
PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 1

Optimal Convergence and Adaptation for Utility
Optimal Opportunistic Scheduling

Michael J. Neely
University of Southern California

http://www-bcf.usc.edu/˜mjneely/

Abstract—This paper considers the fundamental convergence
time for opportunistic scheduling over time-varying channels.
The channel state probabilities are unknown and algorithms
must perform some type of estimation and learning while they
make decisions to optimize network utility. Existing schemes
can achieve a utility within ϵ of optimality, for any desired
ϵ > 0, with convergence and adaptation times of O(1/ϵ2).
This paper shows that if the utility function is concave and
smooth, then O(log(1/ϵ)/ϵ) convergence time is possible via
an existing stochastic variation on the Frank-Wolfe algorithm,
called the RUN algorithm. Next, a converse result is proven to
show it is impossible for any algorithm to have convergence
time better than O(1/ϵ), provided the algorithm has no a-
priori knowledge of channel state probabilities. Hence, RUN
is within a logarithmic factor of convergence time optimality.
However, RUN has a vanishing stepsize and hence has an infinite
adaptation time. Using stochastic Frank-Wolfe with a fixed step-
size yields improved O(1/ϵ2) adaptation time, but convergence
time increases to O(1/ϵ2), similar to existing drift-plus-penalty
based algorithms. This raises important open questions regarding
optimal adaptation.

I. FORMULATION

This paper treats opportunistic scheduling for multiple
wireless users. Consider a wireless system with n users that
transmit over their own links. The system operates over slotted
time t ∈ {0, 1, 2, . . .}. The wireless channels can change over
time and this affects the set of transmission rates available
for scheduling. Specifically, let {S[t]}∞t=0 be a process of
independent and identically distributed (i.i.d.) channel state
vectors that take values in some set S ⊆ Rm, where m is
a positive integer.1 The channel vectors have a probability
distribution function FS(s) = P [S[t] ≤ s] for all s ∈ Rm.
However, this distribution function is unknown. Every slot t,
the network controller observes the current S[t] and chooses
a transmission rate vector µ[t] = (µ1[t], . . . , µn[t]) from a
set ΓS[t]. That is, the set ΓS[t] of transmission rate vectors
available on slot t depends on the observed S[t]. This is called
opportunistic scheduling because the network controller can
choose to transmit with larger rates on links with currently
good channel conditions. The set ΓS[t] is typically nonconvex
(for example, it might have only a finite number of points). It
is assumed that ΓS[t] ⊆ B for all t ∈ {0, 1, 2, . . .}, where B is
a bounded n-dimensional box within Rn.

1The value m can be different from n if the number of channel state
parameters is different from the number of links, such as for systems where
each link has multiple subbands.

For each integer T > 0, define the time average transmission
rate vector µ[T] by:

µ[T] = 1
T

∑T−1
t=0 µ[t]

The goal is to make decisions over time to maximize the
limiting network utility:

Maximize: lim inf
T→∞

φ(E [µ[T]]) (1)

Subject to: µ[t] ∈ ΓS[t] , ∀t ∈ {0, 1, 2, . . .} (2)

where φ : B → R is a concave network utility function
that is entrywise nondecreasing. The expectation in the above
problem is with respect to the random channel state vectors
and the potentially randomized decision rule for choosing
µ[t] ∈ ΓS[t] on each slot t. The above problem is particularly
challenging because the channel state distribution function FS

is unknown. Algorithms designed without knowledge of FS

are called statistics-unaware algorithms.
This paper considers the convergence time required

for a statistics-unaware algorithm to come within an ϵ-
approximation of the optimal utility, where optimality con-
siders all algorithms, including those with perfect knowledge
of FS . It is shown that no statistics-unaware algorithm can
guarantee an ϵ-approximation with convergence time faster
than O(1/ϵ). Further, it is shown that a variation on the Frank-
Wolfe algorithm with a running average, called RUN, achieves
this convergence bound to within a logarithmic factor. How-
ever, this performance holds when starting the time averages
at time 0 and using a vanishing stepsize. This raises important
questions of adaptation over arbitrary intervals of time.
Problem (1)-(2) is also important in the special case when

there is no time variation so that µ[t] is chosen every slot from
the same fixed set Γ (where Γ is possibly nonconvex). In this
special case, the algorithms considered here allow computation
of the fractions of time to choose different points in Γ to ensure
an ϵ-approximation to optimal utility.

A. Convergence and adaptation definitions
Define φopt as the optimal utility value for problem (1)-(2).

Fix ϵ > 0. An algorithm is said to achieve an ϵ-approximation
with convergence time C if:

φ(E [µ[T]]) ≥ φopt − ϵ , ∀T ≥ C

An algorithm is said to achieve an O(ϵ)-approximation with
convergence time O(C) if the above holds with ϵ and C
replaced by constant multiples of ϵ and C.

