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Abstract—This paper considers utility optimal power control

for energy harvesting wireless devices with a finite capacity

battery. The distribution information of the underlying wireless

environment and harvestable energy is unknown and only out-

dated system state information is known at the device controller.

This scenario shares similarity with Lyapunov opportunistic

optimization and online learning but is different from both.

By a novel combination of Zinkevich’s online gradient learning

technique and the drift-plus-penalty technique from Lyapunov

opportunistic optimization, this paper proposes a learning-aided

algorithm that achieves utility within O(✏) of the optimal, for

any desired ✏ > 0, by using a battery with an O(1/✏) capacity.

The proposed algorithm has low complexity and makes power

investment decisions based on system history, without requiring

knowledge of the system state or its probability distribution.

I. INTRODUCTION

Energy harvesting can enable self-sustainable and perpetual
wireless devices. By harvesting energy from the environment
and storing it in a battery for future use, we can significantly
improve energy efficiency and device lifetime. Harvested
energy can come from solar, wind, vibrational, thermal, or
even radio sources [1], [2], [3]. Energy harvesting has been
identified as a key technology for wireless sensor networks [4],
internet of things (IoT) [5], and 5G communication networks
[6]. However, the development of harvesting algorithms is
complex because the harvested energy is highly dynamic and
the device environment and energy needs are also dynamic.
Efficient algorithms should learn when to take energy from
the battery to power device tasks that bring high utility, and
when to save energy for future use.
There have been large amounts of work developing efficient

power control policies to maximize the utility of energy
harvesting devices. In the highly ideal case where the fu-
ture system state (both the wireless channel sate and energy
harvesting state) can be perfectly predicted, optimal power
control strategies that maximize the throughput of wireless
systems are considered in [7], [8]. In a more realistic case with
only the statistics and causal knowledge of the system state,
power control policies based on Markov Decision Processes
(MDP) are considered in [9], [10]. In the case when the
statistical knowledge is unavailable but the current system state
is observable, work [11] develops suboptimal power control
policies based on approximation algorithms.
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However, there is little work on the challenging scenario
where neither the distribution information nor the system state
information are known. In practice, the amount of harvested
energy on each slot is known to us only after it arrives and
is stored into the battery. Further, the wireless environment
is often unknown before the power action is chosen. For
example, the wireless channel state in a communication link
is measured at the receiver side and then reported back to
the transmitter with a time delay. If the fading channel varies
very fast, the channel state feedback received at the transmitter
can be outdated. Another example is power control for sensor
nodes that detect unknown targets where the state of targets
is known only after the sensing action is performed.
In this paper, we consider utility-optimal power control

in an energy harvesting wireless device with outdated state
information and unknown state distribution information. This
problem setup is closely related to but different from the
Lyapunov opportunistic power control considered in works
[12], [13], [14] with instantaneous wireless channel state
information. The policies developed in [12], [13], [14] are
allowed to adapt their power actions to the instantaneous
system states on each slot, which are unavailable in our
problem setup. The problem setup in this paper is also closely
related to online convex optimization where control actions
are performed without knowing instantaneous system states
[15], [16], [17]. However, existing methods for online convex
learning require the control actions to be chosen from a fixed
set. This does not hold in our problem since the power to be
used can only be drained from the battery whose backlog is
time-varying and dependent on previous actions.
By combining the drift-plus-penalty (DPP) technique for

Lyapunov opportunistic optimization [18] and the online gra-
dient learning technique for online convex optimization [15],
we develop a novel learning aided dynamic power control
algorithm that can achieve an O(✏) optimal utility by using a
battery with an O(1/✏) capacity for energy harvesting wireless
devices with outdated state information.

II. PROBLEM FORMULATION

Consider an energy harvesting wireless device that oper-
ates in normalized time slots t 2 {1, 2, . . .}. Let ![t] =

(e[t], s[t]) 2 ⌦ represent the system state on each slot t, where
• e[t] is the amount of harvested energy for slot t (for
example, through solar, wind, radio signal, and so on).

• s[t] is the wireless device state on slot t (such as the
vector of channel conditions over multiple subbands).
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• ⌦ is the state space for all ![t] = (e[t], s[t]) states.
Assume {![t]}1

t=1

evolves in an independent and identically
distributed (i.i.d.) manner according to an unknown distribu-
tion. Further, the state ![t] is unknown to the device until the
end of slot t. The device is powered by a finite-size battery.
At the beginning of each slot t 2 {1, 2, . . .}, the device draws
energy from the battery and allocates it as an n-dimensional
power decision vector p[t] = [p

1

[t], . . . , p
n

[t]]T 2 P where P
is a compact convex set given by

P = {p 2 Rn

:

nX

i=1

p
i

 pmax, p
i

� 0, 8i 2 {1, 2, . . . , n}}.

Note that pmax is a given positive constant (restricted by
hardware) and represents the maximum total power that can be
used on each slot. The device receives a corresponding utility
U(p[t];![t]). Since p[t] is chosen without knowledge of ![t],
the achieved utility is unknown until the end of slot t. For
each ! 2 ⌦, the utility function U(p;!) is assumed to be
continuous and concave over p 2 P . An example is:

U(p;!) =

nX

i=1

log(1 + p
i

[t]s
i

[t]) (1)

where s[t] = (s
1

[t], . . . , s
n

[t]) is the vector of (unknown)
channel conditions over n orthogonal subbands available to
the wireless device. In this example, p

i

[t] represents the
amount of power invested over subband i in a rateless coding
transmission scenario, and U(p[t];![t]) is the total throughput
achieved on slot t. We focus on fast time-varying wireless
channels, e.g., communication scenarios with high mobility
transceivers, where s[t] known at the transmitter is outdated
since s[t] must be measured at the receiver side and then
reported back to the transmitter with a time delay.

