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Abstract—The task of community detection over complex
networks is of paramount importance in a multitude of ap-
plications. The present work puts forward a top-to-bottom
community identification approach, termed DC-EgoTen, in which
an egonet-tensor (EgoTen) based algorithm is developed in a
divide-and-conquer (DC) fashion for breaking the network into
smaller subgraphs, out of which the underlying communities
progressively emerge. In particular, each step of DC-EgoTen
forms a multi-dimensional egonet-based representation of the
graph, whose induced structure enables casting the task of
overlapping community identification as a constrained PARAFAC
decomposition. Thanks to the higher representational capacity of
tensors, the novel egonet-based representation improves the qual-
ity of detected communities by capturing multi-hop connectivity
patterns of the network. In addition, the top-to-bottom approach
ensures successive refinement of identified communities, so that
the desired resolution is achieved. Synthetic as well as real-world
tests corroborate the effectiveness of DC-EgoTen.

Index Terms—Community detection, overlapping communities,
egonet subgraphs, tensor decomposition, constrained PARAFAC.

I. INTRODUCTION

Real-world networks often exhibit distinct characteristics,

such as power-law degree distribution, the small-world phe-

nomena, and the presence of densely connected sub-graphs,

also referred to as “communities” or “clusters” [1]. Focusing

on the last, strong connectivity of a subset of nodes along

with their sparse interactions with the rest of the network

is indicative of a “real-world association” among the par-

ticipating nodes. The task of community detection targets

the discovery of such communities, whose identification is

of great importance in diverse fields ranging from gene-

regulatory networks [2], to brain functionality [3], and social-

media evolution analysis [4], [5], to name a few.

Past works on community detection include those based

on generative and statistical models [6]–[8], modularity and

related local-metric optimization [9]–[11], spectral clustering

[12], and matrix factorization approaches [3], [13]–[17]; see

also [1] and [18] for comprehensive overviews. However, most

existing works pursue a bottom-up approach, where small

collections of nodes with strong connectivity patterns (e.g.,

cliques) are selected as “seeds,” and larger communities are
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“grown” around them by merging other (clusters of) nodes [9],

[19]. In contrast, another class of algorithms follows a top-

to-bottom perspective, where a graph is progressively broken

into smaller pieces, out of which communities eventually

emerge [20]–[22].

Recent exploratory studies have revealed new challenges

over contemporary networks, addressing the presence of over-

lapping communities [23]–[25], multimodal interaction of

nodes over multiview networks [26], [27], exploitation of

nodal and edge-related side-information [28], as well as dy-

namic interactions within a network [29], [30]. In tackling

these challenges, tensors as multi-modal structures offer in-

creased representational capacity, which translates to improved

performance [26], [27], [29], [31]–[34].

In this work, we develop a novel top-to-bottom commu-

nity detection approach, termed “divide-and-concur EgoTen”

(DC-EgoTen), which relies on a successive application of

“EgoTen”, a tensor-based toolbox for intermediate steps of

community identification. Our core algorithm EgoTen builds

on a novel multi-dimensional representation of a network,

whose ability in capturing multi-hop connectivities is partic-

ularly appealing when communities are overlapping as well

as highly-mixing. The proposed tensor-based approach views

a network as a union of its egonets, where each egonet is

the subgraph induced by a node, its immediate neighbors, and

their connections [35]. The resultant three-way tensor is thus

built by concatenation of egonet adjacency matrices as frontal

slabs. The tensor’s constrained decomposition lends itself to an

algorithm revealing communities though the trilinear decom-

position factors. A desirable characteristic of this algorithm is

its ability to trade off flexibility for increased redundancy and

memory costs. Nevertheless, the resulting tensor is extremely

sparse, and off-the-shelf tools for sparse tensor computations

can be readily utilized; see e.g., [36]–[38].

The upshot of our novel framework is three-fold: i) the

performance of community detection in complex networks

improves markedly thanks to the rich structure of tensors; ii)

construction of the egonet-tensor via parallel implementation

and exploitation of sparsity endow the algorithm with scal-

ability; and, iii) the proposed top-to-bottom approach offers

communities with the desired resolution. In fact, many of the

previously developed algorithms are susceptible to “resolution
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limit” [39], where identification of very large communities

reveals little information on the underlying graph structure.

