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Abstract—Linear structural equation models (SEMs) have
been very successful in identifying the topology of complex
graphs, such as those representing social and brain networks.
In many cases however, the presence of highly correlated nodes
hinders performance of the available SEM estimators that rely
on the least-absolute shrinkage and selection operator (LASSO).
To this end, an elastic net based SEM is put forth, to infer
causal relations between nodes belonging to networks, in the
presence of highly correlated data. An efficient algorithm based
on the alternating direction method of multipliers (ADMM) is
developed, and preliminary tests on synthetic as well as real
data demonstrate the effectiveness of the proposed approach.

Index Terms—Networks, Topology inference, Structural Equa-
tion Models, Elastic Net

I. INTRODUCTION

Networks have ubiquitous presence in a plethora of disci-

plines such as sociology, communications and machine learn-

ing among others, where their ability to model a multitude of

complex systems [18] has rendered them indispensable. These

complex systems may include naturally emerging networks,

such as social and communication or power networks, or

model-induced ones, employed to simplify the representation

of a system, such as brain networks [22]. Given a graph

representation of a network, various tools from graph theory

and network science [18] can be employed to draw inferences

from nodal variable dependencies. Examples of such infer-

ences include behavioral prediction of complex systems [13],

and detection of communities over social or brain graphs [4],

among others. In addition, many machine learning [2] and

signal processing [23] tasks can be performed over a graph.

All these tasks, however, presume knowledge of the network

graph representation. While this information may be naturally

available in some networks, such as power or communication

networks, in many cases, such as brain networks, it has to be

inferred.

Network topology inference aims to discover the (typically

sparse) connectivity between nodes, given only nodal mea-

surements, and thus has practical implications in a multitude

of settings. Examples of such applications include discovery

of causal links between brain regions, or identifying how

contagions spread [1].

Prior works. Several approaches have been proposed for

inferring the topology of networks. Probabilistic models rely
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on maximum likelihood estimation to obtain edge weights [8],

[17], [19]. Structural equation models (SEMs) are simple

yet capable of capturing causal relationships [11]. The basic

premise of a SEM is that a node measurement depends linearly

on those of its neighbors, plus possibly an additive exogenous

input. Linear SEMs have wide applicability in fields as diverse

as sociology [7], psychometrics [16] and genetics [3], and have

recently been employed to track dynamic topologies of social

networks [1], by leveraging the typically sparse connectivity of

a network. In addition, nonlinear SEMs have been advocated

to model nonlinear phenomena [9], [12], [14], and also for cap-

turing nonlinear connectivity between pairs of nodes [20], [21].

All aforementioned approaches, however, employ LASSO [10]

type solvers, which tend to ignore multiple edges that arise

when data are highly correlated.

The aim of the present work is to introduce a novel method

that enables topology inference of networks by employing an

elastic net [24] solver, that performs well even in scenarios

where some of the data are highly correlated. In addition, even

when data are not highly correlated, the proposed elastic net

SEM performs at least as well as the regular LASSO solver.

Notation. Boldface uppercase (lowercase) letters indicate ma-

trices (column vectors). The vector containing the diagonal el-

ements of a matrix is denoted by diag(·), while 0 and 1 denote

the all-zeros and all-ones vectors, respectively. Calligraphic

uppercase letters denote sets, and |A| represents the cardinality

of A. Operators ‖ · ‖2 and ‖ · ‖1 stand for the L2- and L1-

norms of a vector, respectively, (·)� denotes vector and matrix

transposition, and tr(·) denotes the trace of a matrix. The

matrix operator ‖·‖0 denotes the number of nonzero entries of

its argument, while Bdiag{X,Y,Z} denotes a block-diagonal

matrix, with the matrices X,Y and Z in its diagonal.

II. NETWORK MODEL AND PROBLEM STATEMENT

Consider a network consisting of N nodes be modeled as

a graph G(V , E), where V is the set of vertices/nodes, with

|V| = N , and E is the set of edges between nodes. This graph

can be further described using a binary N × N adjacency

matrix A whose (i, j)-th entry is given by

αij

{

�= 0 if (i, j) ∈ E

= 0 otherwise;
(1)

hence, αij is nonzero if there exists a directed edge between

nodes i and j. Accordingly, weights assigned to edges can be

captured by an N ×N matrix W.
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Fig. 1. Example of possible network topology and its connection with
structural equation models [20].