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 2

Convergence time only considers behavior starting from
slot t = 0. It is important to consider behavior over any
interval of time that starts at some arbitrary time t0. This
is important if the channel state probability distribution FS

changes to a different one at time t0. An algorithm is said to
achieve an ϵ-approximation with adaptation time C if for all
t0 ∈ {0, 1, 2, . . .} under which the channel state distribution
FS is the same for all slots t ≥ t0, we have:

φ

(
1

T

t0+T−1∑

t=t0

E [µ[t]]

)
≥ φopt − ϵ , ∀T ≥ C

where the channel state distribution is allowed to be different
before slot t0. This definition captures how long it takes an
algorithm to respond to an unexpected change in channel
probabilities that occurs at some time t0. If the controller
knows when such a change occurs, it can simply reset the
algorithm by defining the current time as time 0. However,
the difficulty is that the controller does not necessarily know
when a change occurs, and so it cannot reset at appropriate
times. Thus, the adaptation time of an algorithm can be much
larger than its convergence time.
A key aspect of these definitions is that the probability

distribution for the system is unknown. If the distribution
were known, one could define a randomized algorithm that
transmits with optimized conditional probabilities (given the
observed S[t]), and convergence of the expectation is immedi-
ate. An alternative sample-path definition of convergence time
is considered in [1]. That work shows the sample path time
average of an integer sequence that converges to an optimal
non-integer value must have error that decays like Ω(1/t) (for
example, the error might be 1/t on odd slots and −1/t on even
slots). This holds regardless of whether or not probabilities
are known. If probabilities were known, one could design a
randomized algorithm with optimal expectations on every slot.
This paper proves that, if probabilities are unknown, then even
the expectations must have an Ω(1/t) utility optimality gap.

B. Prior drift-based algorithm
It is known that the drift-plus-penalty algorithm (DPP) of

[2][3] achieves an ϵ-approximation with convergence time and
adaptation time both being O(1/ϵ2). This algorithm operates
by defining, for each i ∈ {1, . . . , n}, an auxiliary flow control
process γi[t] and virtual queue Qi[t] with update equation:

Qi[t+ 1] = max[Qi[t] + γi[t]− µi[t], 0] (3)

The initial condition is typically Qi[0] = 0. Every slot
t ∈ {0, 1, 2, . . .}, DPP observes S[t] and chooses µ[t] =
(µ1[t], . . . , µn[t]) and γ[t] = (γ1[t], . . . , γn[t]) via:

µ[t] = arg max
(r1[t],...,rn[t])∈ΓS[t]

[
n∑

i=1

Qi[t]ri[t]

]
(4)

γ[t] = arg max
θ[t]∈B

[
1

ϵ
φ(θ1[t], . . . , θn[t])−

n∑

i=1

Qi[t]θi[t]

]
(5)

where ϵ > 0 is a parameter that affects a tradeoff between
utility optimality and virtual queue size (and hence conver-
gence time). This separates the transmission rate decisions µ[t]

according to the (possibly nonconvex) max-weight rule (4)
(which acts only on the queues), and the flow decisions γ[t]
according to the (convex) problem (5) (which uses both the
queues and the utility function φ). This algorithm is statistics-
unaware. Under a mild bounded subgradient condition on the
utility function φ, it is shown in [3] that the worst-case virtual
queue size is O(1/ϵ) and the utility achieved over the first T
slots satisfies:2

E [φ(µ[T])] ≥ φopt −O(ϵ) ∀T ≥ 1/ϵ2

The utility function is not required to be differentiable and
hence this performance holds for non-smooth problems. A
similar inequality holds for any interval of time of duration
1/ϵ2, and so the algorithm has an O(1/ϵ2) adaptation time.
These results extend to allow additional time average con-
straints and queue stability constraints [3].

C. Prior gradient-based algorithms

Alternative gradient-based algorithms are developed in
[5][6]. These assume the utility function is differentiable. Let
φ′(x)⊤ denote the transpose of the derivative of φ at vector
x = (x1, . . . , xn), assumed to be a 1× n row vector:

φ′(x)⊤ =

[
∂φ(x)

∂x1
, . . . ,

∂φ(x)

∂xn

]

The algorithms in [5][6] use a max-weight type decision with
weights determined by the gradient of the utility function
evaluated at the time averaged vector. Specifically, every slot
t > 0 they choose µ[t] ∈ ΓS[t] as the maximizer of the
following expression:

φ′(µ̃[t− 1])⊤µ[t] (6)

where µ̃[t−1] represents some type of averaging of the previ-
ous transmission rates µ[0], . . . , µ[t− 1], such as the running
average µ[t] = 1

t

∑t−1
τ=0 µ[τ] (called the RUN algorithm in

this paper), or an exponentially smoothed average that shall
be precisely defined later (called the EXP algorithm in this
paper). This can be viewed as a stochastic variation on the
Frank-Wolfe algorithm for deterministic convex minimization
(see, for example, [7]). The analyses in [5][6] use fluid limit
arguments that make precise performance bounds difficult to
obtain. This gradient-based approach is extended in [8][9] to
include additional queue stability constraints. To our knowl-
edge, there are no formal analyses of the convergence time
of these algorithms. An analysis in [3] shows that a related
gradient-based algorithm for problems with queues achieves
an ϵ-approximation with an O(1/ϵ) queue size, but the proof
requires an (unproven) convergence assumption and does not
specify what the convergence time might be even if the
convergence assumption holds.

2Note that Qi[T]/T bounds the deviation between input flow rate and de-
livery rate in virtual queue i. The worst-case value of Qi[T]/T is O(1/ϵ)/T ,
which is O(ϵ) whenever T ≥ 1/ϵ2. This leads to 1/ϵ2 convergence time [4].