The rest of the paper is organized as follows. Section II

introduces DC-EgoTen, and Section III presents EgoTen as the

core tensor-based community detection approach along with its

solver. Extraction of communities and performance metrics are

the subjects of Section IV, while Section V presents numerical

tests, and Section VI concludes the paper.

Notation. Lower- (upper-) case boldface letters denote col-

umn vectors (matrices), and underlined upper-case boldface

letters stand for tensor structures. Calligraphic symbols are

reserved for sets, while T stands for transposition. Symbols

◦ and ⊗ are reserved for outer- and Kronecker-product,

respectively, while Tr{X} denotes the trace of matrix X.

II. PRELIMINARIES AND THE TOP-DOWN APPROACH

Given a network of N vertices (or nodes) v ∈ V where

|V| = N , and their edgeset E , community detection aims at

finding subsets of nodes, a.k.a. clusters or communities, for

which resident nodes demonstrate dense intra-community con-

nections while distinct communities are sparsely connected. A

cover is defined as the set of such communities, with “desirable

covers” exhibiting certain characteristics, namely: i) con-

stituent communities should include dense intra-connections

and sparse inter-connections; ii) communities of very large

sizes are not appealing as they bear little information on the

underlying structure of the network; and, iii) the union of the

identified communities should cover the entire graph, leaving

few or no “homeless” nodes, not assigned to any community.

The proposed method, called “DC-EgoTen,” relies on the

construction of an egonet-based multi-dimensional representa-

tion of the network. It utilizes “EgoTen” to solve a sequence

of nonnegative tensor decomposition subproblems, and pro-

gressively unveils the identified communities over the graph.

Let us treat EgoTen as a black-box module in this section,

postponing its detailed explanation to Section III, and further

delineate the overall algorithm here.

In particular, DC-EgoTen takes a top-down approach for

the overall task of community identification. To this end,

“EgoTen” is initially applied over the entire network to provide

an assignment of nodes to a few “coarse” communities. Each

of the detected communities is in fact a subset of nodes,

inducing a subgraph in the overall graph. Thus, the identified

“coarse” communities are further amenable to a subsequent

application of EgoTen for unraveling a more refined commu-

nity structure. This procedure can be applied consecutively

for a number of times over each of the detected communities,

creating a tree of communities, until the desired resolution,

i.e., maximum acceptable community size, is achieved for all

detected communities (at the leaves of the tree). In Section

III, the proposed egonet-based multi-dimensional graph repre-

sentation is introduced, and “EgoTen” as our core toolbox for

community detection is detailed.

Fig. 1: Construction of the three-way egonet-tensor.

Algorithm 1 Egonet-tensor construction

procedure EGONET-TENSOR CONSTRUCTION(V,W)

for n ∈ V do

N (n) := {v ∈ V|wnv �= 0}

W
n ← subgraph

(
{n} ∪ N (n),W

)

W:,:,n = W
(n)

end for

end procedure

return W

III. EGONET-TENSOR CONSTRUCTION AND CONSTRAINED

DECOMPOSITION

Given graph G = (V, E), the binary adjacency matrix

W ∈ R
N×N is constructed by setting the (i, j)-th entry as

wij = 1 if (i, j) ∈ E , and wij = 0, otherwise. Furthermore, the

egonet of node n is defined as the subgraph induced by node

n, its one-hop neighbors denoted by N (n), and all their con-

nections [35]. Thus, the egonet of node n can be conveniently

represented by the induced subgraph G(n) := (V, E(n)), where

E(n) is the edge set of the links in between nodes {n}∪N (n).
Subsequently, the egonet adjacency matrix W

(n) ∈ R
N×N is

defined as

w
(n)
ij :=

{
wij if (i, j) ∈ E(n)

0 otherwise.

Typically, the center node n is excluded from G(n), but it is

included here for convenience.

Let us now consider a three-way egonet-tensor W ∈
R

N×N×N constructed by contanetating egonet adjacency ma-

trices W
(n) for all nodes n ∈ V in the frontal slabs of W. In

tensor parlance, that is tantamount to setting the n-th frontal

slab of W as W:,:,n := W
(n), where : is a free index that

spans its range.

