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Abstract—The task of community detection over complex
networks is of paramount importance in a multitude of ap-
plications. The present work puts forward a top-to-bottom
community identification approach, termed DC-EgoTen, in which
an egonet-tensor (EgoTen) based algorithm is developed in a
divide-and-conquer (DC) fashion for breaking the network into
smaller subgraphs, out of which the underlying communities
progressively emerge. In particular, each step of DC-EgoTen
forms a multi-dimensional egonet-based representation of the
graph, whose induced structure enables casting the task of
overlapping community identification as a constrained PARAFAC
decomposition. Thanks to the higher representational capacity of
tensors, the novel egonet-based representation improves the qual-
ity of detected communities by capturing multi-hop connectivity
patterns of the network. In addition, the top-to-bottom approach
ensures successive refinement of identified communities, so that
the desired resolution is achieved. Synthetic as well as real-world
tests corroborate the effectiveness of DC-EgoTen.

Index Terms—Community detection, overlapping communities,
egonet subgraphs, tensor decomposition, constrained PARAFAC.

1. INTRODUCTION

Real-world networks often exhibit distinct characteristics,
such as power-law degree distribution, the small-world phe-
nomena, and the presence of densely connected sub-graphs,
also referred to as “communities” or “clusters” [1]. Focusing
on the last, strong connectivity of a subset of nodes along
with their sparse interactions with the rest of the network
is indicative of a “real-world association” among the par-
ticipating nodes. The task of community detection targets
the discovery of such communities, whose identification is
of great importance in diverse fields ranging from gene-
regulatory networks [2], to brain functionality [3], and social-
media evolution analysis [4], [5], to name a few.

Past works on community detection include those based
on generative and statistical models [6]-[8], modularity and
related local-metric optimization [9]-[11], spectral clustering
[12], and matrix factorization approaches [3], [13]-[17]; see
also [1] and [18] for comprehensive overviews. However, most
existing works pursue a bottom-up approach, where small
collections of nodes with strong connectivity patterns (e.g.,
cliques) are selected as “seeds,” and larger communities are
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“grown” around them by merging other (clusters of) nodes [9],
[19]. In contrast, another class of algorithms follows a top-
to-bottom perspective, where a graph is progressively broken
into smaller pieces, out of which communities eventually
emerge [20]-[22].

Recent exploratory studies have revealed new challenges
over contemporary networks, addressing the presence of over-
lapping communities [23]-[25], multimodal interaction of
nodes over multiview networks [26], [27], exploitation of
nodal and edge-related side-information [28], as well as dy-
namic interactions within a network [29], [30]. In tackling
these challenges, fensors as multi-modal structures offer in-
creased representational capacity, which translates to improved
performance [26], [27], [29], [31]-[34].

In this work, we develop a novel top-to-bottom commu-
nity detection approach, termed “divide-and-concur EgoTen”
(DC-EgoTen), which relies on a successive application of
“EgoTen”, a tensor-based toolbox for intermediate steps of
community identification. Our core algorithm EgoTen builds
on a novel multi-dimensional representation of a network,
whose ability in capturing multi-hop connectivities is partic-
ularly appealing when communities are overlapping as well
as highly-mixing. The proposed tensor-based approach views
a network as a union of its egonets, where each egonet is
the subgraph induced by a node, its immediate neighbors, and
their connections [35]. The resultant three-way tensor is thus
built by concatenation of egonet adjacency matrices as frontal
slabs. The tensor’s constrained decomposition lends itself to an
algorithm revealing communities though the trilinear decom-
position factors. A desirable characteristic of this algorithm is
its ability to trade off flexibility for increased redundancy and
memory costs. Nevertheless, the resulting tensor is extremely
sparse, and off-the-shelf tools for sparse tensor computations
can be readily utilized; see e.g., [36]—[38].

The upshot of our novel framework is three-fold: i) the
performance of community detection in complex networks
improves markedly thanks to the rich structure of tensors; ii)
construction of the egonet-tensor via parallel implementation
and exploitation of sparsity endow the algorithm with scal-
ability; and, iii) the proposed top-to-bottom approach offers
communities with the desired resolution. In fact, many of the
previously developed algorithms are susceptible to “resolution
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limit” [39], where identification of very large communities
reveals little information on the underlying graph structure.

