RP-KF

estimates holds w.h.p.

10 = Orullz < Ve (£(ADVAT =) 167,
where (A, ) denotes the condition number of A,,, and 9:4" is
the full-data KF estimate.

Proof: See Appendix 1. |
Proposition 1 asserts that, per time slot n, the estimate énm
of the RP-KF can be guaranteed to be close enough, in the
relative squared-error sense, to the estimate é:,|n of the full
KEF, if the reduced dimension d is chosen to be large enough.
Note that Proposition 1 only provides a per-step error guarantee,
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meaning that the error between the estimates of the RP-KF
and the full-data KF at slot n is bounded, given that the two
filters share a common estimate at slot n — 1. Bounding the
RP-KF error across multiple time slots is a more challenging
task that goes beyond the scope and claims of the present paper.
Naturally, the quality of the approximation also depends on other
parameters such as the observation matrix, noise variance and
covariance of prediction. Nevertheless, being data-agnostic and
requiring storage and processing of Z,, in batch form per time
slot renders the RP-KF less attractive in practice, and motivates
the algorithms presented in the following two sections.

IV. CENSORING-BASED KF

Measurement censoring for estimating dynamical processes
has been advocated as a means of reducing the inter-sensor
transmission overhead when WSNs are deployed for distributed
tracking [16], [17]; see also [15], [22], where censoring is em-
ployed for event-based estimation. Since the goal in the afore-
mentioned applications is saving communication resources, cen-
soring is performed solely on measurements y,,, with X,, and
R,, assumed known and used even for the censored entries of
Vn; thus, [14]-[16], [22], and [17] rely on reducing the dimen-
sionality of a dataset that only consists of observations; that is,
Z, :={yn}. A subset of d observations Z¢ := {y,, s, } is ob-
tained, where y,, ; is the i-th entry of y,,, and S,, C {1,...,D}
denotes a set collecting the indices of uncensored observations.
Giveny, s, , X, and R,,, [14]-[17], [22] develop sequential es-
timators to optimally estimate 8,,. Targeting reduction of com-
munication load, optimal (in the maximum likelihood or MMSE
sense) estimation from (un)censored observations comes with
complexity comparable to that of using the full set of D mea-
surements. For our big-data setups, this is not affordable.

Since the aim is dimensionality and complexity reduction,
the starting point is on censoring entire rows of the full dataset
7P .= {y,,X,,R,}, in order to obtain a reduced set Z¢ :=
{yn.s,,Xns, ,Ru.s, }» where x! ; denotes the i-th row of X,
andR,, s, := cov(v, s, ). The goal here is to develop censoring
rules in order to obtain S,,, so that I,‘f is an “informative” subset
of Z,,. Most existing censoring schemes adopt the innovation
Yo =Y — X, 9,1‘71,1 as a measure of information contained
iny,.

One approach—henceforth termed block censoring (BC)-is
to censor the entire vector y,,. From an information-theoretic
viewpoint [17], the optimal BC rule relies on the magnitude of
the prewhitened innovation X'/%y, , where 3,, := cov(y,) =

n

X, P,,-1X] + Ry thus, S, is found as

5._{{L~wDL 152250l > 7
n = . : (6)
0, otherwise
Clearly, having S,, = ) corresponds to skipping the correction
step of the KF. A major shortcoming of (6) is the cubic complex-
ity O(D?) associated with inverting 3,,. Furthermore, BC-KF
can only reduce the data cost on average across iterations by
entirely skipping correction steps.

Our idea of a more attractive alternative is to possibly censor
separately each entry of Z,,. Such an entry-wise censoring rule
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yields S, as

Sn = {1 <1< D | |0_;’17jgn,71| > Tn} (7)
where 02 ; = [R,,];;, and 7, can be tuned so that the set car-
dinality |S, | ~ d. Note that normalization in (6) includes pre-
whitening of the innovation vector that is effected through left
multiplication with 3, 2 n contrast, any low-complexity per-
entry adaptive censoring rule cannot explicitly consider the
cross-correlation between different measurements, meaning that
33, is not utilized. Instead, (7) uses the diagonal entries of R,
as an approximate measure of the per-entry innovation variance
and therefore it serves as a normalization factor. Compared to
BC-KF, the innovation-based entry-wise rule of (7) is more
flexible in reducing the available data, since it can censor any
subset of observations at slot n at much lower complexity. Nev-
ertheless, to accurately perform measurement selection with
(7), |Yn,i| must reflect how informative y,, ; is for the purpose
of tracking 6,,. Using for this purpose the entry-wise predictor-
based innovations ¥,, ; := ¥y, — xfﬂ-én‘”,l is a possibility, but
turns out to be unsuitable for the proposed reduced-complexity
KEF, due to the fact that censoring rule (7) tends to yield “biased”
observations for a given 9,1‘,1,1 . Correction of this bias is possi-
ble through the incorporation of a maximum likelihood criterion
(see, e.g. [23]). Since such an approach requires the additional
knowledge of X,, and incurs computational complexity at least
as high as that of the full-data KF, it is only suitable for reducing
the communication overhead.

Targeting a more suitable censoring rule, the adaptive cen-
soring least mean-square (AC-LMS) algorithm we introduced
in [23] for non-dynamical regressions can be employed to dis-
card uninformative rows of Z,,. Within time slot n, rows of
(yn, X, ) are processed sequentially; given a temporary esti-
mate 9"‘”_131, the ¢-th row is discarded when indicated so by
the censoring variable (1, denotes the indicator function)

G = 1{|yn1 - Xz;,ién\n—l,i—ﬂ < 7_77,071 3)

Given {XZJ, én|n71.7¢71 ,Tn }» @ “censoring slab” is specified in
R?*! to determine whether (x;, ;,y,, ;) will be censored (if in-
side this slab) or not (if outside this slab). If deemed informative
enough (¢; = 0), the i-th row is added to S,,, and subsequently
involved in updating 9n|n,17i as

