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Structural, Magnetic, and Transport Properties of
Fe; ,Rh,/MgO(001) Films Grown by Molecular-Beam Epitaxy
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Fei.»Rh, layers are grown with varying rhodium fraction = on (001)-oriented MgO substrates by
molecular-beam epitaxy. Film structural, morphological, magnetic, and transport properties are in-
vestigated. At room temperature, layers are ferromagnetic (FM) for z < 0.48 and antiferromagnetic
(AF) for x > 0.48. Separating the two magnetically ordered phases at x = 0.48 is an abrupt change
in the Fei,Rh, lattice parameter of Aa = 0.0028 nm (Aa/a = —0.9%). For AF layers, the FM
state is recovered by heating across a first-order phase transition. The transition leads to a large
resistivity modulation, Ap/p = 80%, over a narrow temperature range, AT = 3 K, in stoichiomet-
ric Feg.50Rho.50/MgO(001). For samples with compositions deviating from z = 0.50, fluctuations

broaden AT and defect scattering reduces Ap/p.

FeRh (Pm3m, B2, CsCl structure) is a funda-
mental component in memory cells''?, magnetocaloric
refrigerators®#, and logic devices.?® Its diverse function-
ality stems from an entropy-driven first-order transition”
between ferromagnetic (FM) and antiferromagnetic (AF)
states which persists when deposited in film form, a pre-
requisite for integration in device heterostructures. Ac-
companying the intrinsic magnetic transition is a large re-
sistivity modulation which rivals giant magnetoresistance
effects observed in magnetic multilayers.>? Rhodium
fraction x is suspected to strongly affect Fe;_,Rh, trans-
port characteristics, but its role has not yet been sys-
tematically investigated in epitaxial films. Instead, work
has focused on understanding size effects,'®!! annealing
treatments, > '® and transition mechanics.'®20 The few
compositional studies on Fei_,Rh, films omit transport
properties entirely, emphasizing magnetic attributes,?!
or are based on inhomogeneous polycrystalline layers
containing secondary phases.?? Here, we systematically
examine the structural, morphological, magnetic, and
transport properties as a function of rhodium fraction
x of phase-pure epitaxial Fe; ,Rh, films with the CsCl
structure deposited on (001)-oriented MgO substrates.

Fe;_Rh,/MgO(001) films are grown via molecular-
beam epitaxy to a thickness of ~35 nm in a Veeco GEN10
system (base pressure: 1x10~% Torr = 1.3 x10~° Pa)
by simultaneously supplying iron (99.995% pure) and
rhodium (99.95% pure) from independent effusion cells.
Rhodium fractions x are controlled by adjusting iron and
rhodium cell temperatures within 50 °C of 1150 and 1600
°C, respectively, while maintaining a total atomic flux of
~4x10' atoms/cm?-s, corresponding to a growth rate
of ~0.3 nm/min.  values determined?* from Ruther-
ford backscattering spectra agree with x-ray reflectivity
(XRR) deposition rate calibrations based on pure iron
and rhodium layers (linear correlation coeflicient r =

IS

7

48

49

50

51

52

0.997), demonstrating that atomic incorporation prob-
abilities are unaltered by chemistry. From the calibrate
atomic fluxes, deposition times are set to produce layers
with a thickness of ~35 nm. A substrate temperature
Ts = 420 °C (estimated from a thermocouple in indirect
contact with the growth surface and concealed from in-
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FIG. 1. (a) XRD 6-26 scan of a 35-nm-thick stoichiomet-

ric Feg50Rhg.50 film with the B2 CsCl-structure grown on
MgO(001) at 420°C by molecular-beam epitaxy. (b) 6-26
scans showing the Fei.,Rh, 001 peak for rhodium fractions
020 S z S 0.60. (c) Film out-of-plane lattice parame-
ters as a function of composition together with bulk lattice
parameters® (triangles) for reference. Circles indicate fer-
romagnetic ordering and squares indicate antiferromagnetic
ordering at room temperature.
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cident molecular fluxes) is employed for film growth and
subsequent 30-min-long n situ anneals. High homolo-
gous growth temperatures (T /Ty, = 0.37 for FeRh with
melting temperature T, =~ 1600 °C) are necessary>® to
order bce Fey_,Rh, alloys into the B2 CsCl-structure in-
termetallic with iron and rhodium residing on distinct
positions of the two-atom basis.