The rest of the paper is organized as follows. Section II
introduces DC-EgoTen, and Section III presents EgoTen as the
core tensor-based community detection approach along with its
solver. Extraction of communities and performance metrics are
the subjects of Section IV, while Section V presents numerical
tests, and Section VI concludes the paper.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and underlined upper-case boldface
letters stand for tensor structures. Calligraphic symbols are
reserved for sets, while 7 stands for transposition. Symbols
o and ® are reserved for outer- and Kronecker-product,
respectively, while Tr{X} denotes the trace of matrix X.

II. PRELIMINARIES AND THE TOP-DOWN APPROACH

Given a network of N vertices (or nodes) v € V where
|[V| = N, and their edgeset £, community detection aims at
finding subsets of nodes, a.k.a. clusters or communities, for
which resident nodes demonstrate dense intra-community con-
nections while distinct communities are sparsely connected. A
cover is defined as the set of such communities, with “desirable
covers” exhibiting certain characteristics, namely: i) con-
stituent communities should include dense intra-connections
and sparse inter-connections; ii) communities of very large
sizes are not appealing as they bear little information on the
underlying structure of the network; and, iii) the union of the
identified communities should cover the entire graph, leaving
few or no “homeless” nodes, not assigned to any community.

The proposed method, called “DC-EgoTen,” relies on the
construction of an egonet-based multi-dimensional representa-
tion of the network. It utilizes “EgoTen” to solve a sequence
of nonnegative tensor decomposition subproblems, and pro-
gressively unveils the identified communities over the graph.
Let us treat EgoTen as a black-box module in this section,
postponing its detailed explanation to Section III, and further
delineate the overall algorithm here.

In particular, DC-EgoTen takes a top-down approach for
the overall task of community identification. To this end,
“EgoTen” is initially applied over the entire network to provide
an assignment of nodes to a few “coarse” communities. Each
of the detected communities is in fact a subset of nodes,
inducing a subgraph in the overall graph. Thus, the identified
“coarse” communities are further amenable to a subsequent
application of EgoTen for unraveling a more refined commu-
nity structure. This procedure can be applied consecutively
for a number of times over each of the detected communities,
creating a tree of communities, until the desired resolution,
i.e., maximum acceptable community size, is achieved for all
detected communities (at the leaves of the tree). In Section
I, the proposed egonet-based multi-dimensional graph repre-
sentation is introduced, and “EgoTen” as our core toolbox for
community detection is detailed.
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Fig. 1: Construction of the three-way egonet-tensor.

Algorithm 1 Egonet-tensor construction

procedure EGONET-TENSOR CONSTRUCTION(V, W)
for n <€V do
N(n):={v € V|wp, # 0}
W?" < subgraph ({n} UN(n),W)
W.. ., = W)
end for
end procedure
return W

III. EGONET-TENSOR CONSTRUCTION AND CONSTRAINED
DECOMPOSITION

Given graph G = (V,&), the binary adjacency matrix
W € R¥*N ig constructed by setting the (4,7)-th entry as
w;j = 1if (4,7) € &, and w;; = 0, otherwise. Furthermore, the
egonet of node n is defined as the subgraph induced by node
n, its one-hop neighbors denoted by N (n), and all their con-
nections [35]. Thus, the egonet of node n can be conveniently
represented by the induced subgraph G(™) := (V, £(")), where
£() is the edge set of the links in between nodes {n} UN(n).
Subsequently, the egonet adjacency matrix W) ¢ RVXN g
defined as

(n) ._

w;;

wy;  if (i,5) € EM

0 otherwise.

Typically, the center node n is excluded from G (™) but it is
included here for convenience.

Let us now consider a three-way egonet-tensor W €
RYXNXN constructed by contanetating egonet adjacency ma-
trices W) for all nodes n € V in the frontal slabs of W. In
tensor parlance, that is tantamount to setting the n-th frontal
slab of W as W, = W), where : is a free index that
spans its range.