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 3

D. Related queue stability methods
Related problems of minimizing penalty subject to queue

stability constraints are considered in [3][10][11][4] using
drift-plus-penalty ideas. The basic O(1/ϵ2) convergence re-
sults are in [3][4]. An important method in [10] uses a
Lagrange multiplier estimation phase to reduce convergence
time to an O(1/ϵ1+2/3) bound.3 The work [11] treats aver-
age power minimization subject to stability in a simple 1-
queue system and shows that convergence time of the DPP
algorithm in this context is O(log(1/ϵ)/ϵ). A lower bound on
convergence time of Ω(1/ϵ) is also proven in [11] for the 1-
queue power minimization problem. The lower bound proof
in [11] bears some resemblance to the converse proof used
in the current paper. However, the multi-user network utility
maximization problem of the current paper has a different
structure than the 1-queue power minimization problem and
requires different arguments. Recent work in [12] uses drift
techniques to show that convergence time for dual-subgradient
methods for deterministic convex programs can be improved
from O(1/ϵ2) to O(1/ϵ).

E. Our contributions
This paper shows that, assuming the utility function φ is

smooth and has a Lipschitz continuous gradient, the conver-
gence time of RUN is O(log(1/ϵ)/ϵ), which is superior to
that of the DPP algorithm. To our knowledge, this is the
first demonstration that such performance is possible. Further,
we show that no statistics-unaware algorithm can achieve a
convergence time faster than O(1/ϵ), and so RUN is within
a logarithmic factor of the optimal convergence time. In the
special case when the utility function satisfies an additional
strongly concave assumption, it is shown that mean square
error between the achieved rate vector under RUN and the
optimal rate vector decays like O(log(t)/t), where t is the
number of time steps.
Unfortunately, the RUN algorithm uses a vanishing stepsize

and has no adaptation capabilities. Indeed, it uses a time
average starting from time t = 0 and it cannot adapt if the
probability distribution changes halfway through implementa-
tion. For example, if a time average is built over the first 103
slots, and then the probability distribution changes, it may
take 106 slots to amortize the affects of the old and irrelevant
time average before the system produces new averages that
are close to that desired for the new probability distribution.
That is, the time required to “un-average” an old time average
can be much longer than the time spent building up this
old average. The result is that, if such a change occurs,
the network utility produced after the change is typically far
from optimality. Formally, it can be shown that the adaptation
time, as defined in Section I-A, is ∞ because the change in
probability distribution can occur at arbitrarily large times t0.

A simple fix to this adaptability issue is to replace the
full time average µ[t − 1] used in (6), which averages over
the always-growing time interval {0, 1, . . . , t − 1}, with an

3The work [10] shows the transient time for backlog to come close to a
Lagrange multiplier vector is O(1/ϵ2/3). For transients to be amortized, the
total time for averages to be within ϵ of optimality is O(1/ϵ1+2/3).

exponentially weighted average (this gives rise to the EXP
algorithm). Fluid model properties of the EXP algorithm are
considered in [5][8][9]. In this paper, we show EXP produces
an O(ϵ) approximation and compute its convergence time.
Unfortunately, while this algorithm has adaptation capabilities
similar to the DPP algorithm, it also has similar O(1/ϵ2)
convergence time. An open question is whether or not it
is possible for both convergence and adaptation times to be
improved beyond O(1/ϵ2).
A special case of our stochastic system is a deterministic

system where µ[t] is chosen every slot from a fixed set Γ
that never changes. When Γ is nonconvex, optimal utility
typically requires different points of Γ to be selected with
different fractions of time. Our results allow computation of
fractions of time over which the resulting utility is within
ϵ of optimality. In this context, a different stepsize rule is
considered that is different from the RUN and EXP algorithms
and that relates to classical deterministic convex minimization
via Frank-Wolfe. This stepsize allows fractions of time to be
computed with utility error that decays like O(1/t), faster than
the O(log(t)/t) decay of RUN.

II. PRELIMINARIES

A. Assumptions

The set of all transmission rate vectors available for schedul-
ing is assumed to be bounded. Specifically, define the n-
dimensional box B ⊆ Rn by:

B = [0, µmax
1]× · · · [0, µmax

n] (7)

where µmax
i > 0 are given maximum transmission rates over

each link i ∈ {1, . . . , n}. For each channel state vector s ∈ S ,
the set of available transmission rate vectors Γs is assumed to
be a closed and bounded subset of B. The network controller
chooses µ[t] ∈ ΓS[t] on each slot t, and so 0 ≤ µi[t] ≤ µmax

i

for all slots t and all i ∈ {1, . . . , n}.
Let φ : B → R be a concave utility function that is

entrywise nondecreasing. The function φ is assumed to be
differentiable and G-smooth, so that the gradients φ′(x) are
G-Lipschitz continuous:

||φ′(x)− φ′(y)|| ≤ G||x− y|| , ∀x, y ∈ B

where ||x|| =
√∑n

i=1 x
2
i denotes the standard Euclidean

norm. Formally, the gradients φ′(x) for points x on the
boundary of the box B are defined with respect to limits taken
over the interior of the box, and are assumed to satisfy the G-
Lipschitz property above.
An example utility function is

φ(x) =
∑n

i=1 log(1 + βixi)

where βi are positive values that weight the priority of each
user i ∈ {1, . . . , n}. Using βi = β for all i and choosing a
large value of β approaches the well known proportionally
fair utility

∑n
i=1 log(xi). In this paper, we avoid explicit use

of the log(x) utility because it has a singularity at x = 0 and
is unbounded and has unbounded gradients.