9n|n71,i = 9n|n71,i71 + (1 - Ci)/’('xn,i (yn,i - X{,¢9n|7171,z’71)-

€))
The role of the first-order update in (9) is to perturb the cen-
soring slab towards the direction of (x, ;,%y i), thus making
it less likely for future measurements conveying information
“close t0” (x;, i, Yn.;) to be retained. Intuitively speaking, such
updates eliminate measurement redundancies and reduce esti-
mation error due to the bias of uncensored observations. The
AC sketching module is summarized as Algorithm 3, and when
plugged into Algorithm 1, it yields the proposed adaptive cen-
soring (AC)-KF scheme. With regards to its performance, we
have the following result.
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TABLE I
PER TIME-SLOT SKETCHING MODULE COMPLEXITY FOR d < D DATA

Sketching method Complexity

Random sampling O(D)
Random projections (RP-KF) | O(Dplogd)
Adaptive censoring (AC-KF) O(Dp)

Algorithm 3: AC sketching module.
Measurement selection with AC-LMS
Inplm én,|nfl ) {yn 3 Xn; Rn }
Initialization: 6,,, 1 =0,, 1, Swo =10
fori=1:Ddo

Obtain ¢; as in (8)
if ¢; = 0, then
Sn,i = On,i—1 ) {l}
Update énm,l_i,l as in (9)
end if
end for

Retum:{yn ) Xn ) Rn} = {Yn,S,, D >Xn,8,, D 7Rn,8,, D }

Proposition 2: IfR,, = 021,02 > tr(Py,jp—1), and wy,, v,
are zero-mean Gaussian, then the AC-KF with p = 0 yields
unbiased estimates V7.

Proof: See Appendix 2. |

The assumptions in Proposition 2 were made to simplify the
proof and are not necessary. Extensive simulations indicate that
the AC-KF remains unbiased even for low o2 and correlated
noise, and also for x > 0. Nevertheless, the variance of AC-KF
largely depends on the choice of . Tuning o to optimize the
MSE performance of AC-KF is a challenging task. Accurate
rules for selecting p is part of our ongoing research. However,
even for possibly suboptimal values of 1, the proposed scheme
yields promising results. Simulations in Section VII will demon-
strate that the proposed AC-KF attains estimation accuracy close
to that of the KF using the greedy measurement selection method
in [11]. In addition, the proposed sketching module performs a
single pass over the data, and requires O(Dp) computations,
which is markedly lower than the O(Ddp?) required to perform
greedy selection. Furthermore, AC-KF is suitable for online im-
plementation by processing rows of Z,, sequentially. Table I
summarizes the per-slot computational complexity of applying
the sketching modules corresponding to AC-KF, RP-KF and
random sampling.

Remark 1: Note that (9) does not pertain to a filter update.
Instead, it is an update of 9n |n—1,; Within the AC sketching mod-
ule (Algorithm 3) that leverages uncensored entries per slot, and
it is only used for censoring entries within Z,, of slot n. Note
also that for ;1 > 0 Algorithm 3 performs adaptive censoring on
Z,. If p =0, then én\n—u = én‘n_lVi €1,...,D, and thus
the censoring rule in (8) becomes non-adaptive across measure-
ments at slot n. For AC-KF with non-adaptive censoring, scalar
entries of the measurement vector y,, can also be censored in a
decentralized fashion across distributed sensors.
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V. UPDATE-SELECTION KF

In the last two sections, dimensionality reduction schemes
were proposed for KF, by reducing the number of observations
processed. The resulting algorithms can be used to reduce the
complexity of filtering as well as other data-related costs such
as storage and transmission by reducing the dimensionality of
7, . Specifically, if the observations need to be transmitted from
a remote location, one could be interested in reducing the com-
munication overhead as well computations; the RP-KF (where
no feedback is required between the filter and the sensors) or
the AC-KF (that requires 9,7,‘"_1 as feedback) would be prefer-
able in such cases, with their dimensionality-reduction modules
reducing the amount of data that need to be transmitted. On the
other hand, if D observations become available to the computing
platform (block-by block or entry-by-entry) at each time-slot,
reduction of computational complexity is the main concern, as
well as the focus of the present section.

Suppose that the observation noise has diagonal covariance
matrix with [R,,];; = 07 ¥n. Then, the KF correction step at
time 7 can be obtained by solving

én|n = arg mgin ”0 - én\n—l ”]2;’*‘1 .
nn—

D

(yo: —x2,0)°.  (10)

o+
N
9~

~

i=1

A sequential (across entries of y,) solution of (10) can also
be obtained using the recursive least-squares (RLS) algo-
rithm with parameter estimate and error covariance matrix ini-
tialized at 97,,|n,1 and P, _;, respectively. Specifically, let
Ovz\n,i =L [9n|9n|n71ay?.1:i] andA Pn|n,i = C9V(0n|n,i): for
i€ {Oa ) D}, clearly, On\n,o - 0n|n—1 and On\n,D = On\ﬂ»
The following RLS-like iteration, corresponding to the ¢-th en-
try of y,, updates the state estimate as

én\n,z‘ = én|n.i71 +ky ieni (1)
where e, ; 1= Y, — ngiénm’i_l and
k= Pn\n,iflxn,isg,li (12)
with
Snyi =X i Prjnio1Xn,i + 07 (13)

The state covariance matrix is then updated as

_ T -1
Pn\n,,i - Pn|7zAi71 - Pn\miflXn/ixn"y‘,Pn\n,ifl3 (14)

n,i

and the process is repeated until ¢ = D, and all the measure-
ments have been processed.

A common approach to dealing with D >> is to simply pro-
cess as many data within time slot n as the available com-
putational resources allow for; see, e.g. [18, Ch. 7]. In the
present work however, to reduce computational complexity,
we propose judiciously skipping correction updates. The cri-
terion according to which the i-th row of {y,,X,} will be
used to update é,,lm,i_l is based on how much the distribu-

tion p(9n|9n‘n,1, [¥n]1:i) after the update will diverge from
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the posterior p(8,, |é,,‘n_1 ,[yn]1.i-1) before the update. A com-
monly used measure of difference between probability density
functions (pdfs) is the KullbackLeibler (KL) divergence, also
known as relative entropy (see, e.g. [24]). The KL divergence
between two pdfs p(z) and ¢(x) is defined as
_ plx), p(x)
Dk (pllq) : /p(x)ln q(x)dz E, {ln q(m)}

and is not symmetric with respect to its arguments. In fact, one
can interpret p(x) as being the “true” pdf of « while ¢(x) is an
approximate one. Then, D 1, (p||q) is a measure of how far the
approximation is from reality.

