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Abstract

This paper considers online convex optimization (OCO) with stochastic constraints,
which generalizes Zinkevich’s OCO over a known simple fixed set by introducing
multiple stochastic functional constraints that are i.i.d. generated at each round
and are disclosed to the decision maker only after the decision is made. This
formulation arises naturally when decisions are restricted by stochastic environ-
ments or deterministic environments with noisy observations. It also includes
many important problems as special case, such as OCO with long term constraints,
stochastic constrained convex optimization, and deterministic constrained con-
vex optimization. To solve this problem, this paper proposes a new algorithm
that achieves O(v/T') expected regret and constraint violations and O(v/T log(T'))
high probability regret and constraint violations. Experiments on a real-world data
center scheduling problem further verify the performance of the new algorithm.

1 Introduction

Online convex optimization (OCO) is a multi-round learning process with arbitrarily-varying convex
loss functions where the decision maker has to choose decision () € X before observing the
corresponding loss function f¢(-). For a fixed time horizon T', define the regret of a learning algorithm
with respect to the best fixed decision in hindsight (with full knowledge of all loss functions) as

T T
regret(T) = D f1(x(t)) — min Y /()

The goal of OCO is to develop dynamic learning algorithms such that regret grows sub-linearly with
respect to T'. The setting of OCO is introduced in a series of work [3, 14, 9, 29] and is formalized in
[29]. OCO has gained considerable amount of research interest recently with various applications
such as online regression, prediction with expert advice, online ranking, online shortest paths, and
portfolio selection. See [23, 11] for more applications and backgrounds.

In [29], Zinkevich shows that using an online gradient descent (OGD) update given by
x(t +1) = Pa[x(t) =7V (x(1))] (1

where V f*(-) is a subgradient of f*(-) and Px[] is the projection onto set X can achieve O(v/T)
regret. Hazan et al. in [12] show that better regret is possible under the assumption that each loss

function is strongly convex but O(+/T) is the best possible if no additional assumption is imposed.
It is obvious that Zinkevich’s OGD in (1) requires the full knowledge of set X and low complexity

of the projection Px[-]. However, in practice, the constraint set X', which is often described by
many functional inequality constraints, can be time varying and may not be fully disclosed to the
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decision maker. In [18], Mannor et al. extend OCO by considering time-varying constraint functions
g%(x) which can arbitrarily vary and are only disclosed to us after each x(¢) is chosen. In this
setting, Mannor et al. in [18] explore the possibility of designing learning algorithms such that
regret grows sub-linearly and lim supy_, . = Zle gt (x(t)) <0, i.e., the (cumulative) constraint

violation Zthl gt (x(t)) also grows sub-linearly. Unfortunately, Mannor et al. in [18] prove that this
is impossible even when both f*(-) and g*(-) are simple linear functions.

Given the impossibility results shown by Mannor et al. in [18], this paper considers OCO where
constraint functions g*(x) are not arbitrarily varying but independently and identically distributed
(i.i.d.) generated from an unknown probability model (and functions f¢(x) are still arbitrarily varying
and possibly non-i.i.d.). More specifically, this paper considers online convex optimization (OCO)
with stochastic constraint X = {x € Xy : E,gr(x;w)] < 0,k € {1,2,...,m}} where Xp is a
known fixed set; the expressions of stochastic constraints E,,[gx (x;w)] (involving expectations with
respect to w from an unknown distribution) are unknown; and subscripts k& € {1,2, ..., m} indicate
the possibility of multiple functional constraints. In OCO with stochastic constraints, the decision

maker receives loss function f*(x) and i.i.d. constraint function realizations g, (x) = gk (x;w(t))
at each round ¢. However, the expressions of g (-) and f(-) are disclosed to the decision maker
only after decision x(¢) € Xj is chosen. This setting arises naturally when decisions are restricted
by stochastic environments or deterministic environments with noisy observations. For example,
if we consider online routing (with link capacity constraints) in wireless networks [18], each link
capacity is not a fixed constant (as in wireline networks) but an i.i.d. random variable since wireless
channels are stochastically time-varying by nature [25]. OCO with stochastic constraints also covers
important special cases such as OCO with long term constraints [16, 5, 13], stochastic constrained
convex optimization [17] and deterministic constrained convex optimization [21].

Let X* = argmin e x, 5 [g, (x;0)]<0.vkE{1,2,...,m}} Z;‘FZI Jt(x) be the best fixed decision in hind-
sight (knowing all loss functions f%(x) and the distribution of stochastic constraint functions
gr(x;w)). Thus, x* minimizes the T-round cumulative loss and satisfies all stochastic constraints in
expectation, which also implies lim supy_, . = Zthl gt (x*) < 0 almost surely by the strong law
of large numbers. Our goal is to develop dynamic learning algorithms that guarantee both regret
ZZ;I Frx(t)) — Z;l ft(x*) and constraint violations Zthl gi (x(t)) grow sub-linearly.

Note that Zinkevich’s algorithm in (1) is not applicable to OCO with stochastic constraints since X
is unknown and it can happen that X'(t) = {x € Xj : gx(x;w(t)) < 0,Vk € {1,2,...,m}} =0
for certain realizations w(t), such that projections Px[-] or Py (y)[] required in (1) are not even
well-defined.

Our Contributions: This paper solves online convex optimization with stochastic constraints. In
particular, we propose a new learning algorithm that is proven to achieve O(v/T') expected regret

and constraint violations and O(v/T log(T")) high probability regret and constraint violations. The
proposed new algorithm also improves upon state-of-the-art results in the following special cases:

e OCO with long term constraints: This is a special case where each ¢! (x) = gi(x) is known
and does not depend on time. Note that X = {x € Xy : gi(x) < 0,Vk € {1,2,...,m}} can
be complicated while Xy might be a simple hypercube. To avoid high complexity involved in
the projection onto X as in Zinkevich’s algorithm, work in [16, 5, 13] develops low complexity
algorithms that use projections onto a simpler set X by allowing gy (x(¢)) > 0 for certain
rounds but ensuring limsup;_, o, # Zle gx(x(t)) < 0. The best existing performance is
O(T™»x{8:1=5}) regret and O(T"~P/?) constraint violations where 3 € (0, 1) is an algorithm
parameter [13]. This gives O(v/T) regret with worse O(T%/4) constraint violations or O(v/T)
constraint violations with worse O(T') regret. In contrast, our algorithm, which only uses

projections onto X as shown in Lemma 1, can achieve O(v/T) regret and O(+/T') constraint
violations simultaneously. Note that by adapting the methodology presented in this paper, our
other work [27] developed a different algorithm that can only solve the special case problem

“OCO with long term constraints” but can achieve O(v/T') regret and O(1) constraint violations.

e Stochastic constrained convex optimization: This is a special case where each ff(x) is i.i.d.
generated from an unknown distribution. This problem has many applications in operations
research and machine learning such as Neyman-Pearson classification and risk-mean portfolio.
The work [17] develops a (batch) offline algorithm that produces a solution with high probability



performance guarantees only after sampling the problems for sufficiently many times. That is,
during the process of sampling, there is no performance guarantees. The work [15] proposes
a stochastic approximation based (batch) offline algorithm for stochastic convex optimization
with one single stochastic functional inequality constraint. In contrast, our algorithm is an
online algorithm with online performance guarantees and can deal with an arbitrary number of
stochastic constraints.

e Deterministic constrained convex optimization: This is a special case where each f*(x) = f(x)
and g}, (x) = gx(x) are known and do not depend on time. In this case, the goal is to develop
a fast algorithm that converges to a good solution (with a small error) with a few number of
iterations; and our algorithm with O(v/T') regret and constraint violations is equivalent to an
iterative numerical algorithm with O(1/+/T)) convergence rate. Our algorithm is subgradient
based and does not require the smoothness or differentiability of the convex program. The
primal-dual subgradient method considered in [19] has the same O(1/+/T)) convergence rate but
requires an upper bound of optimal Lagrange multipliers, which is usually unknown in practice.

2 Formulation and New Algorithm

Let X be a known fixed compact convex set. Let ff(x) be a sequence of arbitrarily-varying convex
functions. Let g, (x;w(t)), k € {1,2,...,m} be sequences of functions that are i.i.d. realizations of

stochastic constraint functions g (x) £ E.,[gx (x; w)] with random variable w € 2 from an unknown
distribution. That is, w(t) are i.i.d. samples of w. Assume that each f*(-) is independent of all w(7)
with 7 > ¢ + 1 so that we are unable to predict future constraint functions based on the knowledge of
the current loss function. For each w € 2, we assume gy (x; w) are convex with respect to x € Xj. At
the beginning of each round ¢, neither the loss function f¢(x) nor the constraint function realizations
gr(x;w(t)) are known to the decision maker. However, the decision maker still needs to make a
decision x(t) € X, for round ¢; and after that f*(x) and gi(x,w(t)) are disclosed to the decision
maker at the end of round ¢.