Consider now a process observed over the entire network,

with yim denoting the m-th observation at node i. A linear

SEM [1], [3] obeys the relationship

yim =
∑

j �=i

αijyjm + biixim + εim (2)

where the m-th observation at node i depends linearly on

the corresponding endogenous observations of the neighboring

nodes of i, with the addition of a possible exogenous variable

xim. Here, εim captures unmodeled dynamics, such as noise.

An example of such a model is shown in Fig. 1.

Upon defining the M × 1 vectors yi := [yi1, . . . , yiM ]�,

xi := [xi1, . . . , xiM ]�, the N × 1 vector b =
[b11, b22, . . . , bNN ]�, and the M × N matrices Y :=
[y1, . . . ,yN ], X := [x1, . . . ,xN ], (2) can be cast into matrix

form

Y = YA+XB+E (3)

where B is an N ×N diagonal matrix with b as its diagonal,

and E collects all the noise variables.

Given nodal measurements across the entire network, Y,

and exogenous inputs X the task of topology inference is

to find the unknown adjacency matrix A of the underlying

network. Note that typical connectivity of real-world networks

is sparse, as nodes usually connect to few other nodes, thus

the adjacency matrix A is expected to be sparse.

III. TOPOLOGY INFERENCE ALGORITHM

Having established the network model, we next consider

estimating the wanted adjacency matrices in the noisy SEM

of (3). In order to estimate the unknowns in (3), or (2),

the following sparsity promoting optimization problem is

proposed:

min
A,B

1

2
‖Y −YA−XB‖2F + λ1‖A‖1 +

λ2

2
‖A‖2F

subject to diag(A) = 0

(4)

where the constraint diag(A) = 0 ensures that there are no

self-loops, λ1 and λ2 are regularization scalars for the L1

and Frobenius norms, and ‖ · ‖1 denotes the L1-norm of the

vectorized matrix. Also, note that the objective function in

(4) is convex. The following proposition justifies the use of

the elastic net penalty, the weighted sum of L1 and L2 norms,

instead of just using the sparsity promoting L1 norm, typically

employed in LASSO.

Proposition 1 ( [24]). Suppose that the nodal measurements

{yi} have unit norm. Let a∗ := [a∗
1
, . . . , a∗N ]� be the optimal

solution to the following optimization problem

f(a) =
1

2
‖z −Ya‖2

2
+ λ1‖a‖1 +

λ2

2
‖a‖2

2
(5)

and suppose a∗i a
∗
j > 0. With ψij := y�

i yj it then holds that

|a∗i − a∗j | ≤

√

2(1− ψij)

λ2

‖z‖2 (6)

Proof: Since a∗ is the minimizer of (5) it holds that

f(a∗) ≤ f(0) ⇒ ‖z −Ya∗‖2 ≤ ‖z‖2. (7)

In addition the gradient of f at a∗ will vanish, that is

−Y
� (z −Ya∗) + λ1∂‖a

∗‖1 + λ2a
∗ = 0. (8)

Now consider the i-th and j-th rows of (8)

−y�
i (z −Ya∗) + λ1sign(a∗i ) + λ2a

∗
i = 0 (9)

−y�
j (z −Ya∗) + λ1sign(a∗j ) + λ2a

∗
j = 0. (10)

Subtracting (10) from (9) yields

λ2(a
∗
i − a∗j ) = (yi − yj)

�
(z −Ya∗) (11)

Taking the norm of both sides and invoking the Cauchy-

Schwarz inequality

|a∗i − a∗j | ≤

√

2(1− ψij)

λ2

‖z −Ya∗‖2 ≤

√

2(1− ψij)

λ2

‖z‖2

(12)

where the last inequality follows from (7).

Proposition 1 suggests that when two nodal measurements

are highly correlated, the elastic net solver will likely have

these two nodes connected to the same set of other nodes.

This is in contrast to LASSO [10] solvers for (3), where in the

presence of highly correlated data, the L1 norm regularization

promotes only one connection.

Note that if λ2 = 0 then (4) reduces to the SEM obtained

via LASSO [1]. In order to solve (4), the alternating direc-

tion method of multipliers (ADMM [6]) will be employed.