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 4

B. Convexity and smoothness

It is known that every concave and differentiable function
φ : B → R satisfies the following inequality [13][14]:

φ(y) ≤ φ(x) + φ′(x)⊤(y − x) (8)

Further, every G-smooth function φ : B → R satisfies the
following, often called the descent lemma [13][14]:

φ(y) ≥ φ(x) + φ′(x)⊤(y − x)− G
2 ||y − x||2 (9)

C. The capacity region

Let Γ∗ be the set of all “one-shot” expectations E [µ[0]] ∈
Rn that are possible on slot 0, considering all possible condi-
tional probability distributions for choosing µ[0] ∈ Γ(S[0]) in
reaction to the observed vector S[0]. Since µ[0] ∈ B with
probability 1, it follows that the set Γ∗ is in the bounded
set B. It can be shown that Γ∗ is a convex set. Define Γ

∗

as the closure of Γ∗. It can be shown that Γ
∗
is convex,

closed, and bounded. It is shown in [3] that Γ
∗
is the network

capacity region, in the sense that all possible limiting time
average expected transmission rate vectors must lie in the set
Γ
∗
. Further, optimality for the problem (1)-(2) can be defined

by Γ
∗
. Specifically, define φopt as the supremum value of the

objective function (1) over all possible algorithms. It is known
that there exists a vector x∗ ∈ Γ

∗
such that φopt = φ(x∗). In

fact, it is shown in [3] that:

φopt = max
x∈Γ

∗
φ(x) (10)

III. ALGORITHM AND ANALYSIS

This section considers a stochastic version of the determinis-
tic Frank-Wolfe algorithm from [7], also considered in the fluid
limit papers [5][6]. It is useful to analyze a class of algorithms
that use general time-varying weights. Both RUN and EXP
have this structure.

A. Weighted averaging algorithms

Let {ηt}∞t=0 be a sequence of real numbers that satisfy 0 <
ηt ≤ 1 for all t ∈ {0, 1, 2, . . .}. These shall be used to define
a sequence of vectors γ[t] ∈ Rn that are weighted averages of
the transmission vectors. Specifically, define γ[−1] = 0 ∈ Rn,
and define:

γ[t] = (1− ηt)γ[t− 1] + ηtµ[t] , ∀t ∈ {0, 1, 2, . . .} (11)

The value ηt is called the stepsize on slot t. It can be shown
that using ηt = 1/(t+1) for all t results in a running average
of µ[t]. Using ηt = η for all t, for a fixed η ∈ (0, 1),
results in a weighted average of µ[t] with an exponentially
decaying memory. Strictly speaking, this is an “approximate”
exponentially weighted average because it uses η0 = η <
1 and so γ[0] may not be the same as µ[0]. This is for
convenience later.
On each slot t ∈ {0, 1, 2, . . .}, we consider a gradient-based

opportunistic scheduling algorithm that observes γ[t− 1] and

the current channel state S[t] and chooses the transmission
vector µ[t] to solve:

Maximize: φ′(γ[t− 1])⊤µ[t] (12)
Subject to: µ[t] ∈ ΓS[t] (13)

The above decision chooses µ[t] to maximize a linear function
over the closed and bounded set ΓS[t], and so there is at least
one maximizer. Ties are broken arbitrarily if more than one
maximizer exists. Formally, the tiebreaking rule is assumed to
be probabilistically measurable so that γ[t] is a valid random
vector with well defined expectations that lie in the box B.
A key property is this: If µ[t] is the decision produced by

the rule (12)-(13) on slot t ∈ {0, 1, 2, . . .}, then:

φ′(γ[t− 1])⊤µ[t] ≥ φ′(γ[t− 1])⊤µ∗[t] (14)

where µ∗[t] is any other (possibly randomized) decision vector
in the set ΓS[t]. This holds because µ[t] is (by definition) the
maximizer of (12) subject to the constraint (13). Two other
useful properties that hold for all slots t ∈ {0, 1, 2, . . .} are:

µ[t]− γ[t− 1] =
γ[t]− γ[t− 1]

ηt
(15)

φ′(γ[t− 1])⊤(γ[t]− γ[t− 1]) ≤ φ(γ[t])− φ(γ[t− 1])

+
G

2
||γ[t]− γ[t− 1]||2

(16)

where (15) follows by (11); (16) follows by the smoothness
property (9).

B. Performance lemmas
Lemma 1: For each slot t ∈ {0, 1, 2, . . .} the weighted

averaging algorithm (12)-(13) ensures:

E
[
φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])

]
≥ φopt − E [φ(γ[t− 1])]

where φopt is the optimal objective value for problem (1)-(2).
Proof: Fix t ∈ {0, 1, 2, . . .} and let µ[t] be the decision

made by the weighted averaging algorithm on slot t. Recall
that Γ∗ is the set of all achievable one-shot expectations
E [µ[0]]. Fix x ∈ Γ∗ and let µ∗[t] ∈ ΓS[t] be a stationary and
randomized algorithm that makes decisions as a randomized
function of S[t] to yield E [µ∗[t]] = x. Applying inequality
(14) gives:

φ′(γ[t− 1])⊤µ[t] ≥ φ′(γ[t− 1])⊤µ∗[t]

Taking expectations of this gives

E
[
φ′(γ[t− 1])⊤µ[t]

]
≥ E

[
φ′(γ[t− 1])⊤µ∗[t]

]

(a)
= E

[
φ′(γ[t− 1])⊤

]
E [µ∗[t]]

= E
[
φ′(γ[t− 1])⊤

]
x (17)

where equality (a) holds because channel state vectors S[t] are
i.i.d. over slots and µ∗[t] depends only on S[t], so that it is
independent of γ[t − 1]. Inequality (17) holds for all vectors
x ∈ Γ∗. Taking a limit as x → x∗, where x∗ is a fixed vector
in Γ

∗
such that φ(x∗) = φopt, gives:

E
[
φ′(γ[t− 1])⊤µ[t]

]
≥ E

[
φ′(γ[t− 1])⊤

]
x∗

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 5

Subtracting the same value from both sides of the above
inequality gives:

E
[
φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])

]

≥ E
[
φ′(γ[t− 1])⊤(x∗ − γ[t− 1])

]
(18)

However, the subgradient inequality (8) for concave functions
yields:

φ′(γ[t− 1])⊤(x∗ − γ[t− 1]) ≥ φ(x∗)− φ(γ[t− 1])

Taking expectations of the above inequality and substituting
into the right-hand-side of (18) yields the result.

