
lable at ScienceDirect

Quaternary Science Reviews 77 (2013) 167e180
Contents lists avai
Quaternary Science Reviews

journal homepage: www.elsevier .com/locate/quascirev
A 500,000 year record of Indian summer monsoon dynamics recorded
by eastern equatorial Indian Ocean upper water-column structure

Clara T. Bolton a,*, Liao Chang a,1, Steven C. Clemens b, Kazuto Kodama c, Minoru Ikehara c,
Martin Medina-Elizalde a,2, Greig A. Paterson a,3, Andrew P. Roberts a,1, Eelco J. Rohling a,1,
Yuhji Yamamoto c, Xiang Zhao a,1

a School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, United Kingdom
bDepartment of Geological Sciences, Brown University, Providence, RI, USA
cCenter for Advanced Marine Core Research, Kochi University, Kochi, Japan
a r t i c l e i n f o

Article history:
Received 1 February 2013
Received in revised form
4 July 2013
Accepted 22 July 2013
Available online 22 August 2013

Keywords:
Monsoon
Indian Ocean
Stratification
Wind
Precession
Half-precession
Millennial
* Corresponding author. Present address: Geology
Oviedo, Arias de Velasco SN, 33005 Oviedo, Asturias,

E-mail addresses: cbolton@geol.uniovi.es, ctb101@
1 Present address: Research School of Earth Scien

University, Canberra, ACT 0200, Australia.
2 Present address: Centro de Investigación Científic

Mexico.
3 Present address: Key Laboratory of Earth’s Deep

and Geophysics, Chinese Academy of Sciences, Beijing

0277-3791/$ e see front matter � 2013 Elsevier Ltd.
http://dx.doi.org/10.1016/j.quascirev.2013.07.031
a b s t r a c t

The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable oceaneatmosphere
eland interaction that directly affects the densely populated Indian subcontinent. Here, we present new
records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial
Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen
stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5�N, 90�E)
to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-ther-
mocline) record of upper water-column stratification in the context of past ISM variability, and compare
orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region.
Results suggest that upper water-column stratification at Site 758, which is dominated by variance at
precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5�N) insolation and
ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere
summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase
estimates and suggests a commonwind forcing in both regions. This phase implicates a strong sensitivity
to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern
subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale
events during glacial terminations in our stratification record, which suggests an influence of remote
abrupt climate events on ISM dynamics.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The south Asian, or Indian, summer monsoon, a subsystem of
the Asian summer monsoon, is a large-scale, highly dynamic
oceaneatmosphereeland interaction centred on the Indian sub-
continent, which affects crop production and the livelihoods of over
a billion people (e.g. Webster et al., 1998; Ding and Chan, 2005;
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Wang et al., 2005). The Indian summer monsoon (ISM) is driven
by asymmetric heating between the cooler Indian Ocean and the
warmer Indo-Asian landmasses such that, during boreal summer
(MayeSeptember), intense heating results in a strong pressure
gradient between Asia (low pressure) and the southern subtropical
Indian Ocean (SSIO, high pressure) that leads to large-scale shifts in
the position of the Intertropical Convergence Zone (ITCZ). Low
pressure over Asia is driven by both sensible (direct) heating of the
Asian landmass and latent (condensational) heating in the over-
lying troposphere. Latent heat that originates from evaporation of
surface waters over the SSIO is transported northward as moisture-
rich winds toward the high-altitude Himalayas, where it is released
as precipitation, which further enhances low pressure over Asia
during the summer monsoon (Krishnamurti, 1985; Webster, 1987;
Clemens et al., 1991; Webster et al., 1998; Schott and McCreary,
2001; Shankar et al., 2002; Gadgil, 2003; Wang et al., 2003a;
Gadgil et al., 2007).
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The ISM system varies over a wide range of timescales. The
expression of variations in summer monsoon winds and precipi-
tation in palaeoclimate archives as well as past variations in ISM
intensity on suborbital to tectonic timescales are understood to a
large degree thanks to numerous proxy reconstructions from the
Arabian Sea (Prell, 1984; Prell et al., 1989; Clemens and Prell, 1990,
2003, 2007; Clemens et al., 1991, 1996; Altabet et al., 1995, 1999;
Reichart et al., 1998; Schulz et al., 1998; Burns et al., 2003, 2004;
Leuschner and Sirocko, 2003; Wang et al., 2005; Ishikawa and
Oda, 2007; Govil and Naidu, 2010; Bassinot et al., 2011; Caley
et al., 2011a, 2011b), the South China Sea (Chen et al., 2003), the
Bay of Bengal (Kudrass et al., 2001; Rachid et al., 2011) and the
equatorial Indian Ocean (Chen and Farrell, 1991; Beaufort et al.,
1997; Gupta and Mélice, 2003; Rachid et al., 2007; Bassinot et al.,
2011; Caley et al., 2011c). Model simulations have also advanced
our understanding of the ISM system (Prell and Kutzbach, 1992;
Kutzbach et al., 1993, 2008; Wright et al., 1993; Masson et al.,
2000; Levermann et al., 2009; Ziegler et al., 2010). Despite this
effort, significant uncertainties remainwith respect to the degree of
coupling between the Asian monsoon sub-systems (i.e. East Asian
and Indian), the physical aspects of monsoon-related variability
recorded by proxies in different regions (e.g. wind-driven upwell-
ing strength versus changes in nutrient content of upwelled water,
versus precipitation over the continents) and the extent to which
forcing mechanisms and Earth-orbital phase relationships are
common between monsoon systems (Ruddiman, 2006; Clemens
and Prell, 2007; Wang et al., 2008; Clemens et al., 2010; Ziegler
et al., 2010; Caley et al., 2011b). Large discrepancies exist between
phase estimates of ISM variability relative to climatic precession-
driven insolation changes determined in model simulations (ISM
maxima in phase with precession (P) minima; Kutzbach et al.,
2008; Ziegler et al., 2010; Weber and Tuenter, 2011) and those
derived from marine proxy records (8e9 ka phase lag of Arabian
Sea proxies relative to P minima; Caley et al., 2011b; Clemens et al.,
2008; Clemens and Prell, 2003;Wang et al., 2005). This discrepancy
has led to the hypothesis that Arabian Sea palaeoproductivity is
influenced by circulation and nutrient delivery changes, as well as
ISM variability, on orbital timescales (Ziegler et al., 2010). However,
this hypothesis does not account for the similar phase of lithogenic
grain size proxies (related to wind strength) that have the same
phase as the ocean palaeoproductivity proxies yet are not influ-
enced by ocean nutrient supply.

