

Structural, Magnetic, and Transport Properties of $\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ Films Grown by Molecular-Beam Epitaxy

Antonio B. Mei,^{1,*} Yongjian Tang,² Jennifer L. Grab,² Jürgen Schubert,³ Daniel C. Ralph,^{2,4} and Darrell G. Schlom^{1,4}

¹Department of Materials Science and Engineering,
Cornell University, Ithaca, NY, 14853, USA

²Physics Department, Cornell University, Ithaca, NY, 14853, USA

³Peter Grünberg Institute (PGI-9) and JARA-Fundamentals of Future Information Technology,
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

⁴Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA

$\text{Fe}_{1-x}\text{Rh}_x$ layers are grown with varying rhodium fraction x on (001)-oriented MgO substrates by molecular-beam epitaxy. Film structural, morphological, magnetic, and transport properties are investigated. At room temperature, layers are ferromagnetic (FM) for $x < 0.48$ and antiferromagnetic (AF) for $x > 0.48$. Separating the two magnetically ordered phases at $x = 0.48$ is an abrupt change in the $\text{Fe}_{1-x}\text{Rh}_x$ lattice parameter of $\Delta a = 0.0028 \text{ nm}$ ($\Delta a/a = -0.9\%$). For AF layers, the FM state is recovered by heating across a first-order phase transition. The transition leads to a large resistivity modulation, $\Delta\rho/\rho = 80\%$, over a narrow temperature range, $\Delta T = 3 \text{ K}$, in stoichiometric $\text{Fe}_{0.50}\text{Rh}_{0.50}/\text{MgO}(001)$. For samples with compositions deviating from $x = 0.50$, fluctuations broaden ΔT and defect scattering reduces $\Delta\rho/\rho$.

FeRh ($Pm\bar{3}m$, B2, CsCl structure) is a fundamental component in memory cells^{1,2}, magnetocaloric refrigerators^{3,4}, and logic devices.^{5,6} Its diverse functionality stems from an entropy-driven first-order transition⁷ between ferromagnetic (FM) and antiferromagnetic (AF) states which persists when deposited in film form, a prerequisite for integration in device heterostructures. Accompanying the intrinsic magnetic transition is a large resistivity modulation which rivals giant magnetoresistance effects observed in magnetic multilayers.^{8,9} Rhodium fraction x is suspected to strongly affect $\text{Fe}_{1-x}\text{Rh}_x$ transport characteristics, but its role has not yet been systematically investigated in epitaxial films. Instead, work has focused on understanding size effects,^{10,11} annealing treatments,^{12–15} and transition mechanics.^{16–20} The few compositional studies on $\text{Fe}_{1-x}\text{Rh}_x$ films omit transport properties entirely, emphasizing magnetic attributes,²¹ or are based on inhomogeneous polycrystalline layers containing secondary phases.²² Here, we systematically examine the structural, morphological, magnetic, and transport properties as a function of rhodium fraction x of phase-pure epitaxial $\text{Fe}_{1-x}\text{Rh}_x$ films with the CsCl structure deposited on (001)-oriented MgO substrates.

$\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ films are grown via molecular-beam epitaxy to a thickness of $\sim 35 \text{ nm}$ in a Veeco GEN10 system (base pressure: $1 \times 10^{-8} \text{ Torr} = 1.3 \times 10^{-6} \text{ Pa}$) by simultaneously supplying iron (99.995% pure) and rhodium (99.95% pure) from independent effusion cells. Rhodium fractions x are controlled by adjusting iron and rhodium cell temperatures within 50 °C of 1150 and 1600 °C, respectively, while maintaining a total atomic flux of $\sim 4 \times 10^{13} \text{ atoms/cm}^2\text{s}$, corresponding to a growth rate of $\sim 0.3 \text{ nm/min}$. x values determined²⁴ from Rutherford backscattering spectra agree with x-ray reflectivity (XRR) deposition rate calibrations based on pure iron and rhodium layers (linear correlation coefficient $r =$

0.997), demonstrating that atomic incorporation probabilities are unaltered by chemistry. From the calibrated atomic fluxes, deposition times are set to produce layers with a thickness of $\sim 35 \text{ nm}$. A substrate temperature $T_s = 420 \text{ }^\circ\text{C}$ (estimated from a thermocouple in indirect contact with the growth surface and concealed from in-

