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A phonon laser operating at an exceptional point
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Non-Hermitian physical systems have attracted considerable
attention lately for their unconventional behaviour around
exceptional points (EPs)—spectral singularities at which
eigenvalues and eigenvectors coalesce. In particular, many
new EP-related concepts such as unidirectional lasing and
invisibility, as well as chiral transmission, have been realized.
Given the progress in understanding the physics of EPs in vari-
ous photonic structures, it is surprising that one of the oldest
theoretical predictions associated with them, a remarkable
broadening of the laser linewidth at an EP, has been probed
only indirectly so far. Here, we fill this gap by steering a pho-
non laser through an EP in a compound optomechanical system
formed by two coupled resonators. We observe a pronounced
linewidth broadening of the mechanical lasing mode generated
in one of the resonators when the system approaches the EP.

Non-Hermitian systems featuring EPs have attracted attention in
many fields of physics'~ In particular, there has been an increasing
number of experiments in recent years that have not only demon-
strated unique properties of EPs, such as the topology of self-inter-
secting Riemann sheets around them®*, but also led to proposals of
practical applications based on features associated with EPs, such as
loss-induced transmission and unidirectional invisibility’™"', chiral
behaviour'?, mode selection in lasers”*~"°, enhanced sensors'®"* and
topological energy transfer>. A special share of attention has been
dedicated to EPs in parity-time symmetric systems, where resonant
or guided modes can be efficiently controlled by sweeping them
across an EP°77.

Historically, one of the first predictions associated with EPs is
the extreme broadening of the laser linewidth?** beyond the funda-
mental Schawlow-Townes limit*. This broadening is quantified by
the Petermann factor**, which measures the excess quantum noise
induced by the non-orthogonality of resonator modes. Specifically,
the coupling between modes, induced by the openness of the reso-
nator and the internal dissipation, is translated into excess noise
by the gain mechanism and the cavity feedback®. Although early
work showed that this linewidth broadening due to non-orthogonal
resonator modes can, indeed, be measured”*, only subsequent
theoretical work associated a pronounced linewidth enhancement
in unstable laser resonators with the presence of a nearby EP*.
What really happens to the linewidth when a laser operates at an
EP has remained unclear to this day. Standard laser theory*** and
general arguments based on self-orthogonality of modes” predict an
unphysical divergence of the laser linewidth at the EP>***' where
modes coalesce and become completely non-orthogonal (that is,
parallel). More recent theoretical models provide a more consistent
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framework for calculating the laser linewidth™=* but fail to resolve
the problems directly at the EP. Experimentally, it is not straight-
forward to steer a laser directly to an EP"***¥ nor to measure its
extremely narrow linewidth. Additionally, laser modes have a ten-
dency to become unstable close to an EP where the spectral vicinity
of a second mode may lead to chaotic lasing that could be wrongly
perceived as an extremely broad laser line.

Here, we provide a new strategy to tackle this problem by work-
ing with a phonon laser rather than with its optical counterpart.
Phonon lasers that produce coherent sound oscillations (mechani-
cal vibrations) induced by optical pumping have been introduced
recently’, and have been studied theoretically within the frame-
work of parity-time symmetry and EP physics with many inter-
esting predictions, such as thresholdless phonon lasing®. For a
study of lasing at an EP, phonon lasers have the crucial advantage
that the linewidth measurement is much easier than for an optical
laser. Moreover, as we will discuss below, the phonon laser consid-
ered in this study provides an interesting platform to study EPs in
atomic spectra®’.

The concept of the phonon laser used here is based on a sys-
tem developed by Grudinin, Vahala and co-workers*, who showed
that a system of two coupled optical microresonators, one of which
supports a mechanical mode, can produce coherent mechanical
oscillations with characteristics that are typical for photon lasers,
such as a threshold, a linewidth narrowing above threshold, and
nonlinear saturation effects. To drive the mechanical mode reso-
nantly, the frequency difference of the two optical supermodes
formed through inter-resonator coupling is matched with the fre-
quency of the mechanical mode. In analogy to a photon laser, here
the two optical supermodes correspond to the ground and excited
states of an atomic two-level system, and the mechanical mode
(phonons) mediates the transition between them. The energy dif-
ference between the optical supermodes can be finely tuned, either
by changing the distance between the resonators or by introducing
additional loss to the resonator without the mechanical mode, such
that the spectrum exhibits an EP. Therefore, this configuration pro-
vides an interesting platform on which to study not only lasing at
an EP but also EPs in atomic spectra’ (the two-level system here).
In this sense, phonon lasing in this tunable ‘two-level system’ also
brings in new conceptual aspects as compared with recent studies
of EPs in photonic lasers in which EPs emerged owing to the over-
lapping of cavity modes while the energy levels of the gain material
were kept fixed (here these roles are exchanged).

Our experimental platform is a compound optomechanical
system composed of two coupled silica whispering-gallery-mode
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Fig. 1] Phonon lasing in a compound resonator system. a, Schematic diagram of the compound phonon-laser system. Two microtoroid resonators, puR1
and pR2, are coupled to each other by evanescent fields. The first resonator pR1 supports a high-Q optical mode a, and a mechanical mode with resonance
frequency .. The second resonator uR2 supports a low-Q optical mode a,, and the damping rate of this low-Q mode can be tuned by a chromium-coated
silica nanotip approaching pR2. b,¢, Transmission spectra of the high-Q optical mode g, (b) and the low-Q optical mode a, (¢) that exhibit Lorentzian
lineshapes. d, Periodic time evolution of the mechanical mode supported by the resonator uR1. e, Radiofrequency spectrum of the mechanical mode in the

phonon lasing regime.

microresonators (Fig. 1a) pR1 and pR2, where only the resonator
uR1 supports a mechanical mode with frequency £,=17.38 MHz
and mechanical damping rate I",,=40kHz (measured just below the
oscillation threshold). To optically excite the mechanical mode for
phonon lasing, as well as to characterize the optical and mechanical
modes, light from a tunable laser was coupled into pR1 by means
of a tapered fibre, which was also used to out-couple the light from
uR1 and direct it to a detector. The quality factors (Q) of the optical
modes of uR1 and pR2 were 6.33X 107 and 1.5 % 107, respectively.
Typical transmission spectra obtained when the resonators were
probed individually are given in Fig. 1b,c.

To steer the system towards or away from its EP, and to observe the
behaviour of phonon lasing in the vicinity of an EP, we introduced
additional loss to uR2 using a chromium-coated silica nanofibre tip
(Fig. 1a), which has strong absorption in the 1,550-nm band. This
additional loss, characterized by the damping rate y,,, was adjusted
by increasing the overlap of the nanotip with the evanescent field of
uR2. By introducing this extra loss for the optical modes, we tune
the decay rates of the optical supermodes as well as their frequency
difference, which then affect the interaction between the mechani-
cal sound wave and this ‘two-level system’ We used the thermo-optic
effect to tune the resonance frequencies of the resonators to be the
same before they were coupled. The inter-resonator distance was
finely adjusted to control the coupling strength between the resona-
tors, which induced the formation of two supermodes, and enabled
efficient excitation of the mechanical mode, and hence of phonon
lasing, when the spectral distance between the two supermodes was
equal to the frequency of the mechanical mode supported in uRI1.
When this compound system was driven by an optical field with
power above a certain threshold value, radiation-pressure-induced
mechanical oscillations set in, leading to the modulation of the
transmitted light at the frequency Q,, of the mechanical motion
(Fig. 1d). The radiofrequency (RF) spectrum of the modulated light
provides information on the mechanical mode which is revealed by
the peak located at ©2,, (Fig. Le).