The advantage of representing a graph via its egonet-tensor

is due to the fact that tensors as multi-way data structures

are capable of capturing higher-order connectivities, namely

two-hop links among neighboring nodes. Thus, in networks

where overlapping as well as highly-mixed communities ren-

der the task of community detection very challenging, egonet-

tensors provide a rich representation of the graph, which will

be leveraged in the upcoming algorithm. The egonet-based

representation is also of interest particularly in the absence of

extra nodal features, as the enhanced representation is a result

of careful exploitation of the adjacency matrix where no other

source of information is provided.
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(a) (b)

(c)

Fig. 2: (a) A toy network with 5 non-overlapping communi-

ties; (b) corresponding egonet-tensor; and (c) its community-

revealing factorization via PARAFAC decomposition.

Fig. 1 illustrates the egonet-tensor construction procedure,

while Algorithm 1 provides its pseudocode. In the ensuing

subsection we cast the task of community detection as a

constrained tensor decomposition over the egonet-tensor W,

elaborate on the intuition behind the proposed approach, and

introduce EgoTen as its efficient solver.

A. EgoTen: A Constrained Tensor Decomposition Approach

In order to gain insights into the properties of the introduced

egonet-tensor, consider the toy network whose connectivity

is depicted in Figure 2a. The network under consideration

comprises five communities with dense intra-community and

fewer inter-community connections. Upon constructing the

egonet-tensor and after permutation (so that resident nodes

are indexed right after one another), it becomes evident that

the egonet-tensor demonstrates a block structure; see Fig. 2b.

In particular, dense diagonal blocks in the tensor capture the

dense intra-community links, while spare off-diagonal entries

represent inter-community connections.

Had the communities been complete sub-graphs, each block

would have been an all-one three-way tensor (considering non-

zero diagonal entries provided by self-loops), which could

have been readily decomposed into the outer product of three

all-one vectors (each of the size of the community); that is,

1p×p×p = 1p×1 ◦ 1p×1 ◦ 1p×1, where p is the size of the

community. Moreover, had the communities been disjoint, that

is if no inter-community links were present, the egonet-tensor

could have been readily written as the summation of five

tensors, each of whom can be effectively approximated by

the outer-product of three vectors; see Fig. 2c.

Such decomposition is indeed reminiscent of the well-

known canonical polyadic decomposition (CPD) [36] also

known as PARAFAC, where the number of terms, i.e., the

rank of the decomposition, reveals the number of communities.

Prompted by this observation, let us introduce the constrained

nonnegative PARAFAC over the egonet adjacency tensor W

as

{Â, B̂, Ĉ} = arg min
A,B,C

{
‖W −

∑K
k=1 ak ◦ bk ◦ ck‖

2
F

+λ(‖A‖2F + ‖B‖2F )
}

(1)

s.t. A ≥ 0,B ≥ 0,C ≥ 0
∑K

k=1 cnk = 1 ∀n = 1, 2, ..., N

The first term in the objective is the original Frobenious term

in the well-known PARAFAC, through which minimization

of the mismatch between the multi-way data structure W

and its approximation is achieved. Furthermore, nonnegativity

of the egonet-tensor is effected through additional constraints

over the factors A := [a1, . . . ,aK ], B := [b1, . . . ,bK ] and

C := [c1, . . . , cK ]. Regarding the simplex constraints on the

rows of matrix C, let us now focus on the n-th frontal slab

of the egonet-tensor. One can readily show that the tensor

approximation gives rise to following decomposition

W
(n) �

K∑

k=1

cnk(ak ◦ bk) (2)

where cnk denotes the (n, k)-th entry of factor C. As stated

earlier, parameter K is referred to as the rank of the decompo-

sition, and in this application reveals the number of identified

communities. Thus, such decomposition can be interpreted

as a weighted sum over K “basis” {ak ◦ bk}
K
k=1, where

(ak ◦bk) captures the “connectivity structure” within the k-th

community. Consequently, cnk can be viewed as association

level of node n to community k. Thus, the simplex constraint

over the rows of matrix C readily guarantees a normalized

association vector for every node in the graph to the identified

K communities. Finally, the Frobenious regularizers over

factors A and B simply resolve the scaling ambiguity between

the two factors, and is different from [40].