A. Further examples

The above formulation admits a variety of other useful
application scenarios. For example, it can be used to treat
power control in cognitive radio systems. Suppose an energy
limited secondary user harvests energy and operates over
licensed spectrum occupied by primary users. In this case,
s[t] = (s

1

[t], . . . , s
n

[t]) represents the channel activity of
primary users over each subband. Since primary users are not
controlled by the secondary user, s[t] is only known to the
secondary user at the end of slot t.
Another application is a wireless sensor system. Consider

an energy harvesting sensor node that collects information by
detecting an unpredictable target. In this case, s[t] can be the
state or action of the target on slot t. By using p[t] power for
signaling and sensing, we receive utility U(p[t];![t]), which
depends on state ![t]. For example, in a monitoring system,
if the monitored target performs an action s[t] that we are
not interested in, then the reward U(p[t];![t]) by using p[t]
is small. Note that s[t] is typically unknown to us at the
beginning of slot t and is only disclosed to us at the end
of slot t.

B. Basic assumption

Assumption 1.

• There exist a constant emax > 0 such that 0  e[t] 
emax, 8t 2 {1, 2, . . .}.

• Let rpU(p;!) denote a subgradient (or gradient if
U(p;!) is differentiable) vector of U(p;!) with respect
to p and let @

@pi
U(p;!), 8i 2 {1, 2, . . . , n} denote each

component of vector rpU(p;!). There exist positive
constants D

1

, . . . , D
n

such that | @

@pi
U(p;!)|  D

i

, 8i 2
{1, 2, . . . , n} for all ! 2 ⌦ and all p 2 P . This further
implies there exists D > 0, e.g., D =

pP
n

i=1

D2

i

, such
that krpU(p;!)k  D for all ! 2 ⌦ and all p 2 P ,
where kxk =

pP
n

i=1

x2

i

is the standard l
2

norm.

Such constants D
1

, . . . , D
n

exist in most cases of interest,
such as for utility functions (1) with bounded s

i

[t] values. 1

C. Power control and energy queue model

The finite size battery can be considered as backlog in an
energy queue. Let E[0] be the initial energy backlog in the
battery and E[t] be the energy stored in the battery at the end
of slot t. The power vector p[t] must satisfy the following
energy availability constraint:

P
n

i=1

p
i

[t]  E[t� 1], 8t 2 {1, 2, . . .}. (2)

which requires the consumed power to be no more than what
is available in the battery.
Let Emax be the maximum capacity of the battery. If the

energy availability constraint (2) is satisfied on each slot, the
energy queue backlog E[t] evolves as follows:

E[t] = min{E[t� 1]�
P

n

i=1

p
i

[t] + e[t], Emax}, 8t. (3)

D. An upper bound problem

Let ![t] = (e[t], s[t]) be the random state vector on slot t.
Let E [e] = E [e[t]] denote the expected amount of new energy
that arrives in one slot. Define a function h : P ! R by

h(p) = E [U(p;![t])] .

Since U(p;!) is concave in p and has bounded gradi-
ents/subgradients for each ! 2 ⌦ by Assumption 1, it can
be shown that h(p) is concave and continuous.
The function h is typically unknown because the distribution

of ! is unknown. However, to establish a fundamental bound,
suppose both h and E[e] are known and consider choosing a
fixed vector p to solve the following deterministic problem:

max

p
h(p) (4)

s.t.
nX

i=1

p
i

� E[e]  0 (5)

p 2 P (6)

where constraint (5) requires that the consumed energy is no
more than E[e].

1This is always true when si[t] are wireless signal strength attenuations.
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Let p⇤ be an optimal solution of problem (4)-(6) and U⇤ be
its corresponding utility value of (4). Define a causal policy
as one that, on each slot t, selects p[t] 2 P based only on
information up to the start of slot t (in particular, without
knowledge of ![t]). Since ![t] is i.i.d. over slots, any causal
policy must have p[t] and ![t] independent for all t. The
next lemma shows that no causal policy p[t], t 2 {1, 2, . . .}
satisfying (2)-(3) can attain a better utility than U⇤.

Lemma 1. Let p[t] 2 P, t 2 {1, 2, . . .} be yielded by any
causal policy that consumes less energy than it harvests in
the long term, so lim sup

T!1
1

T

P
T

t=1

E [

P
n

i=1

p
i

[t]]  E [e].
Then,

lim sup

T!1

1

T

TX

t=1

E[U(p[t];![t])]  U⇤.

Proof. Fix a slot t 2 {1, 2, . . .}. Then

E [U(p[t];![t])]
(a)

= E [E [U(p[t];![t])|p[t]]] (b)= E [h(p[t])]
(7)

where (a) holds by iterated expectations; (b) holds because
p[t] and ![t] are independent (by causality).

For each T > 0 define ¯

p[T ] = [p̄
1

[T ], . . . , p̄
n

[T ]]T with

p̄
i

[T ] =
1

T

TX

t=1

E [p
i

[t]] , 8i 2 {1, 2, . . . , n}.

We know by assumption that:

lim sup

T!1

nX

i=1

p̄
i

[T ]  E [e] (8)

Further, since p[t] 2 P for all slots t, it holds that ¯p[T ] 2 P
for all T > 0. Also,

1

T

TX

t=1

E[U(p[t];![t])]
(a)

=

1

T

TX

t=1

E [h(p[t])]

(b)

 h
⇣
E
h
1

T

P
T

t=1

p[t]
i⌘

= h(¯p[T ])

where (a) holds by (7); (b) holds by Jensen’s inequality for
the concave function h. It follows that:

lim sup

T!1

1

T

TX

t=1

E[U(p[t];![t])]  lim sup

T!1
h(¯p[T ]).