In the absence of the mechanical mode, the coupling between the
optical modes a, of puR1 (the resonator supporting the mechanical

motion) and a, of pR2 (the resonator without the mechanical
motion) having the same frequency w, creates two optical super-
modes a, with complex eigenfrequencies w,=w,—iy+f where
x=(1+7,)/2 and p=x*-y* with y=(y,—y,)/2. Here, « is the cou-
pling strength between the modes, y,=y,y+7., and y,=7,+7,, are
the damping rates of the optical modes a, and a, with y,, and y,, rep-
resenting their intrinsic damping rates, and y,,, 7,, denote, respec-
tively, the coupling loss of the taper-uR1 system and the additional
loss introduced to uR2 by the nanotip. The point (k=y), where the
eigenvalues of the system coalesce at @, = w,— iy, corresponds to an
EP at which the eigenvectors also coalesce. In the region before the
EP (k> 7y), the supermodes have the same damping rate y but dif-
ferent resonance frequencies w, = w,=+ f# separated from each other
by 2p. In the region after the EP (k<y), the supermodes have the
same frequency w, but different damping rates y ¥ if. In our experi-
ments, where the coupling strength x determined by the physical
distance between the resonators was kept fixed, y,, was tuned to
vary y, which in turn allowed us to operate the system in three dif-
ferent regimes (before, after, and in the vicinity of the EP). From the
experimentally obtained transmission spectra, we estimated the rel-
evant parameters as k=12.63 MHz, y,,=1.58 MHz, y,,=13.56 MHz
and y,=1.58 MHz.

Our experiments and the underlying physics of phonon lasing at
an EP can be intuitively understood as follows (Fig. 2). Initially, the
system is in the strong coupling regime (that is, before the EP) and
the spectra exhibit two well-separated resonant modes (located at
®, = w,+ f with a spectral splitting of 26~ Q, ), which are symmet-
rically distributed in the resonators (Fig. 2a). When the power of the
pump laser with its frequency set around @, =w,+f is above the
threshold of mechanical oscillation, this mechanical oscillation in
URI creates Stokes and anti-Stokes scattered photons with frequency
ws=w,— f and w,s = w,+ 3, respectively. Because wj lies within the
frequency band of the resonance at w_=,— f, the amplitude of the
Stokes sideband is resonantly enhanced. The amplitude of the anti-
Stokes sideband, on the other hand, is suppressed because of the
absence of a resonance at @,q. As a result, energy flows from photons
to phonons in a highly efficient way due to resonantly enhanced
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Fig. 2 | Tuning a phonon laser to an exceptional point. The first column
shows a schematic of the distribution of the optical supermodes a, in the
two resonators. The second column illustrates the frequency difference and
linewidths of the two optical supermodes a,. The last column represents
the linewidth of the phonon laser. The damping rate y,,, increases from a

to e. a,b, The regime before the EP: the pump mode and the Stokes mode,
which act as the analogue of a two-level atom, are within the frequency
bands of the two optical supermodes respectively. The increasing v,

leads to the increase of the linewidths of the optical supermodes and

to the decrease of the frequency difference between them. ¢, The EP at
which the two optical supermodes are degenerate, and the pump mode
and the Stokes mode are within the frequency bands of these two optical
supermodes. The non-orthogonality of the optical modes introduces excess
noise in the optical modes that reaches a maximum at the EP. Driven by the
optical modes, the phonon laser inherits the increased optical noise, which
is reflected by a broadened mechanical linewidth. d,e, The regime after the
EP: the pump mode and the Stokes mode are within the frequency bands of
the optical supermodes a_and a | that are localized in the first and second
resonators, respectively. The increasing y,, pushes the system away from
the EP, leading to a linewidth narrowing of the phonon laser.

pumping of the system at @, and resonantly enhanced collection of
the Stokes photons at w_, resulting in coherent amplification of the
mechanical oscillation. In this setting, the optical supermodes a,
and a_ mimic a two-level system in which the transitions between
the two levels are mediated by the mechanical mode, thereby creat-
ing a ‘phonon laser’

Introducing the nanotip, and hence inducing additional loss
Yip t0 MR2 moves the two supermodes spectrally closer to each
other. Therefore, with increasing y,,, the system transits from
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well-separated and symmetrically distributed supermodes
(Fig. 2a) to increasingly overlapping supermodes (Fig. 2b,c) with
a complete overlap achieved at the EP (Fig. 2¢). Further increase
of y,, pushes the system beyond the EP, resulting in the strong
localization of one of the supermodes in pR1 and the other in
uR2 (Fig. 2d,e). Consequently, the mode in pR2 dissipates quickly
owing to the presence of y,, while the mode in uR1 barely feels
Yup FOr the situation in which the supermodes overlap consider-
ably (Fig. 2c-e), phonon lasing takes place because the resulting
linewidth broadening of the overlapping modes is larger than the
frequency of the mechanical mode. In the picture of a two-level
system, this whole process corresponds to tuning the energy dif-
ference between the upper and lower energy levels such that with
increasing y,, the upper and lower levels approach each other
and become degenerate at an EP. As a result, during this process
both the threshold and the linewidth of the phonon laser are
affected (see our detailed discussion based on the experimental
results below). First, increasing loss redistributes the supermodes
between the resonators and alters the intracavity field intensity in
uR1", which supports the mechanical mode, leading to a varia-
tion of the phonon lasing threshold such that the threshold first
increases and then decreases as the system moves closer to the
EP (Fig. 3). Second, the emitter (upper level) and collector (lower
level) states are completely overlapping and non-orthogonal at the
EP such that the enhancement of the noise in the optical modes
becomes maximal. The noise inherent in these optical modes
imprints on the phonon mode a linewidth that is maximally
broadened at the EP (Fig. 4).

The behaviour of the phonon lasing threshold discussed above
is seen in our experiments. Figure 3a depicts the RF signal power
versus the optical pump power obtained at various values of y,,.
In Fig. 3b, we present the threshold values as a function of the
loss induced by the tip (that is, y,,). This shows that when y,, is
increased, the threshold of the phonon laser first increases very
slowly; after reaching a maximum value at a critical value of 7, the
threshold experiences a sudden drop. This behaviour is due to the
loss-induced redistribution of the supermodes a, in the two resona-
tors uR1 and pR2 when the system approaches the EP: in particular,
when we increase the loss y,, such that the system approaches the
EP, the intracavity field intensity in the high-Q resonator pR1 will
first decrease to reach a minimum and then increase. Because the
phonon mode is located in the high-Q resonator pR1, this increase
means that more energy can be transferred from the optical modes
to the phonon mode for fixed input pump power such that the
threshold of the phonon laser is decreased.