Here, we present new records of palaeoceanographic variability
from the eastern equatorial Indian Ocean, a relatively under-
sampled area of ISM influence. Carbon and oxygen stable isotope
records from three co-existing foraminiferal species from a single
core, Ocean Drilling Program (ODP) Hole 758C, spanning the last
500,000 years (500 ka), were generated to investigate the ocean-
ographic history of this important region. Coccolith relative abun-
dance data were also generated to supplement foraminiferal
records during discrete intervals. We use the planktic foraminiferal
species Globigerinoides ruber (white) and Neogloboquadrina duter-
trei, which are recorders of upper mixed layer and thermocline
conditions, respectively, to construct a Dd18O record (d18OG. ruber

minus d18ON. dutertrei, hereafter Dd18Ored). In conjunction with a
benthic stable isotope record for Cibicidoides wuellerstorfi, we
establish orbital-scale phase relationships between deep, thermo-
cline and surface-waters at Site 758. On this basis, we examine the
Fig. 1. Seasonal oceanography and location of ODP Site 758 (filled circle) and other sites discu
2009)); Arabian Sea stacks (open black circles, core MD04-2861 (Caley et al., 2011b) and core
speed for NH winter (December, January, February; DJF) and summer (June, July, August
respectively. (e) and (f) Mean salinity for NH winter and summer, respectively (note sligh
getpage.pl and http://ferret.pmel.noaa.gov/LAS/. (For interpretation of the references to col
potential mechanisms driving Dd18Ored, which is interpreted as
representing upper water-column stratification, and its relation-
ship to existing proxy records of summermonsoon variability in the
surrounding regions and their phasing relative to insolation
forcing.

2. Site description & oceanographic setting

ODP Site 758 was cored during Leg 121 on Ninety east Ridge
(5�23.050 N, 90�21.670 E, water depth 2924 m), in the southernmost
Bay of Bengal (BOB), equatorial Indian Ocean (Fig. 1). Pleistocene
sediments at Site 758 are dominated by well-preserved biogenic
calcareous ooze (Shipboard Scientific Party et al., 1989). Oceano-
graphic conditions in the BOB are dominated by seasonal monsoon
circulation patterns. Massive freshwater discharge from the major
Indian river systems into the northern BOB during the summer
months induces a large reduction in sea surface salinity (SSS) and a
strong NE-SW salinity gradient (w20e34 psu), with Site 758 at the
distal end of this gradient (Antonov et al., 2010, Fig.1f). Seasonal sea
surface temperature (SST) variability in the BOB is relatively small,
with the lowest SSTs (w26 �C) recorded in the northern region
during winter and near isothermal warm SSTs throughout the BOB
during summer (w28e29 �C) (Locarnini et al., 2010). In the surface
waters overlying Site 758, SST and SSS are relatively constant
throughout the year (w28e29 �C and 34 psu). However, surface
wind and current speed and direction change significantly on
seasonal timescales throughout the entire BOB, with strong
southwesterlies during the summer monsoon and weaker north-
easterlies during the winter months. Average surface wind speeds
are twice as high during summer (mean June, July, August; JJA)
compared to winter (mean December, January, February; DJF) at
Site 758 (Fig. 1a and b). Thus, changes in upper water column
structure and stratification in this region are dominated by wind-
driven mixing rather than salinity or temperature. These stratifi-
cation changes can be monitored through the oxygen isotopic
gradient between shallow- and deep-dwelling foraminifera.

3. Methods

Sediment U-channels, which had previously been subjected to
palaeomagnetic analyses, from sections 1e6 of ODP Hole 758C Core
1 were cut into 0.5 cm-thick contiguous slices and were sampled
for stable isotope analysis at 2.5 or 5 cm stratigraphic intervals. A
toothpick sample was taken for nannofossil analysis, and bulk
samples were washed through a 63 mm sieve with tap water then
oven dried overnight at 50 �C. In general, three to five specimens of
C. wuellerstorfiwere picked from the >150 mm size fraction for d13C
and d18O analysis. Benthic foraminiferal samples were analysed at
the Department of Geological Sciences, Brown University, on a
Finnigan MAT 252 dual-inlet isotope ratio mass spectrometer (DI-
IRMS) with an automated Kiel III carbonate device. Long-term an-
alyses of internal marble standards calibrated to NBS-19 indicate a
routine precision of 0.03& for d13C and 0.06& for d18O (1s).
Approximately 30 specimens each of G. ruber (white) and
N. dutertrei were picked from the 212e300 mm and 250e300 mm
size fractions, respectively. Only specimens of the G. ruber mor-
photype sensu stricto (Wang, 2000; Aurahs et al., 2011) were
selected in order to produce the shallowest possible mixed layer
ssed in the text. Hulu and Sanbao caves, Southeast China (red open circles (Cheng et al.,
s ODP Site 722B and RC27-61 (Clemens and Prell, 2003)). (a) and (b) Mean surface wind
; JJA), respectively. (c) and (d) Mean precipitation rate for NH winter and summer,
tly different scales). Maps were created at http://www.esrl.noaa.gov/psd/cgi-bin/data/
our in this figure legend, the reader is referred to the web version of this article.)