For convenience, we often suppress the dependence of each g (x;w(t)) on w(t) and write
gi(x) = gr(x;w(t)). Recall gp(x) = E,[gr(x;w)] where the expectation is with respect to w.
Define X = {x € &p : gx(x) = E[gr(x;w)] < 0,Vk € {1,2,...,m}}. We further define the
stacked vector of multiple functions gt (x), ..., g%, (x) as g'(x) = [g}(x), ..., g%,(x)]" and define
g(x) = [Ey[g1(x;w)], ..., Ey[gm(x;w)]]T. We use || - || to denote the Euclidean norm for a vector.
Throughout this paper, we have the following assumptions:

Assumption 1 (Basic Assumptions).

e Loss functions f'(x) and constraint functions gy (x;w) have bounded subgradients on X.
That is, there exists D1 > 0 and Dy > 0 such that ||V f1(x)|| < D; for all x € Xy and all
t€{0,1,...} and |Vgr(x;w)|| < Daforallx € Xy, allw € Qand allk € {1,2,...,m}.2

o There exists constant G > 0 such that ||g(x;w)|| < G forall x € Xy and all w € Q.

o There exists constant R > 0 such that ||x — y|| < R for allx,y € Xj.

Assumption 2 (The Slater Condition). There exists ¢ > 0 and X € Xy such that gi(X) =
Eulgr(X;w)] < —eforallk € {1,2,...,m}.

2.1 New Algorithm

Now consider the following algorithm described in Algorithm 1. This algorithm chooses x(t 4 1) as
the decision for round ¢ + 1 based on f*(-) and g(-) without requiring f**1(-) or g!**(-).

For each stochastic constraint function g (x;w), we introduce Q) (t) and call it a virtual queue since
its dynamic is similar to a queue dynamic. The next lemma summarizes that x(¢ 4+ 1) update in (2)
can be implemented via a simple projection onto Aj.

Lemma 1. The x(t + 1) update in (2) is given by x(t + 1) = Px, [x(t) — 5=d(t)], where d(t) =
VVHx(t) + > pey Qr(t) Vgl (x(t)) and P, ] is the projection onto convex set X.

? The notation VA(x) is used to denote a subgradient of a convex function A at the point x.; it is the same as
the gradient whenever the gradient exists.



Algorithm 1

Let V > 0 and o > 0 be constant algorithm parameters. Choose x(1) € Xj arbitrarily and let
Qr(1) = 0,Vk € {1,2,...,m}. Atthe end of each round ¢ € {1,2,...}, observe f*(-) and g’(-)
and do the following:

e Choose x(t + 1) that solves
min {V [V F(x ()] [x -l-ZQk )V (x(0)] [x — x(t)] —|—a||x—x(t)H2} 2)

as the decmon for the next round ¢ + 1 where V ft(x(t)) is a subgradient of f*(x) at point
x = x(t) and Vg (x(t)) is a subgradient of g} (x) at point x = x(t).

e Update each virtual queue Qi (t + 1),Vk € {1,2,...,m} via
Qx(t +1) = max {Qr(t) + gk (x(2)) + [Vgp(x(t)]" [x(t + 1) = x(1)], 0} , 3)

where max{-, -} takes the larger one between two elements.

Proof. The projection by definition is minye x, [|x — [x(t) — 5=d(t)]||? and is equivalent to (2). [

2.2 Intuitions of Algorithm 1

Note that if there are no stochastic constraints g}, (x), i.e., X = Xj, then Algorithm 1 has Qy(¢) =
0, Vt and becomes Zinkevich’s algorithm with v = % in (1) since
a . 1%
x(t+ 1) < argmin { VIV ()] b~ x(0)] + allx — (1) } & Py [x(0) — 5 95 (x(1)] - )
xE€Xg

penalty

where (a) follows from (2); and (b) follows from Lemma 1 by noting that d(¢) = V'V f*(x(¢)). Call
the term marked by an underbrace in (4) the penalty. Thus, Zinkevich’s algorithm is to minimize the
penalty term and is a special case of Algorithm 1 used to solve OCO over Xj.

Let Q(t) = [Q1(t), ..., Qm(t)]T be the vector of virtual queue backlogs. Let L(t) = 1[Q()[|* be
a Lyapunov function and define Lyapunov drift

1
A(t) = L(t+1) = L#t) = 5[lQ(t + DII* — 1Q®)). (5)
The intuition behind Algorithm 1 is to choose x(¢ + 1) to minimize an upper bound of the expression
A(t) + VIV (x(0)][x = x(8)] + allx — x(t)||? (6)
—~—
drift penalty

The intention to minimize penalty is natural since Zinkevich’s algorithm (for OCO without stochastic
constraints) minimizes penalty, while the intention to minimize drift is motivated by observing that
gt (x(t)) is accumulated into queue Q (¢ + 1) introduced in (3) such that we intend to have small
queue backlogs. The drift A(¢) can be complicated and is in general non-convex. The next lemma
(proven in Supplement 7.1) provides a simple upper bound on A(¢) and follows directly from (3).

Lemma 2. Areach roundt € {1,2,...}, Algorithm 1 guarantees
£) < Y Qu(t)[gh(x(1) + [V (x(0)] [x(t + 1) — x(1)]] + %[G +VmD: R, ()

where m is the number of constraint functions; and Do, G and R are defined in Assumption 1.

At the end of round ¢, >_;" | Qr(t)gh(x(t)) + 1[G + /mD2R)? is a given constant that is not
affected by decision x (¢ 4 1). The algorithm decision in (2) is now transparent: x(t¢ + 1) is chosen to
minimize the drift-plus-penalty expression (6), where A(t) is approximated by the bound in (7).

2.3 Preliminary Analysis and More Intuitions of Algorithm 1

The next lemma (proven in Supplement 7.2) relates constraint violations and virtual queue values and
follows directly from (3).



Lemma 3. Forany T > 1, Algorithm 1 guarantees 31—, gt (x(t)) < |Q(T+1)|+Dy X1, |Ix(t+
1) —x(t)|,Vk € {1,2,...,m}, where D5 is defined in Assumption 1.

Recall that function b : Xy — R is said to be c-strongly convex if h(z) — | z||* is convex over
x € Xp. Itis easy to see that if ¢ : Xy — R is a convex function, then for any constant ¢ > 0
and any vector b, the function ¢(z) + §||x — b||? is c-strongly convex. Further, it is known that if
h : X — Ris a c-strongly convex function that is minimized at a point X" € Xj, then (see, for
example, Corollary 1 in [28]):

h( mm) < h( ) _ gHX_XminHZ Vx € XO (8)
Note that the expression involved in minimization (2) in Algorithm 1 is strongly convex with modulus

2 and x(t 4 1) is chosen to minimize it. Thus, the next lemma follows.
Lemma 4. Letz € X be arbitrary For allt > 1, Algorithm 1 guarantees

VIV L ()] (¢ + )]+ Z Qu(t)[Vgk (x(0))]" [x(t + 1) — x()] + allx(t + 1) — x(t)]|*

m

VIV )] Tz = x(0] + Y Q(t)[Var (x(t)] [z — x(t)] + aflz — x(t)||* — allz — x(t + 1)]*.

k=1

The next corollary follows by taking z = x(t) in Lemma 4 and is proven in Supplement 7.3.
Corollary 1. Forall t > 1, Algorithm 1 guarantees ||x(t + 1) — x(t)|| < L2 + %HQ@)H

The next corollary follows directly from Lemma 3 and Corollary 1 and shows that constraint violations
are ultimately bounded by sequence || Q(t)|,t € {1,2,...,T + 1}.

Corollary 2. Forany T > 1, Algorithm 1 guarantees Zthl gL (x(t)) < |Q(T + 1)|| 4 YER1L2
ﬁD? Zt Q)| VE € {1,2,...,m} where Dy and D5 are defined in Assumption 1.
This corollary further justifies why Algorithm 1 intends to minimize drift A(¢). As illustrated in

the next section, controlled drift can often lead to boundedness of a stochastic process. Thus, the
intuition of minimizing drift A(#) is to yield small ||Q(¢)|| bounds.

3 Expected Performance Analysis of Algorithm 1

This section shows that if we choose V = /T and o = T in Algorithm 1, then both expected regret
and expected constraint violations are O(v/T).