Consider the auxiliary variables C and D, and re-write (4) as

min
A,C,B,D

1

2
‖Y −YA−XB‖2F + λ1‖C‖1 +

λ2

2
‖A‖2F

subject to diag(C) = 0, A = C, B = D (13)

Note that, here D is a diagonal matrix. The augmented

Lagrangian of (13) is then

L =
1

2
‖Y −YA−XB‖2F + λ1‖C‖1 +

λ2

2
‖A‖2F+

tr
(

U
�
1
(A−C+ diag(C))

)

+
ρ

2
‖A−C+ diag(C)‖2F+

tr(U�
2
(B−D)) +

ρ

2
‖B−D‖2F (14)
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Algorithm 1 Elastic Net SEM Topology Inference

Input: Nodal measurements Y; Exogenous inputs X; param-

eters {λ1, λ2, ρ}
Output: Estimate of network adjacency matrix A

1: Initialize all variables to 0.

2: while Not converged do

3: Update A using (15).

4: Update B using (16).

5: Update auxiliary variable C using (17).

6: Update auxiliary variable D using (19).

7: Update Lagrange multipliers using (20)

8: end while

where U1 and U2 denote Lagrange multipliers, while ρ is a

positive scalar. Henceforth, matrix superscripts denote ADMM

iteration indices. The update for A can be obtained by taking

the derivative of L with respect to (w.r.t.) A and equating it

to zero

∂L

∂A
= 0 ⇒ (15)

(KY + (λ2 + ρ)I)Ai = KY −KY,XB−U
i−1

1
+ ρCi−1.

Here I is the identity matrix of appropriate dimension, and

KY,X denotes the inner product matrix between the columns

of Y and X, that is KY,X := Y
�
X. Also, let by definition

KY := KY,Y . The update for B can be obtained in a similar

manner

∂L

∂B
= 0 ⇒ (16)

(KX + ρI)Bi = KX,Y (I−A
i)−U

i−1

2
+ ρDi−1.

Accordingly, the update for the C is given by

J = Tλ1/ρ

(

A
i +

1

ρ
U

i−1

1

)

⇒

C
i = J− diag(J)

(17)

where Tκ(·) denotes the elementwise soft-thresholding opera-

tor defined as

Tκ(x) :=

⎧

⎪

⎨

⎪

⎩

x− κ , x > κ

0 , |x| ≤ κ

x+ κ , x < −κ.

(18)

The diagonal entries of D are updated as follows

d =
1

ρ
diag(Ui−1

2
) + diag(Bi) ⇒

D
i =

⎡

⎢

⎢

⎢

⎣

d1
d2

. . .

dN

⎤

⎥

⎥

⎥

⎦

(19)

where dk is the k-th entry of d. Finally, the Lagrange multi-

pliers are updated as

U
i
1
= U

i−1

1
+ ρ

(

A
i −C

i
)

U
i
2
= U

i−1

2
+ ρ

(

B
i −D

i
)

.
(20)

The steps of our topology inference algorithm are listed in

Alg. 1. Since (4) is convex, this ADMM procedure will con-

verge in a finite number of iterations. The update complexity

of A and B is O(N3), while the update complexity of the

auxiliary variables C and D is O(N2) and O(N) respec-

tively. This brings the overall complexity of the algorithm to

O(I(N3 + N2 + N)), where I is the number of required

ADMM iterations until convergence.

Remark 1. The proposed ADMM solver for the Elastic Net

SEM, can also solve LASSO SEM’s by setting λ2 = 0.

Remark 2. All the variable updates are separable per node,

i.e. each column of A can be updated separately, which lends it

self naturally to a distributed implementation of the algorithm;

see also [6].

Remark 3. The present topology identification approach can

be extended to cope with dynamically changing networks, by

employing an exponentially weighted least-squares cost in (4),

along the lines of [1].

IV. NUMERICAL TESTS

The proposed scheme is validated in this section using

synthetic and real data. In all tests Elastic Net SEM is

compared to LASSO SEM [1], both implemented using the

ADMM algorithm outlined in Section III. An edge is declared

present if α̂ij ≥ 10−1. Given the support S of the ground truth

adjacency matrix A with entries

[S]ij =

{

1, if aij �= 0

0, otherwise

and the support Ŝ of estimated adjacency matrix Â with

entries,

[Ŝ]ij =

{

1, if âij ≥ 10−1

0, otherwise

the metric evaluated is the edge identification error rate (EIER)

given by

EIER =
‖S− Ŝ‖0
N(N − 1)

× 100%.

The software employed to conduct all experiments is MAT-

LAB [15]. All results represent averages over 10 independent

Monte Carlo runs. In all experiments the ADMM parameter

ρ is set to 10.