Lemma 2: The algorithm (12)-(13) ensures for all t ∈
{0, 1, 2, . . .}:
E [φ(γ[t])]

ηt
≥ φopt+

[
1

ηt
− 1

]
E [φ(γ[t− 1])]− ηtG||µmax||2

2
(19)

where we define µmax = (µmax
1 , . . . , µmax

n).
Proof: By Lemma 1 we have for all slots t ∈ {0, 1, 2, . . .}:

E [φ(γ[t− 1])] ≥ φopt − E
[
φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])

]

(a)
= φopt − 1

ηt
E
[
φ′(γ[t− 1])⊤(γ[t]− γ[t− 1])

]

(b)
≥ φopt − 1

ηt
E [φ(γ[t])− φ(γ[t− 1])]

− G

2ηt
E
[
||γ[t]− γ[t− 1]||2

]

(c)
= φopt +

E [φ(γ[t− 1])]

ηt
− E [φ(γ[t])]

ηt

− ηtG

2
E
[
||µ[t]− γ[t− 1]||2

]

(d)
≥ φopt +

E [φ(γ[t− 1])]

ηt
− E [φ(γ[t])]

ηt

− ηtG||µmax||2

2
(20)

where (a) holds by (15); (b) holds by (16); (c) holds by (15);
and (d) holds because µ[t] and γ[t − 1] lie in the box B and
the largest possible magnitude of their difference is ||µmax||.
Rearranging terms yields the result.

C. The RUN algorithm
Let ηt = 1

t+1 for t ∈ {0, 1, 2, . . .}. With these weights, the
iteration (11) produces a running average of the µ[t] values:

γ[t] =
t

t+ 1
γ[t− 1] +

1

t+ 1
µ[t]

=⇒ γ[t] =
1

t+ 1

t∑

τ=0

µ[τ] = µ[t+ 1] , ∀t ∈ {0, 1, 2, . . .}

Using these stepsizes for the weighted average in (12)-(13)
shall be called the RUN algorithm.
Theorem 1: Under the RUN algorithm, we have for all

integers T > 0:4

E [φ (µ[T])] ≥ φopt − G||µmax||2(1 + log(T))

2T

4By Jensen’s inequality for the concave function φ we know φ(E [µ[T]]) ≥
E [φ(µ[T])], and so Theorems 1 and 2 also provide bounds on φ(E [µ[T]]).

Proof: Fix T > 0 as an integer. Summing inequality (19)
over t ∈ {0, 1, . . . , T − 1} gives:
T−1∑

t=0

1

ηt
E [φ(γ[t])] ≥ Tφopt +

T−1∑

t=0

[
1

ηt
− 1

]
E [φ(γ[t− 1])]

− G||µmax||2

2

T−1∑

t=0

ηt

Rearranging terms gives
T−1∑

t=0

E [φ(γ[t− 1])] ≥ Tφopt +
T−2∑

t=0

E [φ(γ[t])]

[
−1

ηt
+

1

ηt+1

]

+

[
E [φ(γ[−1])]

η0
− E [φ(γ[T − 1])]

ηT−1

]

− G||µmax||2

2

T−1∑

t=0

ηt

Substituting ηt = 1/(t+ 1) gives
T−1∑

t=0

E [φ(γ[t− 1])] ≥ Tφopt +
T−2∑

t=0

E [φ(γ[t])]

+ E [φ(γ[−1])]− TE [φ(γ[T − 1])]

− G||µmax||2

2

T−1∑

t=0

1

t+ 1

Canceling common terms in the above inequality and rear-
ranging yields

TE [φ(γ[T − 1])] ≥ Tφopt − G||µmax||2

2

T−1∑

t=0

1

t+ 1

≥ Tφopt − G||µmax||2

2
(1 + log(T))

Dividing by T and using the fact that γ[T − 1] = µ[T] gives
the result.
This theorem shows that utility converges to the optimal

value φopt as T → ∞. Deviation from optimality decays like
log(T)/T . Fix ϵ > 0. Then we are within O(ϵ) of optimality
after a convergence time of O(log(1/ϵ)/ϵ).