Aiming at carrying out only ‘“useful” updates, Dy,
(Pn.illpn.i—1) can be used as an indicator of how informative
the update that involves the i-th row of {y,,, X,, } is, where

Pni (en) = p(en |én\n715 [yn}l:i)
and
Pni—1 (an) = P(9n ‘én\nfh [yn]lzifl)-

Proposition 3: Let observations be generated according to
()—(2) with w,, and v,, Gaussian. Then, for the sequential
estimator in (11)—(14) it holds that

]- 777 i
Dg Npni) == (e, —1) —2—
IsL(pn-,%Han 1) 5 ( n.,i )’Yn,i +U7:2
. o2
1 [ Yn,i 1O
g;

T = -1/2 .
where v, ; ==X, ;P 1%, and €, ; == e, ;s, /" is the
per-entry normalized innovation.

Proof: See Appendix 3. ]

Proposition 3 offers a simple expression of Dy 1. (py, i | [Pn.i—1)
that will come handy in performing informative updates. Con-
sider first the quantities involved in D 1, (py i||pn i—1). namely
the normalized innovation (residual) €, ;, which is a random
variable and -y, ; that is deterministic. Interestingly, v, ; :=
||xn,,;||%,” ., is an ensemble quantity capturing the expected
power of the i-th observation across the main directions of state
uncertainty, while €,, ; is a random data-dependent variable that
measures how important the ¢-th update is for a specific re-
alization of the problem. Depicted in Fig. 2(a) is a simulated
sequence of D 1, (py, ;||pn.i—1) as a function of index i for an
arbitrary time-slot n. Immediately noticeable is that the per-step
divergence decreases with an approximate rate of 1/7 following
the rate of decrease of P,,|,, ;. One may also observe that certain
updates yield higher KL divergence compared to the baseline.
Fast and computationally efficient estimation may be achieved
by isolating and performing only such informative updates.

While Dg, (pn.i|lpn,i—1) offers a measure of difference
between the posteriors prior and after updating, it lacks
symmetry and it is not conveniently interpreted as distance.
Consequently, we considered the modified metric

D(pn,i,Pn.i-1) = Drr(Pn,illPn.i-1) + Drr (Pn.illPn,i-1)
(15)
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Fig.2. Example of (a) KL divergence and (b) symmetric KL divergence evolu-
tion across sequential correction updates. Both metrics converge to 0 following
a o 1/i trend.

also known as the symmetric KL divergence. As seen in
Figs. 2(a) and 2(b), both metrics follow a similar trend and con-
verge to O as the state estimate converges in probability. Never-
theless, D(pn.i, Pn.i—1) enjoys symmetry as well as a more sim-
ple expression which as given in Proposition 4. Subsequently,
the following rule is proposed for selecting informative updates

> Tn,is Update sz\n,ia Pn\n,i

. (16)
Skip updates.

D n,i n.,i—
(Pn.illpn., 1){<TM

Proposition 4: Let observations be generated according to
(1)-(2) with w,, and v,, Gaussian. Then, for the sequential
estimator in (11)—(14) it holds that

1 i)'\
D(pnispni-1) = §ei’i (2%,z‘ + ( (:’Z) ) Sn,li-
(2

Proof: See Appendix 4. |
Using (17), rule (16) can be readily implemented. Regarding
the sequence of thresholds {7, ; }7, a judicious choice is

7)

(18)

Tn,g = Tn—~

1

which promotes updates with large informational value relative

to the stage of the estimation process. The total number of

updates per slot n can be tuned by 7,,. A couple of remarks are
now in order.

Remark 2: KL divergence induced by a measurement was

also employed by [17] to offer an alternative viewpoint
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on a distributed censoring rule for reducing the communi-
cation load in WSNs. Specifically, it was shown that the
KL divergence of p(0, ) with p(@,ly, ;)) as reference (i.e.
D1 (p(6:)]|p(6, |yn.i))) is proportional to the magnitude of
en.i» which implies that the latter is related to the informational
value of a measurement. Apart from the different goals and
context, a major difference of the present section’s contribu-
tion relative to [17] is the explicit calculation, and use of the
(symmetric) KL divergence in the proposed update selection
rule.

Remark 3: Interestingly, our proposed data-driven update
selection using Dk 1, (pn.i||pn.i—1) is also related to OED-type
sensor selection schemes that are based on the mutual informa-
tion between a sensor and the model (e.g., [7]). This relation can
be observed upon recalling that the mutual information I(X;Y")
between two random variables X and Y can be expressed as

I(X;Y) = By [Dk 1 (p(X]Y)][p(X))]. (19)

In the present context, (19) implies that the mutual information
between the i-th “sensor” at time slot n and ,, in a sequential
processing setting, equals its Dy 1, (py, ;||pn,i—1) averaged over
all possible measurements y,, ;.

A. Reduced-Complexity Censoring Rule

In the previous section, an update selection rule was intro-
duced in (16) relying on the information metric in (17). Prac-
tical implementation of (16) requires careful consideration of
the computational complexity needed to obtain D(py, ;, Pni—1)-
As seen in (17), to obtain the latter it suffices to compute e,, ;
and 7, ; (since s,; = Y, + af). While computing e, ; re-
quires only O(p) products, obtaining v, ; := xgvian’i,l Xy i
requires a matrix-vector product that comes with O(p®) com-
plexity. Thus, even though checking whether an update is in-
formative or not has smaller complexity than the update itself
(cf. (11)—=(14)), both tasks are of the same order of O(p*) com-
plexity. Ideally, checking the update should be less costly than
performing the update by an order of magnitude.