http://www.esrl.noaa.gov/psd/cgi-bin/data/getpage.pl
http://www.esrl.noaa.gov/psd/cgi-bin/data/getpage.pl
http://ferret.pmel.noaa.gov/LAS/
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signal. Planktic foraminiferal samples were crushed with a needle,
ultrasonicated in methanol for 5 s, rinsed in ultrapure MilliQ water
then dried at 50 �C prior to analysis. Stable isotope analyses on
planktic samples were carried out at the Center for Advanced
Marine Core Research, Kochi University, on an IsoPrime DI-IRMS
connected to an automated carbonate preparation system with
long-term analytical precision of 0.03& for d13C and 0.06& for
d18O.

Samples of C. wuellerstorfi, G. ruber and N. dutertrei were picked
and analysed at 2.5 cm resolution over the upper 3 m of the core,
and at 5 cm resolution down to 9 m. During select interglacial in-
tervals in the deeper sections, planktic foraminifera were scarce. In
Fig. 2. ODP Hole 758C age model and palaeoclimate records. (a) Sedimentation rates and
benthic foraminiferal d18O stack (black, Lisiecki and Raymo, 2005), (c) Site 758 planktic d18

maximum stratification plotted up) and percent F. profunda coccoliths (black, minimum
N. dutertrei (purple). (For interpretation of the references to colour in this figure legend, th
cases where insufficient individuals were present in the original
selected sample, the sample 2.5 cm deeper and/or shallower was
also picked, and one of these individual samples usually yielded
enough individuals for an analysis. We did not combine forami-
nifera from consecutive samples. C. wuellerstorfi is an epibenthic
foraminiferal species, and we adjusted measured d18O values to
equilibrium by adding 0.64& (Shackleton and Hall, 1984). We
constructed an age model via manual graphical correlation of the
Site 758C C. wuellerstorfi d18O record to the LR04 global benthic d18O
stack (Lisiecki and Raymo, 2005) using Analyseries (Paillard et al.,
1996) (correlation ¼ 0.93). This yielded sedimentation rates be-
tween w0.5 and 4 cm/ka (Fig. 2). The age of the Toba ash layer
age tie points (crosses), (b) Site 758 C. wuellerstorfi d18O record (orange) and the LR04
O records: G. ruber (blue) and N. dutertrei (purple), (d) Site 758 Dd18Ored record (grey,
productivity plotted up) and (e) Site 758 planktic d13C records: G. ruber (blue) and
e reader is referred to the web version of this article.)
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found in Site 758C sediments (w74.5 ka) agrees well with pub-
lished estimates for the timing of this volcanic eruption (74 � 2 ka;
Oppenheimer, 2002). Our sampling strategy resulted in isotope
records with a mean temporal resolution ofw1.3 ka during the last
150 ka andw2.7 ka for the interval between 150 and 500 ka (Fig. 2).

As an additional proxy indicator of stratification via its effect on
photic zone productivity (e.g. Molfino andMcIntyre, 1990; Beaufort
et al., 1997, 2001), Florisphaera profunda coccolith counts were
performed over three Dd18Ored cycles distributed throughout the
record. To determine the relative abundance of F. profunda, a lower
photic zone dwelling coccolithophore species, counts versus all
other species (mostly small placoliths) were made from standard
smear slides. At least 600 coccoliths were counted from aminimum
of 12 fields of view by light microscope under cross-polarized light
at �1500 magnification.

To identify statistically significant periodicities, spectral ana-
lyses on d18O and Dd18Ored records were performed with SSA-MTM
Toolkit software (Ghil et al., 2002) using the multi-taper method
assuming a red noise model. To quantify coherence and phase lags
between records, cross-spectral analyses were carried out using
ARAND software (Howell et al., 2006). Datasets were interpolated
to constant mean age steps prior to spectral and cross-spectral
analyses (DT ¼ 2.01e2.23 ka, depending on the record analysed).
The Dd18Ored record was filtered to isolate significant frequencies of
variance using specific filters, designed based on significant spec-
tral peaks, using Analyseries (Paillard et al., 1996) (filter: frequency
0.045, bandwidth 0.008, to capture 19 and 23 ka peaks).
Fig. 3. Spectral power versus frequency plots for Site 758 d18O records. (a) C. wuellersto
highlighted.
4. Results