Define ✓ = lim sup

T!1 h(¯p[T ]). It suffices to show that ✓ 
U⇤. Since ¯

p[T ] is in the compact set P for all T > 0, the
Bolzano-Wierstrass theorem ensures there is a subsequence of
times T

k

such that ¯p[T
k

] converges to a fixed vector p
0

2 P
and h(¯p[T

k

]) converges to ✓ as k ! 1:

lim

k!1
¯

p[T
k

] = p

0

2 P

lim

k!1
h(¯p[T

k

]) = ✓

Continuity of h implies that h(p
0

) = ✓. By (8) the vector
p

0

= [p
0,1

, . . . , p
0,n

]

T must satisfy
P

n

i=1

p
0,i

 E [e]. Hence,
p

0

is a vector that satisfies constraints (5)-(6) and achieves

utility h(p
0

) = ✓. Since U⇤ is defined as the optimal utility
value to problem (4)-(6), it holds that ✓  U⇤.

Note that the U⇤ utility upper bound of Lemma 1 holds for
any policy that consumes no more energy than it harvests in the
long term. Policies that satisfy the physical battery constraints
(2)-(3) certainly consume no more energy than harvested in
the long term. However, Lemma 1 even holds for policies that
violate these physical battery constraints. For example, U⇤ is
still a valid bound for a policy that is allowed to “borrow”
energy from an external power source when its battery is
empty and “return” energy when its battery is full.

III. NEW ALGORITHM

This subsection proposes a new learning aided dynamic
power control algorithm that chooses power control actions
based on system history, without requiring the current system
state or its probability distribution.

A. New Algorithm

Algorithm 1 New Algorithm
Let V > 0 be a constant algorithm parameter. Initialize virtual
battery queue variable Q[0] = 0. Choose p[1] = [0, 0, . . . , 0]T

as the power action at slot 1. At the end of each slot t 2
{1, 2, . . .}, observe ![t] = (e[t], s[t]) and do the following:
• Update virtual battery queue Q[t]: Update Q[t] via:

Q[t] = min{Q[t� 1] + e[t]�
nX

i=1

p
i

[t], 0}. (9)

• Power control: Choose

p[t+ 1] = ProjP
n

p[t] +
1
V
rpU(p[t];![t]) +

1
V 2

Q[t]1
o

(10)

as the power action for the next slot t+ 1 where ProjP{·}
represents the projection onto set P , 1 denotes a column
vector of all ones and rpU(p[t];![t]) represents a subgra-
dient (or gradient if U(p;![t]) is differentiable) vector of
function U(p;![t]) at point p = p[t]. Note that p[t], Q[t]
and rpU(p[t];![t]) are given constants in (10).

The new dynamic power control algorithm is described in
Algorithm 1. At the end of slot t, Algorithm 1 chooses p[t+1]

based on ![t] without requiring ![t + 1]. To enable these
decisions, the algorithm introduces a (nonpositive) virtual
battery queue process Q[t]  0, which shall later be shown to
be related to a shifted version of the physical battery queue
E[t].
Note that Algorithm 1 does not explicitly enforce the energy

availability constraint (2). Let p[t+ 1] be given by (10), one
may expect to use

ˆ

p[t+ 1] =

min{
P

n

i=1

p
i

[t+ 1], E[t]}P
n

i=1

p
i

[t+ 1]

p[t+ 1] (11)

that scales down p[t + 1] to enforce the energy availability
constraint (2). However, our analysis in Section IV shows that
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if the battery capacity is at least as large as an O(V ) constant,
then directly using p[t + 1] from (10) is ensured to always
satisfy the energy availability constraint (2). Thus, there is no
need to take the additional step (11).

B. Algorithm Inuitions

Lemma 2. The power control action p[t+ 1] chosen in (10)
is to solve the following quadratic convex program

max

p
V (rpU(p[t];![t]))T(p� p[t]) +Q[t]1Tp

� V 2

2

kp� p[t]k2 (12)

s.t. p 2 P (13)

Proof. By the definition of projection, equation (10) is to
solve minp2P kp�

�
p[t] + 1

V

rpU(p[t];![t]) + 1

V

2Q[t]1
�
k2.

By expanding the square, eliminating constant terms and
converting the minimization to a maximization of its negative
object, it is easy to show this problem is equivalent to problem
(12)-(13).

The convex projection (10), or equivalently, the quadratic
convex program (12)-(13) can be easily solved. See e.g.,
Lemma 3 in [19] for an algorithm that solves an n-dimensional
quadratic program over set P with complexity O(n log n).
Thus, the overall complexity of Algorithm 1 is low.
1) Connections with the drift-plus-penalty (DPP) technique

for Lyapunov opportunistic optimization: The Lyapunov
opportunistic optimization solves stochastic optimization
without distribution information by developing dynamic
policies that adapt control actions to the current system
state [20], [21], [22], [23], [24], [18]. The dynamic policy
from Lyapunov opportunistic optimization can be inter-
preted as choosing control actions to maximize a DPP
expression on each slot. Unfortunately, the problem con-
sidered in this paper is different from the conventional Lya-
punov opportunistic optimization problem since the power
decision cannot be adapted to the unknown current system
state. Nevertheless, if we treat V (rpU(p[t];![t]))T(p �
p[t])� V

2

2

kp�p[t]k2 as a penalty term and Q[t]1Tp as a
drift term, then Lemma 2 suggests that the power control
in Algorithm 1 can still be interpreted as maximizing a
(different) DPP expression. However, this DPP expression
is significantly different from those conventional ones used
in Lyapunov opportunistic optimization [18]. Also, the
penalty term V U(p[t+ 1];![t+ 1]) used in conventional
Lyapunov opportunistic optimization of [18] is unavailable
in our problem since it depends on the unknown ![t+1].