3.1 A Drift Lemma for Stochastic Processes

Let {Z(t),t > 0} be a discrete time stochastic process adapted? to a filtration {F(t),* > 0}. For
example, Z(t) can be a random walk, a Markov chain or a martingale. The drift analysis is the
method of deducing properties, e.g., recurrence, ergodicity, or boundedness, about Z(t) from its drift
E[Z(t + 1) — Z(t)|F(t)]. See [6, 10] for more discussions or applications on drift analysis. This
paper proposes a new drift analysis lemma for stochastic processes as follows:

Lemma 5. Let {Z(t),t > 0} be a discrete time stochastic process adapted to a filtration {F (t),t >

0} with Z(0) = 0 and F(0) = {0, Q}. Suppose there exists an integer to > 0, real constants 6 > 0,
Omax > 0and 0 < < dpax such that

|Z(t+1) — Z(t)] <Omax )

E[Z(t + to) — Z(1)|F(1)] g{ fofue, I Z(1) <0

<
—toC,  ifZ(t) > (10)

hold for all t € {1,2,...}. Then, the following holds

1. B[Z(t)] < 0 + tobmax + to 2 log[ mex] Wt € {1,2,...).

*Random variable Y is said to be adapted to o-algebra F if Y is F-measurable. In this case, we often write
Y € F. Similarly, random process {Z(t)} is adapted to filtration {F(¢)} if Z(t) € F(¢), Vt. See e.g. [7].



2. For any constant 0 < p <1 we have Pr(Z(t

) > z) < u,Vt € {1,2,...} where z =
0 + t0Omax + o> ““" log [ C‘g“‘] +tod ””" log(i)

The above lemma is proven in Supplement 7.4 and provides both expected and high probability
bounds for stochastic processes based on a drift condition. It will be used to establish upper bounds of
virtual queues ||Q(t)]|, which further leads to expected and hi gh probability constraint performance
bounds of our algorithm. For a given stochastic process Z(t), it is possible to show the drift condition
(10) holds for multiple to with different ¢ and 6. In fact, we will show in Lemma 7 that ||Q(?)||
yielded by Algorithm 1 satisfies (10) for any integer ¢, > 0 by selecting ¢ and 6 according to .
One-step drift conditions, corresponding to the special case £y = 1 of Lemma 5, have been previously
considered in [10, 20]. However, Lemma 5 (with general ¢, > 0) allows us to choose the best ¢ in
performance analysis such that sublinear regret and constraint violation bounds are possible.

3.2 Expected Constraint Violation Analysis

Define filtration {W(¢),t > 0} with W(0) = {0,Q} and W(t) = o(w(1),...,w(t)) being the
o-algebra generated by random samples {w(1),...,w(t)} up to round ¢. From the update rule
in Algorithm 1, we observe that x(¢ + 1) is a deterministic function of f(-), g(-;w(t)) and Q(t)
where Q(t) is further a deterministic function of Q(t — 1), g(-;w(t — 1)), x(¢) and x(¢t — 1). By
inductions, it is easy to show that o(x(t)) C W(t — 1) and o(Q(t)) C W(t — 1) forall t > 1 where
o(Y") denotes the o-algebra generated by random variable Y. For fixed ¢ > 1, since Q(t) is fully
determined by w(7), 7 € {1,2,...,t — 1} and w(t) are i.i.d., we know g (x) is independent of Q(t).
This is formally summarized in the next lemma.

Lemma 6. If x* € X satisfies §(x*) = E, [g(x*;w)] < 0, then Algorithm I guarantees:

E[Qk(t)gr(x*)] <0,Vk € {1,2,...,m},Vt > 1. (11)

Proof. Fix k € {1,2,...,m} and ¢ > 1. Since g} (x*) = gp(x*;w(t)) is independent

of Qx(t), which is determined by {w(1),...,w(t — 1)}, it follows that E[Qx(t)gL(x*)] =
(a)
E[Qx(t)]|E[gL (x*)] < 0, where (a) follows from the fact that E[g},(x*)] < 0and Qx(t) > 0. O

To establish a bound on constraint violations, by Corollary 2, it suffices to derive upper bounds for
[|Q(t)]|- In this subsection, we derive upper bounds for ||Q(¢)|| by applying the new drift lemma
(Lemma 5) developed at the beginning of this section. The next lemma shows that random process
Z(t) = ||Q(t)|| satisfies the conditions in Lemma 5.

Lemma 7. Let ty > 0 be an arbitrary integer. At each round t € {1,2,...,} in Algorithm 1, the
following holds
Q(t+ DIl = QM| <G+ VmDyR, and

to(G+ vmDaR), Q)] <6
t+1t0)| — W(t ; ,
E[IQ+ ) - QW - 1] <{ ©C D HIA <2
where § = $to + (G + /mDaR)to + 2QR + QVDIR+[G+\/>D2R] , m is the number of constraint
Sunctions; D1, Do, G and R are deﬁned ln Assumption ] and € is deﬁned in Assumption 2. (Note
that € < G by the definition of G.)

Lemma 7 (proven in Supplement 7.5) allows us to apply Lemma 5 to random process Z (t) = ||Q(¢)]]
and obtain E[|Q(t)||] = O(VT),Vt by taking to = [VT],V = VT and a = T, where [T
represents the smallest integer no less than +/7. By Corollary 2, this further implies the expected
constraint violation bound E[ZZ;I gr(x(t))] < O(V/T) as summarized in the next theorem.

Theorem 1 (Expected Constraint Violation Bound). If V = /T and o = T in Algorithm 1, then for
all'T > 1, we have

E> gi(x(t)] < O(WT),Vk € {1,2,...,m}. (12)

where the expectation is taken with respect to all w(t).



Proof. Define random process Z(t) with Z(0) = 0 and Z(t) = ||Q(t)||,¢ > 1 and filtration
F(t) with F(0) = {0,Q} and F(t) = W(¢ — 1),t > 1. Note that Z(¢) is adapted to F(t). B
Lemma 7, Z(t) satisfies the conditions in Lemma 5 with dnax = G 4+ /mD2R, ( = § and
0 = Sto+ (G +/mD2R)ty + 2O‘R + 2VDIR+[GE+‘/RD2R]2 . Thus, by part (1) of Lemma 5, for all
t€{1,2,...}, we have E[[| Q(¢ )||] < Sty +2(G + /mDyR)ty + 208 4 2VDATHGH/mDaR]
tog[GJ”/?DQR]Q 10g[32[G+‘§LD2R]2]. Taking to = [VT], V = VT and a = T, we have
E[|Q®)|] < O(VT) forallt € {1,2,...}.
Fix T > 1. By Corollary 2 (with V = v/T and « = T) , we have 3,_, gL(x(t)) < ||Q(T +
DI+ fDlDQ + WDQ Zt L 1QW|,VEk € {1,2,...,m}. Taking expectations on both sides and
substltutlng E[||Q(t )H] = O(V/T), Vt into it yields E[Zthl gh(x(1))] < O(VT). O

3.3 Expected Regret Analysis
The next lemma (proven in Supplement 7.6) refines Lemma 4 and is useful to analyze the regret.
Lemma 8. Letz € XO be arbitrary. For allT > 1, Algorithm 1 guarantees

T
> Fx(t <th )+ R +VD1T+7[G+\FD2R] +%Z ZQk(t)gk(z) (13)

(I ()
where m is the number of constraint functions; and D1, Dy, G and R are defined in Assumption 1.

Note that if we take V = /T and o = T, then term (D in (13)is O( VT ). Recall that the expectation
of term (I) in (13) with z = x* is non-positive by Lemma 6. The expected regret bound of Algorithm
1 follows by taking expectations on both sides of (13) and is summarized in the next theorem.

Theorem 2 (Expected Regret Bound). Ler x* € Xy be any fixed solution that satisfies g(x*) < 0,
e.g., X* = argmin, y 2321 fHx). If V =T and o = T in Algorithm 1, then for all T > 1,

EY f(x()] <ED_f'(x)]+O0(T).

where the expectation is taken with respect to all w(t).