At Site 758, C. wuellerstorfi d18O (d18Ocib) records 1.75& glaciale
interglacial (GeI)w100 ka cycles, similar in magnitude to the LR04
stack (Fig. 2) but with slightly lighter values during some peak in-
terglacials. G. ruber and N. dutertrei d18O (d18Or and d18Od, respec-
tively) record GeI oscillations similar in amplitude to
C. wuellerstorfi, but with more variability at higher frequencies
(Fig. 2b and c). d13C records for G. ruber and N. dutertrei have muted
GeI variability compared to d18O records, with similar values and
trends for both planktic species throughout the record (Fig. 2e).
Spectral analyses of planktic and benthic d18O records indicate
strong spectral power (>99% confidence) at the 100 ka, 41 ka, and
23 ka orbital periodicities (Fig. 3aec). The d18Od power spectrum
closely resembles that of d18Ocib, with strong power at all three
main orbital periods, but contains slightly more power at the pre-
cession period than d18Ocib. d18Or contains strong spectral power in
the precession band, and relatively less power at the longer orbital
periods than the benthic and thermocline-dwelling species
(Fig. 3aec). Spectral analysis of the Dd18Ored record indicates sig-
nificant variance (>99% confidence) at frequencies corresponding
to 23, 19 and 11 ka (primary and harmonic of precession) (Fig. 3d).
Analyses of individual portions of the Dd18Ored record (0e150 ka
and 150e500 ka; not shown) indicate that a significant w11 ka
period is found only in the higher-resolution interval, which sug-
gests that variability at this period may be aliased in the lower-
resolution part of the record.
rfi, (b) G. ruber, (c) N. dutertrei and (d) Dd18Ored. Significant orbital frequencies are
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Cross-spectral analyses indicate that both planktic d18O records
are highly coherent with d18Ocib at the main orbital frequencies
(>95% confidence level); however, the three records are not
consistently in phase with each other (Table 1). Phase differences
cannot be an age model artefact because all signals come from the
same samples and, thus, are co-registered. At the 41-ka and 23-ka
periods, d18Od is in phase with d18Ocib (within error). While d18Or is
also in phase with d18Ocib at the 41-ka period, d18Or leads d18Ocib by
3.9 ka at the 23-ka period (23 ka*61�/360� ¼ 3.9 ka). This temporal
lead of d18Or over d18Od and d18Ocib is visible with the naked eye at
the major transitions (Fig. 2). Dd18Ored is coherent with d18Ocib at
the 80% confidence level (41 ka) or 95% confidence level (23 ka).
Highest values in Dd18Ored (i.e. minima in the d18O difference be-
tween G. ruber and N. dutertrei) lag lowest values in d18Ocib (ice
volume minima) by �48 � 40� (5.5 � 4.6 ka) at the 41-ka period
and by �70 � 18� (4.5 � 1.1 ka) at the 23-ka period (Table 1, Fig. 4).

We also ran cross-spectral analyses between the Hole 758C
Dd18Ored record and other climate and monsoon proxy records:
namely local insolation, two Arabian Sea summer monsoon stacked
records (Clemens and Prell, 2003; Caley et al., 2011b), and a com-
posite Chinese cave speleothem d18O record (Cheng et al., 2009)
(Table 1). We find that Dd18Ored is not significantly coherent with
local absolute maximum insolation (computed using the code of
Huybers (2006) for 5�N, see discussion). However, visually, maxima
in local insolation (P min) and Dd18Ored minima are sometimes
aligned andwhere this is not the case, a lead ofDd18Ored (min.) over
insolation (max.) in both raw and filtered (19e23 ka component)
records can be seen (Fig. 5). Coherence of Dd18Ored with the Caley
et al. (2011b) ISM stack at the precession band is high (>95% con-
fidence level) and maximum Dd18Ored is in phase with maximum
ISM intensity (10 � 27�). Coherence between Dd18Ored and the
Clemens and Prell (2003) summer monsoon stack at the precession
band is lower (>80% confidence level) and a similar in-phase
relationship is found between maximum Dd18Ored and maximum
summer monsoon intensity (�10 � 27�). At the precession band,
coherence between Dd18Ored and Chinese cave d18O is high (>95%
confidence level) and maximum Dd18Ored lags minimum cave d18O
by 88 � 19� (5.7 � 1.2 ka).
Table 1
Coherence and phase relationships relative to d18Obenthic

a, Site 758 d18Ored and orbital p

Proxy record d18O-41 ka

Coherencyb Phase(�)c

Coherence and phase relative to site-specific d18Obenthic
a

758 G. ruber d18O 0.82 þ24� (�25
758 N. dutertrei d18O 0.87 þ8� (�20
758 Dd18Ored

e 0.61 �48� (�40
Arabian Sea
Clemens and Prell (2003) SM stack 0.84 þ57� (�28
Clemens and Prell (2003) SM factor 0.86 þ63� (�18
WM maxima (Clemens et al., 2008, 0e1.25 Ma)
Caley et al. (2011) SM stack (non-orbital age model)

Proxy record d18O-41 ka

Coherencyf

Coherence and phase relative to site 758 d18Ored
e

Clemens and Prell (2003) SM stack 0.86
Caley et al. (2011b) SM stack (non-orbital age model) 0.68
Chinese cave speleothem d18O (Cheng et al., 2009) 0.82

a d18Obenthic multiplied by �1 so that higher values correspond to ice minima.
b Test statistic for non-zero coherency at the 80% and 95% level are 0.60 and 0.75 resp
c Negative phase indicates a lag of the proxy record relative to d18Obenthic and positive
d Calculated by applying the LR04-calculated phase lags of �61� and �72� for obliqui
e Dd18Ored NOT multiplied by �1, thus higher values correspond to stratification mini
f Test statistic for non-zero coherency at the 80% and 95% level are 0.63 and 0.78 resp
g Negative phase indicates a lag of the proxy record relative to 758 d18Ored and positi
During the three Dd18Ored w23 ka cycles in which F. profunda
coccoliths were counted, higher relative abundances are consis-
tently associated with Dd18Ored minima (Fig. 2d). Relative abun-
dances of F. profunda range from73% to 43%, and appear to be scaled
to the magnitude of concurrent Dd18Ored changes (Fig. 2d).