X-ray diffraction (XRD) 6-26 scans, collected using Cu
K1 radiation (wavelength A = 0.154056 nm), establish
a phase diagram consisting of four regions: single-phase
bee-Fe(001) (z < 0.20), single-phase B2 Fe; ,Rh, (0.20
S z 5 0.60), two-phase mixtures of (001)-textured B2
Fei_,Rh, and fce-Rh (0.60 S = < 0.80), and single-phase
fcc-Rh(001) (z 2 0.80). The phase boundaries of our
epitaxial films grown on MgO(001) are in close agreement
with reports for bulk samples:2326 the rhodium-deficient
limit, for which the bce solid solution orders into the CsCl
structure, agrees exactly, while the rhodium-rich limit
extends 0.08 rhodium fractions above the bulk boundary
(r = 0.52) due to epitaxial stabilization.?7 3!

A representative XRD 6-260 scan is presented in Fig.
1(a) for stoichiometric FegsoRhg50/MgO(001). Five
peaks are observed over the 20 range 10-110°: the three
reflections at 20 = 29.94, 62.18, and 101.6° are indexed
as Fegs0Rhg 50 00l; the two at 42.92 and 94.05° are
identified as MgO 002[. Sharp mixed-integer film re-
flections (no systematic absences) indicate CsCl-type or-
dering. The lack of additional reflections together with
pole figure and grazing-incidence scans (not shown) es-
tablish that films with 0.20 < = < 0.60 are phase-pure un-
twinned epitaxial layers oriented with a 45° in-plane rota-
tion with respect to their MgO substrates: (001)pe, ,Rh,
|| (001)ngo and [110]pe, , rh, || [100]nmgo-

Diffracted intensities near the Fei_Rh, 001 reflection
are plotted as a function of z in Fig. 1(b). As x increases
across the single-phase field, Fe;_,Rh, peaks shift — with
one exception — to lower 20 angles. Figure 1(c) shows
out-of-plane lattice parameter a values obtained®? from
0-260 peak positions. a increases approximately linearly
from 0.2950 (z = 0.27) to 0.3000 nm (x = 0.47), con-
tracts sharply to 0.2983 nm (z = 0.50), and then con-
tinues increasing to 0.3010 (z = 0.57). Film lattice pa-
rameters values a(x) are in excellent agreement with re-
ports for bulk polycrystals (also shown in Fig. 1(b)).?
Regression analyses yield a slope of 0.04£0.01 nm per
rhodium fraction, in close agreement with 0.06 expected
based on the larger metallic radius®® of rhodium (134
pm) versus iron (126 pm), suggesting that rhodium sub-
stitutes for iron across the Fe;_,Rh, single-phase field.
The lattice parameter discontinuity of Aa = 0.0028 nm
(Aa/a = —0.9%) at © = 0.48 occurs as Fe;_,Rh, under-
goes a first-order transition” from a FM (z < 0.48) to
an AF (z > 0.48) state.>* The contracted AF cell cor-
responds to the new equilibrium geometry®® after spins
ferromagnetically aligned on iron (3.2 pp) and rhodium
(0.9 up) leave rhodium (0.0 pup) magnetically inactive
and reorganize antiferromagnetically along {001} on iron

110 (3.3 MB).26’36’37
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FIG. 2. (a) XRD w-rocking curve scans of Fei_;Rh; 001 re-
flections and (b) corresponding FWHM values as a function
of rhodium fraction z. (c) Representative AFM height images
of Fei_;Rh, /MgO(001) layers as a function of composition
across the B2 single-phase field. MgO[100] and Fe;..Rh.[110]
are aligned with the horizontal image axis. (d) Root-mean-
square surface roughness values determined as a function of
x independently from XRR and AFM.