Proof. Fix T > 1. Taking z = x* in Lemma 8 yields >/, f'(x(t)) < S1_, f1(x*) + &R? +
Végf T+ 3G+ VmDyRP*L + & Zthl [>oh Qr(t)gk (x*)]. Taking expectations on both sides

and using (11) yields Y7 B[t (x(t))] < S°L, B[f*(x*)] + R2& + 2LV T4 1[G 4 /mDyR)2 L.
Taking V = /T and a = T yields Y"1, E[f(x(t))] < 32—, E[f*(x*)] + O(VT). O

3.4 Special Case Performance Guarantees

Theorems 1 and 2 provide expected performance guarantees of Algorithm 1 for OCO with stochastic
constraints. The results further imply the performance guarantees in the following special cases:

e OCO with long term constraints: In this case, g (x; w(t)) = gx(x) and there is no random-
ness. Thus, the expectations in Theorems 1 and 2 disappear. For this problem, Algorithm 1 can

achieve O(\/T) (deterministic) regret and O(+/T) (deterministic) constraint violations.
e Stochastic constrained convex optimization: Note that i.i.d. time-varying f(x;w(t)) is a

special case of arbitrarily-varying f%(x) as considered in our OCO setting. Thus, Theorems 1
and 2 still hold when Algorithm 1 is applied to stochastic constrained convex optimization. That

is, S B (e(0)] < S0, Bl (x)] + O(VT) and 3o Elgi (x(1))] < OWT), ¥k €
{1,2,...,n}. This online performance guarantee also implies Algorithm 1 can be used as a
(batch) offline algorithm with O(1/v/T) convergence for stochastic constrained convex optimiza-
tion. That is, after running Algorithm 1 for T slots, if we use X(7') = 7 Zthl x(t) as a fixed
solution, then E[(%(T);)] = E[f/(X(T))] < E[f*(x")] + O(-1) and E[gy (X(T);w)] =



Elg;.(X(T))] < O(%),Vk € {1,2,...,m} witht > T + 1 by the i.i.d. property of each

ft and ¢* and Jensen’s inequality. If we use Algorithm 1 as a (batch) offline algorithm, its
performance ties with the algorithm developed in [15], which is by design a (batch) offline
algorithm and can only solve stochastic optimization with a single constraint function.

e Deterministic constrained convex optimization: Similarly to OCO with long term con-
straints, the expectations in Theorems 1 and 2 disappear in this case since f'(x) = f(x)
and gi(x;w(t)) = gr(x). If we use X(T) = 7 Zthl x(t) as the solution, then f(X(7T)) <
f(x*) + O(ﬁ) and g5 (X(T')) < O( ﬁ), which follows by dividing inequalities in Theo-
rems 1 and 2 by 7" on both sides and applying Jensen’s inequality. Thus, Algorithm 1 solves
deterministic constrained convex optimization with O(%) convergence.

4 High Probability Performance Analysis

This section shows that if we choose V = /T and o = T in Algorithm 1, then for any 0 < A < 1,
with probability at least 1 — A, regret is O(v/T log(T) log"( 1)) and constraint violations are

O(VT log(T) log(1)).

4.1 High Probability Constraint Violation Analysis

Similarly to the expected constraint violation analysis, we can use part (2) of the new drift lemma
(Lemma 5) to obtain a high probability bound of ||Q(¢)||, which together with Corollary 2 leads to a
high probability constraint violation bound summarized in Theorem 3 (proven in Supplement 7.7).

Theorem 3 (High Probability Constraint Violation Bound). Ler 0 < \ < 1 be arbitrary. If V. = /T
and o = T in Algorithm 1, then for all T > 1 and all k € {1,2,...,m}, we have

Pr(( 3 gr(x(0)) < O(VTlog(T) log(1))) > 1 - A
t=1

4.2 High Probability Regret Analysis

To obtain a high probability regret bound from Lemma 8, it remains to derive a high probability
bound of term (I) in (13) with z = x*. The main challenge is that term (II) is a supermartingale with
unbounded differences (due to the possibly unbounded virtual queues Q(t)). Most concentration
inequalities, e.g., the Hoeffding-Azuma inequality, used in high probability performance analysis of
online algorithms are restricted to martingales/supermartingales with bounded differences. See for
example [4, 2, 16]. The following lemma considers supermartingales with unbounded differences.
Its proof (provided in Supplement 7.8) uses the truncation method to construct an auxiliary well-
behaved supermargingale. Similar proof techniques are previously used in [26, 24] to prove different
concentration inequalities for supermartingales/martingales with unbounded differences.

Lemma 9. Let {Z(t),t > 0} be a supermartingale adapted to a filtration {F(t),t > 0} with
Z(0) =0and F(0) = {0,Q}, i.e, E[Z(t+ 1)|F(t)] < Z(t),Vt > 0. Suppose there exits a constant
¢ > 0suchthat {|Z(t+ 1) — Z(t)| > ¢} C{Y(t) > 0},Vt > 0, where Y (t) is process with Y (t)
adapted to F(t) for allt > 0. Then, for all z > 0, we have

t—1

PrZ(t) > 2) < e~* /(1) 4 ZPr(Y(T) > 0),Vt > 1.

7=0
Note that if Pr(Y(¢) > 0) = 0,Vt > 0, then Pr({|Z(t + 1) — Z(t)| > ¢}) =0,Vt > 0and Z(t) is a
supermartingale with differences bounded by c. In this case, Lemma 9 reduces to the conventional
Hoeffding-Azuma inequality.

The next theorem (proven in Supplement 7.9) summarizes the high probability regret performance of
Algorithm 1 and follows from Lemmas 5-9 .

Theorem 4 (High Probability Regret Bound). Let x* € Xy be any fixed solution that satisfies
g(x*) <0, eg, x* = argmin, 23:1 fUx). Let 0 < X\ < 1 be arbitrary. If V. = /T and



a = T in Algorithm 1, then for all T > 1, we have
T T
1
t < oo 15,1 >1_
Pr(}f_;f (x(t)) < 31 + O(VT log(T) log ) =1

S Experiment: Online Job Scheduling in Distributed Data Centers

Consider a geo-distributed data center infrastructure consisting of one front-end job router and 100
geographically distributed servers, which are located at 10 different zones to form 10 clusters (10
servers in each cluster). See Fig. 1(a) for an illustration. The front-end job router receives job
tasks and schedules them to different servers to fulfill the service. To serve the assigned jobs, each
server purchases power (within its capacity) from its zone market. Electricity market prices can vary
significantly across time and zones. For example, see Fig. 1(b) for a 5-minute average electricity
price trace (between 05/01/2017 and 05/10/2017) at New York zone CENTRL [1]. This problem
is to schedule jobs and control power levels at each server in real time such that all incoming jobs
are served and electricity cost is minimized. In our experiment, each server power is adjusted every
5 minutes, which is called a slot. (In practice, server power can not be adjusted too frequently due
to hardware restrictions and configuration delay.) Let x(t) = [21(t),...,Z100(t)] be the power
vector at slot t, where each x;(¢) must be chosen from an interval [z, 2] restricted by the
hardware, and the service rate at each server i satisfies u;(t) = h;(x;(t)), where h;(+) is an increasing

concave function. At each slot ¢, the job router schedules p;(t) amount of jobs to server i. The

electricity cost at slot ¢ is f(x(t)) = Zjﬁﬂ ci(t)x;(t) where ¢;(t) is the electricity price at server

1’s zone. We use ¢;(t) from real-world 5-minute average electricity price data at 10 different zones
in New York city between 05/01/2017 and 05/10/2017 obtained from NYISO [1]. At each slot
t, the incoming job is given by w(t) and satisfies a Poisson distribution. Note that the amount of
incoming jobs and electricity price ¢;(t) are unknown to us at the beginning of each slot ¢ but can
be observed at the end of each slot. This is an example of OCO with stochastic constraints, where
we aim to minimize the electricity cost subject to the constraint that incoming jobs must be served
in time. In particular, at each round ¢, we receive loss function f!(x(t)) and constraint function
9" (x(1)) = w(t) = 32327 ha(wi(t)).

We compare our proposed algorithm with 3 baselines: (1) best fixed decision in hindsight; (2) react
[8] and (3) low-power [22]. Both “react" and “low-power" are popular power control strategies
used in distributed data centers. See Supplement 7.10 for more details of these 2 baselines and our
experiment. Fig. 1(c)(d) plot the performance of 4 algorithms, where the running average is the
time average up to the current slot. Fig. 1(c) compares electricity cost while Fig. 1(d) compares
unserved jobs. (Unserved jobs accumulate if the service rate provided by an algorithm is less than
the job arrival rate, i.e., the stochastic constraint is violated.) Fig. 1(c)(d) show that our proposed
algorithm performs closely to the best fixed decision in hindsight over time, both in electricity cost
and constraint violations. ‘React" performs well in serving job arrivals but yields larger electricity
cost, while “low-power" has low electricity cost but fails to serve job arrivals.

Electricity market price Running average electricity cost Running average unserved jobs

in hindsight
andhi et al. 2012)
Low-power (Qureshi et al. 2009)

Cost (dollar)

Price (dollar/MWh)
Unserved jobs (per slot)

andhi et al. 2012)
jer (Qureshi et al. 2009)

"Number of slots (each 5 min) - ' “Number of slots (‘eﬂach 5 m\/n”) N “Number of slots (;am 5 m(;{)

(b) © (@)
Figure 1: (a) Geo-distributed data center infrastructure; (b) Electricity market prices at zone CEN-
TRAL New York; (c) Running average electricity cost; (d) Running average unserved jobs.