2) Connections with online convex learning: Online convex
learning is a multi-round process where a decision maker
selects its action from a fixed set at each round before
observing the corresponding utility function [15], [16],
[17]. If we assume the wireless device is equipped with
an external free power source with infinite energy, i.e.,
the energy availability constraint (2) is dropped, then the
problem setup in this paper is similar to an online learning

problem where the decision maker selects p[t+1] 2 P on
each slot t+ 1 to maximize an unknown reward function
U(p[t+1];![t+1]) based on the information of previous
reward functions U(p[⌧ ];![⌧ ]), ⌧ 2 {1, . . . , t}. In this
case, Zinkevich’s online gradient method [15], given by

p[t+ 1] = ProjP{p[t] + �rpU(p[t];![t])} (14)

where � is a learning rate parameter, can solve this
idealized problem. In fact, if we ignore 1

V

2Q[t]1 involved
in (10), then (10) is identical to Zinkevich’s learning algo-
rithm with � = 1/V . However, Zinkevich’s algorithm and
its variations [15], [25], [17] require actions to be chosen
from a fixed set. Our problem requires p[t] chosen on
each slot t to satisfy the energy availability constraint (2),
which is time-varying since E[t] evolves over time based
on random energy arrivals and previous power allocation
decisions.
Now, it is clear why Algorithm 1 is called a learning aided

dynamic power control algorithm: Algorithm 1 can be viewed
as an enhancement of the DPP technique originally devel-
oped for Lyapunov opportunistic optimization by replacing its
penalty term with an expression used in Zinkevich’s online
gradient learning.

C. Main Results

While the above subsection provides intuitive connections
to prior work, note that existing techniques cannot be applied
to our problem. The next section develops a novel performance
analysis (summarized in Theorems 1 and 3) to show that
if E[0] = Emax

= O(V ), then the power control actions
from Algorithm 1 are ensured to satisfy the energy availability
constraint (2) and achieve

1

t

tX

⌧=1

E[U(p[⌧ ];![⌧ ])] � U⇤ �O(

V

t
)�O(

1

V
).

That is, for any desired ✏ > 0, by choosing V = 1/✏ in
Algorithm 1, we can attain an O(✏) optimal utility for all
t � ⌦(

1

✏

2 ) by using a battery with capacity O(1/✏).

IV. PERFORMANCE ANALYSIS OF ALGORITHM 1
This section shows Algorithm 1 can attain an O(✏) close-

to-optimal utility by using a battery with capacity O(1/✏).

A. Drift Analysis

Define L[t] =

1

2

(Q[t])2 and call it a Lyapunov function.
Define the Lyapunov drift as

�[t] = L[t+ 1]� L[t]

Lemma 3. Under Algorithm 1, for all t � 0, the Lyapunov
drift satisfies

�[t]  Q[t](e[t+ 1]�
nX

i=1

p
i

[t+ 1]) +

1

2

B (15)

with constant B = (max{emax, pmax})2, where emax is the
constant defined in Assumption 1.
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Proof. Fix t � 0. Recall that for any x 2 R if y = min{x, 0}
then y2  x2. It follows from (9) that

(Q[t+ 1])

2  (Q[t] + e[t+ 1]�
nX

i=1

p
i

[t+ 1])

2.

Expanding the square on the right side, dividing both sides
by 2 and rearranging terms yields �[t]  Q[t](e[t + 1] �P

n

i=1

p
i

[t+ 1]) +

1

2

(e[t+ 1]�
P

n

i=1

p
i

[t+ 1])

2.
This lemma follows by noting that |e[t+ 1]�

P
n

i=1

p
i

[t+
1]|  max{emax, pmax} since 0 

P
n

i=1

p
i

[t+1]  pmax and
0  e[t+ 1]  emax.

Recall that a function f : Z 7! R is said to be strongly
concave with modulus ↵ if there exists a constant ↵ > 0 such
that f(z)+ 1

2

↵kzk2 is concave on Z . It is easy to show that if
f(z) is concave and ↵ > 0, then f(z)� ↵

2

kz�z

0

k2 is strongly
concave with modulus ↵ for any constant z

0

. The maximizer
of a strongly concave function satisfies the following lemma:

Lemma 4 (Corollary 1 in [26]). Let Z ✓ Rn be a convex
set. Let function f be strongly concave on Z with modulus ↵
and z

opt be a global maximum of h on Z . Then, f(zopt) �
f(z) + ↵

2

kzopt � zk2 for all z 2 Z .

Lemma 5. Let U⇤ be the utility upper bound defined in Lemma
1 and p

⇤ be an optimal solution to problem (4)-(6) that attains
U⇤. At each iteration t 2 {1, 2, . . .}, Algorithm 1 guarantees

V E[U(p[t];![t])]��[t] � V U⇤
+

V 2

2

E[�[t]]� D2

+B

2

where �[t] = kp⇤ � p[t + 1]k2 � kp⇤ � p[t]k2, D is the
constant defined in Assumption 1 and B is the constant defined
in Lemma 3.