The overall optimization in (1) is a trilinear block-convex

problem [41], whose solver is detailed in the following sub-

section.

B. Constrained PARAFAC Solver

Exploiting the block-convex structure of the constrained

PARAFAC in (1), the optimization can be solved by alternating

minimization, where each of A,B,C is optimized respectively

by fixing the other two at their current values. Factors are

repeatedly updated until a stopping criterion or a maximum

number of iterations is achieved. Considering iteration i,
factors are updated as follows.
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1) Factor A update: Fixing factors B
(i−1) and C

(i−1) at

their current values, the update of factor A is obtained by the

corresponding subproblem, which after algebraic manipulation

can be readily rewritten as a regularized nonnegative least-

squares (LS) minimization as

A
(i) = arg min

A≥0

‖W1 −H
(i)
A A

�‖2F + λ‖A‖2F (3)

where W1 := [vec(W1,:,:), . . . , vec(WN,:,:)] ∈ R
N2×N

is a matricized reshaping of the tensor W, and H
(i)
A :=[

b
(i−1)
1 ⊗ c

(i−1)
1 , . . . ,b

(i−1)
K ⊗ c

(i−1)
K

]
, with b

(i−1)
c (c

(i−1)
c )

denoting column c of B
(i−1) (resp. C(i−1)), and ⊗ the Kro-

necker product operator; see also [36]. Solving the subproblem

in (4) by the alternating direction method of multipliers

(ADMM), the augmented Laugrangian of the cost is

L
(i)
A (A, Ā, Y ) = ‖W1 −H

(i)
A Ā

�‖2F + λ‖Ā‖2F (4)

+r+(A) + (ρ/2)‖Y +A− Ā‖2F

where Ā,Y ∈ R
N×K are the auxiliary and dual variables,

respectively, and r+(A) is the regularizer corresponding to

the nonnegativity constraint,

r+(A) :=

{
0 if A ≥ 0

+∞ o.w.

Simulated tests suggest that selection of the regularization

parameter ρ = ‖H
(i)
A ‖2F /K can provide near-optimal perfor-

mance [41], and that is the choice adopted henceforth.

The ADMM solver then proceeds by iteratively updating

blocks of variables A, Ā,Y as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā
(r) = argminĀ L

(i)
A (A(r−1), Ā,Y(r−1))

=
(
H

(i)�
A H

(i)
A + (λ+ ρ/2)IK×K

)−1

×
(
W

�
1 H

(i)
A +

ρ

2
(Y(r−1) +A

(r−1))
)

A
(r) = P+(Y

(r−1) − Ā
(r))

Y
(r) = Y

(r−1) − ρ(A(r) − Ā
(r))

r = r + 1

(5)

until ‖A(r) − A
(r−1)‖/‖A(r−1)‖ ≤ ε, or the maximum

number of iterations is exceeded. Upon its termination, factor

A is updated as A
(i) ← A

(r), and the algorithm proceeds

with updating factor B as in the following.

2) Factor B update: Upon fixing A = A
(i) and C =

C
(i−1), factor B is updated by solving the subproblem

B
(i) = arg min

B≥0

‖W2 −H
(i)
B B

�‖2F + λ‖B‖2F (6)

where W2 := [vec(W:,1,:), . . . , vec(W:,N,:)] ∈ R
N2×N , and

H
(i)
B :=

[
a
(i)
1 ⊗ c

(i−1)
1 , . . . ,a

(i)
K ⊗ c

(i−1)
K

]
, yielding a similar

optimization problem as in (4). Undertaking the same approach

as for (5), the ADMM update for solving (6) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄
(r) =

(
H

(i)�
B H

(i)
B + (λ+ ρ/2)IK×K

)−1

×
(
W

�
2 H

(i)
B +

ρ

2
(Y(r−1) +B

(r−1))
)

B
(r) = P+

(
Y

(r−1) − B̄
(r)

)

Y
(r) = Y

(r−1) − ρ(B(r) − B̄
(r))

r = r + 1 .