Next we focus on the central question: how is the linewidth of
the phonon laser affected when it is operated near or at an EP? As
shown in Fig. 4a, when the phonon laser was operated under dif-
ferent values of y,;, while the pump power was tuned to keep the RF
peak power of the phonon laser fixed, the linewidth of the phonon
laser first increased in the regime before the EP but then decreased
when the loss was further increased to move the system beyond the
EP (into the regime after the EP). The phonon laser studied here is
an analogue to a photon laser, but where, however, the lower and
upper levels of a gain medium are replaced by two optical super-
modes, and the photon-mediated transitions between the two lev-
els are replaced by phonon-mediated transitions™. As discussed in
detail in the Supplementary Information, the linewidth of the pho-
non laser can be calculated and represented in a similar way to a
photon laser by taking into account the noise-induced phase diffu-
sion process, resulting in the following approximate expression for
the linewidth of the phonon laser

Avm Ayy+ —— (214,50 + 20,r + 1) (1

n b,ss
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Fig. 3 | The threshold of the phonon laser before and after the exceptional point. a, Threshold curves of the phonon laser for different y,,. The damping
rates for the threshold curves from left to right are y,,=17.2 MHz, 13.8 MHz, 1.9 MHz, 0 MHz, 3.8 MHz and 6.9 MHz. b, The threshold of the phonon laser
versus yy,. Before the EP, the threshold of the phonon laser increases with the increase of y,,, and then experiences a sudden drop in the vicinity of the EP.
After the EP, the threshold of the phonon laser monotonously increases with the increase of y,,. The orange shaded area shows the region in the vicinity

of the EP.
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Fig. 4 | Linewidth enhancement of a phonon laser at an exceptional point. a, The power spectra of the phonon laser at different damping rates y,,,. The
linewidth of the phonon laser first increases and then decreases when we increase y,, from O MHz to 17.2 MHz. b, Linewidth versus inverse RF peak power
of the phonon laser. Different curves correspond to different y,,,. All the curves start from the same point with non-zero linewidth but feature different
slopes. The damping rates for the curves from top to bottom are y,,=13.8 MHz, 11.9 MHz, 6.9 MHz, 17.2 MHz, 3.8 MHz and O MHz. ¢, The red circles and
the blue solid curve denote the experimental data points and a guide to the eye of the ratio between the normalized linewidth of the phonon laser and the

inverse of the RF peak power (Av—Avo)/Pp’1

eak’

where n, , is the steady-state number of phonons, which is propor-
tional to the RF peak power of the phonon laser P,,, and Ay is
a phenomenological linewidth contribution taking into account
all power-independent noise sources that are not included in our
model. The factor n,; represents the thermally excited phonons, and
Ngpon has been introduced in analogy to what is adopted in conven-
tional laser theory, where it represents the number of spontaneously
emitted photons into the cavity. In our phonon laser system, this
factor n,, is strongly enhanced when approaching the EP owing

spon

which is enhanced in the vicinity of the EP (orange shaded area).

to the increasing noise in the optical supermodes, thereby creat-
ing a growing number of incoherent phonons in the mechanical
resonator, which broaden the laser line (see the Supplementary
Information for more details). We emphasize, however, that this
increase of the linewidth in the vicinity of the EP has a different
origin from that of a similar increase predicted for the photon laser.
In the latter, the EP emerges because of overlapping modes of the
optical resonator. In the phonon laser studied here, the EP emerges
in the two-level system (that is, optical supermodes of the system)
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where the transitions are mediated by phonons (that is, a mechani-
cal mode). Quite remarkably, however, in both of these cases the EP
leads to a considerable linewidth enhancement.

The linear dependence of the phonon laser linewidth Av on its
inverse RF peak power (P, proportional to n;) (see equation
(1)) is clearly seen in our experimental results (Fig. 4b). In the limit
of zero inverse output power P, — 0 (that is, for strong output
power), the linewidth Av approaches Av,, which is reflected in our
experiments by the fact that for all different values of y,,, we found
the same value of a power-independent linewidth Ay,=x0.2kHz.
As seen in Fig. 4c, the linewidth enhancement factor of the pho-
non laser given by (Av—Aw) /P, increases significantly as y,, is
increased and the system moves closer to the EP. After passing the
EP, the linewidth enhancement decreases again with further increase
in y,,. For fixed RF peak power, we find that the linewidth of the
phonon laser is enhanced at least five-fold at the EP. The underlying
physics of this interesting behaviour can be understood as follows:
when the system is steered towards the EP, the optical supermodes
converge to each other, becoming more and more non-orthogonal
until they are fully parallel at the EP. As can be shown in a simple
scattering matrix model®, the non-orthogonality of the optical
modes leads to a marked increase of the effective optical noise and
with it to a broadening of the optical linewidth (as inherent in the
Petermann factor) that reaches a maximum directly at the EP (see
the Supplementary Information for details). As, in our system, the
phonon mode is driven by these noisy optical modes, the increased
optical noise transfers directly to a mechanical excess noise and
consequently leads to a broadening of the mechanical linewidth. In
this sense, the phononic mode in our set-up may be interpreted as
a probe of the optical noise in the optical supermodes. While these
results imply that the coherence of the phonon laser is decreased in
the vicinity of an EP, they also show that one can tune the linewidth
of the phonon laser by moving it closer to or away from an EP. This
may be useful for applications in which the linewidth or coherence
of the phonon laser are of importance.

This work differs from ref."” in many ways, in particular in the
physical mechanism behind the observations, although in both
cases the system is brought to the vicinity of an EP by additionally
introduced losses. The most relevant differences are the following.
First, ref.’”” considers a Raman laser (optical photons with a fre-
quency in the terahertz regime) whereas the current work considers
a phonon laser (amplification of mechanical mode, and phonons in
the megahertz frequency regime). Second, in ref."’ the gain for the
laser is provided by the Raman process in silica, and the additionally
induced loss does not affect the gain mechanism; it just redistributes
the energy between supermodes by bringing the coupled resonator
system to and away from an EP. In this work, the additional loss
does affect the gain medium, by bringing the two-level system (the
gain system) to and away from an EP where the energy levels of the
two-level system coalesce. Thus, whereas in ref."” the EP emerges in
the optical modes driving the gain mechanism, in this work the EP
emerges in the spectra of the gain medium. Third, ref.”’ reports loss-
induced suppression and revival of a Raman laser before and after
an EP without any reference to the effect of the EP on the linewidth
of the Raman laser. The current work, on the other hand, focuses on
the effect of an EP on the linewidth of a phonon laser and reports
the observation of linewidth broadening in this new context.

In summary, we have experimentally investigated a phonon laser
to provide insights into the long-debated issue of how a laser—in
particular its linewidth—is affected when being operated at an EP.
By steering the phonon laser close to the EP, we have shown that its
linewidth is greatly enhanced. This broadening is attributed to the
increased noise in the two optical supermodes that provide the gain
for the phonon laser and that increasingly overlap when approach-
ing the EP. Our study provides direct experimental evidence show-
ing that EP-enhanced optical noise can be transferred directly to
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mechanical noise, leading to a linewidth broadening in phonon
lasers. It opens up new perspectives for the relation between noise
and non-Hermitian physics and may find applications in various
related fields such as signal processing technologies. For example,
our system could be used as an on-chip phononic device, similar to
fully integrated photonic devices, which are widely used for infor-
mation processing. Even more interestingly, the studied platform
can provide insight into EPs in two-level or multi-level systems and
into their detection and control.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the correspond-
ing author upon reasonable request.
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I. EXPERIMENTAL SETUP

Our experiment was performed using the setup illustrated in Fig. S1. An optical probe field provided
by a tunable External Cavity Laser Diode (ECLD) in the 1550 nm band was fed into the fiber. A section
of the fiber was tapered to enable efficient coupling of the probe field into and out of a microtoroid
resonator, which is coupled to another microtoroid resonator with tunable damping rate induced by a
chromium (Cr)-coated silica-nanofiber tip with strong absorption rate of light in the 1550-nm band, and

the output field was sent to a Photo-Detector (PD). The electrical signal from the PD was then analyzed

Fiber taper s
Polarization uR I I
1550nm controller 1
tunable
laser

ESA

§aRREd
oW E| o BB =
el

Figure S1. Schematic diagram of the experimental setup. The 1550 nm laser is fed into two coupled

microtoroid resonators pR1 and pR2. The first resonator pR1 supports a high-Q optical mode ¢, and a

mechanical mode with frequency €, , while the second resonator pR2 supports a low-Q mode a,. The

damping rate of the low-Q mode a, is tuned by a Cr-coated silica nanotip touching the resonator nR2.