Proof. Note that
P

n

i=1

p⇤
i

 E[e]. Fix t 2 {1, 2, . . .}. Note
that V (rpU(p[t];![t]))T(p�p[t])+Q[t]

P
n

i=1

p
i

is a linear
function with respect to p. It follows that

V
�

rpU(p[t];![t])
�T
(p� p[t]) +Q[t]

n
X

i=1

pi �
V 2

2
kp� p[t]k2

(16)

is strongly concave with respect to p 2 P with modulus V 2.
Since p[t+1] is chosen to maximize (16) over all p 2 P , and
since p

⇤ 2 P , by Lemma 4 we have

V
�
rpU(p[t];![t])

�T
(p[t+ 1]� p[t]) +Q[t]

nX

i=1

p
i

[t+ 1]

� V 2

2

kp[t+ 1]� p[t]k2

�V
�
rpU(p[t];![t])

�T
(p

⇤ � p[t]) +Q[t]

nX

i=1

p⇤
i

� V 2

2

kp⇤ � p[t]k2 + V 2

2

kp⇤ � p[t+ 1]k2

=V
�
rpU(p[t];![t])

�T
(p

⇤ � p[t]) +Q[t]

nX

i=1

p⇤
i

+

V 2

2

�[t].

Subtracting Q[t]e[t+1] from both sides and rearranging terms
yields

V
�
rpU(p[t];![t])

�T
(p[t+ 1]� p[t])

+Q[t](
nX

i=1

p
i

[t+ 1]� e[t+ 1])

�V
�
rpU(p[t];![t])

�T
(p

⇤ � p[t]) +Q[t](

nX

i=1

p⇤
i

� e[t+ 1])

+

V 2

2

�[t] +
V 2

2

kp[t+ 1]� p[t]k2.

Adding V U(p[t];![t]) to both sides and noting that
U(p[t];![t]) + (rpU(p[t];![t]))T(p⇤ � p[t]) � U(p

⇤
;![t])

by the concavity of U(p;![t]) yields

V U(p[t];![t]) + V
�
rpU(p[t];![t])

�T
(p[t+ 1]� p[t])

+Q[t](
nX

i=1

p
i

[t+ 1]� e[t+ 1])

�V U(p

⇤
;![t]) +Q[t](

nX

i=1

p⇤
i

� e[t+ 1]) +

V 2

2

�[t]

+

V 2

2

kp[t+ 1]� p[t]k2.

Rearranging terms yields

V U(p[t];![t]) +Q[t](

nX

i=1

p
i

[t+ 1]� e[t+ 1])

�V U(p

⇤
;![t]) +Q[t](

nX

i=1

p⇤
i

� e[t+ 1]) +

V 2

2

�[t]

+

V 2

2

kp[t+ 1]� p[t]k2

� V
�
rpU(p[t];![t])

�T
(p[t+ 1]� p[t]) (17)

Note that

V
�
rpU(p[t];![t])

�T
(p[t+ 1]� p[t])

(a)

 1

2

krpU(p[t];![t])k2 + V 2

2

kp[t+ 1]� p[t]k2

(b)

 1

2

D2

+

V 2

2

kp[t+ 1]� p[t]k2 (18)

where (a) follows by using basic inequality x

T
y  1

2

kxk2 +
1

2

kyk2 for all x,y 2 Rn with x = rpU(p[t];![t]) and
y = V (p[t + 1] � p[t]); and (b) follows from Assumption
1. Substituting (18) into (17) yields

V U(p[t];![t]) +Q[t](

nX

i=1

p
i

[t+ 1]� e[t+ 1])

�V U(p

⇤
;![t]) +Q[t](

nX

i=1

p⇤
i

� e[t+ 1]) +

V 2

2

�[t]� 1

2

D2

(19)
By Lemma 3, we have

��[t] � Q[t](

nX

i=1

p
i

[t+ 1]� e[t+ 1])� B

2

(20)
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Summing (19) and (20); and cancelling common terms on both
sides yields

V U(p[t];![t])��[t]

�V U(p

⇤
;![t]) +Q[t](

nX

i=1

p⇤
i

� e[t+ 1]) +

V 2

2

�[t]

� D2

+B

2

(21)

Note that each Q[t] (depending only on e[⌧ ], p[⌧ ] with ⌧ 2
{1, 2, . . . , t}) is independent of e[t+ 1]. Thus,

E[Q[t](
nX

i=1

p⇤
i

� e[t+ 1])]

=E[Q[t]]E[
nX

i=1

p⇤
i

� e[t+ 1]]

(a)

�0 (22)

where (a) follows because Q[t]  0 and
P

n

i=1

p⇤
i

 E[e]
(recall that e[t+ 1] is an i.i.d. sample of e).

Taking expectations on both sides of (21) and using (22)
and E[U(p

⇤
;![t])] = U⇤ yields the desired result.

B. Utility Optimality Analysis

The next theorem summarizes that the average expected
utility attained by Algorithm 1 is within an O(1/V ) distance
to U⇤ defined in Lemma 1.

Theorem 1. Let U⇤ be the utility bound defined in Lemma 1.
For all t 2 {1, 2, . . .}, Algorithm 1 guarantees

1

t

tX

⌧=1

E[U(p[⌧ ];![⌧ ])] � U⇤ � V (pmax

)

2

2t
� B

2V t
� D2

+B

2V

(23)

where D is the constant defined in Assumption 1 and B is the
constant defined in Lemma 3. This implies,

lim sup

t!1

1

t

tX

⌧=1

E[U(p[⌧ ];![⌧ ])] � U⇤ � D2

+B

2V
. (24)

In particular, if we take V = 1/✏ in Algorithm 1, then

1

t

tX

⌧=1

E[U(p[⌧ ];![⌧ ])] � U⇤ �O(✏), 8t � ⌦(

1

✏2
). (25)

Proof. Fix t 2 {1, 2, . . .}. For each ⌧ 2 {1, 2, . . . , t}, by
Lemma 5, we have

E[V U(p[⌧ ];![⌧ ])]�E[�[⌧ ]] � V U⇤
+

V 2

2

E[�[⌧ ]]�D2

+B

2

.