The advantage of representing a graph via its egonet-tensor
is due to the fact that tensors as multi-way data structures
are capable of capturing higher-order connectivities, namely
two-hop links among neighboring nodes. Thus, in networks
where overlapping as well as highly-mixed communities ren-
der the task of community detection very challenging, egonet-
tensors provide a rich representation of the graph, which will
be leveraged in the upcoming algorithm. The egonet-based
representation is also of interest particularly in the absence of
extra nodal features, as the enhanced representation is a result
of careful exploitation of the adjacency matrix where no other
source of information is provided.
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Fig. 2: (a) A toy network with 5 non-overlapping communi-
ties; (b) corresponding egonet-tensor; and (c) its community-
revealing factorization via PARAFAC decomposition.

Fig. 1 illustrates the egonet-tensor construction procedure,
while Algorithm 1 provides its pseudocode. In the ensuing
subsection we cast the task of community detection as a
constrained tensor decomposition over the egonet-tensor W,
elaborate on the intuition behind the proposed approach, and
introduce EgoTen as its efficient solver.

A. EgoTen: A Constrained Tensor Decomposition Approach

In order to gain insights into the properties of the introduced
egonet-tensor, consider the toy network whose connectivity
is depicted in Figure 2a. The network under consideration
comprises five communities with dense intra-community and
fewer inter-community connections. Upon constructing the
egonet-tensor and after permutation (so that resident nodes
are indexed right after one another), it becomes evident that
the egonet-tensor demonstrates a block structure; see Fig. 2b.
In particular, dense diagonal blocks in the tensor capture the
dense intra-community links, while spare off-diagonal entries
represent inter-community connections.

Had the communities been complete sub-graphs, each block
would have been an all-one three-way tensor (considering non-
zero diagonal entries provided by self-loops), which could
have been readily decomposed into the outer product of three
all-one vectors (each of the size of the community); that is,
1ospxp = 1pxi © 1px1 o 1,51, where p is the size of the
community. Moreover, had the communities been disjoint, that
is if no inter-community links were present, the egonet-tensor
could have been readily written as the summation of five
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tensors, each of whom can be effectively approximated by
the outer-product of three vectors; see Fig. 2c.

Such decomposition is indeed reminiscent of the well-
known canonical polyadic decomposition (CPD) [36] also
known as PARAFAC, where the number of terms, i.e., the
rank of the decomposition, reveals the number of communities.
Prompted by this observation, let us introduce the constrained
nonnegative PARAFAC over the egonet adjacency tensor W

~

B, 6} = arg min{Hﬂ — Zszl a; o by ocy%

A B,C

+A(AIZ +I1BI3)} ()
A>0B>0,C>0

Z;ﬁ;l Cnk =1 Yn=1,2,...N

The first term in the objective is the original Frobenious term
in the well-known PARAFAC, through which minimization
of the mismatch between the multi-way data structure W
and its approximation is achieved. Furthermore, nonnegativity
of the egonet-tensor is effected through additional constraints
over the factors A := [aj,...,ak], B := [by,...,bg] and
C :=[c1,...,ck]. Regarding the simplex constraints on the
rows of matrix C, let us now focus on the n-th frontal slab
of the egonet-tensor. One can readily show that the tensor
approximation gives rise to following decomposition

S.t.

K
\VARES Z cnk(ax o by)
k=1

2

where ¢, denotes the (n, k)-th entry of factor C. As stated
earlier, parameter K is referred to as the rank of the decompo-
sition, and in this application reveals the number of identified
communities. Thus, such decomposition can be interpreted
as a weighted sum over K “basis” {aj o by}X |, where
(ag oby) captures the “connectivity structure” within the k-th
community. Consequently, c,; can be viewed as association
level of node n to community k. Thus, the simplex constraint
over the rows of matrix C readily guarantees a normalized
association vector for every node in the graph to the identified
K communities. Finally, the Frobenious regularizers over
factors A and B simply resolve the scaling ambiguity between
the two factors, and is different from [40].

The overall optimization in (1) is a trilinear block-convex
problem [41], whose solver is detailed in the following sub-
section.

B. Constrained PARAFAC Solver

Exploiting the block-convex structure of the constrained
PARAFAC in (1), the optimization can be solved by alternating
minimization, where each of A, B, C is optimized respectively
by fixing the other two at their current values. Factors are
repeatedly updated until a stopping criterion or a maximum
number of iterations is achieved. Considering iteration ¢,
factors are updated as follows.