5. Discussion

5.1. Depth habitats and interpretation of Dd18Ored

Application of Dd18O to reconstruction of upper water column
structure is dependent on the differential depth habitats of the
studied foraminiferal species. G. ruber (white) is thought to live and
calcify in the upper mixed layer (<60 m depth) of the ocean
(Fairbanks et al., 1980, 1982; Hemleben et al., 1989), with in-
dividuals of G. ruber sensu stricto (s.s.) living at shallower depths
(<30 m) relative to the sensu lato morphotype (30e60 m) (Wang,
2000). N. dutertrei is generally most abundant at the thermocline
(60e150 m) (Fairbanks et al., 1982; Curry et al., 1983). A recent
study of equatorial Indian Ocean surface sediments confirms
similar depth habitat estimates in our study region, with G. ruber s.s.
living at 20e50 m and N. dutertrei at 75e100 m in the upper
thermocline (Mohtadi et al., 2011). However, the assumption that
the depth habitat of a given species in the past remained constant
and similar to that observed in the modern ocean is not always
accurate (e.g. Field, 2004; Rohling et al., 2004). G. ruber (white)
appears tomaintain a near-surface depth habitat despite significant
freshwater inputs in other regions (Schmuker and Schiebel, 2002;
Rohling et al., 2004). In temperate waters offshore of California,
with a much wider range of seasonal oceanographic variability
compared to Site 758, G. ruberwas found to have only a small-scale
response to deepening isotherms and N. dutertrei abundance co-
varied with the depth of a given isotherm within the thermocline
(Field, 2004). A significant seasonal migration or calcification bias
in either species in response to SST or SSS change is unlikely given
the small intra-annual ranges of these parameters in our tropical
study area (Section 2). Similarly, seasonal primary productivity
changes (i.e. potential food availability fluctuations) are small
arameters.

Obliquity phase d18O-23 ka Precession phased

Phased Coherencyb Phase(�)c

) �37� 0.87 þ61� (�20) �11�

) �53� 0.80 þ16� (�26) �56�

) �109� 0.90 �70� (�18) �142�

) �4� 0.96 �43� (�14) �115�

) þ2� 0.97 �47� (�8) �119�

�286� (�35) �298� (�9)
�53� (�20) �141� (�15)

d18O-23 ka

Phase(�)g Coherencyf Phase(�)g

�100� (�14) 0.65 �10� (�27)
�40� (�36) 0.80 þ10� (�27)
þ97� (�17) 0.78 þ88� (�19)

ectively.
phase indicates a lead.

ty and precession respectively.
ma.
ectively.
ve phase indicates a lead.



Fig. 4. Phase wheels summarizing the late Pleistocene monsoon response to insolation forcing at the orbital precession (23 ka) and obliquity (41 ka) periods. The precession index is defined as Desinu where u is the longitude of the
perihelion measured from the moving vernal point and e is the eccentricity of Earth’s orbit about the Sun (Berger and Loutre, 1977; Laskar et al., 1993). Obliquity is the tilt of Earth’s axis with respect to the ecliptic plane. Zero phase is set
to precession minima (P min; u ¼ 90� , 21st June perihelion) and obliquity maxima (O max), respectively. Negative phases are measured in the clockwise direction and represent phase lags relative to P min or O max. Positive phases are
measured in the anticlockwise direction and represent phase leads relative to P min or O max. Phase relationships of ice volume are also shown (red dots, Lisiecki and Raymo, 2005). All Site 758 isotope records are coherent with Site
758 d18Obenthic at the 95% confidence level except Dd18Ored at the obliquity period (80% confidence level) (Table 1). Published records plotted (with shaded phase estimate errors) are the Arabian Sea summer monsoon stack (Caley et al.,
2011b), the Arabian Sea summer monsoon stack and summer monsoon factor (Clemens and Prell, 2003), the Chinese Sanbao-Hulu composite cave d18O (Cheng et al., 2009), and winter and summer monsoon maxima (Clemens et al.,
2008). NH ¼ northern hemisphere, SH ¼ southern hemisphere. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Site 758 stratification compared to insolation forcing. (a) Site 758 Dd18Ored record (maximum stratification plotted up), raw (grey) and filtered to illustrate only variance at
the 19 and 23 ka precession periods (black; filter: frequency 0.045, bandwidth 0.008). (b) Precession (blue) and absolute maximum insolation at 5�N (red) (Huybers, 2006). Grey
dotted lines illustrate P minima, solid orange lines indicate the five stratification peaks that occur at the onset of glacial terminations. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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(http://seawifs.gsfc.nasa.gov/SEAWIFS.html). By looking at a single
open-ocean ‘warm pool’ site, weminimise any potential spatial and
circulation-driven variations in Dd18O (e.g. Steph et al., 2009). Thus,
we infer that orbital timescale variance in Dd18Ored at Site 758
during the Pleistocene is not primarily governed by changing
foraminiferal depth habitat and is unlikely to be significantly
seasonally biased.

Changes in the d18O difference between shallow and deeper-
dwelling planktic foraminiferal species, denoted here as Dd18Ored,
are classically interpreted in terms of thermocline depth changes.
In the tropics, thermocline depth is controlled by physical processes
such as the depth of wind-driven mixing, upwelling strength, and
the intensity of solar radiation related to season and orbital
configuration. Thus, a large Dd18O suggests a shallow thermocline
and strong vertical temperature gradients (DT) in the photic zone,
while a small Dd18O implies a deep thermocline with relatively
weak DT (Ravelo and Shackleton, 1995; Steinke et al., 2010; Steph
et al., 2009, 2010). Salinity gradients in the surface ocean, gener-
ated by precipitation-evaporation changes on seasonal to orbital
timescales, also strongly affect Dd18O in some regions (e.g. Rohling
et al., 2004; Mohtadi et al., 2009; Steinke et al., 2010).