The output signal is detected by a photodetector and then fed into the oscilloscope and the electrical
spectrum analyzer to obtain the time and frequency domain signals for the mechanical mode. PD:

photodetector; OSC: oscilloscope; ESA: Electrical spectrum analyzer.



with an oscilloscope in order to monitor the time-domain behavior, and also with an Electrical Spectrum

Analyzer (ESA) to obtain the power spectra.

II. BIFURCATION IN THE VICINITY OF THE EXCEPTIONAL POINT

For the compound phonon laser system considered in this work, there exists an exceptional point for

the optical modes in the coupled resonators and a bifurcation occurs in the vicinity of this exceptional

point. In fact, the coupling between the two optical modes g, and g, in the two resonators with strength
K gives rise to two optical supermodes a, with complex eigenfrequencies @, =Aw—iy + f (in a frame

rotating with @,) where Aw=w, —®, is the detuning between the optical pump frequency @, and the

cavity resonance frequency @, , ¥ = (7/, +7/2)/2 , B=Jx’ =y, and y= (7/2 -7 )/2 -V =70+ 7, and

Y2 =7 17 represent the damping rates of @, and a,. 7,, and y,, are the intrinsic damping rates of g,
and a, induced e.g. by the material absorption, scattering, and radiation losses. ., is the damping rate of

a, induced by the coupling between the resonator and the fiber-taper and 7, is the additional loss induced

by the nanotip. When » < «, the two supermodes are non-degenerate with frequencies Aw=+ £ and the
same damping rate y (see Fig. S2a and Fig. S2b). This case is referred to as the regime before the
exceptional point. On the other hand, when y > «, the two supermodes are degenerate with frequency
Aw but different damping rates y +£if (see Fig. S2a and Fig. S2b), which is referred to as the regime
after the exceptional point. At x =y, i.e., at the exceptional point, the two supermodes are degenerate
with equal damping rate, indicating a transition between the regime before the exceptional point and the
regime after the exceptional point. In Fig. S2¢-S2e we show the output spectra of the optical supermodes

which exhibit the degeneracy of the optical modes at the exceptional point.



Figure S2.
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Bifurcation in the vicinity of the exceptional point in the compound phonon laser

system. a, Real part of the eigenfrequencies of the optical supermodes as a function of the loss induced

by the nanotip 7,,, which shows the mode splitting and coalescence in the vicinity of the exceptional

point. b, Imaginary part of the eigenfrequencies of the optical supermodes as a function of the loss

induced by the nanotip 7,,, which illustrates the linewidth bifurcation of the optical supermodes. c-e,

Output spectra of the optical supermodes (c) before the exceptional point, which features mode splitting,

(d) in the vicinity of the exceptional point, which shows overlapping optical supermodes with equal

linewidths, and (e) after the exceptional point, where the optical supermodes are overlapping with

different linewidths. Note that only the high-Q supermode, which is localized in the high-Q resonator in

the regime after the exceptional point, can be seen in the output spectrum, the parameters for the low-Q

supermode can be estimated indirectly from the theoretical model and those of the high-Q mode.



III. THRESHOLD OF THE PHONON LASER

To understand the physical mechanism behind the phonon laser, let us compare it with the one-dimesional
cavity-mediated optical laser system shown in Fig. S3a, which is composed of an optical cavity with one
fully-reflecting mirror at one end and a partially-reflecting mirror at the other end. The input pump field
leads to the population inversion of the gain medium uniformally distributed in the cavity, and coherent
photons are generated by the stimulated emission process which leads to the laser output. Figure S3b
shows a picture of the lasing process in which coherent photons are generated by the interaction between
the optical mode and the effective two-level atoms in the gain medium. The phonon laser in our system is
somewhat similar to this picture of an optical laser to the extent that two optical supermodes act as a two-
level system interacting with the phonon field. The mechanical mode supported by the microtoroid
resonator interacts with the analog “two-level system” generated by the optical supermodes to receive
phonon gain, and then suffers loss during transmission (see Fig. S3¢ and Fig. S3d). The balance between
mechanical gain and mechanical loss leads to the phonon laser demonstrated in the experiments. Due to
the similarity between the working principle of a phonon laser and that of an optical laser, one can derive
the expressions for the threshold and the linewidth of the phonon laser following the approach carried out

for an optical laser.
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Figure S3. Comparison of an optical laser and a phonon laser. a, Diagram of a one-dimensional optical
laser with a gain medium distributed in an optical cavity with one fully-reflecting mirror at one end and a
patially-reflecting mirror at the other end. b, Mechanism of an optical laser, in which an optical mode
interacts with a gain medium and coherent output photons are generated. ¢, Equivalent one-dimensional
phonon laser with gain provided by the optical supermodes acting as a “two-level system”. d, Equivalent
mechanism of the phonon laser in which the mechanical mode interacts with the analog two-level system

represented by the optical supermodes such that coherent output phonons are generated.



In the following, we perform the derivation of the threshold of the phonon laser. Denoting the intracavity

fields of the two resonators as a, and a, in a frame rotating with the frequency of the driving field, and

the phonon mode as b, the dynamical equations for our system can be written as

%al = [—leri(a)p -, )] a, —ixka, —ig, a, (b+b*)+ 2748, (S.1)
%az =—iKa, +[—7/2 +i(a)p -, )] a,; (5.2)
%b =—(T, +iQ,)b— ig,. aa,, (8.3)

where @, and o, are the cavity-mode line center frequencies of ¢, and a,,®, is the frequency of the
driving field, g, is the optomechanical coupling strength, and ¢ is the amplitude of the input field fed
into the firstresonator. y, =,,+7,, and 7, = ¥,y + 7, represent the damping rates of @, and a,, in which
71, and y,, are the intrinsic damping rates of a, and a,, 7., is the damping rate of a, induced by the
coupling between the resonator and the fiber-taper, and 7, is the additional loss induced by the nanotip.
Q) and I',, are the frequency and damping rate of the mechanical mode. The two optical fields a4, and

a, couple to each other via the evanescent field with coupling strength x, which gives rise to two optical

(jj:(w__l w][rl ?NiHW WJ‘J[—Z jj{j} G4

with complex eigenfrequencies

supermodes

@, =—A, —iy*.K’ +(A7+i7/)2 , (S.5)



where ¥ =(7,+7,)/2, B+ip=x’-7*, y=(.-1)/2, A. :[(wp—a)l)i(a)p—a)zﬂ/2,and

2
i "
T :A‘ A 1+(A‘ Wj ,

K K
e 1 _ K
T, —T_ 2[’(2 +(A_+i7/)2 }1/2 ’
. Aj—iyir[/cz +(A7+i7/)2}1/2
A =—=—= RETER (S.6)
Lo 2[/{2 +(A_+i7/) }

N, are normalization constants which are given by

v, =l +A ]

Note that we have omitted the influence of the nonlinear optomechanical coupling for writing down the

expressions for the optical supermodes under the assumption that the optomechanical coupling strength

is weak, which has been widely used in the existing phonon laser literature [S1]-[S5]. For the case with

strong optomechanical coupling, the mechanical mode would induce additional detuning and thus shift

the optical supermodes [S6] which is not considered in our discussions. Since the physical phenomena

that we are interested in appear in the regime where the system is in the vicinity of the exceptional point,

we will mainly focus on this regime in the following discussions.

a.