D. The EXP algorithm
Fix η ∈ (0, 1) and define ηt = η for all t ∈ {0, 1, 2, . . .}.

This shall be called the EXP algorithm.
Theorem 2: Under the EXP algorithm, we have for all

integers T > 0:

E [φ (µ[T])] ≥ φopt −
[
φopt − φ(0)

ηT

]
− ηG||µmax||2

2
Proof: Substituting ηt = η into (19) gives for all t ∈

{0, 1, 2, . . .},
E [φ(γ[t])]

η
≥ φopt +

[
1

η
− 1

]
E [φ(γ[t− 1])]− ηG||µmax||2

2

Rearranging terms gives:

E [φ(γ[t− 1])] ≥ φopt +
1

η
E [φ(γ[t− 1])− φ(γ[t])]

− ηG||µmax||2

2
(21)

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 6

Fix T > 0. Summing over t ∈ {0, 1, . . . , T − 1} gives

E
[
T−1∑

t=0

φ(γ[t− 1])

]
≥ Tφopt +

E [φ(γ[−1])]

η

− E [φ(γ[T − 1])]

η
− GηT ||µmax||2

2

≥ Tφopt +
(φ(0)− φopt)

η

− GηT ||µmax||2

2

where the last inequality holds because γ[−1] = 0 with
probability 1, and E [φ(γ[T − 1])] ≤ φopt (see [15]). Dividing
the above inequality by T and using Jensen’s inequality on
the concave function φ gives:

E
[
φ

(
1

T

T−1∑

t=0

γ[t− 1]

)]
≥ φopt −

[
φopt − φ(0)

ηT

]

− Gη||µmax||2

2

It remains to relate the time average of the γ[t − 1] process
to that of the µ[t] process. Substituting ηt = η into (15) and
summing over t ∈ {0, . . . , T − 1} (and dividing by T) gives:

1

T

T−1∑

t=0

µ[t] =
1

T

T−1∑

t=0

γ[t− 1] +
γ[T − 1]− γ[−1]

ηT

≥ 1

T

T−1∑

t=0

γ[t− 1]

where the final inequality is taken entrywise and uses the fact
that γ[−1] = 0 ≤ γ[T − 1].

Fix ϵ > 0. By defining η = ϵ, Theorem 2 implies that EXP
achieves an O(ϵ)-approximation with convergence time T =
1/ϵ2. A similar argument can be given that sums (21) over the
interval {t0, . . . , t0 +T − 1} to show that the adaptation time
of EXP is also 1/ϵ2 (this argument is omitted for brevity).
This argument works because the stepsize η does not change
with time, which is not the case for the RUN algorithm.

E. Relation to deterministic Frank-Wolfe
The analysis of RUN and EXP in the above subsections

is similar to the deterministic analysis of the Frank-Wolfe
algorithm (see, for example, [7]). An important difference is
that the above analysis treats the stochastic case and considers
performance in terms of the time average µ[T] achieved over
time. In contrast, the classical Frank-Wolfe algorithm seeks
a single vector x within a given convex set that is close to
optimal, with no regard to how time averages behave.
It is interesting to note that a modified stepsize ηt =

2/(t+2) is used for deterministic convex minimization in [7]
to show that an approximate vector x can be computed after
T iterations with error bounded by O(1/T) (which is faster
than the O(log(T)/T) result of RUN). At first glance, this
suggests that using the modified stepsize ηt = 2/(t+2) in the
stochastic problem might remove the log(·) factor. However,
the same analysis of the deterministic problem cannot be used

in our stochastic context. It is not clear if the log(·) factor can
be removed for the stochastic time average problem.
However, the stepsize rule ηt = 2/(t + 2) is still useful

for stochastic scheduling problems. It leads to an algorithm
that is different from RUN and EXP. The resulting γ[t] value
is an unusual weighted average of {µ[0], . . . , µ[t]} as defined
by (11). The next theorem shows that the utility associated
with this unusual weighted average γ[T] deviates from φopt by
O(1/T), although this does not hold for the utility associated
with the online time average transmission rate µ[T]. This
unusual weighted average is particularly useful in the offline
deterministic context of Section V. The proof of the next
theorem is similar to that of the deterministic case in [7] and
closely follows that proof structure.
Theorem 3: Using algorithm (12)-(13) with stepsize ηt =

2/(t+ 2) yieds:

E [φ(γ[t])] ≥ φopt − 2G||µmax||2

t+ 1
, ∀t ∈ {0, 1, 2, . . .}

Proof: See [15].

F. Strongly concave utility functions

Consider again the RUN algorithm. Assume the utility
function φ : B → R is smooth, concave, and satisfies the
assumptions of Section II-A. Further, assume φ is α-strongly
concave, meaning that: φ(γ) + α

2 ||γ||
2 is also a concave

function over γ ∈ B (equivalently, −φ is an α-strongly convex
function). Define x∗ as the (nonrandom) vector in the set Γ

∗

that corresponds to utility optimality for problem (1)-(2) (so
that φ(x∗) = φopt). Let µ[T] = 1

T

∑T−1
t=0 µ[t] be the (random)

sample path time average over the first T slots under the RUN
algorithm. The mean square error between µ[T] and x∗ is:

E
[
||µ[T]− x∗||2

]
=

n∑

i=1

E
[
(µi[T]− x∗

i)
2
]

Theorem 4: If φ(γ) is α-strongly concave over γ ∈ B, then
for all T > 0 the RUN algorithm yields

E
[
||µ[T]− x∗||2

]
≤ G||µmax||2(1 + log(T))

αT
Proof: See [15] for the proof for this result and for similar

results on the algorithms of Theorems 2 and 3.

IV. A STOCHASTIC CONVERSE RESULT

This section provides a simple example of an opportunistic
scheduling system, together with a smooth and strongly con-
cave utility function, such that all statistics-unaware algorithms
have a utility optimality gap that is at least Ω(1/t), where t
is the number of time steps.