Summing over ⌧ 2 {1, 2, . . . , t}, dividing both sides by V t
and rearranging terms yields

1

t

tX

⌧=1

E[U(p[⌧ ];![⌧ ])]

�U⇤
+

V

2t

tX

⌧=1

E[�[⌧ ]] + 1

V t

tX

⌧=1

E[�[⌧ ]]� D2

+B

2V

(a)

=U⇤
+

V

2t
E[kp⇤ � p[t+ 1]k2 � kp⇤ � p[1]k2]

+

1

2V t
E[(Q[t+ 1])

2 � (Q[1])

2

]� D2

+B

2V

�U⇤ � V

2t
E[kp⇤ � p[1]k2]� 1

2V t
E[(Q[1])

2

]� D2

+B

2V
(b)

�U⇤ � V (pmax

)

2

2t
� B

2V t
� D2

+B

2V

where (a) follows by recalling that �[⌧ ] = kp⇤�p[⌧ +1]k2�
kp⇤ � p[⌧ ]k2 and �[⌧ ] = 1

2

(Q[⌧ + 1])

2 � 1

2

(Q[⌧ ])2; and (b)
follows because kp⇤ � p[1]k = kp⇤k =

pP
n

i=1

(p⇤
i

)

2 P
n

i=1

p⇤
i

 pmax and |Q[1]| = |Q[0] + e[1] �
P

n

i=1

p
i

[1]| =
|e[1] �

P
n

i=1

p
i

[1]|  max{emax, pmax} =

p
B where B is

defined in Lemma 3. So far we have proven (23).
Equation (24) follows directly by taking lim sup on both

sides of (23). Equation (25) follows by substituting V =

1

✏

and t = 1

✏

2 into (23).

C. Lower Bound for Virtual Battery Queue Q[t]

Note thatQ[t]  0 by (9). This subsection further shows that
Q[t] is bounded from below. The projection ProjP{·} satisfies
the following lemma:

Lemma 6. For any p[t] 2 P and vector b  0, where 
between two vectors means component-wisely less than or
equal to, ˜p = ProjP{p[t] + b} is given by

p̃
i

= max{p
i

[t] + b
i

, 0}, 8i 2 {1, 2, . . . , n}. (26)

Proof. Recall that projection ProjP{p[t] +b} by definition is
to solve

min

p

nX

i=1

(p
i

� (p
i

[t] + b
i

))

2 (27)

s.t.
nX

i=1

p
i

 pmax (28)

p
i

� 0, 8i 2 {1, 2, . . . , n} (29)

Let I ✓ {1, 2, . . . , n} be the coordinate index set given by
I = {i 2 {1, 2, . . . , n} : p

i

[t] + b
j

< 0}. For any p such thatP
n

i=1

p
i

 pmax and p
i

� 0, 8i 2 {1, 2, . . . , n}, we have

nX

i=1

(p
i

� (p
i

[t] + b
i

))

2

=

X

i2I
(p

i

� (p
i

[t] + b
i

))

2

+

X

i2{1,2,...,n}\I

(p
i

� (p
i

[t] + b
i

))

2



PROC. IEEE INFOCOM 2018

�
X

i2I
(p

i

� (p
i

[t] + b
i

))

2

(a)

�
X

i2I
(p

i

[t] + b
i

)

2

where (a) follows because p
i

[t] + b
i

< 0 for i 2 I and p
i

�
0, 8i 2 {1, 2, . . . , n}. Thus,

P
i2I(pi[t] + b

i

)

2 is an object
value lower bound of problem (27)-(29).
Note that ˜p given by (26) is feasible to problem (27)-(29)

since p̃
i

� 0, 8i 2 {1, 2, . . . , n} and
P

n

i=1

p̃
i


P

n

i=1

p
i

[t] 
pmax because p̃

i

 p
i

[t] for all i and p[t] 2 P . We further
note that

nX

i=1

(p̃
i

� (p
i

[t] + b
i

))

2

=

X

i2I
(p

i

[t] + b
i

)

2.

That is, ˜p given by (26) attains the object value lower bound of
problem (27)-(29) and hence is the optimal solution to problem
(27)-(29). Thus, ˜p = ProjP{p[t] + b}.

Corollary 1. If Q[t]  �V (Dmax

+ pmax

) with Dmax

=

max{D
1

, . . . , D
n

}, then Algorithm 1 guarantees

p
i

[t+ 1]  max{p
i

[t]� 1

V
pmax, 0}, 8i 2 {1, 2, . . . , n}.

where D
1

, . . . , D
n

are constants defined in Assumption 1.

Proof. Let b =

1

V

rpU(p[t];![t]) +

1

V

2Q[t]1. Since
@

@pi
U(p[t];![t])  D

i

, 8i 2 {1, 2, . . . , n} by Assumption 1
and Q[t]  �V (Dmax

+pmax

), we know b
i

 � 1

V

pmax, 8i 2
{1, 2, . . . , n}. By Lemma 6, we have

p
i

[t+ 1] =max{p
i

[t] + b
i

, 0}

max{p
i

[t]� 1

V
pmax, 0}, 8i 2 {1, 2, . . . , n}.