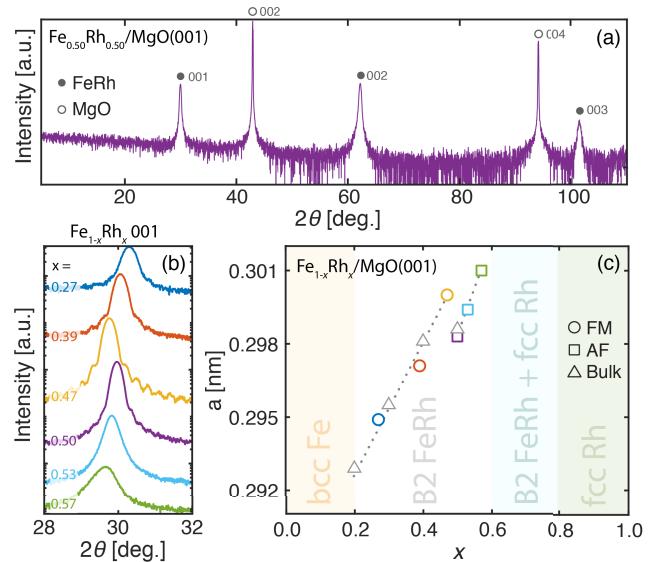


FIG. 1. (a) XRD θ - 2θ scan of a 35-nm-thick stoichiometric $\text{Fe}_{0.50}\text{Rh}_{0.50}$ film with the B2 CsCl-structure grown on $\text{MgO}(001)$ at 420°C by molecular-beam epitaxy. (b) θ - 2θ scans showing the $\text{Fe}_{1-x}\text{Rh}_x$ 001 peak for rhodium fractions $0.20 \lesssim x \lesssim 0.60$. (c) Film out-of-plane lattice parameters as a function of composition together with bulk lattice parameters²³ (triangles) for reference. Circles indicate ferromagnetic ordering and squares indicate antiferromagnetic ordering at room temperature.

53 cident molecular fluxes) is employed for film growth and
 54 subsequent 30-min-long *in situ* anneals. High homolo-
 55 gous growth temperatures ($T_s/T_m = 0.37$ for FeRh with
 56 melting temperature $T_m \approx 1600$ °C) are necessary²⁵ to
 57 order bcc $\text{Fe}_{1-x}\text{Rh}_x$ alloys into the B2 CsCl-structure in-
 58 termetallic with iron and rhodium residing on distinct
 59 positions of the two-atom basis.

60 X-ray diffraction (XRD) θ - 2θ scans, collected using Cu
 61 $K\alpha_1$ radiation (wavelength $\lambda = 0.154056$ nm), establish
 62 a phase diagram consisting of four regions: single-phase
 63 bcc-Fe(001) ($x \lesssim 0.20$), single-phase B2 $\text{Fe}_{1-x}\text{Rh}_x$ ($0.20 \lesssim x \lesssim 0.60$), two-phase mixtures of (001)-textured B2
 64 $\text{Fe}_{1-x}\text{Rh}_x$ and fcc-Rh ($0.60 \lesssim x \lesssim 0.80$), and single-phase
 65 fcc-Rh(001) ($x \gtrsim 0.80$). The phase boundaries of our
 66 epitaxial films grown on MgO(001) are in close agreement
 67 with reports for bulk samples:^{23,26} the rhodium-deficient
 68 limit, for which the bcc solid solution orders into the CsCl
 69 structure, agrees exactly, while the rhodium-rich limit
 70 extends 0.08 rhodium fractions above the bulk boundary
 71 ($x = 0.52$) due to epitaxial stabilization.²⁷⁻³¹

72 A representative XRD θ - 2θ scan is presented in Fig.
 73 1(a) for stoichiometric $\text{Fe}_{0.50}\text{Rh}_{0.50}/\text{MgO}(001)$. Five
 74 peaks are observed over the 2θ range 10-110°: the three
 75 reflections at $2\theta = 29.94$, 62.18, and 101.6° are indexed
 76 as $\text{Fe}_{0.50}\text{Rh}_{0.50}$ 001; the two at 42.92 and 94.05° are
 77 identified as MgO 002. Sharp mixed-integer film re-
 78 flections (no systematic absences) indicate CsCl-type or-
 79 dering. The lack of additional reflections together with
 80 pole figure and grazing-incidence scans (not shown) es-
 81 tablish that films with $0.20 \lesssim x \lesssim 0.60$ are phase-pure un-
 82 twinned epitaxial layers oriented with a 45° in-plane rota-
 83 tion with respect to their MgO substrates: $(001)_{\text{Fe}_{1-x}\text{Rh}_x}$
 84 $\parallel (001)_{\text{MgO}}$ and $[110]_{\text{Fe}_{1-x}\text{Rh}_x} \parallel [100]_{\text{MgO}}$.