For this purpose, a low-complexity approximation of vy, ; is
highly desirable. One way to approximate -, ; is to use the
eigen-decomposition P, ;1 = Vi 1A, ;1 V], | to pro-
duce the best k-rank approximation of P,,,, ;1 as

lf)k

nln,i—1 —

k k
Vn,i—lA

n,i—1

(Ve i)"

where Aﬁ ,_1 1s a k x k diagonal matrix containing the £ < p

largest eigenvalues of P, ;_1, and VE .| isthe p x k matrix
k

of the correspondmg eigenvectors. Using P’ in,i—1 tO approxi-
mate 1, ;, yields
ko Ok ,
gn,i T Xn,iPn\n,iflxnal
_ T vk k T ~7k T
= Xn,zvn,,z—lAn,i—l (Xn,iVn,i—l) (20)

which can be obtained with O(pk) complexity. Although gﬁy,;
exactly captures the power of Xz;,i along the principal directions
of P, i1, it is in general a poor estimate of v, ;. In fact,
ignoring the power of the p — k smallest eigenvalues of P, ,, ;
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leads to under-estimation; that is gF ; <~} ;. To mitigate this
problem, let us denote the power of x,, ; that is not captured by
the first k£ principal directions as
k. 2 T ~k 2
In,i = ||X”L,~i||2 - Hxn,ivn,ifl ||2

Then, if the the remaining power g;"l is distributed evenly along
the p — k directions that correspond to the smallest eigenvalues
of P, |, ;—1, an improved approximation of 'yfl’ FRE

1 p
~k k —k E
,Yn,i = gn:i + o kgn,i [A":ifl]jj
p j=k+1

1 )
= gfz,,i + fgn,lg [tr(Pn\n,i—l) - tr(AfL,i—l)} (21)

p—k

where for the second equality we used that tr(P,, ;1) =
tr(A,p,,i—1). Essentially, by ignoring the angle of x, ; along
the p — k least important directions of uncertainty, an estimate
4k . & v, can be found with O(pk) complexity. Simulations
will demonstrate that for most cases & need not be very large for
the purpose of obtaining a reliable approximation of +, ;, and
thus of the update selection rule in (16).

Finally, let us consider the computational burden of re-
computing the eigen-decomposition of P, ;_; when an up-
date is performed. Fortunately, the decomposition needs only
be fully computed once for P, , o, after the prediction step.
Then, exploiting that P, ;_; is given as a sequence of rank-
one updates of symmetric positive matrices (cf. (14)) allows for
low-complexity O(p?*) updates of the eigen-decompositions, see
e.g. [25] and [26], while the fact that only the first k eigen-pairs
are required can further reduce the complexity of the updates.
The need for tracking the principal eigen-pairs of P, ;_; can
be completely eliminated by setting k£ = 0, which yields the
estimate

. 1
72,71 = EHX"J H%tr(Pn\n,,ifl)

(22)
with O(p) complexity, at the cost of ignoring information given
by the angle of x,, ;. For cases where the eigenvalues of P, ;
are approximately uniform, (22) provides a practical and suf-
ficiently accurate estimate of -, ;. Generally, obtaining (21)
requires O(p(k + 1)) computations. Overall, the complexity of
the correction step using the iterative method in (11)-(14) with
the update selection rule in (16) and the approximation in (21)
is O(dp?) + O(Dp(k + 1)), where d < D is the number of
updates. Depending on the size of p, d and D, the overall com-
plexity of the proposed scheme can be considerably less than
the standard O(Dp?).

B. First-Order Updates

The fact that the update selection rule in (16) requires at least
O(p) computations hints at possible modifications of the present
scheme, that are considered in this section. Specifically, instead
of using (16) to completely skip updates, one may incorporate
a simple O(p) update without noticeably increasing the overall
complexity of the algorithm. For instance, having computed ¢,, ;
which is required in (16), the following LMS-like parameter
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update can readily be implemented

(23)

On\n,i = on\n,z?l + n,iXni€n,i

where 11, ; denotes a user selected stepsize. Given the update in
(23), consider the difference

An (Mn,i) = MSE(gnhLz) - MSE(On\n,ifl) (24)

where MSE(0) := E [||6 — 6,,]3]. Clearly, p,, ; should be cho-
sen such that A, (11, ;) < 0, or, ideally such that A, (x,, ;) is
minimized. But first, it is useful to derive an explicit expression
for A, (,Un,i)-

Proposition 5: For an update of the form (23) that follows
an update of (11)—(14) it holds that

AW (,un,i) = Hxn,ing(%l,i + 012),“72” — 29 il i - (25)

Proof: See Appendix 5. |
To guarantee A, (i, ;) < 0, it suffices to choose (i, ; as

2771, )

0 < ptn;i < (26)
1%n.i I3 (Vi + 0F)
while for
* Yni
Mnn’ = ’ (27)
1%, ||g(77” + 0;'2)
the minimum of A,, (+) is attained
N2

An(ii ) = 7.1 (28)

- ||X711||%(’Yn1 + 01‘2).

Although the LMS-like iteration (23) reduces the MSE by
as much as —A,, (i, ;), updating P, ;_; incurs complexity
O(p?), and it is thus skipped. Skipping covariance updates
for first-order updates is also well motivated by the fact that
—A, (pf ;) is generally significantly smaller than the reduction
achieved by the second-order updates (11)—(14). Nevertheless,
one may in practice use f,; < iy, ;, to compensate for the
(slow) decrease in estimation variance. Finally, while the exact
value of 7, ; is generally not available, y,, ; can be selected after
using the estimate 4;, ; from (21) in (26) or (27). The overall pro-
posed reduced-complexity update-selection (US) KF described
in Section V is tabulated as Algorithm 4.

VI. BUDGETED FIXED-INTERVAL SMOOTHING

The methods introduced in Sections III, IV and V utilize di-
mensionality reduction, measurement selection, and update se-
lection, in order to promote low-complexity correction updates
of the KF. In the present section, we briefly explore another
direction that allows for reliable tracking with smaller data us-
age and computational complexity. Specifically, consider the

) ~KS ~KS
“smoothed” estimate 6, :=E [0, |{y,})_,], and let & ~ be
formed by concatenating all such smoothed estimates. This can

also be written as

~KS )
60 =arg min
N
nin=1

1 N
5 ye = X6
n=1

+ ||0n - Fnen,fl H?Q;l + HOO - mOHQP;l (29)
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Algorithm 4: US-KF.

Algorithm 5: The budgeted Kalman smoother (Bud-KS).