The structural quality of the films is assessed from w-
rocking curves of Fe;_,Rh, 001 reflections and atomic
force microscopy (AFM) elevation maps. Rocking curve
scans and corresponding peak full-width-at-half-maxima
(FWHM) are plotted in Figs. 2(a) and 2(b). Reflections
are broad at x = 0.27 and 0.57 due to mosaicity, but
sharpen as x approaches 0.50. FWHM values decrease
from 0.65° (x = 0.27) and 1.28° (z = 0.57) to 0.23° (z
= 0.47) and 0.32° (z = 0.50) indicating increasing crys-
talline perfection. MgO 002 rocking curves, measured for
reference, are found to consist of split peaks with indi-
vidual peak FWHM values of ~0.005° (18 arcsec) and
an ensemble FWHM of ~0.06° (216 arcsec); the splitting
results from the formation of domains spanning a few
millimeters in length and are a common problem com-
mercial substrates.?®

Figure 2(c) are representative AFM height images.
Root-mean-square surface roughness values determined
independently from AFM and XRR, (not shown) are plot-
ted as a function of x in Fig. 2(d). At x = 0.27, the sur-
face morphology (prms = 3.0 nm) is comprised of 150-nm-
wide mesas separated by 1.5-nm-deep trenches preferen-
tially aligned along Fe;_,Rh, (100). Such features are
the hallmark of unfavorable substrate wetting and three-
dimensional island growth.3® For x = 0.47, the mesas fuse
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FIG. 3. (a) Magnetization M of Fe;.,Rh,/MgO(001) films
versus applied magnetic field H as a function of rhodium frac-
tion 2. Curves are offset by 6 up/f.u. for clarity. (b) The crys-
tal structure and spin configurations of ferromagnetic (FM:
x < 0.48) and antiferromagnetic (AF: z > 0.48) Fei.,Rh,.
(¢) Room-temperature Fei.,Rh, resistivities psoox (z) for =
= 0.20 through 0.80, spanning the B2 single-phase field.
(d) Temperature-dependent resistivities p(T") as a function
of z; curves are vertically offset for clarity. (e) Negative
temperature-derivative of p(T") for samples exhibiting AF-FM
transitions (0.48 < z < 0.60).

leaving a smooth surface with sub-monolayer height fluc-
tuations (prms = 0.1 nm). Further increasing x to 0.57 is
accompanied by the appearance of mounds faceted along
Fei,Rh, (100) due to the combination of high surface
energies and high diffusivities.*>*! Thus, the smoothest
films with the highest structural perfection are obtained
near x = 0.50.

Figure 3(a) shows the in-plane room-temperature mag-
netization M of Fe; ,Rh,/MgO(001) films measured as
a function of applied magnetic field H using a vibrat-
ing sample magnetometer. Films with < 0.48 dis-
play hysteretic behavior characteristic of FM ordering
with saturation magnetizations of ~ 4pp/f.u., consistent
with prior reports.?6 Coercive fields H,, defined as the
value of H where M changes maximally, decrease with
increasing x from 235 (z = 0.27) to 129 (z = 0.39) and
59 Oe (z = 0.47). Fitting H.(z) with a mean-field be-
havior, H. « \/x — z., yields a critical rhodium fraction
of z. = 0.48 below which Fe;_,Rh, is FM. For z above
T, Fer_pRh, films are macroscopically demagnetized at
room temperature, but recover their magnetization when
heated above ~400 K. Since symmetries are necessarily
restored by heating across any phase transition,*? the
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loss of magnetization in films with = > 0.48 implies
AF ordering, for which heating leads to the recovery of
additional symmetry operations and the emergence of
a FM state. These conclusions are in agreement with
Méssbauer spectroscopy?® and neutron scattering® re-
sults. The crystal structure and spin configurations of
ferromagnetic and antiferromagnetic Fe; ,Rh, is illus-
trated in Figure 3(b).