The regime before the exceptional point 7 < x

Let us first consider the regime before the exceptional point in which S #0, ,5’ =0 and assume that the

intracavity resonance frequencies of the two resonators are degenerate, i.e. @, = @, = @, . In this case, the

two optical supermodes can be simplified according to



a K 1 1 a, 87)
_ \/Eﬂ uo A\ g
Kk \—u A, )\a,
with complex eigenfrequencies
o, =w,—-0,tf-iy, (S.8)
where
u=—_ /L:M- (S.9)

2 2P

If we omit the self-frequency-shift terms a,a, (b+b*) and a'a_ (b+b*) and non-resonant terms like

aia+b and aiafb* in the Hamiltonian of the optomechanical coupling, the dynamical equations for the

optical supermodes a, can be expressed as [S1], [S2]

d iy—p

Ea_=—[;{+i(a)0—a)p—,8)]a_+igom Y; ab +,/2y,¢&, (S.10)
d . . iy+ ~
EaJr:—[;(+z(a)0—a)p+ﬁ)]a+—zgom 72ﬁ’8a_b— 2y, &, (S.11)

d .  (y+ip) .
Eb:—(FmHQM)b—lgom%aaw (S.12)

where & = (JE ,b’,ug) / K= 8/ J2 . Note that here we have omitted the anti-Stokes mode which is out of the
frequency bands of the two optical supermodes a, .

The optical supermodes a, and a_ mimic a two-level system where the transitions between the energy
levels are mediated by the mechanical mode, which gives rise to the phonon laser. To illustrate this, we

define the ladder operators and population inversion quantities by the optical modes a, and a_ as

J.=aa, J =da, J. =da -da, (S.13)
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From Egs. (S.10)-(S.12) and taking the stationary states of the supermodes in the driving terms acting on

the “two-level system”, we have [S1], [S2]

J_==2(y+ip)J_+ig, bJ., (S.14)
J, ==2(x-ip)J, —ig, b'J., (S.15)
J, ==2yJ +2ig b'J =2ig bJ +A, (S.16)
B:—(Fm+iQm)b—igom%J. (S.17)

g,,. denotes the effective optomechanical coupling strength in the supermode picture given by

iy+p
28

which already takes very large values in the vicinity of an exceptional point (i.e., very small non-zero

(S.18)

gam = gom

values of ). While this observation implies EP-enhanced optomechanical interaction, the divergence of
(S.18) directly at the EP ( #=0) also indicates that more terms are required to describe this parameter

regime correctly. A is the effective pumping acting on the two-level system which can be expressed as

A=\2y,(&a,. +a, E+&a,_ +a, E), (S.19)

where a

and a _ are the stationary values of the supermodes a, from Egs. (S.10) and (S.11). The

sS,+
factor 2 in the denominator of Eq. (S.18) comes from the fact that g, 1s defined as the optomechanical

coupling strength in the solitary resonator (i.e., single travelling mode in the resonator with mechanical

mode) while g in Eq. (S.18) is defined for the supermodes formed in the coupled resonators system.

om

Note that here we have omitted the driving terms acting on the dynamics of J_ and J, since we assume

that the total population distribution of the two energy levels n, +n_= ajéﬁ +a'a_ is conserved, an
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approximation which has already been introduced in previous phonon laser papers [S1]-[S5]. Transferring

the variables to the rotating frame by setting b=exp(iQ,t)b , jﬁ=exp(ith)J7 , and

j+ = exp(—z'th)J+, Egs. (S.14)-(S.17) can be rewritten as

Ji :—2[)(—i(£211,1/2—ﬂ)]j7 +i§oszl;, (S.20)
J,==2[y+i(Q,/2-p))T, ~ig,bJ.. (S.21)
J.=2xJ. +2ig b'J —2ig, bJ +A, (8.22)
: - (y+iB)
b = _rmb - lgUII’I %J' (S.23)

We can adiabatically eliminate the degrees of freedom of the optical modes by setting J _ =0 due to the

reason that ', < y, by which we obtain

- i J. 8. (r+iB)/(28)
G P e B T o

Substituting Eq. (S.18) and Eq. (S.24) into Eq. (S.23) yields

. a2 . 2 .
h=—{T - fg”m(y_“ﬂ)’( L \p (5.25)
86° [ x-i(Q,/2-5)]
One finds that the optical modes induce an effective mechanical gain of
2 . 2 2 2 + QO /72— J
_Re 3zg0m(77+1,8)1< J. _ 8K [,BZ 7(Q,/ ﬂg] : (5.26)
8p°x-i(2.2-B)]]  8p| v +(2,/2-8) |

By setting I',, = G, we obtain the threshold of the phonon laser in the regime before the exceptional point

8hrmﬁ3;([;(2 +(Q, /2 —/3)2}(1

P
g Brtr(Q,/2-8)]

threshold

, (S.27)

= yhiaa, ~ yhid,J, ~
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where @, is the central frequency of a, . Here, we have assumed that the phonon laser satisfies the
condition of complete inversion such that N, = aia+ ~J = aja+ —a’a_ . Considering that
o, = w, + p = m,, equation (S.27) can be rewritten as

ShF,nﬁ3;([;(2 +(Qm/2—ﬂ)2}a)o

Phreshold = 2 2 828
‘ g Brtr(Q,/2-8)] (529

Let us now take a look on two different limiting cases. First, we consider the situation when the system is

far away from the exceptional point such that 25> y and x> y . In this case, the threshold power given

by Eq. (S5.28) can be expressed as

Shl“mi(;([;(z +(Q,,/2- K‘)2:|a)0

_ (S.29)
gOl‘ﬂ

threshold —
Let us then consider the opposite situation in which the system is in the vicinity of the exceptional point
such that S < Q, /2, (Qm}/) / (2 ;() and x ~ y . In this case, equation (S.28) can be simplified to

16hrmﬂ3l|:lz +(Qm/2)2i|a)0

o (S.30)

theshold =

It can be seen from Eq. (S.30) that the phonon laser features a very low threshold in the vicinity of the

exceptional point, where x ~ » or equivalently S =0.
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Cr Nanotip

Figure S4. Mechanism of the phonon laser in the regime before the exceptional point. a, Energy

distribution of the optical supermodes a, in the two resonators: the optical supermodes a, are almost

equally distributed in the left and right resonators. b, Distribution of the pump mode and the Stokes mode

that stimulate the phonon laser: the pump mode and the Stokes mode are within the frequency bands of

the two optical supermodes a, .

b. The regime after the exceptional point ¥ > kK

In the regime after the exceptional point where S =0, ,b~’ # 0, the supermodes of the two-coupled

resonators are frequency-degenerate but have different effective damping rates. The high-Q (low-Q)
supermode is mainly localized in the microresonator without (with) the Cr-tip. In the vicinity of the

exceptional point, the dynamical equations of the system in this regime are then given by

%a:—[(;(—ﬁ)ﬂ(a)o—a)p)]a—iy;ﬁﬂgoma+b+ 2y, , (S.31)

%@ =—[( 2+ f)+i(o,-o, )]a+ +iL 2*; g.ab — 2y 8. (S.32)
(r+5)

ib:—(rm+iQm)b—igom ! —~—a.a_, (S.33)

dt 23
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Cr Nanotip

Figure S5. Mechanism of the phonon laser in the regime after the exceptional point. a, Energy

distribution of the optical supermodes a, in the two resonators: the high-Q optical supermode a_ is

mainly distributed in the left resonator supporting the mechanical mode and the low-Q optical supermode

a, is mainly distributed in the right resonator. b, Distribution of the pump mode and the Stokes mode that

+

stimulate the phonon laser: the pump mode and the Stokes mode are mainly distributed in the frequency

bands of the high-Q optical supermode a_ and the low-Q optical supermode a, , which are degenerate.