1) Factor A update: Fixing factors B(~—1) and CU~1) at
their current values, the update of factor A is obtained by the
corresponding subproblem, which after algebraic manipulation
can be readily rewritten as a regularized nonnegative least-
squares (LS) minimization as

AW = arg min| Wy~ HPAT[E +A[AlF - ©)
A>0

where Wi = [vec(W,)),...,vec(Wy, )] € RN >N

is a matricized reshaping of the tensor W, and H(X) =

b @™V b @ e, with BITY ()

denoting column ¢ of BG—Y (resp. C—1), and ® the Kro-

necker product operator; see also [36]. Solving the subproblem

in (4) by the alternating direction method of multipliers
(ADMM), the augmented Laugrangian of the cost is

LYAAY)= W, —HYAT|Z + \A3%

+r(A) +(p/2)|Y + A — All%

“)

where A, Y € RY*K are the auxiliary and dual variables,
respectively, and r; (A) is the regularizer corresponding to
the nonnegativity constraint,

{

Simulated tests sug%’est that selection of the regularization
_ @) 12 i _opti .
parameter p = ||H},’||%/K can provide near-optimal perfor
mance [41], and that is the choice adopted henceforth.
The ADMM solver then proceeds by iteratively updating
blocks of variables A, A, Y as

0
+0oo

if A>0
T+(A)I

0.W.

A = argminAEX)(A(T*D,A,Y(T*D)
(HX)TH? + A+ p/2)IKxK)
T@ | P ~r(r—1) (r—1)
x(WlHA + (Y4 A )) )
A — P (YD A0
Y =y =1 _ A0 — A()
T = r+1

until [[AT) — AC=D|/|AT=D| < ¢ or the maximum
number of iterations is exceeded. Upon its termination, factor
A is updated as A < A() and the algorithm proceeds
with updating factor B as in the following.

2) Factor B update: Upon fixing A = A® and C =
CU=1) | factor B is updated by solving the subproblem

B®) = arg min|W, — HBT|2 + A|B|%
B>0

(6)

where W5 := [vec(W, ; .),...,vec(W. v )] € RN**N “and
HY o [ e e

cee ag? ® c%fm] , yielding a similar
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optimization problem as in (4). Undertaking the same approach
as for (5), the ADMM update for solving (6) yields
= ; ; ~1
B = (HEHY + (O + p/2)Lxax)

x (w;Hg? + g(Y(T‘U + B(T‘l)))
P, (Y@q) _ E(r))

YD — pB) —BM)

r+1.

B — (7

Y =

ro =

Upon the termination of (7) due to either attaining the stopping
criterion or reaching the maximum number of iterations, factor
B is updated as B() « B("),

3) Factor C update: Fixing factors A = A and B =
B, update of factor C is obtained by solving the subproblem

c® = argming [|[W3 — H(C{)CTH% )
st. ,C>0 Y en=1 VYn=1,...,N
where W3 := [vec(W,  ;),...,vec(W_ . )] is the matri-

cized version of W along the 3-rd mode, and Hg)
[aﬁ” ® bgl), . ,aﬁ? ® bg?}. Augmented Laugrangian of the

cost can be readily formed as
£(C.CY) =[Ws—HECT 7 + rim(C)
+(p/2)Y +C -}

where rgmp(C) is the regularizer corresponding to the simplex
constraint on the rows of matrix C as

{

The ADMM solver then proceeds by iteratively updating the
blocks of variables C,C,Y as

0
+o0

if C> O,Zszl ok = 1Vn

0. W.

’I“simp(C) =

C") = argming C(Cf)(C("_l), C, Y1)
HYTHED + p/21x k)
x(WIHE + (YD 4 crn))

C))

cr) = psimp(y(rfl) — C)
YO = yO=b _ pct) - Cc)
r = r+1.

Projection of the rows of matrix (Y~ — C()) onto the
simplex set can be achieved via the algorithm in [42]. Upon
termination, factor C is updated as C@ « ¢,

Once the overall trilinear optimization in (1) is solved, factor
C unravels soft community association of the nodes. Extrac-
tion of hard communities based on the learned PARAFAC
model is discussed in the next section. Also, Algorithm 2
lists the pseudocode of the proposed EgoTen followed by hard
community assignments.