6 Conclusion

This paper studies OCO with stochastic constraints, where the objective function varies arbitrarily but
the constraint functions are i.i.d. over time. A novel learning algorithm is developed that guarantees
O(V/T) expected regret and constraint violations and O(v/T log(T')) high probability regret and
constraint violations.
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7 Supplement

7.1 Proof of Lemma 2
Recall that for any b € R, if @ = max{b, 0} then a® < b%. Fix k € {1,2,...,m}. The virtual queue

u}f)date equation Q,(t+ 1) = max {Qx(t) + g} (x(t)) + [Vl (x())]" [ (t + 1) — x(t)],0} implies
that

SIQU(+ P <2 [@u(0) + gl (x(1)) + [Vgh Ge(e))]Tx(t + 1) — x(1)]

—

a

=

(@ (D] + Qu(t) [gk (x(1)) + [Vgr (x(O)] [x(t + 1) = x(8)]] + %[hk]27 (14)

where (a) follows by defining hy, = gt (x(¢)) + [Vgt (x(t)]"[x(t + 1) — x(2)].

Define s = [s1,...,8,]", where s, = [Vg!(x(t))]"[x(t + 1) — x(¢)],Vk € {1,2,...,m}; and
h = [hy,...,hy]" = gl (x(t)) +s. Then,

(a)
Il <llg" (=)l + 5] e+ ZD2R2 G+ VmD:R, (15)
k=1

where (a) follows from the triangle inequality; and (b) follows from the definition of Euclidean norm,
the Cauchy-Schwartz inequality and Assumption 1.

Summing (14) over k € {1,2,...,m} yields

Sl + 1)
<5l + ZQk + (Vo (eIt + 1) x(0)]] + 3 I ?
2LiQuie + Z Qult) + [V GeOTx(t + 1) = x(1)]] + 3[G + VimDs RP,

where (b) follows from (15). Rearranging the terms yields the desired result.

7.2 Proof of Lemma 3

Fixk € {1,2,...,m}and T > 1. Forany t € {0,1,...}, (3) in Algorithm 1 gives:
Qult +1) = max{Qu(t) + gh(x(1)) + [Vgh (x(D)]"Bx(t + 1) — ()], 0}
> Qult) + gh(x(6)) + Vgl (x(O)T[x(t + 1) — x(1)]
Y Qult) + gh(x(®) — VgL () (e + 1) — (1)
2 Qu(t) + gh(x(1) — Dalx(t + 1) — x(0),

where (a) follows from the Cauchy-Schwartz inequality and (b) follows from Assumption 1. Rear-
ranging terms yields

gh(x(1)) < Qr(t+ 1) — Qr(t) + Dalx(t + 1) — x(t)].

12



Summing over ¢ € {1,...,T} yields
T
ng )) < Qu(T +1) = Q1) + D2 Y [Ix(t + 1) —x(t)]
t=1

T

@ QuT + 1)+ D2 Y [Ix(t + 1) — x(0)]|
t=1
T

<NQT+ DIl + D2 Yy lIx(t +1) = x(1)].

t=1
where (a) follows from the fact Q1 (1) = 0.

7.3 Proof of Corollary 1
Fix ¢t > 1. Note that x(t) € Xy. Taking z = x(¢) in Lemma 4 yields
VIV ()] [x(t + 1) = x(8)] + ZQk )[Vgi ()] [x(t + 1) = x()] + allx(t + 1) = x(¢)|

< —allx(t) = x(t + 1"
Rearranging terms and cancelling common terms yields
2a|x(t + 1) — x(t)|?

VIV () et + 1) = x(0)] = Y Qu(®)[[Vah(x(6)]T[x(t + 1) = x(1)]]
k=1

(%)Vllvft(X(t))IIIIX(H1)—X()II+HQ £l ZIIng )Pt +1) = x(@®)]]?
k=1

VDL x(t + 1) — x(1)]| + VmDall Q) x(t + 1) — x(1)

where (a) follows by the Cauchy-Schwarz inequality (note that the second term on the right side
applies the Cauchy-Schwarz inequality twice); and (b) follows from Assumption 1.

Thus, we have

It 1) — (1) < L2 4 D

IQMI-

7.4 Proof of Lemma 5

In this proof, we first establish an upper bound of E[e"Z ()] for some constant 7~ > 0. Part (1) of this

lemma follows by applying Jensen’s inequality since e"* is convex with respect to x when r > 0.
Part (2) of this lemma follows directly from Markov’s inequality.
The following fact is useful in the proof.

Fact 1. ¢® <1+ + 222 forany |z| < 1.
Proof. By Taylor’s expansion we known for any x € R, there exists a point £ in between 0 and

such that e* = 1 4+ + %2 w . (Note that the value of & depends on = and if = > 0, then Z € (0, z);
ifx < 0, then & € (x,0); andlf:r = 0, then & = z. ) Since |z| < 1, we have e¥ < e < 4. Thus,

e® <1+ xz+2z%forany |z] < 1. O
The next lemma provides an upper bound of E[e"#(*)] with constant 7 = ﬁ <L
Lemma 10. Under the assumption of Lemma 5, we have
rt00max
E[e"?®)] < e vt e {0,1,...},
where r = Tioer - gﬁm, p=1— 786%1}( =1- %
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Proof. Since 0 < ¢ < dyax, We have 0 < p < 1 < e"max_ Define 1(t) = Z(t + to) — Z(t). Note
that [1(¢)| < to0max, Vt > 0 and |rn(t)| < ﬁt@max = 45# < 1. Then,

e Z(t+t0) _ rZ(t) gr(t) (16)

(a)
<e"Z® [1+ rn(t) + 2r2t3s?

max ]

1
(zb)erz(t) [14rn(t) + irtod, (17)

where (a) follows from Fact 1 by noting that |r7(¢)| < 1 and |5(t)| < todmax; and (b) follows by
substituting r = into a single r of the term 2r2¢252

¢
4003, ax max

Next, consider the cases Z(t) > 6 and Z(t) < 0, separately.

e Case Z(t) > 0: Taking conditional expectations on both sides of (17) yields:

E[e"?(H10)| Z(1)] <E[e"?® (1 4 ry(t) + %TtoCNZ(t)]

(a) 1
<erZ(®) [1 —rto¢ + irtod

701 TtoC]

2

(:b)perz(t)_

where (a) follows from the fact that E[Z (¢ + to) — Z(t)|F(t)] < —to¢ when Z(t) > 6; and (b)
follows from the fact that p = 1 — %

e Case Z(t) < 0: Taking conditional expectations on both sides of (16) yields:

E[er 2040 |7 ()] =E[e™#® )| Z(¢)]
:erZ(t)E[ern(t) |Z(t)]
(%)ertoémax e7’Z(i&) ,

where (a) follows from the fact that 7(¢) < todmax-

Putting two cases together yields:
ElerZ(t+t0)] Dpr(Z(t) > 0)E[e" 2t +10)| Z(t) > 0] + Pr(Z(t) < O)E[e"Z(H0)|Z(t) < 0]

®)
<pE[e"ZD|Z(t) > 0]Pr(Z(t) > 0) + emtodmaxE[e" 21| Z(t) < O]Pr(Z(t) < 0)
O pR[erZ®] 4 [ertodmnx — pIE[eZ0| Z(t) < O1P(Z(t) < 0)
(d)

SP]E[QTZ(t)] + [ertgzin,ax _ p]6r9

SpE[eTZ(t)] 4 e’r‘toémaxera’ (18)

where (a) follows by the definition of expectations; (b) follows from the results in the above two
cases; (c) follows from the fact that E[e"?()] = Pr(Z(t) > 0)E[e"?®)|Z(t) > 0] + Pr(Z(t) <
0)Ele"?®)|Z(t) < 6]; and (d) follow from the fact that e"*0%max > p,

Ttgdmax

Now, we prove E[e"? (t)] < elfpere, vt > 0, by inductions.

We first consider the base case t € {0,1,...,tg}. Since Z(t) < tdmax, vt > 0, it follows that

rt0bmax . .
E[erZ(®)] < ertdmax < grtodmax < %ereﬁ’t € {0,1,...,to}, where the last inequality follows

ere

<>,

because
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Now assume that E[e"Z(®)] < %e’"g forall t € {0,1,...,7} with some 7 > ¢y and consider
iteration t = 7 + 1. By (18), we have

E[erZ(T-i-l)] SpE[eTZ(T+1_tO)] + ertoémaxere

(a) ertodmax
SP er@ + ertoémaxere
L—p
e"‘tO[smax

1—p

where (a) follows from the induction hypothesis by noting that 0 < 7+ 1 — ¢y, < 7.