(7)

Upon the termination of (7) due to either attaining the stopping

criterion or reaching the maximum number of iterations, factor

B is updated as B
(i) ← B

(r).

3) Factor C update: Fixing factors A = A
(i) and B =

B
(i), update of factor C is obtained by solving the subproblem

C
(i) = argminC ‖W3 −H

(i)
C C

�‖2F (8)

s.t. ,C ≥ 0
∑K

k=1 cnk = 1 ∀n = 1, . . . , N

where W3 := [vec(W:,:,1), . . . , vec(W:,:,N )] is the matri-

cized version of W along the 3-rd mode, and H
(i)
C :=[

a
(i)
1 ⊗ b

(i)
1 , . . . ,a

(i)
K ⊗ b

(i)
K

]
. Augmented Laugrangian of the

cost can be readily formed as

L
(i)
C (C, C̄, Y ) = ‖W3 −H

(i)
C C̄

�‖2F + rsimp(C)

+(ρ/2)‖Y +C− C̄‖2F

where rsimp(C) is the regularizer corresponding to the simplex

constraint on the rows of matrix C as

rsimp(C) :=

{
0 if C ≥ 0,

∑K
k=1 cnk = 1 ∀n

+∞ o.w.

The ADMM solver then proceeds by iteratively updating the

blocks of variables C, C̄,Y as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̄
(r) = argminC L

(i)
C (C(r−1), C̄,Y(r−1))

= (H
(i)�
C H

(i)
C + ρ/2 IK×K)−1

×
(
W

�
3 H

(i)
C +

ρ

2
(Y(r−1) +C

(r−1))
)

C
(r) = Psimp(Y

(r−1) − C̄
(r))

Y
(r) = Y

(r−1) − ρ(C(r) − C̄
(r))

r = r + 1 .

(9)

Projection of the rows of matrix (Y(r−1) − C̄
(r)) onto the

simplex set can be achieved via the algorithm in [42]. Upon

termination, factor C is updated as C
(i) ← C

(r).

Once the overall trilinear optimization in (1) is solved, factor

C unravels soft community association of the nodes. Extrac-

tion of hard communities based on the learned PARAFAC

model is discussed in the next section. Also, Algorithm 2

lists the pseudocode of the proposed EgoTen followed by hard

community assignments.
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Algorithm 2 EgoTen Community Detection Core Algorithm

procedure EGOTEN(W,K)

Initialize A,B,C ∈ R
N×K at random and set i = 0

while i < Imax do or not-converged

A
(i) ← Solve (4) using (5)

B
(i) ← Solve (6) using (7)

C
(i) ← Solve (8) using (9)

i ← i+ 1
end while

for k = 1, 2, · · · ,K do

Ĉk = {}
for n = 1, 2, · · · , N do Ĉk ← Ĉk ∪ {n} if cnk ≥ τk
end for

end for

end procedure

retrun {Ĉk}
K
k=1

IV. COMMUNITY ASSIGNMENT AND QUALITY EVALUATION

As discussed in Section III, the introduced EgoTen com-

munity detection algorithm aims at solving a constrained

decomposition of the egonet-tensor, thus providing factor C

whose entries unravel soft community associations. In order to

transform the “soft” to “hard” memberships, one can simply

utilize a threshold approach, according to which if cnk > τk,

node n is assigned to community k, and it is not assigned

otherwise. The main challenge here is on selecting a proper

threshold τk. To this end, let Ĉk denote the set of nodes

in community k (with hard memberships), and define its

conductance as [1]

φ(Ĉk) :=

∑
i∈Ĉk,j /∈Ĉk

Wij

min{vol(Ĉk), vol(V \ Ĉk)}

where

vol(Ĉk) :=
∑

i∈Ĉk,∀j

Wij

and (V \ Ĉk) is the complement of Ĉk. According to φ(.),
high-quality communities yield small conductance scores as

they exhibit dense connections among the nodes within the

community and sparse connections with the rest.

Considering conductance as a measure of community qual-

ity, we can now set threshold τk such that the quality of

community k after hard member assignment is maximized.