A. Synthetic data

A synthetic network with L = 4 non-overlapping commu-

nities and N =
∑L

�=1
N� is generated. Here, N� denotes

the number of nodes in the 	-th community, which were

set as N� = {4, 8, 16, 32}. The connectivity pattern in each

community is generated based on the following seed matrix

S0 =

⎡

⎢

⎢

⎣

0 1 0 0
1 0 1 0
1 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

. (21)
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The adjacency matrix in each community is generated as

[A�]ij ∼ Bernoulli(0.9[S�]ij), where S� = S0 ⊗ 1�×1, and ⊗
denotes the Kronecker product. The overall adjacency matrix

of the network is then defined as A = Bdiag{A1, . . . ,AL},

while the matrix of exogenous effects is set as B = I. The

number of observations per node is M = 54. For the nodes

in each community, the N� × M exogenous variable matrix

X� was generated as X� = X̄� ⊗ 1�×1, with each entry

of X̄� drawn from a standardized normal distribution. The

exogenous variable matrix for the entire network is formed

as X = [X�
1
, . . . ,X�

L ]
�. Setting σε = 0.01, noise terms

were sampled independently as εit ∼ N (0, σ2

ε ). Finally, the

measurement matrices were generated based on the linear

SEM of (3) as Y = (I−A)−1(BX+E).
The Elastic Net SEM parameters are λ1 = 0.005, λ2 = 0.1,

while for LASSO SEM λ = 0.005. Fig. 2a shows the heatmap

of the ground truth adjacency matrix A for one instance of

this network. For the same instance, Figs. 2b and 2c depict the

estimated adjacency matrices for Elastic Net SEM and LASSO

SEM, respectively. Results for this network are listed in Tab. I.

Clearly, Elastic Net SEM is able to identify more edges in this

scenario, while LASSO SEM performs worse. As the data are

generated to be highly correlated, this experiment showcases

the shortcomings of the LASSO solver for SEM [1] compared

to the Elastic Net. Indeed, LASSO SEM tends to ignore many

edges that correspond to highly correlated data.

Algorithm Average EIER

Elastic Net SEM 5.3056

SEM 9.0833

TABLE I
AVERAGE NUMBER OF MISIDENTIFIED EDGES FOR ELASTIC NET SEM

AND SEM FOR A SYNTHETIC NETWORK.

B. Real data

Further tests were conducted based on real gene regulatory

network data [3]. Nodes in this networks represent 39 immune-

related genes, while the measurements consist of gene expres-

sion data from 69 unrelated Nigerian individuals [5]. The gene

expression levels were treated as endogenous inputs, while

genotypes of the genes involved were considered as the ex-

ogenous inputs. Note that, in this scenario, there is no ground-

truth adjacency matrix, thus only Elastic Net SEM and LASSO

SEM are compared. Fig. 3 shows the results for this dataset.

The parameters for this experiment were λ1 = 600, λ2 = 600
for Elastic Net SEM, and λ = 600 for LASSO SEM. While

both algorithms provide similar adjacency matrices, note that

Elastic Net SEM is able to identify two more edges than SEM.

This could possibly facilitate the discovery of novel causal

patterns, that may not be captured by LASSO-based SEM.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach for network topol-

ogy inference, termed Elastic Net SEM, which is based on lin-

ear structural equation models. The proposed method exploits
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(a) Ground truth super-adjacency
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using Elastic Net SEM
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(c) Estimated super-adjacency matrix
using SEM

Fig. 2. Heatmaps of adjacency matrices for a 4-community synthetic network.
White (black) squares indicate the presence (absence) of an edge.
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(a) Estimated adjacency matrix using
Elastic Net SEM
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(b) Estimated adjacency matrix us-
ing SEM

Fig. 3. Heatmaps of adjacency matrices for the gene regulatory network,
with N = 39 nodes in total. White (black) squares indicate the presence
(absence) of an edge.

the sparse connectivity of the network, through the elastic

net, to identify possible directed edges, even in the presence

of highly correlated data, a scenario where LASSO typically

fails. Elastic Net SEM was efficiently implemented using an

ADMM algorithm and preliminary tests on synthetic and real

data showcase promising results compared to the LASSO-

based SEM. Future research will focus on extensive numerical

tests with real datasets, extensions to multi-layer networks,

as well as distributed implementations and corresponding

identifiability analysis.
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