Algorithm 2 EgoTen Community Detection Core Algorithm

Algorithm 3 DC-EgoTen

procedure EGOTEN(W, K)
Initialize A,B,C € RY*¥ at random and set i = 0
while ¢ < I;,,x do or not-converged

A « Solve (4) using (5)

B + Solve (6) using (7)

C + Solve (8) using (9)

1 1+1
end while
forlf: 1,2,---

Cr = {}
forn=1,2,---
end for
end for
end procedure
retrun {C; }5

, K do

,NdOCA]f%CAkU{n} if ¢ > Tk

IV. COMMUNITY ASSIGNMENT AND QUALITY EVALUATION

As discussed in Section III, the introduced EgoTen com-
munity detection algorithm aims at solving a constrained
decomposition of the egonet-tensor, thus providing factor C
whose entries unravel soft community associations. In order to
transform the “soft” to “hard” memberships, one can simply
utilize a threshold approach, according to which if ¢, > 7,
node n is assigned to community k, and it is not assigned
otherwise. The main challenge here is on selecting a proper
threshold 7. To this end, let ék denote the set of nodes
in community %k (with hard memberships), and define its
conductance as [1]

5 Zieé j¢C Wi;
C‘ e Akn k _
9(C) min{vol(Cy), vol(V \ Cy)}

=2 Wy

ZECk7Vj

where
vol Ck

and (V\ Cg) is the complement of Cy. According to ¢(.),
high-quality communities yield small conductance scores as
they exhibit dense connections among the nodes within the
community and sparse connections with the rest.

Considering conductance as a measure of community qual-
ity, we can now set threshold 7, such that the quality of
community k after hard member assignment is maximized.
In order to lower complexity, we simply choose 75 from
the discretized range [1/K,2/K,...]. Note that having an
association level ¢, = 1/K Vk for a given node n is
tantamount to having an equally favorable association with the
K communities, and having threshold 75, = 1/K will result
in a community assignment if the association is higher than
this uniform level. Also, setting 7, = 1/K together with the
simplex constraints on the rows of factor C guarantees that
every node will be assigned to at least one community, and
no node will be left unassigned. However, tuning 7 to obtain
low conductance communities improves quality.
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procedure DC-EGOTEN(V, W)
Set parameters K, Ciyax
Define global cover set S = {}
W <« Egonet-tensor construction(), W)
{Ci}i=1,2,....k < EgoTen(W, K)
for C € {Ci}izlygym’[{ do
# If community C is refined enough, add it to the
cover set S, otherwise refine it using EgoTen
if |C] < Chax then
S+SsucC
else
# Extract the subgraph of nodes in C
Wb + subgraph(C, W)
DC-EgoTen (C, W)
end if
end for
end procedure
return S

A. DC-Egolen

Having delineated different modules of DC-EgoTen, we
are ready to present the overall algorithm. Given graph
G = (V,€&), DC-EgoTen initially constructs the egonet-tensor
W using Alg. 1, applies EgoTen in Alg. 2 over W, and
obtains detected communities {Ck} w—1- Next, the resolution
of Cy, for k= 1,2, ... will determine whether further refining
is necessary for each of the identified communities. That is,
if |Ck| < Chax, the resolution of detected community Cy is
satisfactory, and no further processing is required. On the other
hand, if \ék\ > Chax, the subgraph induced by the set of nodes
in ék will be extracted, over which the entire process will be
repeated. Algorithm 3 lists the pseudocode for the overall DC-
EgoTen.

Figure 3 provides a schematic over our toy network with
five communities, each of size |Cy| = 15 for k = 1,2,...,5.
In this example, in every EgoTen the rank parameter is K = 2,
which gives rise to a binary tree of detected communities. As
in this example, in the first application of EgoTen, the green
community is detected by the constrained PARAFAC, while
the rest of the network is ‘lumped’ together in the second
community. Thus, the green community needs no further
processing as its size is below C.x = 20, while application
of EgoTen on the second term gives rise to two relatively
more refined communities. Proceeding with another set of
EgoTen application on the detected communities will reveal
the remaining clusters, creating overall five leaves in the tree,
corresponding to the detected fine-resolution communities.

If an oracle had provided the number of underlying com-
munities, the algorithm would have identified all clusters in
its first application of EgoTen by setting K = 5. However,
successive application of EgoTen with smaller target rank
K can compensate for the lack of such information, which
is almost-always encountered in practice. Furthermore, DC-



Fig. 3: The proposed DC-EgoTen community detection algorithm on a toy example.