By Corollary 1, if Q[t]  �V (Dmax

+ pmax

), then each
component of p[t+1] decreases by 1

V

pmax until it hits 0. That
is, if Q[t]  �V (Dmax

+ pmax

) for sufficiently many slots,
Algorithm 1 eventually chooses 0 as the power decision. By
virtual queue update equation (9), Q[t] decreases only whenP

n

i=1

p
i

[t] > 0. These two observations suggest that Q[t]
yielded by Algorithm 1 should be eventually bounded from
below. This is formally summarized in the next theorem.

Theorem 2. Let V in Algorithm 1 be a positive integer. Define
positive constant Ql, where superscript l denotes “lower”
bound, as

Ql

=V (Dmax

+ 2pmax

+ emax

) (30)

where emax is the constant defined in Assumption 1 and Dmax

is the constant defined in Corollary 1. Algorithm 1 guarantees

Q[t] � �Ql, 8t 2 {0, 1, 2, . . .}.

Proof. By virtual queue update equation (9), we know Q[t]
can increase by at most emax and can decrease by at most
pmax on each slot. Since Q[0] = 0, we know Q[t] � �Ql for

all t  V . We need to show Q[t] � �Ql for all t > V . This
can be proven by contradiction as follows:
Assume Q[t] < �Ql for some t > V . Let ⌧ > V be the

first (smallest) slot index when this happens. By the definition
of ⌧ , we have Q[⌧ ] < �Ql and

Q[⌧ ] < Q[⌧ � 1]. (31)

Now consider the value of Q[⌧ � V ] in two cases (note that
⌧ � V > 0).
• Case Q[⌧�V ] � �V (Dmax

+pmax

+emax

): Since Q[t] can
decrease by at most pmax on each slot, we know Q[⌧ ] �
�V (Dmax

+ 2pmax

+ emax

) = �Ql. This contradicts the
definition of ⌧ .

• Case Q[⌧ � V ] < �V (Dmax

+ pmax

+ emax

): Since Q[t]
can increase by at most emax on each slot, we know Q[t] <
�V (Dmax

+pmax

) for all ⌧ �V  t  ⌧ �1. By Corollary
1, for all ⌧ � V  t  ⌧ � 1, we have

p
i

[t+ 1]  max{p
i

[t]� 1

V
pmax, 0}, 8i 2 {1, 2, . . . , n}.

Since the above inequality holds for all t 2 {⌧ � V, ⌧ �
V +1, . . . , ⌧ � 1}, and since at the start of this interval we
trivially have p

i

[⌧ � V ]  pmax, 8i 2 {1, 2, . . . , n}, at each
step of this interval each component of the power vector
either hits zero or decreases by 1

V

pmax, and so after the V
steps of this interval we have p

i

[⌧ ] = 0, 8i 2 {1, 2, . . . , n}.
By (9), we have

Q[⌧ ] =min{Q[⌧ � 1] + e[⌧ ]�
nX

i=1

p
i

[⌧ ], 0}

=min{Q[⌧ � 1] + e[⌧ ], 0}
�min{Q[⌧ � 1], 0}
=Q[⌧ � 1]

where the final equality holds because the queue is never
positive (see (9)). This contradicts (31).

Both cases lead to contradictions. Thus, Q[t] � �Ql for all
t > V .

D. Energy Availability Guarantee

To implement the power decisions of Algorithm 1 for the
physical battery system E[t] from equations (2)-(3), we must
ensure the energy availability constraint (2) holds on each
slot. The next theorem shows that Algorithm 1 ensures the
constraint (2) always holds as long as the battery capacity
satisfies Emax � Ql

+ pmax and the initial energy satisfies
E[0] = Emax. It also explains that Q[t] used in Algorithm 1
is a shifted version of the physical battery backlog E[t].

Theorem 3. If E[0] = Emax � Ql

+ pmax, where Ql is the
constant defined in Theorem 2, then Algorithm 1 ensures the
energy availability constraint (2) on each slot t 2 {1, 2, . . .}.
Moreover

E[t] = Q[t] + Emax, 8t 2 {0, 1, 2, . . .}. (32)
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Proof. Note that to show the energy availability constraintP
n

i=1

p
i

[t]  E[t� 1], 8t 2 {1, 2, . . .} is equivalent to show

nX

i=1

p
i

[t+ 1]  E[t], 8t 2 {0, 1, 2, . . .}. (33)

This lemma can be proven by inductions.
Note that E[0] = Emax and Q[0] = 0. It is immediate

that (32) holds for t = 0. Since E[0] = Emax � pmax

and
P

n

i=1

p
i

[1]  pmax, equation (33) also holds for t = 0.
Assume (33) and (32) hold for t = t

0

and consider t = t
0

+1.
By virtual queue dynamic (9), we have

Q[t
0

+ 1] = min{Q[t
0

] + e[t
0

]�
nX

i=1

p
i

[t
0

], 0}

Adding Emax on both sides yields

Q[t
0

+ 1] + Emax

=min{Q[t
0

] + e[t
0

+ 1]�
nX

i=1

p
i

[t
0

+ 1] + Emax, Emax}

(a)

= min{E[t
0

] + e[t
0

+ 1]�
nX

i=1

p
i

[t
0

+ 1], Emax}

(b)

=E[t
0

+ 1]

where (a) follows from the induction hypothesis E[t
0

] =

Q[t
0

]+Emax and (b) follows from the energy queue dynamic
(3). Thus, (32) holds for t = t

0

+ 1.
Now observe

E[t
0

+ 1] = Q[t
0

+ 1] + Emax

(a)

� Emax �Ql

� pmax

(b)

�
nX

i=1

p
i

[t
0

+ 2]

where (a) follows from the fact that Q[t] � �Ql, 8t 2
{0, 1, 2, . . .} by Theorem 2; (b) holds since sum power is never
more than pmax. Thus, (33) holds for t = t

0

+ 1.
Thus, this theorem follows by induction.