Several factors suggest that the Site 758 Dd18Ored signal is pri-
marily driven by G. ruber (surface ocean variability) rather than
N. dutertrei (intermediate water variability). First, when the global
sea-level component of both planktic d18O records is removed, re-
sidual variations in d18Or have greater amplitude (1s¼ 0.33&) than
those of d18Od (1s ¼ 0.25&) (Fig. 6). Second, the similar spectral
power profile and phasing of d18Od to d18Ocib suggests that
N. dutertrei is primarily responding to the global adjustment to ice-
volumechanges rather than to local forcing (Fig. 3). This is consistent
with the finding that G. ruber leads both deeper-dwelling species in
the precession band and that all significant periods of variance in
Dd18Ored are precession relatede a reflection of the dominant ‘tope
down’ orbital control on tropical climate (e.g. Clement et al., 2004).
Thus, Dd18Ored maxima (i.e. more positive values, which represent
minima in the d18O difference between the two species) in our
record could be driven by some combination of (1) a decrease in
direct insolation forcing, (2) an increase in the depth of wind-driven
mixing during times of greater wind strengths, and (3) decreased
surface freshening through direct input or runoff of monsoonal
precipitation and increased evaporation rates during times with
greater wind strengths. All of these factors would result in weak-
ening of vertical stratification in the upper water column.

A significant influence on Dd18Ored from monsoon-related
changes in SSS is unlikely, given that Site 758 is located on or
near the 34 psu isohaline all year round and is relatively unaffected
by large seasonal freshwater inputs in the northern BOB (Antonov
et al., 2010, Fig. 1e and f). On the other hand, surface wind strength
at Site 758 is twice as high during summer compared to winter
(Fig. 1). We, therefore, interpret Dd18Ored at Site 758 as reflecting, to
some degree, variations in stratification controlled by the depth of
wind-driven mixing along with variations in wind-driven evapo-
ration. Strengthened winds then caused stronger mixing and
increased evaporation, both of which act to reduce vertical strati-
fication. Some influence of direct insolation forcing on Dd18Ored is
also likely, given that SST reconstructions indicate greater SST
variability on orbital timescales in the region of Site 758 compared
to that over the seasonal cycle. Planktic foraminifera-based transfer
functions suggest warm-season SSTs in the range w26e30 �C and
cold-season SSTs in the range w23e30 �C over the last 500 ka at
Site 758, although application of this proxy may have been
compromised by poor foraminiferal preservation in some intervals,
leading to underestimation of SSTs (Chen, 1994). Paired d18OeMg/
Ca analyses on G. ruber in two cores from the northern BOB and the
Andaman Sea suggest that Last Glacial SSTs werew3 �C lower than
modern in this region (Rachid et al., 2007, 2011). Assuming a 0.2&
d18O change per �C (Kim and O’Neil, 1997), 3 �C SST changes on G-I
timescales could account for around half of the amplitude of re-
sidual variability in d18Or at Site 758 (Fig. 6b). Our interpretation of
Dd18Ored described above is consistent with F. profunda abundance
data that indicate maximum stratification (minimum upper photic
zone productivity) at times of minimum Dd18Ored (Fig. 2), as well as

http://seawifs.gsfc.nasa.gov/SEAWIFS.html


Fig. 6. d18O records for Site 758. (a) Site 758 d18O records for the three foraminiferal
species (colours as in Fig. 2). (b) Site 758 d18O records for the three foraminiferal
species minus variance attributed to global sea level change. The sea level component
was removed by subtracting the Red Sea relative sea level curve of Rohling et al.
(2009a, 2010) rescaled to the age scales of the Site 758 records, from foraminiferal
d18O assuming a 0.01& change in d18O per metre of sea level change (Adkins and
Schrag, 2001). The local temperature component was not subtracted because no sea
surface temperature (SST) record exists for our site; therefore, the resultant d18Ow

records include local SST and salinity components. (c) Site 758 Dd18Ored record
(maximum stratification plotted up). All data are normalised to mean values for 0e6 ka
and plotted with positive values up except Dd18Ored, which has an inverted axis so that
maximum stratification points up.
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with orbital phase relationships between Dd18Ored and other re-
cords, as discussed in section 5.3.
5.2. Planktic foraminiferal carbon isotope data and productivity

The absence of a d13C gradient between G. ruber and N. dutertrei
(<0.2&, Fig. 2e) throughout the study interval at Site 758 at first
appears at odds with fluctuations in F. profunda abundance at Site
758 (Fig. 2d). The relative abundance of F. profunda has been cali-
brated to changes in Indian Ocean primary productivity, and rela-
tively low but variable values (w100e160 gC m�2 yr�1) can be
inferred from F. profunda abundances of 43e73% at Site 758
(Beaufort et al., 1997, 2001). Because of biological activity in the
upper ocean, G. rubermight be expected to record themore positive
d13C signature of the dissolved inorganic carbon pool (d13CDIC) in
the upper photic zone due to preferential uptake of isotopically
light CO2 by photosynthesizing organisms, whereas N. dutertrei
might record a more negative d13CDIC due to remineralisation of
12C-rich organic matter at depth and nutrient inputs into the
thermocline (Kroopnick, 1974). However, as well as being affected
by d13CDIC during equilibrium fractionation, foraminiferal shell d13C
is influenced by environmental factors such as carbonate ion con-
centration, pH and temperature (Spero et al., 1997; Bijma et al.,
1999; Bemis et al., 2000) and physiological factors like foraminif-
eral respiration and symbiont photosynthesis (both G. ruber and
N. dutertrei are symbiont-bearing) (Spero and Lea, 1996; Bemis
et al., 2000). This complicates interpretation of foraminiferal shell
d13C purely in terms of productivity. For example, in the eastern
equatorial Pacific Ocean, a regionwith high productivity and strong
physicochemical gradients in the upper water column, a number of
records do not contain the expected d13C gradients between
G. ruber and N. dutertrei (Spero et al., 2003; Pena et al., 2008; Leduc
et al., 2010). Spero et al. (2003) proposed species-specific normal-
isation factors, derived from experimental and plankton tow
studies, to correct foraminiferal d13C to d13CDIC. Application of these
normalisation corrections to our records (þ0.94& for G. ruber
and �0.50& for N. dutertrei) would restore the expected d13C
gradient between these upper photic zone and thermocline species
at Site 758, however local modern offsets between foraminifera and
DIC in the region of Site 758 would first need to be constrained.