A. A 2-user system with ON/OFF channels

Consider a 2-user system with an i.i.d. channel
state process {S[t]}∞t=0. Suppose there are only
three possible channel state vectors, so that S[t] ∈
{(ON,OFF), (ON,ON), (OFF,ON)}. Every slot t,
the network controller observes S[t] and chooses to either

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 7

transmit over exactly one channel that is currently ON, or to
remain idle. The corresponding decision sets are:

S[t] = (ON,OFF) =⇒ µ[t] ∈ {(0, 0), (1, 0)}
S[t] = (ON,ON) =⇒ µ[t] ∈ {(0, 0), (1, 0), (0, 1)}

S[t] = (OFF,ON) =⇒ µ[t] ∈ {(0, 0), (0, 1)}

Define the utility function φ : [0, 1]2 → R by

φ(γ1, γ2) = log(1 + γ1) + log(1 + γ2)

It can be shown that φ is smooth and strongly concave over its
domain. Since φ is entrywise increasing, efficient algorithms
should transmit whenever there is at least one ON channel.
The only non-trivial decision is which channel to choose when
S[t] = (ON,ON). Consider a particular statistics-unaware
algorithm π that transmits whenever there is at least one
ON channel, and if S[t] = (ON,ON) it chooses between
the two transmission vectors (1, 0) and (0, 1) according to
some (possibly randomized) policy. Like the RUN, EXP, and
DPP algorithms, the algorithm π has no initial knowledge
of the probability mass function for S[t] and can only base
decisions on current and past observations. One can imagine
that algorithm π is chosen first, then a probability mass
function (PMF) for S[t] is chosen by nature. Nature is free to
choose a PMF under which policy π performs poorly. Consider
two different PMFs, labeled PMF A and PMF B in Table I.

S[t] PMF A PMF B

(ON, OFF) 3/4 0
(ON, ON) 1/4 1/4
(OFF, ON) 0 3/4

TABLE I
VALUES FOR PMF A AND PMF B.

On slot t = 0, the algorithm π must have a contingency plan
for choosing (µ1[0], µ2[0]) if it observes S[0] = (ON,ON).
Define:

θ = P [(µ1[0], µ2[0]) = (1, 0)|S[0] = (ON,ON)]

where this conditional probability θ is determined by the
(potentially randomized) decision of algorithm π on slot 0,
and is not connected to any past observations. In particular,
the value of θ is determined before nature chooses the PMF.
Below we show that, once the algorithm π is chosen (which

fixes the value of θ), nature can choose a PMF such that:

φ(E [µ1[T]] ,E [µ2[T]]) ≤ φopt − 1

35T
, ∀T ∈ {2, 3, 4, ...}

where the left-hand-side represents the utility achieved by
algorithm π over the first T slots, and φopt is the optimal utility
of the network under the PMF that was chosen by nature.

B. Case 1: θ ∈ [1/2, 1]

Suppose θ ∈ [1/2, 1]. Suppose nature chooses PMF A. The
capacity region ΛA under PMF A is shown in Fig. 1. It can
be shown that optimal utility is achieved at the corner point
(3/4, 1/4) ∈ ΛA, so that:

φopt = log(1 + 3/4) + log(1 + 1/4)

Fix T ∈ {2, 3, 4, ...}. Define vectors (a, b) and (c, d) by

(a, b) = E [(µ1[0], µ2[0])]

(c, d) = 1
T−1

∑T−1
t=1 E [(µ1[t], µ2[t])] (22)

where the expectations are with respect to the random S[t]
channels that arise over time (which occur according to PMF
A) and the possibly random decisions of policy π in reaction
to the observed channels. We have:

(E [µ1[T]] ,E [µ2[T]]) =
1
T (a, b) +

T−1
T (c, d) (23)

Note that (c, d) must be a point in ΛA as shown in Fig. 1
(this is because E [(µ1[t], µ2[t])] ∈ ΛA for all slots t, and so
(c, d) defined in (22) is a convex combination of points in the
convex set ΛA and hence must also be in ΛA). Define F as the
dominant face of ΛA, being the line segment in Fig. 1 between
points (3/4, 1/4) and (1, 0). Let (c̃, d̃) be a point on F that is
entrywise greater than or equal to (c, d) (possibly being (c, d)
itself). Under PMF A, the point (a, b) = E [(µ1[0], µ2[0])]
satisfies:

(a, b) = 3
4 (1, 0) +

1
4 [θ(1, 0) + (1− θ)(0, 1)]

That is, (a, b) = 1
4 (3 + θ, 1 − θ). In particular, a + b = 1,

(a, b) ∈ F , and since θ ∈ [1/2, 1] it holds that b ≤ 1/8. Thus,
(a, b) lies in the intersection of the shaded region of Fig. 1

��� ��� ��

���	���

�������

���������
�������

���

���

���� �

��!�

�� �
��������
���
���

��

Fig. 1. The capacity region ΛA under PMF A. All algorithms that transmit
whenever possible have average rates that lie on the dominant face F . The
point (a, b) must lie in the intersection of F and the shaded region.