Thus, this lemma follows by inductions. O

By this lemma, for all ¢ € {0, 1, ...}, we have

e to0max
E[e"?®] <——¢", (19)
I—p
Proof of Part (1): Note that e"* is convex with respect to  when r > 0. By Jensen’s inequality,
er]E[Z(t)} SE[@TZ(t)]

(a) er(0+todmax)
<

S—, (20)
L—p
where (a) follows from (19).
Taking logarithm on both sides and dividing by r yields:
1
E[Z(t)] <0 + todmax + ~ log i,
(a) 462 862
:0 + toé‘max + to max 1 max ,
s o S|
where (a) follows by recalling that r = ; ” 52 andp=1-g 52
Proof of Part (2): Fix z. Note that
Pr(Z(t) > z) =Pr(e"?®) > %)
(G)E[erz(t)]
S - -
e’I"Z
(?er(072+tg5max) 1
< -,
2
(c )B‘L’OT(G 2+todmax) [85mwx] (21)

&

where (a) follows from Markov’s inequality; (b) follows from (19); and (c) follows by recalling that
2

= I 52 andp—l 862

max

(0 z+to 51n'1x) [

Define p1 = 64’05ma C—“‘] It follows that if

400 ax 1 180max A0 1
z =0+ to6max + to C lo [ C; ] +to Ca 1 (;)a

then we have Pr(Z(t) > z) < u by (21).
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7.5 Proof of Lemma 7

The next lemma will be useful in our proof.

Lemma 11. Let X € X} be a Slater point defined in Assumption 2, i.e, ji(X) = E,[gr(%;w)] <
—e,Vk € {1,2,...,m}. Then

E[Y Qr(t1)gi (R)W(t2)] < —€B[|Q(11)[|W(E2)],  Via < t1 —1
k=1
where € > 0 is defined in Assumption 2.

Proof. To prove this lemma, we first show that
E[Qr(t1)gy ()| W(t2)] < —eE[Qu(t:)W(t2)], Yk € {1,2,... . m}, Vs < t; — L.
Fix k € {1,2,...,m}. Note that Q(t;) € W(t; — 1) and g}' (%) is independent of W(t; — 1).
Further, if t5 < ¢; — 1, then W(t2) € W(t; — 1). Thus, we have
E[Qx(t1)gf (%)W (1)) DE[E[Qk(t1)gf (R)W(ts — D] W(t>)]
(b) 1/
=E[Qx(t1)E[gy (X)W (t2)]

(©) .

=Elgy (%)|E[Qr(t1) W (t2)]

(d)

< — eE[Qu(t1) W (t2)]

where (a) follows from iterated expectations; (b) follows because g,tf1 (%) is independent of W(t; — 1)
and Qi (t1) € W(t; — 1); (c) follows by extracting the constant E[g}’ (%)] and (d) follows from the
assumption that X is a Slater point, g*(-) are i.i.d. across ¢ and the fact that Q. (t) > 0.

Now, summing over m € {1,2,...,m} yields
E[Z Qr(t1)gy () W(ts)] < — eE[Z Qi (t1) W(t2)]
k=1 k=1

(a)
< — eE[[|Q(t)[[[W(t2)]
where (a) follows from the basic fact that >~ ; ax > /> .-, a3 whenay > 0,Vk € {1,2,...,m}.
[

The bounded difference of |Q(t + 1) — Q(t)| follows directly from the virtual queue update equation
(3) and is summarized in the next Lemma.

Lemma 12. Let Q(t),t € {0,1,...} be the sequence generated by Algorithm 1. Then,
QW -G —vmD:R<|Q(t+ 1)l < Q)] + G, vt > 0.

Proof.
e Proof of |Q(t + 1)|| < |Q(®)[| + G-
Fixt > 0and k € {1,2,...,m}. The virtual queue update equation implies that

Qi (t +1) =max{Qu(t) + gk (x(t)) + [Vgi (x(t))]" [x(t + 1) — x(t)], 0}

(a)
< max{Qx(t) + gi(x(t + 1)), 0},
where (a) follows from the convexity of gj ().

Note that Q(t + 1) > 0 and recall the fact that if 0 < a < max{b,0}, then a®> < b? for all
a,b € R. Then, we have [Qx(t + 1)]? < [Qx () + gL (x(t + 1))]>.

Summing over k € {1,2,...,m} yields
1Q(t+ D> < 1Q(t) + &' (x(t + 1)*.

Thus, [|Q(t + ]| < [Q(t) + ' (x(t + )| < IQ)II + llg"(x(t + 1))l < [|Q(t)|| + G where
the last inequality follows from Assumption 1.
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e Proofof |Q(t+1)|| > [|Q(t)|| — G — VmD:R:
Since Q4 (1) > 0, it follows that [Q4(¢+ 1) ~ Qu(8)] < g} (x(1)+ VoL (x(1) [ bx(t-+1) (1) |.
(This can be shown by considering gt (x(t)) + [Vgk (x(t))]T[x(t + 1) — x(¢)] > 0 and ¢! (x(t)) +

[Vt (x(t)]T[x(t+1)—x(t)] < 0 separately.) Thus, we have |Q(t+1) —Q(t)|| < G++/mDsR,
which further implies [|Q(t + 1)|| > [|Q(¢)|| — G — v/mD2R by the triangle inequality of norms.

O

Now, we are ready to present the main proof of Lemma 7. Note that Lemma 12 gives ‘||Q(t +
DI - 11Q(¢ H’ < G + /mDsR, which further implies that E[||Q(t + to)|| — ||Q(¢ )|||Q ] <

to(G 4+ /mD3R) when ||Q(t)|| < 6. It remains to prove E[||Q(¢t + 1)|| — [|Q(¢ ||‘Q to

when ||Q(%)|| > 6. Note that ||Q(0)]| =0 < 6.

Fix ¢ > 1 and consider that ||Q(¢)|| > 6. Let x € Xj and € > 0 be defined in Assumption 2. Note

that E[g}.(X)] < —e,Vk € {1,2,...,m},Vt € {1,2,...} since w(¢) are i.i.d. from the distribution

of w. Since X € Xp, by Lemma 4, forall 7 € {t,t +1,...,¢t +top — 1}, we have

VIV (x(0))] [x(r + )]+ Z Qu(n)[Vgi (x(M)]' (7 + 1) = x(7)] + allx(7 + 1) — x(7)||*

SVIVFT (x(r)]" & = x( +ZQk x()]'[% = x(7)] + allx = x(7)|* = [I% = x(7 + 1)|*]-

Adding 37" | Qr(7)gr (x(T )) on both sides and noting that gf (x(7)) + [V g7 (x(7))]T[x — x(7)] <
g7 (X) by convexity y1elds

VIVSTx()]Tx(r + 1) = x(r)] + Y Qu(7) [k (x(7)) + [V (x(r)] (7 + 1) = x(7)]]
k=1
+alx(r+1) = x()|]
VIV = x(M)] + D Qu(1)gi (%) + allx —x(7)|* — % — x(r + 1)|]?].
k=1

Rearranging terms yields
Z Qu(t + [Vgr(x(m)] (7 +1) = x(7)]]
SV[VfT( (M) & = x(7)] = VIV (x()]Tx(7 + 1) — x(7)]
+aflx = x(r)lI* = 1% = x(r + DI*] = allx(r +1) = x()||* + Z Qr(t)gr (x
VIV ()] [& = x(m + D] + al|& = x(7)* = Ik = x(r + 1P| + > Qu(r)gi (%)
k=1
(%)VHVJ”(X(T))II 1% = x(7 + Dl + of[% = x(7)[* = % = x(7 + DIP] + Y _ Qr(7)gi (%)
k=1
2vpiR+ ofll% = x(m)[* = % = x(7 + DI + D Qu(7)gi (%), (22)
k=1

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from Assumption 1.

By Lemma 2, forall 7 € {¢,t +1,...,t +to — 1}, we have

7)< Z Qur(T) [g7 (x()) + [Vgi (x(M)]" [x(r + 1) = x(7)]] + %[G + VmD3R)?

(<)VD1R+ LG+ VDR + a5 — x(7)| ~ [~ x(r + DT + 3 Qe (%),
k=1
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where (a) follows from (22).

Summing the above inequality over 7 € {¢,t + 1,..., ¢+ to — 1}, taking expectations conditional
on W(t — 1) on both sides and recalling that A(7) = $[|Q(7 + 1)[|? — 5[ Q(7)||? yields

E[|Q(t +to)[I” = 1Q@)I*[W(t - 1)]
<2V Di Rty + to[G + vVmDy R + 2aE[||x — x(t)[|* — ||% — x(t + to)||*IW(t — 1)]
t+to—1 m

+2 Z IEZQk X)Wt —1)]

(@) t+to—1
<2VD; Rtg + to[G + vmD2R]* + 2aR® — 2¢ Y E[|Q(7)[|[W(t — 1)]

T=t
to—1

(b)
<2V D;Rto + to[G + vVmDyR]? + 2aR* — 2¢ Z E[|Q®)| — 7(G + vVmDaR)\W(t — 1)]
7=0

=2V D1 Rty + to[G + \/EDQR]2 + 20R? — 2€t0||Q(t)|| + Gto(to — 1)(G + \/%DQR)
<2V Di Rty + to[G + vVmDyR)? + 2aR? — 2¢to||Q(t)|| + et2(G + /mD3R)

where (a) follows from [% — x(t)||> — [|x — x(t + to)[> < R? by Assumption 1 and

E[3 521 Qe(n)gi )Wt — 1] < —eB[|Q()|V(E — 1), V7 € {t,t + 1,....t +ty — 1} by
Lemma 11; (b) follows from ||Q(¢t + 1)|| > [|Q(#)|| — (G + vmD2R),Vt by Lemma 12.