Similar as before, we redefine the ladder and population inversion operators by the optical modes a, and

— * — * —_

* *
J =a.a J =aa J. =aa —a.a

and introduce the rotating frame b = exp(i€2,¢)b and J = exp(iQ, t )j _, which leads to

) Q_]: ig,, (7 + )

i Jb, (S.34)
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2

7. (S.35)

—

5 = _rmg - igom

y+B)
25

Adiabatically eliminating the degrees of freedom of the optical modes by setting J _=0 gives

s _ilr+Blend.

== , S.36
W (7-i2,2) (5.36)

and substituting this result into Eq. (S.35) yields

~\3 3
By end |
" 8B (-9, /2) |

S
Il

(S.37)

Thus, the optical modes induce an effective mechanical gain

G= ~(y+ﬂ) gjmjzzz : (S.38)
85| 7 +(2,/2)']

By setting I', = G, we obtain the threshold of the phonon laser in the regime after the exceptional point,

8hl“m(;(—,5),33 [;(2 +(Qm/2)2]a)0

Bavh

wesnots = (2~ B)hoo, T, = (S.39)

Similar to the regime before the exceptional point, we want to consider two different limiting cases. First,

we treat the situation when the system is far away from the exceptional point such that y > x. Under
these circumstances, the threshold power given by Eq. (S.39) can be expressed as

5 _Shrm()(—}/)[;(z+(Qm/2)2]a)0.

threshold — 2
g{)m Z

(S.40)

Let us then consider the opposite case in which the system is in the vicinity of the exceptional point such

that x ~ » . In this case, we have y > ﬂ~ , and Eq. (S.39) can be expressed as
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8B 2 +(9,/2) o,

hreshold ™ 2 3
g()m 7/

o

(S.41)

b

which is extremely low in the vicinity of the exceptional point where £~ 0.

Employing the system parameters €2 =17.38 MHz, g, =1.5 kHz, I', =40 kHz, y, =3.16 MHz,

7, =13.56 MHz, we plot the curve of the phonon laser threshold versus the tip-induced loss rate ,;, for

a
- == b 1
= s
33 08 T = 08
L © o =
e £ o
£3 06 8% 0s
T c ional boi o= Exceptional point
% g 0.4 Exceptional point | g § 0.4
E <€ © o
5 %02 £S5 02
- o e Z
0 g V.- 7 0 el 7 -
0 10 20 30 0 10 20 30
Loss induced by the tip ¥y;, (MHz) Coupling strength K (MHz)

Figure S6. Threshold of the phonon laser P, ., ., in the vicinity of the exceptional point. a, P, ., .,
versus the tip-induced damping rate 7, . Fy . first increases with the increase of 7,,, reaches a
maximal value, and then decreases with increasing y,,. Around the exceptional point, there is a sudden

drop of P, ... Which represents the transition. b, P, ., ., versus the coupling strength x . P, .4

remains to be very small when x is small and then after the exceptional point, it increases with growing

x . Blue and red curves are obtained using Eqs. (S.30) and (S.41) respectively. The circled points represent

the exceptional point where we have =0 and ,5 =0 and Egs. (S.30) and (S.41) become equal.
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fixed coupling strength x =12.63 MHz in Fig. S6a and the phonon laser threshold versus the coupling

strength x for fixed y,,, =15 MHz in Fig. S6b. The threshold of the phonon laser is given by Eq. (S.28)
g tip

and Eq. (S.39). The numerical results in Fig. S6a show a drop of the threshold of the phonon laser in the

vicinity of the exceptional point which fits very well with our analysis and the experimental results.

IV.  LINEWIDTH OF THE PHONON LASER

a. The regime before the exceptional point ¥ < k
In order to calculate the linewidth of the phonon laser, we have to reconsider the system dynamics by

introducing fluctuation terms. In this way, the dynamical equations (S.20)-(S.23) are written as

J = 2 x-i(Q,/2-B)]T_+g,, —y2 ;’ﬂ Jh+E (), (S.42)
3 . 5 —y—iff .
J, =2 z+i(Q,/2-B)]]. +g.,., 25 B'J.+ &), (S.43)
Jomags g PR vg YTBET L ALe ), (S.44)
B B
.:.__ s (]/-l-lﬂ)z ~ S.45
b=-T b—ig, Y J +&,(1), (5.45)

where the noise terms & (t ) (t ), &, ( ) are assumed to be white noises such that [S7]

(e ()& () =228(1=1). {£(1)&.(1)=0.
(&()e. () =228 (1), (S.46)
(&,(1)&! (1)) =2T,, (ny +1)8(t=1), (& ()&, () =2T, 8 (t=1").

n,; denotes the mean phonon number of the phonon bath in thermal equilibrium. By letting j_ =0and

j+ =0 to adiabatically eliminate the degrees of freedom of J_and J ., we find the following equations

for J. and b,
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2 2

J =241+ Swl LT +A+EW), (S.47)
4 7 +(Q,/2-8) |B
B ig2 K’ (y+if) -
i__lr T B+ E (1), S.48
{ "8 1-i(Q,/2-8)] } +al) (549

where gg () and §~h (t) are effective fluctuation terms which are given by

—ig,, [ (B+iy)/B]

8| (B-i7)/B] bE (f)+2z+2i(Qm/2—ﬂ)

2;(_21'(9’”/2_,3) 59~ b, & (1), (S.49)

E)=¢()+

~ig,, (7 +ip)’

gb(f):gb(t)+4[l_i(§2m/2—ﬂ)

]ﬁga» (S.50)

and b, =,/n, ¢’ is the stationary value of the phonon field with . In,,, and @ respectively being the

stationary amplitude and phase of the phonon field. The phonon mode 5 can be written as

b=e™ 01 n,  +p(1)], (S.51)
where Q(t) and p(t) are respectively the phase and amplitude fluctuations of the phonon field.
Assuming that the fluctuation terms are small, we have

b~ [1 - i@(t)][ n, .+ p(t)} ~ \/ae% +e'% [p(t)ﬂ' nb,“@(z‘)]. (S.52)
The population inversion J_ can be expressed as the sum of its stationary value and a fluctuation term

according to

o [+ (0028
J=—" 15 (S.53)
g, 7(B-9,/2)+ 28]

By inserting Egs. (5.52) and (S.53) into Eq. (S.48), we get
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: . 1 _ —z’(/}“;_ igozm 7/+lﬂ —ig,
ptiyn, O=e b_8ﬁ3[;( o 2- ﬂ] n, o0J, te §h (1), (S.54)
and therefore
i [(B-9,/2)7 - Br ]
- Jrns ST+ & ( (S.55)
8[ +(@,/2-5) |
gL PP=0.12) |gnr 5. +E (1), (S.56)
8| 27 +(Q,/2-8) |#
in which the fluctuation terms &, (t) and &, (t) are given by
£(1) :%[e"%éb (1) re & (1)], (S.57)
& (1) = ——[e & (1) -e*& (). (S.58)
2i[n, . ’

In order to simplify our discussion, we consider the case when < /2, 7,7 , which is fulfilled in the

vicinity of the exceptional point. Thus, we can obtain the following approximate equation by substituting

Eq. (S.53) into Eq. (S.47)

Q,/2-p)