EgoTen nicely proceeds with the desiderata of community
identification discussed in Section II, because: i) the multi-
dimensional egonet-based representation captures multi-hop
connectivities, leading to an improved quality in the detected
communities; ii) consecutive division of large communities
enhances resolution; and, iii) setting threshold parameter 7, =
1/K in EgoTen can guarantee a full coverage of the network,
while its tuning can further control the trade-off between
coverage and quality.

B. Performance Evaluation

In addition to conductance, normalized mutual information

and Fl-score are measures for assessing the performance of
community identification when ground-truth communities are
provided.
Normalized mutual information (NMI) [18]: Given S* =
{Ci,....Cls} and S={C,.. C|S|} as ground-truth and de-
tected covers, respectively, the information theoretic measure
NMI is defined as (cf. [18])

NMI(S*,S) := _AES)
H(S*) + H(S)
where H(S) denotes the entropy of set S defined as

=2

and similarly for H(S*). Furthermore, I(S*,S) denotes the
mutual information between S* and S, defined as

C;
Ci)logp(C ) — |log |N|

‘ME

Il
_

(2

17| 18

ZZ'C NGl N|C: Gl
=1 -1 ICF1IC;]

Intuitively, the mutual information I(S*, S ) reflects a measure
of similarity between the two covers. Thus, high values
of NMI, namely its maximum at 1, reflect high accuracy
in community identification, whereas low values of NMI,
namely its minimum at 0, represent poor discovery of the true
underlying communities. This measure has been generalized
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for overlapping communities in [43], and will be utilized for
performance assessment in such networks.

Average F1-score [8]: Fl-score is a measure of binary classi-
fication accuracy. Specifically, the harmonic mean of precision
and recall takes its highest value at 1 and lowest value at 0.
Average Fl-score for detected cover S is

[S*]

ZFl

S|

ZFl Cay:Cs

2‘5*‘ Cl(l))+

where

I(i) = argmax F1(C},C; i), 1

(1) = argmaXFl(C;,éi)
J J

21C: NG|
|Cil +1C;1°

V. NUMERICAL TESTS

in which F'1(C;,C;) :=

In this section, the proposed DC-EgoTen is applied to
synthetic as well as real datasets. Synthetic Lancicchinetti-
Fortunatoand-Radicci (LFR) networks [44] are utilized as a
benchmark to study the resilience and performance of dif-
ferent community identification algorithms in the presence of
overlapping as well as mixing communities.

A. LFR Benchmark Networks

LFR graphs serve as benchmark networks in which certain
real-world properties, namely power-law distribution for nodal
degree and community sizes, as well as the presence of
overlapping and mixing communities are preserved. Such
networks are configured by a total number of N nodes, d
average degree, and power-law distribution exponents ~; and
v for degree and community sizes, respectively. Furthermore,
parameter o controls the community mixing, where higher
values result in more out-of-community edges in between non-
resident nodes. Moreover, parameters o,,, 0,, respectively set
the number of overlapping nodes and communities (with which
these nodes are associated).

In order to assess the resilience of the proposed DC-EgoTen
to variations of p and o,, we have generated networks with
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Fig. 4: Performance of different algorithms versus different
community mixing values y for o,, = 600, and o, = 3.

N 2,000, d = 100, 1 = 2, 72 = 1, and varied
w € [0.1,0.7] as well as o, in 10%—70% of the total networks
size NN, respectively. DC-EgoTen is run by setting the rank
K in the initial application as K = 100, while following
applications are set as K = 2, essentially leading to a bisection
of the network in the subsequent steps, and sparse tensor
decompositions are handled via the SPLATT toolbox [45].
Thresholding parameter 75, is selected as explained in Section
IV for the top EgoTen (allowing for overlapping community
detection), and set as T 1/2 for next steps. Maximum
community size is set as Cpax = 200. The performance
is compared with state-of-the-art algorithms BigClam [8],
Demon [46], and Nise [19] with ‘spread-hub’ seeding strategy,
where |S| = 200 is provided as an estimate on the number
of communities in Nise and BigClam. Due to the availability
of underlying communities, the performance is assessed via
NMI and Fl-scores and averaged over 10 realizations of the
network for each setting.