Initialization: 8, = my, Py, = Py
forn=1:Ndo
Prediction Step:
077,\71—1 =F, 077,—1|71,—1 +Guu,
Pn\nfl = FnPnfl\nleg + Qn
Correction Step:
Set parameters: k, 7,
Initialize: on\n 0 — gn\n 17Pn\n,0 = Pn\nfl
Compute F first eigenpairs: {V} ;, AL
fori=1:Ddo '
Obtain 4, ; as in (21)
Obtain D(py, i, Pn.i—1) as in (17)
ifD<pn,i7pn.i71) > Ty /'L then
[b@w{@m“ Mm}%hﬂﬂ)ﬂ@
Update {V, ;, A} ;} of rank-1 update of P, ;
else
Obtain p,, ; by plugging 4, ; in (26) or (27)
Update 6, ; as in (23)
end if
end for
end for

n,i)

which is optimal in the linear minimum mean-square error
(LMMSE) sense.

Aiming at a recursive solver of (29), one can rely on
the Rauch-Tung-Stribel (RTS) forward-backward KS algo-
rithm [27]. In its forward pass, the RTS algorithm is identical
to the KF. The KF estimates {0,1‘71 M_| are then stored and
processed by the backward pass of the KS, while the error co-
variance matrices {P,, MV are computed off-line.

Given én+ 1| » the backward iteration solves

- FNOHQQ;1 + He - 971,\n HQPHH .
(30)
Similar to filtering, the minimizer of (30) is also given in closed

form as

e'rz\N (= arg mgin ||071,+1\N

o -1 o o
On IN — (Fn Qn an + Pn|n) (FZ Q;l 071,-&-1 |N + P;‘ln Hn \7)

After invoking the MIL and letting B,, := P,,,‘”F P! the

n+1[n>
estimate 6,y is given in the correction form of 0,1‘,1 as

én\N = én\n +B, (énJrl\N - Fnén\n) (3D
with corresponding error covariance matrix
Pn\N = Pn\n + B, (PrH—l\N - Pn+1|n) Brj; (32)

A key property of the backward KS iteration, is that it improves
KF performance using from {Z, }._, only the information en-
capsulated in the output 9”\n of the forward filter. Therefore,
backward iterations can be readily applied on filtered estimates
of RP-KF, AC-KF or the US-KF to limit the tracker’s perfor-
mance loss caused by the measurement reduction.

fornA:N—1:Odo
ifo,, € ©2 then

07L|N = 0’/1,|1L
Pn|N = Pn|71,
else

én|N :é |n + B, (én+1\N _F7zén|n)
B, :Pn\nF |

n+1[n
Pn|N = Pn|n + B, (Pn+1|N - Pn-o—l\n) BZ;
end if

end for

In addition, the backward iteration can also be modified to op-
erate within a limited computational budget. Given the smoothed
estimate at time n + 1, let us define the set

b / 2
&NZ{OM&H”N—PMMbEfER} (33)
of states at time n that are consistent enough with the transition
model in the WLS sense. Based on (33), the Bud-KS estimate
at time n is given as

é én\nv én\n € @I’)L
S én\n + B, (énJrl\N - Fnén\n) ) én|n ¢ @I,)L
(34)

s P, ,; while for

Clearly, for Bn‘n € 0% it holds that P,y =

0, & O, the error covariance is given by (32). Essentially,
KS estimates that are consistent enough with the system model
are not smoothed, thus saving the computations required. Here,
the threshold 75, in (33) can be tuned to control the amount of
“acceptable” deviation from the model. The novel economical,
fixed-interval smoother on a budget, that we abbreviate as Bud-
KS, is tabulated as Algorithm 5.

Regarding the computational complexity of Bud-KS, it is
worth noting that implementing the rule (33) in the general case
requires O(p?®) computations in order to invert Q,,. The com-
plexity of Bud-KS updates in (31) and (32) are on the same order
of magnitude. Thus, Bud-KS is preferable when the covariance
matrix of w,, is time-invariant, meaning that Q,, = Q Vn. In
such cases, inversion of Q is performed once offline, thus reduc-
ing complexity in (33) to O(p?); likewise, when Q,, is diagonal.
In such scenarios, an update of O(p?) complexity is skipped at
the cost of an O(p*) complexity rule, leading to computational
savings that become more significant as p increases.

VIL

The novel AC-KF, RP-KF, US-KF and Bud-KS algorithms
are tested here on a simulated linear dynamical system. For
this experiment, a simple state transition model that performs
cyclical shifting of the entries of the state was implemented. The
state transition matrix is

NUMERICAL TESTS

1, i=j—1

Fn,ij {O

otherwise ’



3696

0.55 T T T T
AN = = =Random sampling
05 AN —O—RP-KF J
N ODE (greedy algorithm)
N —©—AC-KF
0.45 - RN —%—US-KF (k=0) J
w 04 1
»n
=
0.35F 4
0.3 1
0.25 1
02 s ‘ ‘ ‘
0.05 0.1 0.15 0.2 0.25
d/D
Fig.3. Average RMSE for the US-KF, AC-KF, Greedy algorithm, RP-KF and

random sampling as a function of d/D.

and Fy, =1, while the state dimension is set to p = 50.
The state noise {w, }\_, was generated i.i.d. with w, ~
N(0,02Q,), where Q,, ;; = 0.577! and ¢,, = 0.01. Finally,
the initial state is 8y ~ N (mg, Py), with my set to have two
non-zero values 20 and —30 in its first and fifth entry, and
Py = 0.041. Per time instant n € {1,..., N} with N = 100,
D = 500 measurements are obtained and concatenated iny,, =
X, 0, + v,, where rows of X, are generated as i.i.d. stan-
dardized Gaussian vectors and then weighted independently
by coefficients o drawn from a ~ Unif{0.5, 1.5}. For this ex-
periment, observations are correlated; thus, v,, ~ A/ (0, 012, R,),
where R, ;; = 0.5/771. For the following experiments, we set
02 =1, upon observing that the results remain qualitatively
similar for different noise levels.

A. AC-KE RP-KF, and US-KF

To determine the average performance in terms of estimation
error and computational complexity of AC-KF and RP-KF for
different values of d/D, 20 Monte Carlo realizations were run
on the same simulated linear dynamical system. The estimation
performance was measured in terms of root mean-square error
(RMSE) of the estimates across iterations; that is,

N
1 ~
RMSE = NZHQMH —0n||§

n=1

AC-KF and US-KF were run first, with thresholds tuned such
that a constant number of approximately d observations were
selected per time slot; RP-KF and the greedy algorithm were
then set to obtain d measurements per time slot. As a perfor-
mance benchmark for the three algorithms, KF was also run
with d randomly sampled observations per time step.