In order to lower complexity, we simply choose τk from

the discretized range [1/K, 2/K, . . . ]. Note that having an

association level cnk = 1/K ∀k for a given node n is

tantamount to having an equally favorable association with the

K communities, and having threshold τk = 1/K will result

in a community assignment if the association is higher than

this uniform level. Also, setting τk = 1/K together with the

simplex constraints on the rows of factor C guarantees that

every node will be assigned to at least one community, and

no node will be left unassigned. However, tuning τk to obtain

low conductance communities improves quality.

Algorithm 3 DC-EgoTen

procedure DC-EGOTEN(V,W)

Set parameters K,Cmax

Define global cover set S = {}
W ← Egonet-tensor construction(V,W)
{Ci}i=1,2,...,K ← EgoTen(W,K)
for C ∈ {Ci}i=1,2,...,K do

# If community C is refined enough, add it to the

cover set S , otherwise refine it using EgoTen

if |C| < Cmax then

S ← S ∪ C
else

# Extract the subgraph of nodes in C
Wsub ← subgraph(C,W)
DC-EgoTen (C,Wsub)

end if

end for

end procedure

return S

A. DC-EgoTen

Having delineated different modules of DC-EgoTen, we

are ready to present the overall algorithm. Given graph

G = (V, E), DC-EgoTen initially constructs the egonet-tensor

W using Alg. 1, applies EgoTen in Alg. 2 over W, and

obtains detected communities {Ĉk}
K
k=1. Next, the resolution

of Ĉk for k = 1, 2, ... will determine whether further refining

is necessary for each of the identified communities. That is,

if |Ĉk| < Cmax, the resolution of detected community Ĉk is

satisfactory, and no further processing is required. On the other

hand, if |Ĉk| > Cmax, the subgraph induced by the set of nodes

in Ĉk will be extracted, over which the entire process will be

repeated. Algorithm 3 lists the pseudocode for the overall DC-

EgoTen.

Figure 3 provides a schematic over our toy network with

five communities, each of size |Ck| = 15 for k = 1, 2, . . . , 5.

In this example, in every EgoTen the rank parameter is K = 2,

which gives rise to a binary tree of detected communities. As

in this example, in the first application of EgoTen, the green

community is detected by the constrained PARAFAC, while

the rest of the network is ‘lumped’ together in the second

community. Thus, the green community needs no further

processing as its size is below Cmax = 20, while application

of EgoTen on the second term gives rise to two relatively

more refined communities. Proceeding with another set of

EgoTen application on the detected communities will reveal

the remaining clusters, creating overall five leaves in the tree,

corresponding to the detected fine-resolution communities.

If an oracle had provided the number of underlying com-

munities, the algorithm would have identified all clusters in

its first application of EgoTen by setting K = 5. However,

successive application of EgoTen with smaller target rank

K can compensate for the lack of such information, which

is almost-always encountered in practice. Furthermore, DC-
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Fig. 3: The proposed DC-EgoTen community detection algorithm on a toy example.

EgoTen nicely proceeds with the desiderata of community

identification discussed in Section II, because: i) the multi-

dimensional egonet-based representation captures multi-hop

connectivities, leading to an improved quality in the detected

communities; ii) consecutive division of large communities

enhances resolution; and, iii) setting threshold parameter τk =
1/K in EgoTen can guarantee a full coverage of the network,

while its tuning can further control the trade-off between

coverage and quality.

B. Performance Evaluation

In addition to conductance, normalized mutual information

and F1-score are measures for assessing the performance of

community identification when ground-truth communities are

provided.