Room-temperature resistivities psoox(z) of ~35-nm-
thick Fe;_,Rh,/MgO(001) films are shown in Fig. 3(c).
As x is varied across the single-phase field, p3gox de-
creases from 898.3 ufd-cm (x = 0.27) to 40.9 u-cm
(x = 0.47), rises rapidly to 122.3 uQ-cm (z = 0.50),
and continues increasing slowly to 174.9 puQ-cm (x =
0.57). The resistivity obtained here for stoichiometric
Feq.50Rhg 50, which represents the lowest value reported
in the literature,*3 reflects the structural perfection and
chemical purity of the layer. The large psook(z) values
near the Fe;_,Rh, phase field boundaries stem predomi-
nately from increased structural disorder.

Temperature-dependent Fe;_,Rh, resistivities p(T') be-
tween 300 and 500 K are plotted in Fig. 3(d). For
rhodium-deficient films (0.27 < z < 0.47), p(T') increase
linearly with 7' demonstrating metallic phonon-limited
conduction. The superposition of resistivity curves mea-
sured during heating and cooling reflect the stability
of these layers in air. At z = 0.50, a drop in resis-
tivity is observed near T, ~ 392 K, associated with a
transition” between AF (T < T.) and FM (T > T.)
states. The negative derivative of p(T")/psoox, plotted in
Fig. 3(d), shows that the transition is sharp, hysteretic,
and symmetric — attributes consistent with first-order
transitions — and occurs at 3854+3 and 401+3 K dur-
ing heating and cooling, respectively. The pronounced
modulation in resistivity observed, Ap/p = (pAF —
PEM)/PEM = 80%, represents the highest thermally-
induced value reported®19:22:43-45 and is consistent with
the 854+6% theoretical maximum realizable for well or-
dered films;?? the narrow transition widths, AT = 3 K,
are the smallest observed to date.%10:11:22:43-45 For bulk
stoichiometric samples, a comparable resistivity change
was observed at room temperature by driving the AF-
FM transition with pulsed magnetic fields exceeding 15
T; thermally-induced resistivity changes were not investi-
gated, but a T, of 405 K, in close agreement with our mea-
sured values, was deduced from temperature-dependent
heat capacity measurements.*6

Rhodium-rich films with z = 0.57 also exhibit a similar
transition. In this case, the resistivity changes by only
26% (versus 80% for = 0.50) as AF regions slowly trans-
form into FM domains at 418432 K and back at 393440
K (Figs. 3(c) and 3(d)). The smaller Ap/p values for z
= 0.57 results from defect scattering, which simultane-
ously raises par and ppy. The broader transition stems
from fluctuations, as expected for a film characterized by
chemical disorder, crystalline mosaicity, and high surface
roughness.

In ~35-nm-thick Fe, ,Rh,

summary, epitaxial
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/MgO(001) films are grown at 420 °C by molecular-
beam epitaxy and systematically investigated as a
function of rhodium fraction x. Within the CsCl-
structure Fe;_,Rh, single-phase field (0.20 S = < 0.60),
rhodium replaces iron producing a linearly increasing
lattice parameter due to its larger metallic radius (134
versus 126 pm)33. B2 CsCl-type ordering is established
by pronounced x-ray diffraction from mixed-integer
film reflections. A lattice parameter discontinuity of
Aa = 0.0028 nm (Aa/a = —0.9%) is observed at
z. = 0.48, below (above) which films are FM (AF).
The perfection and surface smoothness of the layers are
optimized near x = 0.50. Room-temperature resistivities
p300k (x) exhibit a minimum of 40.9 uQ-cm at z =
0.47. For AF layers (¢ > 0.48), FM ordering can
be recovered by heating across the first-order phase
transition. Temperature-dependent resistivity measure-
ments demonstrate sharp, hysteretic, and symmetric
transitions at 385+£3 K and 401+3 K during heating and
cooling of stoichiometric Feg soRhg.50/MgO(001) films.
The large resistivity modulation achieved, Ap/p = 80%,
represents the largest thermally-induced value observed
to date for Fe;_,Rh, films. In rhodium-rich layers, the
transition is broadened by fluctuations and the percent
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resistivity change is reduced due to defect scattering.
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