The average RMSE of the five methods as a function of
d/ D is plotted in Fig. 3. These plots confirm that the proposed
data-agnostic RP-KF is useful for increasing the accuracy (com-
pared to plain random sampling) when estimating dynamic pro-
cesses. With regards to the more elaborate algorithms, AC-KF
has comparable performance with the KF using greedy OED
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TABLE II
AVERAGE RUNTIME OF ALGORITHMS FOR D = 1000
d/D 0.05 0.13 0.24
Random sampling | 0.16 sec | 0.31 sec | 0.81 sec
RP-KF 0.26 sec | 0.42 sec 1.3 sec
AC-KF 0.41 sec | 0.51 sec | 1.05 sec
US-KF 0.44 sec | 0.64 sec 1.1 sec
Full-data KF 6.7 sec 6.7 sec 6.7 sec
0.34 T T T T T T T
——— US-KF with k=0
3 - - = - US-KF with k=1 |
0827 9 US-KF with k=3
.\ L US-KF with k=p=10
0.3F
w
Lo2st
4
0.26
0.24

0.22
0.015 0.02 0.025 0.03 0.035 0.04

d/D

0.045 0.05 0.055

Fig. 4. Average RMSE for US-KF for different values of k.

measurement selection, while being orders of magnitude faster
in terms of runtime. Last but not least, the US-KF with k =0
outperforms the other methods while maintaining O(dp?) com-
plexity, even when the observation noise is correlated. Finally,
the experiment was re-run with D = 1000 and for varying d/ D,
with the runtime of the algorithms listed in Table II. The greedy
ODE algorithm is excluded from this experiment since it is an of-
fline benchmark with runtime larger than that of the full-data KF.
In comparison to random sampling, the proposed methods carry
acertain computational overhead which becomes less significant
as d/ D (or D) increases. More importantly, the proposed algo-
rithms enjoy a significantly lower runtime than the full-data KF.

Additional experiments were performed to assess sensitivity
of the US-KF to the choice of parameter k. Recall that &k deter-
mines the accuracy of the approximation of v, ; (cf. (20)-(21)),
and therefore how accurately the update selection rule in (16) is
implemented; at the same time, the computational complexity of
implementing (16) increases with k at arate of O(p(k + 1)). In-
terestingly, experiments indicate that £ < p can be sufficient in
practice, while sensitivity to k only manifests itself for relatively
small values of the compression ratio d/D. As seen in Fig. 4,
RMSE of US-KF with £ = 1is almost as low as the one achieved
with k£ = p, while setting & = 0 still yields reliable estimates,
with the gap becoming smaller as d/D increases. Recall that
using k£ = 0 leads to the simple rule in (22), and bears the addi-
tional advantage that no eigenpairs of P,,,,_; ; need be tracked.

B. Bud-KS

In the last experiment, the extent to which backward smooth-
ing iterations can improve reduced-observation filtering was
examined. The AC-KF algorithm was first run with d/D
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Fig. 5. RMSE of AC-KF versus Bud-KS, as a function of d/D.

ranging from 0.0095 up to 0.65; Bud-KF was then run with 7, =
0 in order to smooth all N filtered estimates. Fig. 5 depicts the
average RMSE of the AC-KF with and without smoothing. Evi-
dently, smoothing can significantly reduce RMSE over the entire
range of dimensionality reduction, while its effect becomes more
prominentas d/ D decreases. Upon examining Fig. 5, the AC-KF
using < 1% of the data followed by Bud-KS, attains the same
RMSE as the AC-KF using 5% of the data; a surprising five-fold
decrease. Thus, at the cost of introducing non-causality (or delay
if a fixed-lag KS is used), smoothing offers room for significant
decrease in the data requirements and complexity of tracking.

VIII. APPLICATION TO MONITORING DYNAMIC GRAPHS

Dynamically evolving graphs offer a promising application
domain for our proposed algorithms. In this context, measure-
ments are obtained from a graph of known and constant topol-
ogy in order to infer a set of hidden time-varying properties.
Specifically, traffic matrix estimation and link cost estimation
are two tasks that involve tracking of large-scale dynamical
processes from linearly obtained observations. To demonstrate
the applicability of US-KF in reducing the complexity of such
tasks, a Kronecker graph G = (V, &) with |V| = 50 vertices
was generated. The adjacency matrix A of a Kronecker graph
can be generated recursively as A = Ap_; ® Aj_1, and is
completely determined by the initiator graph A;. As shown in
[28], Kronecker graphs exhibit many real-word graph proper-
ties such as power-law degree distributions, and are thus highly
recommended for simulating algorithms. For our experiments,
a Kronecker graph was generated with initiator

110
Aj=1]1 11
0 1 1
until 100 nodes become available. Nodes adjacent to all other
nodes were removed in order to decrease the connectivity of the

graph to more realistic levels. The resulting adjacency matrix is
depicted in Fig. 6.
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Fig. 6.

Adjacency matrix of a Kronecker graph with 100 nodes.

A. Traffic Matrix Estimation

Consider the task of measuring the traffic volume at the links
of a network, in order to estimate the volume of origin-to-
destination (OD) flows, a very important task in many networks
ranging from the Internet to transportation. Since OD flows are
defined by a set of origins O C V and a set of destinations
D C V, they can be represented as the entries an |O| x | D] traf-
fic matrix F. Similar to [29], [30] and [31], the following linear
state-transition and observation models is considered

fn =1, 1 +w, (35)
171 = an + Vi (36)
where f,, := vec(F,,) is the vectorized traffic matrix at time slot

n that is assumed to evolve according to a random walk with
driving Gaussian noise w,, with known covariance matrix 0’% Q

such that Q; ; = 0.27I; 1, contains the link measurements at
time slot n; and, v,, is the observation noise with cov(v,,) =
o?I. The choice of a non-diagonal Q, was made to reflect
the fact that flows tend to be highly correlated (see e.g. [2]).
For this experiment, we set oy = 0.02, o = 0.5, and generated
the initial state as f; ~ N(2 -1, Q) In this model, the role of
the measurement matrix is played by the routing matrix R €
{0, 1}/¢1xI0IIP1 " each column of which corresponds to an OD
flow with entries taking the value 1, if the corresponding links are
part of the flow. Simply put, each column of R describes the path
that the corresponding OD flow takes through the graph. For this
experiment, OD paths were chosen to be the shortest possible
using Dijkstra’s algorithm. To make this experiment even more
challenging, flows with paths that consist of a single link were
not considered; flows with no sampled links and irrelevant links
were also removed from the model. Overall, 189 edges were
sampled in order to track 689 OD flows.