As the results in Figures 4 and 5 corroborate, DC-EgoTen
provides higher performance in terms of NMI and Fl1-score,
thanks to the rich egonet-based representation as well as the
progressive identification of refined communities.
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Fig. 5: Performance of different algorithms versus different
number of overlapping nodes o,, for ¢ = 0.2, and o,, = 3.

B. Real-world Networks

In this subsection, the performance of DC-EgoTen is com-
pared with state-of-the-art overlapping community detection
algorithms on various real-world networks, listed in Table
I, available in [47]. In DC-EgoTen, constructing the egonet-
tensors as well as solving the constrained PARAFAC utilize
parallel implementation, while Bigclam and Nise also allow
for parallel threading. Thus, for networks with N < 1 million,
these algorithms are run using 8 threads and 32GB of RAM,
while for the Youtube dataset, 24 threads with 256 GB of
RAM are utilized. As with synthetic datasets, we apply DC-
EgoTen with K = 100 for the first application of EgoTen,
and set K = 2 for subsequent steps. Threshold parameter
T, 1s selected as explained in Section IV for the top EgoTen
(allowing for overlapping community detection), and set as
7 = 1/2 for next steps. Also, maximum community size Cp,x
is set to 1% of the network size for each dataset.

Figure 6 plots the run time of different algorithms while Ta-
ble II lists the coverage and number of detected communities.
Due to unavailability of ground-truth communities, NMI and
F1-score could not be evaluated, thus performance is assessed
using the conductance-coverage curve. To this end, for a given
algorithm, the conductance of the identified communities is
computed and the communities are sorted accordingly in an



TABLE I: Real-world networks.

Dataset No. of vertices N No. of edges |£]  Edge type
Facebook 4,039 88,234 Undirected
Enron 36,692 183,831 Undirected
Epinion 75,879 508,837 Directed
Slashdot 82,168 948,464 Directed
Email 265,214 420,045 Directed
Stanford 281,903 2,312,497 Directed
Notredame 325,729 1,497,134 Directed
Youtube 1,134,890 2,987,624 Undirected

increasing order. Conductance-coverage curve is then plotted
by increasing the maximum conductance, and progressively
adding the sorted communities to the set of covered nodes.
Figure 7 depicts the aforementioned curve for various datasets.
As low values of conductance correspond to more cohesive
communities, a smaller area under curve (AUC) generally
implies better performance. However, the resolution of the
communities is another important metric which must be con-
sidered in drawing conclusions. Interestingly, the separation
of different scattered points for a given algorithm in the
conductance-coverage curve reveals the granularity of the
detected communities. That is, if a detected community is
very large, its inclusion creates a jump in the coverage,
which is noticeable by the two consecutive points in the plot
being placed far apart. Thus, examining Figure 7 reveals that
the identified communities via DC-EgoTen and Bigclam are
usually of more refined sizes as those plots are always smooth,
while the performance of Nise and Demon is often limited
to detecting very large communities (upto 40% of the whole
network). Furthermore, although one may not particularly be
interested in 100% coverage, it is desirable that a relatively
high number of nodes to be covered whithin the detected
communities, and thus low coverage where more than 50%
of the nodes are left uncovered is considered undesirable.

VI. CONCLUSION

This work dealt with identification of overlapping commu-
nities via DC-EgoTen, a top-to-bottom tensor-based frame-
work. Specifically, a novel egonet-based tensor representation
of a network was introduced and utilized in a constrained
PARAFAC decomposition, whose factors subsequently re-
veal the underlying communities. To provide the detected
communities with desirable resolution, this algorithm was
applied progressively in a top-to-bottom fashion, where the
network is decomposed into K communities per step. Parallel
implementation as well as exploitation of the sparsity in the
egonet-tensor endow the algorithm with scalability, while the
structured redundancy and the rich representational capacity
of the egonet-tensor enhance the performance of the toolbox.
Sparse sampling of egonets along the third mode is among our
future directions, through which memory as well as compu-
tational requirements of the algorithm can be reduced, while
the structured redundancy in the egonet-tensor is expected to
preserve performance.
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Fig. 7: Conductance-coverage curve for various datasets using different community detection algorithms.
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