8T8 | 22 +(2,/2-8)' |
&on” (B9, /2)y

) 2 2
57 = 2;({1+ 4[)(2 " Eon’ 2]52 (nb +2 nb,ssp(’))}

+5JZ}+A+52 (1) (S.59)

o1y g K’ ", 5JZ_M n,  p(t)+E (1)
"{ [+ 5 )F } (-0

Note that we have used the following equation for the stationary state,

_16;{F[ +Q, /2~ ﬁ)] . Eon” n | (S.60)
a2 +( ylp

gom(ﬂ Qm/z)yl( Qm/z_ﬁ ’
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Equation (S.59) can be reexpressed as

6J, ==2xn0J, ———— <\, p1)+S. (1), (S.61)
where
2 2
g K A
n=1+ o My = (S.62)
A +@,2-p) |F " A
and

16;(1“[ +(Q,/2-8)' | A

g (8-9,2)

(S.63)

is the threshold pump for the phonon laser. By combining Egs. (S.55), (5.56) and (S.61), we obtain the

following set of equations for the fluctuation terms

_ &k [(B-9,/2)7 - ﬂz]
5J,+&( (5.64)
8| 2 +(Q,/2-5)' | B e
o Lor 27t PP </ sy re, (1), (S.65)
8| 2°+(2,/2-5)' |/
_ B Sﬂ;{r‘m ~
81 =20 81— o nop (1) +E (). (S.66)

The linewidth of the phonon laser is related to the fluctuations of the phase 6(7). Since we have g, < 7,

we can omit the first term at the right side of Eq. (S.65). While this approximation is necessary for the
further calculations, it must be noted, however, that it is not valid in very close vicinity of the EP where
p = 0 and therefore the first term in Eq. (S.65) diverges. With this approximation it follows from Eq.

(S.65) that

0=¢,(1) (S.67)
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which has the formal solution

0()=[ & (z)dr, (S.68)
and thus
(02 (1)) = [ az'[ dr" (&, ()&, ("))
1 R R o NP S ONE (S.69)
ol a7 (&8 )+ E(5()]

Recapitulating that
N V) | <70
5’7 (t) é':h(t) 4[Z—I(Qm/2—ﬂ)],32 5— (t) ( )

we can write

g x(x*p)
16 2 +(@,/2-8) [T,

(&,(c)&) (f")>2rm{ +(n,y +1)}5(r'—r"), (S.71)

(E1(r")&,(r)) =2, m,, 5 (' ~7"). (S.72)

Inserting Egs. (S.71) and (S.72) into Eq. (S.69) results in

(0° (1)) = Fm{ o (<)) 2 +(2nb7+1)}t. (73)

= 2, 16[}(2 +(Qm/2_13)2]Fm

By substituting Eqgs. (S.68) and (S.73) into Eq. (S.51) and noting that 9(t) is the integral of its

corresponding noise, we have [S8]

r, | g(<s)r - 1
<I;>:\/? P <ei9(t)>: \/? it g1 0) _ \/; it s (1] 22 +(2 /2-P) ? l)t’ 74

which means that the linewidth of the phonon laser in this regime can be expressed as

2 4/ p4
oL g (<))

" om, 16[z2+(9m/2‘ﬂ)2]r"’

+(2n,, +1)}. (S.75)
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Additionally, we introduce a phenomenological and power-independent linewidth term Av, in which we

pool contributions to the linewidth that are not included in the above model such as those coming from a
nonideal population inversion of the medium and from the nonuniformity of the field (as in the case of

the optical laser [S9]). Taken together, the linewidth of the phonon laser is then given by

r g (<18 ) x

Av=Av,+ ZnZSS 16[;{2 +(Qm/2—ﬂ)2}l"m +2n,, +15. (S.76)
Using the definition
) .77
R (9, 2-p) [T, '
we can write the linewidth as follows
Av zAv0+1;—’”(2nspon +2n,, +1). (S.78)

With the peak power of the phonon laser P, being directly proportional to n,  , this expression shows
the same inverse power dependence as in optical laser theory. Analogously to the procedure in optical
laser theory [S10], [S11], we have also introduced here the number of spontaneously emitted phonons into

the mechanical resonator n__ . In the limit of a perfect match between the frequency difference of the two

spon
supermodes and the mechanical resonance frequency, i.e. 2 =€, , and for equal optical cavity decay

rates y, =7, , such that f =k, the expression for n__  simplifies to

spon

2

g
n__=—0 S.79
spon 322{1—"” ( )

which is very similar to the already known result from optical laser theory close above the lasing threshold,
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2
n? =£.p (S.80)
Fa

in which g represents the coupling between atoms and light, » the atomic decay rate, " the cavity decay

rate,and D, the saturated occupation of the upper energy level of the two-level system. Using the relation

2 _p

) +thr

D

—,thr?

(S.81)

where D

..o and D_ —are the occupations of the optical supermodes a, and a_ at the lasing threshold,

the factorn_  can also be expressed by

spon

, (S.82)

from which it can be seen that n__ =~ 1 in the case of perfect inversion and close to threshold. Furthermore,

spon

D

e s and

we also remark that n__ diverges at an EP occurring in the two-level system, where D

spon +,thr =
that this divergence can be traced back to the noise term & (t) in Eq. (S5.42), i.e., to the noise in the optical

super-modes that provide the gain for the phonon mode. In other words, we can see here how the increased

noise in the two-level system directly leads to an increased linewidth in the phonon laser mode.

The difference between the results for our phonon laser given in Eq. (S.79) and for the optical laser given

in Eq. (S.80) 1s a consequence of the different convention for the definitions of £ and y, which causes

the factor 32 in the denominator of » as well as of the fact that we have assumed perfect inversion

spon ?

(D, =1) for the linewidth derivation above. With the definitions ' 228 and y'=2y, Eqgs. (S.42)-

(S.45) would feature the same structure as the corresponding equations in the optical laser theory [S10],

[S11] and we would immediately obtain the result



24

2

g
n, . =—>—, S.83
spon 7 'Fm ( )

which has exactly the same structure as the corresponding result for the optical laser.

b. The regime after the exceptional point y > x
In the regime after the exceptional point, we start from the following dynamical equations including

fluctuation terms

(R N P SLALL 30
7 :—2(;(+i%jj_—wjﬁ+f*(t), (S.85)
J ==247 —wé*i +M!§i FA+E(), (S.86)
b=-T h—ig, (y +~[j ) T +&,(1), (S.87)
2p

where ,3 =7 —k’ and the fluctuation terms & (t ),fz (f ),fb (t ) satisfy the conditions written in Eq.

(S.46). With similar discussions as before, we can obtain the linewidth equation (S.78) with

) gfm[(7+ﬁ~)4/ﬁ~’4}z

spon . (888)
’ 32[ 7 +(Q, /2)2}rm
In the vicinity of the exceptional point, where ﬁ ~ 0, Eq. (S.88) simplifies to
2 4
Ny, Lo X (S.89)

Y2 [;52 +(Qm/2)2]rm'

Using the system parameters Q =17.38 MHz, g, =1.5 kHz,I", =40 kHz, y, =3.16 MHz, y, =13.56



25

MHz, we plot the normalized linewidth of the phonon laser (Av -Avy, ) / Pp;;k versus the tip-induced loss
rate 7, for fixed coupling strength x =12.63 MHz in Fig. S7a and the normalized linewidth of the
phonon laser versus the coupling strength x for fixed y,, =15 MHz in Fig. S7b. The normalized

linewidth of the phonon laser is given by Eq. (S.78) with n_ from Eq. (S.77) in the regime before the

exceptional point and from Eq. (S.88) in the regime after the exceptional point, respectively. Both in the

regime before the EP and in the regime after the EP, the factor n,, is proportional to 8 ~* which diverges

at the EP and thus leads to an infinite linewidth broadening directly at the EP. We speculate that this
problem of the diverging linewidth is due to the approximations necessary to arrive at our analytical results