Plotted in Fig. 7 is the MSE (E [||£,, — £, ||2]) of the estimated
traffic matrix across time, for the proposed US-KF (Alg. 4),
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Fig. 7. Traffic matrix MSE vs time plot for the proposed Update selection KF
(Alg.4) and the random sampling KF. Both algorithms were tuned to utilize 6%
of edge measurements per time slot.

and the KF with random sampling. The algorithms were run
for N = 100 time slots and the results were averaged across
100 runs. Both algorithms were tuned to utilize 6% of edge
measurements per time slot, and require approximately the same
runtime. As seen in the plot, the estimates £, of the proposed
US-KF converge faster than those of the sub-sampled KF, and
keep a closer track of the true traffic matrix f,,. It should be
noted that, due to the large state dimension, other methods such
as the RP-KF or greedy OED become impractical.

B. Estimation of Link Costs From Path-Cost Measurements

Consider now that every edge e of the graph is associated
with a cost ¢(€), and that the concatenation of all such costs
forms the link cost vector c. A common task associated with
networks is inference of ¢ by measuring path costs p;;, where
pij is the total cost of a flow between nodes v; and v; (see
e.g., [2, Ch. 9.4.1]). Since p;; is the aggregation of all costs of
the edges that the corresponding path crosses, it can be expressed
as the inner product between c and the corresponding row of
the routing matrix. Consequently, path costs and link costs are
linked through the linear observation model p = R” ¢, where
p is the vector with all the available path cost measurements.
Considering dynamic graphs where the link costs c¢,, and path
costs p,, evolve across time slots n, leads to the familiar linear
state-transition and state-observation models

Chp =Cp-1 + Wy (37)

Pn = RTCTL + v (38)

where w ~ N(0,021), v ~ N(0,0°I), and the initial state is
¢y ~ N (m, o21). For this experiment, we used the same graph
and routing matrix as in the traffic estimation experiment, and
generated c,, and p,, according to (37) and (38) correspondingly,
with o, = 0.04,0 = 0.1, m = 1 and oy = 0.1.

Plotted in Fig. 8 is the MSE (E [||c,, — ¢, ||3]) of the estimated
link costs across time, for the proposed US-KF (Alg. 4) and the
KF with random sampling, for N = 100 time slots and averaged
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Fig. 8. Link-cost MSE vs time plot for US-KF (Alg.4) and the random sam-

pling KF. Both algorithms were tuned to utilize 4% of flow measurements per
time slot.

across 100 runs. Both algorithms were tuned to utilize 4% of
path cost measurements per time slot, and require approximately
the same runtime. As seen in the plot, the proposed US-KF suc-
cessfully tracks the slowly evolving link costs by judiciously
selecting and using a small fraction of the available path cost
observations. Furthermore, it can be observed that if the same
fraction (4%) of measurements is selected at random, then the
KEF fails to track the link costs, with its estimate diverging from
the true value as time progresses. The divergence of the KF with
random sampling is consistent with the results in [32], where it
is shown that there exists a cut-off value for the data rate, below
which the error covariance may become unbounded. Interest-
ingly, the proposed reduced-complexity US-KF appears to be
much more robust to divergence; as discussed in the following
remark.

Remark 4: While KF based on random sampling (as well
RP-KF) diverges when the compression ratio d/D becomes
smaller than a certain threshold, this is not the case for the advo-
cated censoring-based alternatives (AC-KF and US-KF) since
diverging estimates prohibit censoring. This becomes evident
upon realizing that a diverging estimate (i.e., |6, — 0, || —
oo) would imply infinitely large innovations that cannot be
smaller than finite thresholds such as the ones used in cen-
soring rules (7) and (16). This in turn implies that if AC-KF and
US-KF were divergent, they would become equivalent to the
full data KF. In a nutshell, if the ordinary KF is not divergent,
the same holds for the proposed AC-KF and US-KF, since the
latter will always obtain sets of observations that guarantee a
bounded tracking error.

IX. CONCLUDING REMARKS

We introduced random projections and censoring as dimen-
sionality reduction and measurement selection methods for
tracking dynamical processes with generally time-varying pa-
rameters. The proposed methods are simple routines that can
be used as dimensionality reduction modules coupled with an
ordinary KF. Furthermore, we introduced a reduced-complexity
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KF that processes measurements sequentially and performs
updates that are deemed informative based on the informa-
tion gain of corresponding measurements. Performance was
not analytically performed, but simulations provide surprisingly
strong evidence that the proposed methods perform close to the
greedy measurement selection method in terms of estimation
error. Furthermore, censoring-based measurement selection en-
joys much lower computational complexity than greedy OED.
To demonstrate applicability of the proposed update selection
approach on real-world problems, we examined the network-
related applications of traffic matrix estimation and network flow
estimation.