5.3. Precession-band phases of Site 758 Dd18Ored relative to climate
and monsoon records

To elucidate potential forcing mechanisms on Site 758 stratifi-
cation, which is dominated by variance at precession and half-
precession frequencies, we first compare Dd18Ored with absolute
maximum annual insolation (Fig. 5). Following Huybers (2006),
maximum integrated summer insolation values are extracted from
a matrix of daily isolation values at 5�N, thereby incorporating all
past orbital configurations at a given latitude and time without
artificially tying to a prescribed orbital configuration. For example,
the commonly used 21st July insolation curve is derived assuming
that u, the longitude of the perihelion measured from the moving
vernal point, equals 120� (Berger, 1978; Berger et al., 1993).
Although Site 758 Dd18Ored is not significantly coherent with ab-
solute maximum insolation, visual comparison of the two records
indicates that peaks in Site 758 stratification sometimes coincide
with insolation maxima (P minima, dashed lines in Fig. 5), which
suggests a component of direct insolation forcing.

The 11 ka period identified in the Site 758 stratification record
(Fig. 3) may also originate from insolation variations. On the
equator, the sun passes overhead twice a year. The resultant double
maximum in annual insolation can generate a half-precession
(w11 ka) signal in tropical insolation forcing, the amplitude of
which decreases rapidly away from the equator (Berger and Loutre,
1997; Berger et al., 2006). At 5�N, the 11-ka insolation component is
still relatively strong (Fig. 5b). Modulation of monsoon dynamics by
equatorial insolation as suggested by the presence of a semi-
precession signal has been inferred for a number of other palaeo-
records, for example, Chinese Loess Asian summer monsoon re-
cords (Sun and Huang, 2006), foraminiferal Dd13C from the South
China Sea (Wang et al., 2003b) and African monsoon rainfall pat-
terns (Verschuren et al., 2009). An alternative monsoon-related
means of generating an w11 ka signal in Dd18Ored is via the com-
bined forcing of maximum monsoon rainfall near P maxima and
maximum insolation heating at P minima. This scenario, however,
is less likely given the minimal influence of monsoon-related
freshwater input at Site 758. An influence of other forcing mecha-
nism(s), in addition to insolation, on Site 758 Dd18Ored is implied by
thew9 ka lag (w2.4 ka lead) of minimum (maximum) stratification
relative to northern hemisphere (NH) summer insolation maxima
(P min) when the precession phase is averaged over the entire re-
cord (Fig. 4, Table 1).

Over the past w350 ka (where records overlap), stratification
minima at Site 758 are in phase with ISM maxima inferred from
two independent stacked proxy records from the Arabian Sea
(Figs. 4 and 7). The Clemens and Prell (2003) summer monsoon



Fig. 7. Comparison of the Site 758 stratification record with two Arabian Sea summer monsoon stacks. (a) Site 758 Dd18Ored record (minimum stratification plotted up), (b) Arabian
Sea summer monsoon stack (Clemens and Prell, 2003), and (c) Arabian Sea summer monsoon stack (Caley et al., 2011b).
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stack, which consists of five distinct palaeoproductivity and litho-
genic grain-size records on an orbitally-tuned age model, is inter-
preted as reflecting ISM strength via wind and upwelling intensity
and lags maximum NH summer insolation (P min) byw8 ka in the
precession band. The Caley et al. (2011b) stack, which comprises
three independent ISM proxies from an Arabian Sea sediment core
on an age model independent of orbital tuning, has a similarw9 ka
lag between inferred maximum ISM strength and maximum NH
summer insolation in the precession band. The in-phase relation-
ship between Site 758 stratification minima and inferred Arabian
Sea ISM strength maxima is consistent with a common ISM wind
forcing in the Arabian Sea and the eastern equatorial Indian Ocean,
which would increase the depth of mixing and reduce stratification
at Site 758, while intensifying upwelling and aeolian particle de-
livery to the Arabian Sea. Our new stratification record provides
remote support for the 8e9 ka precession band phase lag observed
previously between NH summer insolation maxima and ISM
strength maxima in the Arabian Sea and other regions (Clemens
et al., 1991, 2008; Altabet et al., 1995; Morley and Heusser, 1997;
Reichart et al., 1998; Chen et al., 2003; Clemens and Prell, 2003;
Caley et al., 2011b). The high coherency and in-phase relationship
between Site 758 and both Arabian Sea records (Table 1) supports
the original interpretation that ISM strength provides the dominant
forcing on Arabian Sea palaeoproductivity, which has recently been
called into question by the suggestion that circulation changes and
ensuing nutrient delivery exerted a primary control on these re-
cords (Ziegler et al., 2010). This large lag indicates that ISM wind
strength maxima at the precession band are not directly forced by
changes in NH summer insolation; other mechanisms must also be
involved.