Normalized mutual information (NMI) [18]: Given S∗ =
{C∗

1 , . . . , C
∗
|S|} and Ŝ = {Ĉ1, . . . , Ĉ|Ŝ|} as ground-truth and de-

tected covers, respectively, the information theoretic measure

NMI is defined as (cf. [18])

NMI(S∗, Ŝ) :=
2I(S∗, Ŝ)

H(S∗) + H(Ŝ)

where H(Ŝ) denotes the entropy of set Ŝ defined as

H(Ŝ) := −

|Ŝ|∑

i=1

p(Ĉi) log p(Ĉi) = −

|Ŝ|∑

i=1

|Ĉi|

N
log

|Ĉi|

N

and similarly for H(S∗). Furthermore, I(S∗, Ŝ) denotes the

mutual information between S∗ and Ŝ , defined as

I(S∗, Ŝ) :=

|S∗|∑

i=1

|Ŝ|∑

j=1

|C∗
i ∩ Ĉj |

N
log

N |C∗
i ∩ Ĉj |

|C∗
i ||Ĉj |

. (10)

Intuitively, the mutual information I(S∗, Ŝ) reflects a measure

of similarity between the two covers. Thus, high values

of NMI, namely its maximum at 1, reflect high accuracy

in community identification, whereas low values of NMI,

namely its minimum at 0, represent poor discovery of the true

underlying communities. This measure has been generalized

for overlapping communities in [43], and will be utilized for

performance assessment in such networks.

Average F1-score [8]: F1-score is a measure of binary classi-

fication accuracy. Specifically, the harmonic mean of precision

and recall takes its highest value at 1 and lowest value at 0.

Average F1-score for detected cover Ŝ is

F̄1 :=
1

2|S∗|

|S∗|∑

i=1

F1(C∗
i , ĈI(i)) +

1

2|Ŝ|

|Ŝ|∑

i=1

F1(C∗
I′(i), Ĉi)

where

I(i) = argmax
j

F1(C∗
i , Ĉj), I

′(i) = argmax
j

F1(C∗
j , Ĉi)

in which F1(Ci, Cj) :=
2 |Ci ∩ Cj |

|Ci|+ |Cj |
.

V. NUMERICAL TESTS

In this section, the proposed DC-EgoTen is applied to

synthetic as well as real datasets. Synthetic Lancicchinetti-

Fortunatoand-Radicci (LFR) networks [44] are utilized as a

benchmark to study the resilience and performance of dif-

ferent community identification algorithms in the presence of

overlapping as well as mixing communities.

A. LFR Benchmark Networks

LFR graphs serve as benchmark networks in which certain

real-world properties, namely power-law distribution for nodal

degree and community sizes, as well as the presence of

overlapping and mixing communities are preserved. Such

networks are configured by a total number of N nodes, d̄
average degree, and power-law distribution exponents γ1 and

γ2 for degree and community sizes, respectively. Furthermore,

parameter µ controls the community mixing, where higher

values result in more out-of-community edges in between non-

resident nodes. Moreover, parameters on, om respectively set

the number of overlapping nodes and communities (with which

these nodes are associated).

In order to assess the resilience of the proposed DC-EgoTen

to variations of µ and on, we have generated networks with
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Fig. 4: Performance of different algorithms versus different

community mixing values µ for on = 600, and om = 3.

N = 2, 000, d̄ = 100, γ1 = 2, γ2 = 1, and varied

µ ∈ [0.1, 0.7] as well as on in 10%−70% of the total networks

size N , respectively. DC-EgoTen is run by setting the rank

K in the initial application as K = 100, while following

applications are set as K = 2, essentially leading to a bisection

of the network in the subsequent steps, and sparse tensor

decompositions are handled via the SPLATT toolbox [45].

Thresholding parameter τk is selected as explained in Section

IV for the top EgoTen (allowing for overlapping community

detection), and set as τ = 1/2 for next steps. Maximum

community size is set as Cmax = 200. The performance

is compared with state-of-the-art algorithms BigClam [8],

Demon [46], and Nise [19] with ‘spread-hub’ seeding strategy,

where |Ŝ| = 200 is provided as an estimate on the number

of communities in Nise and BigClam. Due to the availability

of underlying communities, the performance is assessed via

NMI and F1-scores and averaged over 10 realizations of the

network for each setting.

As the results in Figures 4 and 5 corroborate, DC-EgoTen

provides higher performance in terms of NMI and F1-score,

thanks to the rich egonet-based representation as well as the

progressive identification of refined communities.