(see above). This divergence is, in fact, already known to occur since the early work by Petermann,

a | b

1‘Excel i =
— ptional -
= 160 e % 160 TExcepponaI
= e point
~% 120 74120
oy =
et =
= : 3
< g0 : < 8o}
<|1 |
= J é '
2 40 . '“'" """" y - 40-“"““_'" -
0 10 20 30 0 10 20 30
Loss indued by the tip V.. (MHz) Coupling strength K (MHz)

tip
Figure S7. Normalized linewidth of the phonon laser (AV—AVO)/ Pp;;k in the vicinity of the

exceptional point. a,(AV—AVO ) / f;;;k versus the tip-induced loss rate 7, . b, (AV—AVO ) / Pp;;k versus

the coupling strength x . The normalized linewidth of the phonon laser is enhanced in the vicinity of the

exceptional point both in (a) and (b).
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Siegmann etc. on the linewidth of the optical laser that shows the same divergence. We believe that the
linewidth divergence at the EP can be tamed by a more rigorous theoretical approach along the lines of
Ref. [S12] in which finite bounds on the enhancement in spontaneous emission at an EP have recently
been presented. The challenge will be to merge this new approach with a linewidth calculation as presented

above.

V. NONDEGENERATE OPTICAL MODES

In this section, we want to briefly consider the case of non-degenerate (uncoupled) optical cavity
resonance frequencies @, # ,. Since the two optical modes @, and a, are coupled to each other, these
two modes should be near-resonant. Thus, we can assume that |a)l — a)2| < y,x . Additionally, in order to
simplify our discussions, we only consider how this non-ideal case will affect our results in the vicinity
of the exceptional point. Thus, we assume that £, ﬂ~ < ‘a)1 — a)z|. With the above two assumptions, Eqgs.
(S.4)-(S.6) can be reexpressed as
B VA L ) Gy Y
a. I 1 a, -1 A Na,
with complex eigenfrequencies
wizwp—woi\/m-iz, (8.91)

where x=(7,+7,)/2, 7r=(r,-1)/2, @, =(0 +®,)/2, A_=(w,~»)/2, and

p Aty NP i
K K

+
K
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ﬂ,z(1+i) L’
4 A
pal |7 (5.92)
2¢|A_| '

With similar discussions as those in Sec. III and Sec. IV, the threshold and linewidth of the phonon laser

can be expressed as

threshold ~ K3g§m Qm (893)
1—~ 2 4
Av = Av, +—2 S X o, +1h (S.94)
2m, ., | 16y°A’ [;{2 +(Q,,/2-p) }rm
a b
- 0.3 _ 4 Exceptional
o = 150¢ point
©° = N
L xI
g 02 =
_F‘:‘ g "jS 100t
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85 o &
=6 < 50}
ES A
= A
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Figure S8. Threshold P, ,, and normalized linewidth of the phonon laser (Av -Avy, ) / Pp;;k of the
phonon laser versus the frequency difference A_=(®, —®,)/2. a, Normalized threshold of the phonon
laser versus A_. b, (Av -Av, ) / Pp_e;k versus A_. The linewidth of the phonon laser decreases very fast in

the vicinity of the resonant point A =0.
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Employing the system parameters €2 =17.38 MHz, g, =1.5 kHz, I', =40 kHz, y, =3.16 MHz,
7, =13.56 MHz, k =12.63 MHz, y, =14.85MHz, we plot the curves of the phonon laser threshold and

the normalized linewidth of the phonon laser (A v—Avy, ) / prlk versus the frequency difference A_in Fig.

S8. It is shown in Fig. S8b that the linewidth of the phonon laser decreases very fast in the vicinity of the

resonant point A_ =0.

VI. LINEWIDTH BROADENING OF THE OPTICAL MODES NEAR THE EP

In order to obtain a physical understanding of the mechanism behind the linewidth broadening of the
phonon laser, we now take a closer look at the behavior of the optical modes in the vicinity of the EP.
Previous work has already demonstrated that the linewidth of an optical laser can be significantly
enhanced when the eigenmodes of the system are non-orthogonal [S13], [S14]. In our system, the lasing
mode is the mechanical mode while the optical modes are not lasing. As shown below, however, the non-
orthogonality of the optical modes in the vicinity of the EP still leads to an enhancement of the effective

optical noise strength.

Following a very simple approach, the two coupled optical modes present in our setup can be modeled by

a system of beamsplitters [S15], see schematic in Fig. S9a. In this picture the coupling strength between
the two optical modes ¢, and a, is determined by the reflection and transmission coefficients » and ¢.
Additionally, each of the two optical modes is coupled to a corresponding loss mode (¢ and d ) via

beamsplitters with reflection and transmission coefficients 7, and ¢,. All reflection and transmission
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coefficients satisfy the relation |1;.|2 +|tl.|2 =1. One roundtrip in this cavity is then described by the

following four-mode unitary scattering matrix,

tt, rt, n O
-rt, tt, 0 r
M = ? ? ’ (S.95)
-tr, -rr, t, 0
rr, —tr, 0 t,

Since we are only interested in the optical modes a, and a,, we reduce our considerations to the truncated

scattering matrix for modes 4, and a,,

tt,  rt
m :( ) (S.96)

—rt, tt,

which is sub-unitary and has non-orthogonal eigenvectors in general. With the help of Eq. (S.96), the

input/output relations for the cavity roundtrip can be formulated as follows,

Qo =14 a4, THE Gy TG, (5.97)
Ay =0 Gy, =T Ay, +1 4y (5.98)
where the spontaneous emission noise contributions ¢, and a, are introduced to preserve unitarity.
Under the simplifying assumption that , is recoupled onto itself (i.e., a, ., = a,, ) it is straightforward

to calculate the factor by which the noise acting on ¢, is enhanced as compared to the noise present in Eq.

(S8.97) alone (see Ref. [S15] for further details). This excess noise factor is the well-known Petermann

factor given here by the following expression

(S.99)
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Analogously, one can derive the noise enhancement factor for a,, which is found to be

22,2
rnt
K, =1+ —

i (S.100)
R (-tg)

By applying the above formalism to our case, which is described by Egs. (S.1) and (S.2) with g, =0 and

A
A=w,—o,, we find

2
K o=l4—212 (S.101)
7’1(A +72)
K'Z]/
K2 :1+ﬁ. (8102)
V2 (A 7 )

Fig. S9b shows the effective optical noise enhancement factor for our system parameters, where one can
observe a clear maximum of the curve at the EP, where the eigenmodes of the system are identical. Our
calculations thus reveal very clearly that the optical modes continuously increase their noise (i.e. their
linewidth) when approaching the EP (without a divergence occurring right at the EP). Since, in turn, the
mechanical mode in our phonon laser is driven by these noisy optical supermodes, this increase of the
optical noise power is then transferred to the mechanical mode through the optomechanical interaction
mechanism. As a result, also the mechanical (phonon) mode features a linewidth broadening when

approaching the EP.
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Figure S9. Simplified model for the linewidth broadening due to the non-orthogonality of the optical

modes. a, The two optical modes 4, and a, are coupled to two loss modes ¢ and d via mirrors with
reflection coefficients 7, and 7,, and transmission coefficients f, and ¢,, respectively. Furthermore, we

assume a perfect coupling without coupling losses between g, and a,, which is characterized by the

reflection and transmission coefficients » and ¢. b, Optical noise enhancement as a function of the

additional loss y,,. The effective optical noise strength features a clear maximum at the EP.
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