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2017 8

with the dominant face F . Then,

φ (E [µ1[T]] ,E [µ1[T]])

(a)
= log

(
1 +

a

T
+

(T − 1)c

T

)
+ log

(
1 +

b

T
+

(T − 1)d

T

)

(b)
≤ log

(
1 +

a

T
+

(T − 1)c̃

T

)
+ log

(
1 +

b

T
+

(T − 1)d̃

T

)

(c)
≤ max

(x,y)∈F

[
log

(
1 +

a

T
+

(T − 1)x

T

)

+ log

(
1 +

b

T
+

(T − 1)y

T

)]

(d)
= log(1 +

a

T
+

(T − 1) 34
T

) + log(1 +
b

T
+

(T − 1) 14
T

)

= log

(
1 +

3

4
+

(a− 3
4)

T

)
+ log

(
1 +

1

4
+

(b− 1
4)

T

)

(e)
≤ log(1 +

3

4
) +

a− 3
4

(1 + 3
4)T

+ log(1 +
1

4
) +

b− 1
4

(1 + 1
4)T

(f)
= φopt −

(14 − b)(8/35)

T
(g)
≤ φopt − 1

35T

where (a) holds by substituting (23) into the utility function
φ(γ1, γ2) = log(1 + γ1) + log(1 + γ2); (b) holds because
(c̃, d̃) is entrywise greater than or equal to (c, d) and the utility
function is entrywise increasing; (c) holds because (c̃, d̃) ∈ F ;
(d) holds because the (x, y) vector that maximizes the given
expression over F is (x∗, y∗) = (3/4, 1/4), which can be
proven by observing that (i) (a, b) ∈ F and so for any
(x, y) ∈ F we have (a, b)/T + (x, y)(T − 1)/T ∈ F , (ii)
utility increases as we move along the dominant face towards
the corner point (3/4, 1/4), and so the (x, y) vector that
maximizes the given expression over F is (3/4, 1/4); (e) holds
because concavity of the function log(w + z) with respect to
z implies log(w+z) ≤ log(w)+ z

w for any real numbers w, z
that satisfy w > 0, w + z > 0; (f) holds because a = 1 − b;
(g) holds because b ≤ 1/8.

C. Case 2: θ ∈ [0, 1/2)

Suppose θ ∈ [0, 1/2). However, now suppose nature
chooses PMF B. A similar argument can be used to prove
the same 1/(35T) utility gap (see [15] for details).

V. SCHEDULING IN DETERMINISTIC SYSTEMS

Theorems 1-4 hold for general stochastic problems. A spe-
cial case of a stochastic system is a deterministic system where
µ[t] is chosen from the same closed and bounded (possibly
nonconvex) set Γ every slot t. In this deterministic case,
the expectations in Theorems 1-4 can be removed (since all
expectations are equal to their arguments with probability 1). If
Γ is a nonconvex set then utility optimality typically requires
different points in Γ to be selected with different fractions
of time. RUN can be used online over slots {0, 1, . . . , T} and
achieves an O(log(T)/T) error bound. The fractions of time to
use each vector in {µ[0], . . . , µ[T]} under RUN are exactly the

fractions they are used over {0, 1, . . . , T}. The algorithm of
Theorem 3 achieves an O(1/T) error bound, but the fractions
of time must be reweighted at the end of T iterations of an
offline computation (see [15] for details).

VI. CONCLUSION

This paper considers stochastic utility maximization for
opportunistic scheduling systems. It shows that all statistics-
unaware algorithms incur error that is at least Ω(1/t). A
stochastic variation of the Frank-Wolfe algorithm called RUN
is shown to have error that decays like O(log(t)/t). Unfortu-
nately, RUN uses a vanishing stepsize and has no adaptation
capabilities. The EXP algorithm uses a fixed stepsize for
better adaptation time but worse convergence time, both being
O(1/ϵ2) (similar to the DPP algorithm). Another stepsize
rule is shown to compute a random vector whose expectation
is within O(1/t) of optimal utility (without a log factor),
although this random vector does not correspond to the time
average transmission rates used over the first t slots.

ACKNOWLEDGEMENT

This work was supported by grant NSF CCF-1718477.

REFERENCES

[1] B. Li, R. Li, and A. Eryilmaz. On the optimal convergence speed of
wireless scheduling for fair resource allocation. IEEE Transactions on
Networking, vol. 23, no. 2:631–643, April 2015.

[2] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. IEEE/ACM Transactions on Net-
working, vol. 16, no. 2, pp. 396-409, April 2008.

[3] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[4] M. J. Neely. A simple convergence time analysis of drift-plus-penalty
for stochastic optimization and convex programs. ArXiv technical report,
arXiv:1412.0791v1, Dec. 2014.

[5] H. Kushner and P. Whiting. Asymptotic properties of proportional-fair
sharing algorithms. Proc. 40th Annual Allerton Conf. on Communica-
tion, Control, and Computing, Monticello, IL, Oct. 2002.

[6] R. Agrawal and V. Subramanian. Optimality of certain channel aware
scheduling policies. Proc. 40th Annual Allerton Conf. on Communica-
tion, Control, and Computing, Monticello, IL, Oct. 2002.

[7] S. Bubeck. Convex optimization: Algorithms and complexity. Founda-
tions and Trends in Machine Learning, 8(3-4):231–357, 2015.

[8] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[9] A. Stolyar. Greedy primal-dual algorithm for dynamic resource alloca-
tion in complex networks. Queueing Systems, vol. 54, no. 3, pp. 203-220,
2006.

[10] L. Huang, X. Liu, and X. Hao. The power of online learning in stochastic
network optimization. Proc. SIGMETRICS, 2014.

[11] M. J. Neely. Energy-aware wireless scheduling with near optimal
backlog and convergence time tradeoffs. IEEE/ACM Transactions on
Networking, 24(4):2223–2236, 2016.

[12] H. Yu and M. J. Neely. A simple parallel algorithm with an O(1/t)
convergence rate for general convex programs. SIAM Journal on
Optimization, 27(2):759–783, 2017.

[13] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Academic Publishers, Boston, 2004.

[14] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and
Optimization. Boston: Athena Scientific, 2003.

[15] M. J. Neely. Optimal convergence and adaptation for utility optimal
opportunistic scheduling. arXiv:1710.01342, October 2017.