200 400 600 800 1000 1200 1400

#Overlapping nodes o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
M

I

DC-EgoTen

Bigclam

Demon

Nise

(a)

200 400 600 800 1000 1200 1400

#Overlapping nodes o
n

0.2

0.4

0.6

0.8

1

F
1
-s

c
o
re

DC-EgoTen

Bigclam

Demon

Nise

(b)

Fig. 5: Performance of different algorithms versus different

number of overlapping nodes on for µ = 0.2, and om = 3.

B. Real-world Networks

In this subsection, the performance of DC-EgoTen is com-

pared with state-of-the-art overlapping community detection

algorithms on various real-world networks, listed in Table

I, available in [47]. In DC-EgoTen, constructing the egonet-

tensors as well as solving the constrained PARAFAC utilize

parallel implementation, while Bigclam and Nise also allow

for parallel threading. Thus, for networks with N < 1 million,

these algorithms are run using 8 threads and 32GB of RAM,

while for the Youtube dataset, 24 threads with 256 GB of

RAM are utilized. As with synthetic datasets, we apply DC-

EgoTen with K = 100 for the first application of EgoTen,

and set K = 2 for subsequent steps. Threshold parameter

τk is selected as explained in Section IV for the top EgoTen

(allowing for overlapping community detection), and set as

τ = 1/2 for next steps. Also, maximum community size Cmax

is set to 1% of the network size for each dataset.

Figure 6 plots the run time of different algorithms while Ta-

ble II lists the coverage and number of detected communities.

Due to unavailability of ground-truth communities, NMI and

F1-score could not be evaluated, thus performance is assessed

using the conductance-coverage curve. To this end, for a given

algorithm, the conductance of the identified communities is

computed and the communities are sorted accordingly in an
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TABLE I: Real-world networks.

Dataset No. of vertices N No. of edges |E| Edge type

Facebook 4,039 88,234 Undirected
Enron 36,692 183,831 Undirected

Epinion 75,879 508,837 Directed
Slashdot 82,168 948,464 Directed

Email 265,214 420,045 Directed
Stanford 281,903 2,312,497 Directed

Notredame 325,729 1,497,134 Directed
Youtube 1,134,890 2,987,624 Undirected

increasing order. Conductance-coverage curve is then plotted

by increasing the maximum conductance, and progressively

adding the sorted communities to the set of covered nodes.

Figure 7 depicts the aforementioned curve for various datasets.

As low values of conductance correspond to more cohesive

communities, a smaller area under curve (AUC) generally

implies better performance. However, the resolution of the

communities is another important metric which must be con-

sidered in drawing conclusions. Interestingly, the separation

of different scattered points for a given algorithm in the

conductance-coverage curve reveals the granularity of the

detected communities. That is, if a detected community is

very large, its inclusion creates a jump in the coverage,

which is noticeable by the two consecutive points in the plot

being placed far apart. Thus, examining Figure 7 reveals that

the identified communities via DC-EgoTen and Bigclam are

usually of more refined sizes as those plots are always smooth,

while the performance of Nise and Demon is often limited

to detecting very large communities (upto 40% of the whole

network). Furthermore, although one may not particularly be

interested in 100% coverage, it is desirable that a relatively

high number of nodes to be covered whithin the detected

communities, and thus low coverage where more than 50%
of the nodes are left uncovered is considered undesirable.

VI. CONCLUSION

This work dealt with identification of overlapping commu-

nities via DC-EgoTen, a top-to-bottom tensor-based frame-

work. Specifically, a novel egonet-based tensor representation

of a network was introduced and utilized in a constrained

PARAFAC decomposition, whose factors subsequently re-

veal the underlying communities. To provide the detected

communities with desirable resolution, this algorithm was

applied progressively in a top-to-bottom fashion, where the

network is decomposed into K communities per step. Parallel

implementation as well as exploitation of the sparsity in the

egonet-tensor endow the algorithm with scalability, while the

structured redundancy and the rich representational capacity

of the egonet-tensor enhance the performance of the toolbox.

Sparse sampling of egonets along the third mode is among our

future directions, through which memory as well as compu-

tational requirements of the algorithm can be reduced, while

the structured redundancy in the egonet-tensor is expected to

preserve performance.
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Fig. 7: Conductance-coverage curve for various datasets using different community detection algorithms.
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