This inequality can be rewritten as

E[|Q(t + to)[|*W(t — 1)]
<IQ)[1* — 2¢to||Q(t)|| + 2V Dy Rto + 2aR? + to[G + vVmD2R]* + €t3(G + vmD2R)
(a) 2aR? 2VDR+[G+ Dy R)?
2RI — et QI — etlto + (G + VD R)tg + 20 4 ZLOUEEIC E mDalY

+ 2V D1 Rty + 2aR? + 1[G + vVmDaR)* + €t3(G 4+ vVmDyR)
2t2

=lQM)I1* - etol Q)| - 5°
<)l - St

]

where (a) follows from the hypothesis that [|Q(t)|| > 6 = $to + (G + /mD2R)to + 2?‘0}?2 +

2V Dy R+[G++/mD2 R]?
" .

Taking square root on both sides yields

VElQU + )2V - 1] < [Q() - St

By the concavity of function /2 and Jensen’s inequality, we have

E[Q( + )Wt — 1] < VE[IQE + @)W — 1] < Q)] - Sto.

7.6 Proof of Lemma 8

Fix t > 1. By Lemma 4, we have

VIV x()]Te(t + 1) = x(0] + D Qu(t)[Vak(x(8)]Te(t + 1) — x(0)] + allx(t + 1) — x(1)|

k=1

<V[VF @) +2Qk x(t)]'[z — x(8)] + alllz — x(®)]|* ~ llz — x(t + 1)||?].
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Adding constant V ff(x (t)) + > e, Qi(t)gh(x(t)) on both sides; and noting that f*(x(t)) +
"(2) and gj

(t
% {’(;S(x(ﬁ))]T[z — x(t)] < fi(z) and gt (x(t)) + [Vg.(x(t)]T[z — x(t)] < gL(2) by convexity

m

VI (x(8) + VIV ()] x(t 4+ 1) = x(0)] + Y Qu(t) [gh (x(t)) + [Vgi (x(8))]"[x(t + 1) — x(1)]]

+allx(t+1) = x(@)*
<Vfi(a +ZQk 9k (2) + afllz — x()|* — ||z — x(t + 1)||”]. (23)
By Lemma 2 we have
)< Z Qult + (Vo G x(e+ 1) = x(O)] + 3G+ VDo RE. 24

Summing (23) and (24), cancelling common terms and rearranging terms yields

VI (x(1) <V H(z) = A) + D Qu(t)gh(z) + allz —x(1)[* — ||z — x(t + 1)|]
k=1
VIV @) x(t + 1) —x(t)] = afx(t +1) —x(6)]* + %[G ++/mD,R]?
(25)
Note that
= VIV (@) x(t+ 1) = x(8)] — afx(t +1) —x(t)|*
(a)
VIV (@)%t +1) = x(@)]| = allx(t + 1) — x()]*
(Sb)VD1||x(t +1) —x(t)]| — a|x(t+1) — x(®)|?
VD V2D?
=~ aflx(t+1) - x(0)] - 5 ]+ T
212
A 6)
where (a) follows from the Cauchy-Schwartz inequality; and (b) follows from Assumption 1.
Substituting (26) into (25) yields
m 22
VI () SV 2) — )+ Y Qult)gk ) +allz — x(O)F — s — x(t + D]+ Lk
k=1
4516+ VDR

Summing over ¢t € {1,2,...,T} yields
V2D2

VY ) SVYfiz) =) Al +az Iz = x(t)1* = llz — x(t + 1)|I°] + ﬂlT
t=1 t=1 t=1

[ Qr(t)gi(z)]

t=1 k=1

MH

1
+ 3G+ VmDRI*T +

(@) - t 2 2 4 V2D?
SV f1(@) + L) = LT +1) +allz = x(V)|* — allz = x(T + D* + —

T m
t=1 k=1

T m
(G +VmDyRPT +Y [ > Qu(t)gh(2)]

t=1 k=1

VD
<VZf )+ aR? + 1T+

1
2
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where (a) follows by recalhng that A(t) = L(t+ 1) — L(t); and (b) follows because ||z —x(1)|| < R
by Assumption 1, L(1) = 1[|Q(1)||> = 0 and L(T + 1) = (|Q(T + 1)||* > 0.

Dividing both sides by V' yields the desired result.

7.7 Proof of Theorem 3

Define random process Z(t) = ||Q(¢)]],Vt € {1,2,...}. By Lemma 7, Z(t) satisfies the conditions
in Lemma 5 with 6o = G+ /mD:2R, ¢ = § and

2aR?  2VD R+ [G + mDsR]?
9:%t0+(G+\/mD2R)tO+ ?6 + ikl : mD:R”
0

Fix T > 1and 0 < A < 1. Taking u = A/(T + 1) in part (2) of Lemma 5 yields

A
P t)|| > < —Vt 1,2,....T+1
r(HQ()H_v)_TH, e{1,2,...,T+1},

where _ Sty + 2G + mD:R)ty + 2aR? n 2VD1R+[GE+\/ED2R]2 n

toe
tOS[GJr\/TDzR]? [32[G+@D2R]2]+t08[G+\/r?DQR] log(TJrf)

log
By union bounds, we have

Pr(||Q(¢)|| > v forsomet € {1,2,..., T +1}) < A
This implies

Pr(|Qt)|| <7 forallt € {1,2,...., T +1}) >1—\. @27
Taking to = [VT],V = /T and a = T yields

= O(VTlog(T)) + O(VTlog()) = O(/Tlog(T) o) e8)

Recall that by Corollary 2 (with V = /T and o = T), for all k € {1,2,...,m}, we have

T —p2 T
S gulxlt) < QT + 1) + VL2 P2 VDS § ). 9)

It follows from (27)-(29) that

ng ) < O(VTlog(T )log(%))) >1-—A

7.8 Proof of Lemma 9

Intuitively, the second term on the right side in the lemma bounds the probability that |Z (T +
1) — Z(1)| > cforany 7 € {0,1,...,t — 1}, while the first term on the right side comes from
the conventional Hoeffding-Azuma inequality. However, it is unclear whether or not Z(t) is still a
supermartigale conditional on the event that | Z(7+1)—Z(7)| < cforany 7 € {0,1,...,¢t—1}.That’s
why it is important to have {|Z(t + 1) — Z(t)| > ¢} C {Y'(¢t) > 0} and Y (¢) € F(t), which means
the boundedness of | Z (¢t + 1) — Z(t)| can be inferred from another random variable Y (¢) that belongs
to F(t). The proof of Lemma 9 uses the truncation method to construct an auxiliary supermargingale.

Recall the definition of stoping time given as follows:

Definition 1 ([7]). Ler {(,Q} = F(0) C F(1) C F(2)--- be a filtration. A discrete random
variable T' is a stoping time (also known as an option time) if for any integer t < oo,

{T =1t} eF),

i.e. the event that the stopping time occurs at time t is contained in the information up to time t.
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The next theorem summarizes that a supermartingale truncated at a stoping time is still a supermartin-
gale.

Theorem 5. (Theorem 5.2.6 in [7]) If random variable T is a stopping time and Z(t) is a super-
martingale, then Z(t \ T) is also a supermartingale, where a A b = min{a, b}.

To prove this lemma, we first construct a new supermartingale by truncating the original super-
martingale at a carefully chosen stopping time such that the new supermartingale has bounded
differences.

Define integer random variable T' = inf{¢t > 0 : Y'(¢) > 0}. That is, T is the first time ¢ when
Y(t) > 0 happens. Now, we show that T is a stoping time and if we define Z(t) = Z(t A T),
then {Z(t) # Z(t)} C Ut;:lo{Y(T) > 0},Vt > 1and Z(t) is a supermartingale with differences
bounded by c .

1. To show T is a stoping time: Note that {T' = 0} = {Y'(0) > 0} € F(0). Fix integer ¢’ > 0,
we have
{T=t}={inf{t>0:Y(t) >0} =t}
—{ MeZo {IY(r) < 03} n{Y() > 0}

e J-'(t’)

where (a) follows because {Y (1) < 0} € F(r) C F(¢') forall 7 € {0,1,...,¢ — 1} and
{Y (') > 0} € F(t'). It follows that T is a stoping time.

2. Toshow {Z(t) # Z(t)} C U'_b{Y (r) > 0},Vt > 1: Fix t = ¢ > 1. Note that

{Z(t) # ()}C{T<t}—{1nf{t>0Y >0} <t}

c |J{y(n) >0}

where (a) follows by noting that if T > ¢/ then Z(t') = Z(t' AT) = Z(t').