E. Utility Optimality and Battery Capacity Tradeoff

By Theorem 1, Algorithm 1 is guaranteed to attain a utility
within an O(1/V ) distance to the optimal utility U⇤. To obtain
an O(✏)-optimal utility, we can choose V = d1/✏e, where dxe
represents the smallest integer no less than x. In this case,
Ql defined in (3) is order O(V ). By Theorem 3,we need the
battery capacity Emax � Ql

+ pmax

= O(V ) = O(1/✏)
to satisfy the energy availability constraint. Thus, there is a
[O(✏), O(1/✏)] tradeoff between the utility optimality and the
required battery capacity.

F. Extensions

Thus far, we have assumed that ![t] is known with one
slot delay, i.e., at the end of slot t, or equivalently, at the
beginning of slot t+1. In fact, if !(t) is observed with t

0

slot
delay (at the end of slot t+ t

0

�1), we can modify Algorithm
1 by initializing p[⌧ ] = 0, ⌧ 2 {1, 2, . . . , t

0

} and updating
Q[t� t

0

+ 1] = min{Q[t� t
0

] + e[t� t
0

+ 1]�
P

n

i=1

p
i

[t�
t
0

+ 1], 0}, p[t + 1] = ProjP{p[t � t
0

+ 1] +

1

V

rpU(p[t �
t
0

+ 1];![t � t
0

+ 1]) +

1

V

2Q[t � t
0

+ 1]1} at the end of
each slot t 2 {t

0

, t
0

+ 1, . . .}. By extending the analysis in
this section (from a t

0

= 1 version to a general t
0

version), a
similar [O(✏), O(1/✏)] tradeoff can be established.

V. NUMERICAL EXPERIMENT

In this section, we consider an energy harvesting wireless
device transmitting over 2 subbands whose channel strength
is represented by s

1

[t] and s
2

[t], respectively. Our goal is to
decide the power action p[t] to maximize the utility/throughput
given by (1). Let P = {p : p

1

+ p
2

 5, p
1

� 0, p
2

� 0}.
Let harvested energy e[t] satisfy the uniform distribution over
interval [0, 3]. Assume both subbands are Rayleigh fading
channels where s

1

[t] follows the Rayleigh distribution with
parameter � = 0.5 truncated in the range [0, 4] and s

2

[t]
follows the Rayleigh distribution with parameter � = 1

truncated in the range [0, 4].
By assuming the perfect knowledge of distributions, we

solve the deterministic problem (4)-(6) and obtain U⇤
=

1.0391. To verify the performance proven in Theorems 1
and 3, we run Algorithm 1 with V 2 {5, 10, 20, 40} and
E[0] = Emax

= Ql

+ pmax over 1000 independent simulation
runs. In all the simulation runs, the power actions yielded by
Algorithm 1 always satisfy the energy availability constraints.
We also plot the averaged utility performance in Figure 1,
where the y-axis is the running average of expected utility.
Figure 1 shows that the utility performance can approach U⇤

by using larger V parameter.

Time slot t
100 101 102 103 104 105

1 t

P
t =
=
1
E
[U

(p
[=
];
!
[=
])
]

0

0.2

0.4

0.6

0.8

1

1.2
Peoformance of Algorithm 1 using a battery of capacity Ql + pmax

U $

V = 5

V = 10

V = 20

V = 40

Fig. 1. Utility performance (averaged over 1000 independent simulation runs)
of Algorithm 1 with E[0] = Emax = Ql + pmax for different V .
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In practice, it is possible that for a given V , the battery
capacity Emax

= Ql

+ pmax required in Theorem 3 is too
large. If we run Algorithm 1 with small capacity batteries
such that

P
n

i=1

p
i

[t + 1] � E[t] for certain slot t, a rea-
sonable choice is to scale down p[t + 1] by (11) and use
ˆ

p[t + 1] as the power action. Now, we run simulations by
fixing V = 40 in Algorithm 1 and test its performance with
small capacity batteries. By Theorem 3, the required battery
capacity to ensure energy availability is Emax

= 685. In
our simulations, we choose small Emax 2 {10, 20, 50} and
E[0] = 0, i.e., the battery is initially empty. If p[t + 1]

from Algorithm 1 violates energy availability constraint (2),
we use ˆ

p[t + 1] from (11) as the true power action that is
enforced to satisfy (2) and update the energy backlog by
E[t+1] = min{E[t]�

P
n

i=1

p̂
i

[t+1]+e[t+1], Emax}. Figure
2 plots the utility performance of Algorithm 1 in this practical
scenario and shows that even with small capacity batteries,
Algorithm 1 still achieves a utility close to U⇤. This further
demonstrates the superior performance of our algorithm.

Time slot t
100 101 102 103 104 105

1 t

P
t =
=
1
E
[U

(p
[=
];
!
[=
])
]

0

0.2

0.4

0.6

0.8

1

1.2
Performance of Algorithm 1 (V = 40) using a small capacity battery

U $

Emax = 10

Emax = 20

Emax = 50

Fig. 2. Utility performance (averaged over 1000 independent simulation runs)
of Algorithm 1 with V = 40 for different Emax.

VI. CONCLUSION

This paper develops a new learning aided power control
algorithm for energy harvesting devices, without requiring the
current system state or the distribution information. This new
algorithm can achieve an O(✏) optimal utility by using a
battery with capacity O(1/✏).
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