Site 758 Dd18Ored is highly coherent with a cave speleothem
composite d18O record from southeast China (Cheng et al., 2009);
however, the two records differ in their precession band phases by
approximately 5 ka. Minimum stratification lags maximum NH
summer insolation (P min) by 142� or w9 ka, whereas light cave
d18O lags P min by 45� or w2.9 ka. This interpretation and orbital
phasing of Chinese cave d18O palaeo-monsoon records have pre-
viously been considered in detail (e.g. Clemens et al., 2010; Pausata
et al., 2011). These authors suggested that the Chinese cave d18O
records, which are typically interpreted as recording solely summer
monsoon rainfall strength, reflect an integrated signal of summer
monsoon circulation as recorded in the Arabian Sea and the effect
of winter temperatures on the local d18O signature of precipitation.
On the basis of a 90� phase difference in the precession band, it is
unlikely that the Site 758 stratification record and the cave d18O
record share a common direct driving mechanism. If stratification
minima at Site 758 record the timing of strong ISM winds, the long
(w9 ka) phase lag between maximum NH insolation (P min) and
stratification minima likely reflects multiple forcing mechanisms;
namely insolation, ice volume and latent heat export from the SSIO
(Clemens and Prell, 2003; Clemens et al., 2008, 2010; Caley et al.,
2011b). However, we cannot yet rule out the possibility that the
different phase response of cave d18O in southeast China and ISM
wind strength in the Indian Ocean reflects a decoupling ofmonsoon
wind strength and precipitation.

5.4. Millennial-scale events and teleconnections

Five of the largest stratification peaks at Site 758 as recorded by
Dd18Ored occur at the onset of glacial terminations (Figs. 2, 5 and 8).
We suggest that these may be manifestations of remote millennial-
scale climate events. Site 758 stratification is compared with a
high-resolution Red Sea atmospheric dust record (Roberts et al.,
2011) and a North Atlantic record of ice-rafting (‘Heinrich’) events
from IODP Site 1308 (Hodell et al., 2008) in Fig. 8. While the Red Sea
dust record is on an independent UeTh validated chronology
(Rohling et al., 2009a, 2010), the Site 1308 and 758 records are
tuned to the LR04 benthic d18O stack (Lisiecki and Raymo, 2005),
which results in some offsets between records. Taking into account
discrepancies in the exact timing of terminations in the LR04 versus
Red Sea chronologies (Fig. 8a) and differences between the Site 758
and 1308 LR04-tuned chronologies (Fig. 8b), stratification maxima



Fig. 8. Correlation of terminal stratification peaks at Site 758 with remote millennial-scale climate events. (a) Red Sea relative sea level record, 1 ka Gaussian smoothing applied
(blue; Rohling et al., 2009a,b, 2010) and the LR04 benthic foraminiferal d18O stack (black; Lisiecki and Raymo, 2005), (b) benthic foraminiferal d18O records for Site 758 (black; this
study) and Site 1308 (green; Hodell et al., 2008), (c) Red Sea dust proxy record (Ti/Ca), 1 ka Gaussian smoothing applied (Roberts et al., 2011), (d) IODP Site 1308 North Atlantic ice-
rafted debris proxy records, Ca/Sr ratios and bulk sediment d18O (Hodell et al., 2008), (e) Site 758 planktic foraminiferal d18O records and (f) Site 758 Dd18Ored record (maximum
stratification plotted up). Grey bands highlight stratification peaks at glacial terminations. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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at terminations broadly coincide with large dust peaks and North
Atlantic ‘terminal’ Heinrich events. Major dust maxima in the early
stages of terminations have been identified in high-resolution re-
cords from both the Red Sea (Roberts et al., 2011) and the Chinese
Loess (Sun et al., 2006). Although higher-resolution records at Site
758 and a common chronology are required to document precise
relative timings, correlation between cold North Atlantic Heinrich
events, enhanced dust flux, and strong Indian Ocean stratification
(implying weak summer monsoon winds) is consistent with
models that simulate stronger westerly winds over Eurasia and
weaker summermonsoons during Heinrich events (Jin et al., 2007).
A link between abrupt North Atlantic cold events and weak Asian
summer monsoons has been inferred from summer monsoon
proxy records in the Arabian Sea (Schulz et al., 1998; Gupta et al.,
2003), Chinese Loess (Porter and An, 1995; An, 2000) and Chinese
and Indian Ocean stalagmite d18O records (Wang et al., 2001; Burns
et al., 2003, 2004; Cheng et al., 2006, 2009; Zhou et al., 2008). These
links imply large-scale atmospheric teleconnections on millennial
timescales (e.g. Rohling et al., 2003; Goswami et al., 2006; Pausata
et al., 2011; Roberts et al., 2011). Strong equatorial Indian Ocean
stratification during the early stages of terminations is consistent
with a significant southern hemisphere control on millennial-scale
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monsoon variability during glacial periods (Rohling et al., 2009b;
An et al., 2011), potentially via modulation of the strength of the
SSIO-Asia pressure gradient (An et al., 2011; Caley et al., 2013).
6. Conclusions

We present a new record of planktic foraminiferal Dd18O from
eastern equatorial Indian Ocean ODP Site 758C spanning the last
500 ka, which we interpret as predominantly reflecting changes in
ISM wind strength via its effect on stratification. The documented
mean 9 ka lag between maximum NH insolation (P min) and
minimum stratification (maximum ISM) in the precession band is
similar to published phases of other ISM proxy records, principally
from the Arabian Sea but also the South China Sea and Asian sub-
continent. This suggests a common wind forcing between distinct
ISM-influenced regions and supports the contention that the pre-
cession phasing of the ISM is driven by a combination of NH inso-
lation, ice volume and latent heat export from the SSIO (Clemens
et al., 2008, 2010). Significant variations in stratification at Site
758 occur at precession and half-precession frequencies (23, 19 and
11 ka), which suggests a component of local insolation forcing.
Superimposed on orbital timescale variations, large stratification
events during the early stages of terminations 1 to 5 are also
evident in the Site 758 record. These strong stratification events
appear to be temporally correlated with peaks in Arabian-Asian
atmospheric dust and large North Atlantic Heinrich events, which
is consistent with previously documented links between weak
summer monsoon intervals and cold climate events in the North
Atlantic.
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