3. To show Z(t (t)isa supermartingale with differences bounded by c: Since random variable T’
is proven to be a stoping time, Z(t (t) = Z(t ANT) is a supermartingale by Theorem 5. It remains
to show | Z(t + 1) — Z(t)| < ¢,Vt > 0. Fix integer t = ¢’ > 0. Note that

2+ 1) = Z(1)|
=|Z(T A +1)) - Z(T At)]
~Lprsu ey 2T A +1)) = Z(T A )] + Ligaoy [Z(T A+ 1)) — Z(T A )]
=1grzp iy [Z(t +1) = Z(')] + Lip<iny [Z(T) — Z(T)]|
=lirsp1y|Z(H +1) — Z(¢'))|
Now consider T < t' and T' > ¢/ + 1 separately.
e Inthe case when T' < t, it is straightforward that | Z (¢’ + 1) — Z(t')| = Tepspy | Z(t +
1)-Z({)|=0<ec.
e Consider the case when T' > ¢’ + 1. By the definition of 7', we know that {T' >t/ + 1} =

{inf{t > 0: Y (1) > 0} > #+1} € (V_{¥(r) < 0} € (V_{|Z(r+1)—Z(r)| < e},
where the last inclusion follows from the fact that {|Z(7+1) — Z(7)| > ¢} C {Y( ) > 0}.
Thatis, whenT" > t'+1, we musthave | Z(7+1)—Z(7)| < cforall 7 € {1,...,#'}, which

further implies that | Z(t' +1) — Z(¢')| < c. Thus, whenT' > ¢’ + 1, |Z(t’+1) Z(t)| =
Yrsey|Z(' +1) = Z(t')| < c.

Combining two cases together proves |Z(t' + 1) — Z(t')| < c.
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Since Z(t) is a supermartingale with bounded differences ¢ and Z(0) = Z(0) = 0, by the conven-
tional Hoeffding-Azuma inequality, for any z > 0, we have

Pr(Z(t) > 2) < e/ (2te?) (30)

Finally, we have

Pr(Z(t) > =) =Pr(Z(t) = Z(1), Z(t) > =) + Pr(Z(t) # Z(1), Z(1) > 2)
<Pr(Z(t) > 2)+ (2 Z(t) # (1))

(a) B
,z2/(2tc ) +Pr U > O)

(b)

e/ Z p(7)
=0

where (a) follows from equation (30) and the second bullet in the above; and (b) follows from the
union bound and the hypothesis that Pr(Y (1) > 0) < p(1),Vr.

7.9 Proof of Theorem 4

Define Z(0) = 0 and Z(t) = S0, o7, Qr(7)gh (x*). Recall W(0) = {§,Q} and W(t) =
o(w(l),...,w(t)), ¥t > 1. The next lemma shows that for any ¢ > 0, Z(¢) satisfies Lemma 9 with
F(t) =W(t) and Y(#) = |Q(t+ 1| - &-

Lemma 13. Let x* € Xy be any fixed solution that satisfies g(x*) < 0, e.g, x* =
argmin,  y Zt 1 f{(x). Let ¢ > 0 be arbitrary. Under Algorithm 1, if we define Z(0) = 0
and Z(t) = S0 _, Ek 1 Qi(T)gp (x*),Vt > 1, then {Z(t),t > 0} is a supermartingale adapted to
Siltration {W(t),t > 0} such that

{|Z(t +1) = Z(t)| > c} C{Y(t) > 0},vt >0

where Y (t) = ||Q(t + 1)|| — & is a random variable adapted to W (t). (Note that G is a constant
defined in Assumption 1.)

Proof. Ttis easy to say {Z(t),t > 0} is adapted {W(t),t > 0}. It remains to show {Z(t),t > 0} is
a supermartingale. Note that Z(t + 1) = Z(t) + > -, Qx(t + 1)git*(x*) and

E[Z(t + D)W(t)] = +ZQk t+ 1)gt  (x*) W)

k=1

A

+2Qk (t + DE[gE (x)]

(b)
<Z()

where (a) follows from the fact that Z(t) € W(t), Q(t + 1) € W(t) and g'*!(x*) is independent
")

of W(t); and (b) follows from E[g, ™ (x*)] = §x(x*) < 0 which further follows from w(t) are i.i.d.
samples. Thus, {Z(t),¢ > 0} is a supermartingale.

‘We further note that

m

(a)
Z(t+1) = Z()] = 1) Qult+ Vgt (x)| < |Qt + )G
k=1
where (a) follows from the Cauchy-Schwarz inequality and the assumption that ||g(x*)|| < G.
This implies that if |Z(t 4 1) — Z(t)| > ¢, then [|Q(t)|| > &. Thus, {|Z(t + 1) — Z(t)| > c} C
{IQ(t+1)|| > &}. Since Q(t + 1) is adapted to W(t), it follows that Y'(t) = [|Q(t +1)|| — S isa
random variable adapted to W(t). O
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By Lemma 13, Z(t) satisfies Lemma 9. Fix T' > 1, Lemma 9 implies that

T m T-1
_ ¢ C
Pr() 3 Qu(t)gh(x*) > ) < ¢ 27/CT) 13" (|| Qe +1l > 3) 31)
t=1 k=1 @ t=0

an

Fix 0 < A < 1. In the following, we shall choose ~ and c such that both term (I) and term (II) in (31)
are no larger than %

Recall that by Lemma 7, random process Z(t) = ||Q(t)|| satisfies the conditions in Lemma 5 with
max—G+\/7D2R C 7and

200 R? 2VDiR + [G + /mDsR)?
9:%t0+(G+\/mD2R)to+ ?6 + 1] E+ m=2 ].
0

To guarantee term (II) is no lareger than , it suffices to choose ¢ such that
c A
P t)|| >
WM > 5) < o
By part (2) of Lemma 5 (with p = T) the above inequality holds if we choose ¢ = t,5G +

2t0(G +/mD2R)G + 220 G 2YDARHG/MDRL 1 y 4, 8GRI 10 SCH/ DB
08[G+\/:D2R] 10g(¥)

Vte{l,2,...,T}

G where ty > 0 is an arbitrary integer.

Once c is chosen, we further need to choose v such that term (I) in (31) is % It follows

that if 7 = V2Tlog™($)e = VaTlog™*(3)[5tC + 200(G + VmD2R)G + %56 +
QVDlRHGjﬁDzR]QGthO 8[G+\/€EDQR]2 [32[G+{;D2R]2}G+t08[G+\/:D2R] log(¥)G},then

log
the term (I) is equal to %

Thus, we have

which further implies,

T m
Pr(> > Qr(t)gh(x) <7) = 1- A (32)

Note that if we take tg = [VT], V = VT and a = T, then vy = O(Tlog(T) 1og05( ) +
O(Tlog"®(+)) = O(Tlog(T)log"*(3)).
By Lemma 8 (withz = x*, V = VT and a = T), we have

SIS Qnt)gh(x

> Fx( Z )+ VTR® + f+ [G+\FD2R2f
— =1 =1 k=1 )

%\H

Substituting (32) into (33) yields

T T
Pr(t_zlft( Z )1+ 0O \flog( )logl's(i))) >1-A

7.10 More Experiment Details

In the experiment, we assume the job arrivals w(t) are Poisson distributed with mean 1000 jobs/slot.
For simplicity, assume each server is restricted to choose power z;(t) € [0, 30] at each round and
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the service rate satisfies h;(x;(t)) = 4log(1 + 4x;(t)). (Note that our algorithm can easily deal with
general concave functions h;(-) and each server in general can have different h;(-) functions.) The
simulation duration is 2160 slots (corresponding to 10 days).

The three baselines are further elaborated as below:

e Best fixed decision in hindsight: Assume all the electricity price traces and the job arrival
distribution are known beforehand. The decision maker chooses a fixed power decision vector
p”* that is optimal based on data in 2160 slots.

e React algorithm: This algorithm is developed in [8]. The algorithm reacts to the current traffic
and splits the load evenly among each server to support the arrivals. Since instantaneous job
arrivals is unknown at the current slot, we use the average of job arrivals over the most recent 5
slots as an estimate. Since this algorithm is designed to meet the time varying job arrivals but is
unaware of electricity variations, its electricity cost is high as observed in our simulation results.

e Low-power algorithm: This algorithm is adapted from [22] and always schedule jobs to servers
in the zones with the lowest electricity price. Since instantaneous electricity prices are unknown
at the current slot, we use the average of electricity prices over the most recent 5 slots at each
server as an estimate. Recall that each server has a finite service capacity (z;(t) € [0, 30]), this
algorithm is not guaranteed to serve all job arrivals. Thus, the number of unserved jobs can
eventually pile up.
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