APPENDIX

Proof of Proposition 1: Follows readily from [33, Th. 2]. W

Proof of Proposition 2: From the assumption of large and
uncorrelated noise R,, = cr,%I, the inverse reduced innovation
covariance matrix can be approximated as

~o,1

(XnPn\nlez; + Rn)
and hence the correction update as

D
. . y ~
erz,\n = 971\71,—1 +o0, Pn|71,—1 § Xn,iyn,i(]- - Cn,z’)

i=1

(39)

where y,, ; 1= xgl 0, — 9,,,,|",1) + vy, ;. Furthermore, for p =
0 the censoring rulein (8) simplifiestol — ¢, ; = ]l‘{g” iz}
where g, ; ~ N(0,x] Pyj_1,Xni +05). I 971_1‘71_1 is un-
biased, then it readily follows that én‘n,l is also unbiased,
and (39) yields

D
E [én\n - 071] = UEZPn\nfl an,i[ [gn,i(l - Cn,i)]- (40)

i=1

Since

[E [gn,z(l - c’n,i)] = [E l:g7l,i]l‘{ﬂmllz7'71,(frl }:|

- IE [gn7:| o IE I:gn]ll{gru[‘gﬂz ‘771,.11}}
o8 _/ gn,ieic(g”'l)zd(gn,i)
1 > 2
- (efcrﬂ o'f, _ efc(f‘r,, on) ) =0 (41)
2c
where ¢ := 0.5(x] Py j,—1,%,,; +05) ", it follows from (41)
and (40) that E [Onm — 0,] = 0, and the AC-KF is unbiased.
[ ]

Proof of Proposition 3: For observations generated according
to the linear Gaussian model, and since 6,,,, ; is the MMSE

estimator of 8,, given én|n71 and y, 1.;, it follows that the pos-
terior of 8,, is also Gaussian with p,, ;(0,,) = N(, nsi> Prjn.i)-
Similarly, one can obtain p,, ;_1(0,,) = N(énhm_l yPopnio1)-
Using the closed-form identity for the KL divergence between
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two multivariate normal pdfs, we arrive at
1 _
DKL(p’n,,i — ) = 2 (Pn‘n i 1Pn|n.i)
+ (en\n,ifl - 6n|n,i)TP;‘1ﬂ”7‘,_1
X (én\n,ifl - én|nt)
p_t'_ln(ann’ill) :| (42)
|Pn \n.i|

where tr(P) denotes the trace of matrix P and |P| its determi-
nant.
Using (14), the first summand in (42) can be expressed as

1
tr (Pn|n i— 1P77/‘”773>

_ -1
=tr (I — Xn,iX, 7Pn|n,.i—13n,i)

=p—- X Pn\n i—1Xn.,iSy 11 (43)

Upon observing that for the RLS-like iteration in (11) the
inverse of the covariance matrix is updated as

P—l _ P—l

nin,i nin,i—

L+ XX o (44)

the fourth summand in (42) can be expressed as

ln<|P|)f7;:|7:Z|l|) In (|P,j,,i-1) +1In <|PMM|)
ln( nlnie 1)

+1n( X 72|>
=In (|Pn‘nz 1)

+1n( e 1+x7,7x£1072|>
=In (|Pypi-1])

+ln( ‘nl 1| 1—|—x P 1X0,0; 2))
(1—|—x P 1%0.,i0; 2)

=In(sn;) — In(07)

where in the first equality we used the fact that |P~
and in the fourth one we applied the matrix determinant lemma
for rank-one updates.
Finally, since 9n i1
summand in (42) becomes

(45)

B On\n,z‘ = -k, ;e, i, the second

Ouni 1t =0 ) Pyl Onni1 = Onpni)
= (kyieni) P, |1n 1 Knien,i
=e) Xp i Popis1Xnis,5.  (46)
Substituting (43)—(46) into (42) and with 7, ; =

xI iPun,i—1Xn.i, we arrive at the result of Proposition 3. W

Proof of Proposition 4: By the definition of D(py, ;, pni—1) in
(15) and expressing Dy 1, (P i—1||pn.; ) using arguments similar
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to (43) and (45), it follows that
1 - ~

D(pn,i:pmifl) = 5(071\71,2'71 - Bn\n,i)T
-1 1
X (Pn|n¢i—1 + Pn\n,i)
X (én\n,ifl - én\n,z) (47)

Utilizing (44) and that 8,,,, ; | — 0,},,.; =

1
D(pn,iapn,ifl) = §ei,ikz;,i

—kn i€nli ylelds

X <2P;1/1 i—

T _—2
1 + Xn,ixnﬂjgi ) kn,z’

1¢€?

o n,i T )
- 582 ] (Xn,iPnn,ilxn,z
n,i

r 2 -2
+ (Xn‘,iPn\n,iflxnﬁi) g; )

i =xI 5 . ~1/2
and since Tnyi = Xn_,q',Pn‘n,Z-*an,i and €n,i = €n,iS, ; the
proposition holds. -

Proof of Proposition 5: Recalling that e, ; ==y, —
xg’ﬂ”'m—l and yn ; = Xz;,ien + vy i, (23) yields

- 9”)

_ T (g
an\n,i - 6n|n,i71 - Mnﬁixn,ixn,q‘,(en\n,ifl
+ Hon i X i Un i (48)

With éw = én‘n,i — 0,, denoting the error vector, (48) can be
expressed as

én,i = (Ip - ,Un,i,xn.,ixg;,i) én,i—l + n,iXn iV, (49)

The outer product of both sides in (49) yields

~ ~T ~
T
Oﬂlen,z - (Ip - ,Uln,ixn,ixn,j) On.ifl

~T T
X 071,,1'—1 (Ip - Nn,ixn,ixmi)

+ 2 (Ip - ﬂln.ixn,ixz;i) én,iflﬂn‘ixgﬂjvn,i
+ (/‘n,i)QXn,iXZ.i (Vn.,i)2~ (50)

Since én |n,i—1 is unbiased, it follows that 9,,,‘,17,; is unbiased too,
and therefore the MSE equals the trace of the covariance matrix.
Since the expected value of the second summand in (50) is zero,
the trace of the expectation in (50) yields

= 2
tr (Pn|n,i) =tr ((Ip - /J/n,ixn,ixgvi) Pn\n,ifl)
+ Mi.iHXn,iH%U?
=tr (Pnln-,ifl) + M?Lyitr ((wag,iypn\n,iq)

— 2pp itr (Xn,ng;?iPn\n,ifl) + ﬂ%z,i”xﬂ,ngo'iQ'

(51

where I—’n|m; is the covariance matrix after the first-order up-
datein (23). Given that A, (ft,;) := tr(Pyn i) — tr(Ppjni-1),
and upon observing that tr(x, x} ;P i-1) =7 and

tr((xn7ixg’i)2Pn|7I,7,¢_1) = ||%n.i||37.i» the proof is complete
after using (51). [ |
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