85 Diffracted intensities near the $\text{Fe}_{1-x}\text{Rh}_x$ 001 reflection
 86 are plotted as a function of x in Fig. 1(b). As x increases
 87 across the single-phase field, $\text{Fe}_{1-x}\text{Rh}_x$ peaks shift — with
 88 one exception — to lower 2θ angles. Figure 1(c) shows
 89 out-of-plane lattice parameter a values obtained³² from
 90 θ - 2θ peak positions. a increases approximately linearly
 91 from 0.2950 ($x = 0.27$) to 0.3000 nm ($x = 0.47$), con-
 92 tracts sharply to 0.2983 nm ($x = 0.50$), and then con-
 93 tinues increasing to 0.3010 ($x = 0.57$). Film lattice pa-
 94 rameters values $a(x)$ are in excellent agreement with re-
 95 ports for bulk polycrystals (also shown in Fig. 1(b)).²³
 96 Regression analyses yield a slope of 0.04 ± 0.01 nm per
 97 rhodium fraction, in close agreement with 0.06 expected
 98 based on the larger metallic radius³³ of rhodium (134
 99 pm) versus iron (126 pm), suggesting that rhodium sub-
 100 stitutes for iron across the $\text{Fe}_{1-x}\text{Rh}_x$ single-phase field.
 101 The lattice parameter discontinuity of $\Delta a = 0.0028$ nm
 102 ($\Delta a/a = -0.9\%$) at $x = 0.48$ occurs as $\text{Fe}_{1-x}\text{Rh}_x$ under-
 103 goes a first-order transition⁷ from a FM ($x < 0.48$) to
 104 an AF ($x > 0.48$) state.³⁴ The contracted AF cell cor-
 105 responds to the new equilibrium geometry³⁵ after spins
 106 ferromagnetically aligned on iron ($3.2 \mu_B$) and rhodium
 107 ($0.9 \mu_B$) leave rhodium ($0.0 \mu_B$) magnetically inactive
 108 and reorganize antiferromagnetically along {001} on iron
 109 ($3.3 \mu_B$).^{26,36,37}

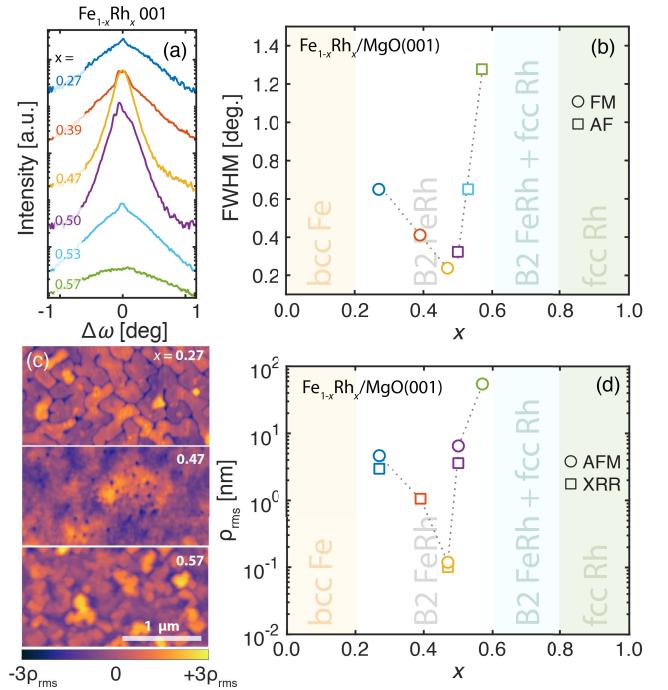


FIG. 2. (a) XRD ω -rocking curve scans of $\text{Fe}_{1-x}\text{Rh}_x$ 001 reflections and (b) corresponding FWHM values as a function of rhodium fraction x . (c) Representative AFM height images of $\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ layers as a function of composition x across the B2 single-phase field. MgO[100] and $\text{Fe}_{1-x}\text{Rh}_x$ [110] are aligned with the horizontal image axis. (d) Root-mean-square surface roughness values determined as a function of x independently from XRR and AFM.

111 The structural quality of the films is assessed from ω -
 112 rocking curves of $\text{Fe}_{1-x}\text{Rh}_x$ 001 reflections and atomic
 113 force microscopy (AFM) elevation maps. Rocking curve
 114 scans and corresponding peak full-width-at-half-maxima
 115 (FWHM) are plotted in Figs. 2(a) and 2(b). Reflections
 116 are broad at $x = 0.27$ and 0.57 due to mosaicity, but
 117 sharpen as x approaches 0.50. FWHM values decrease
 118 from 0.65° ($x = 0.27$) and 1.28° ($x = 0.57$) to 0.23° (x
 119 = 0.47) and 0.32° ($x = 0.50$) indicating increasing crys-
 120 talline perfection. MgO 002 rocking curves, measured for
 121 reference, are found to consist of split peaks with indi-
 122 vidual peak FWHM values of $\sim 0.005^\circ$ (18 arcsec) and
 123 an ensemble FWHM of $\sim 0.06^\circ$ (216 arcsec); the splitting
 124 results from the formation of domains spanning a few
 125 millimeters in length and are a common problem com-
 126 mercial substrates.³⁸

127 Figure 2(c) are representative AFM height images.
 128 Root-mean-square surface roughness values determined
 129 independently from AFM and XRR (not shown) are plot-
 130 ted as a function of x in Fig. 2(d). At $x = 0.27$, the sur-
 131 face morphology ($\rho_{\text{rms}} = 3.0$ nm) is comprised of 150-nm-
 132 wide mesas separated by 1.5-nm-deep trenches preferen-
 133 tially aligned along $\text{Fe}_{1-x}\text{Rh}_x$ {100}. Such features are
 134 the hallmark of unfavorable substrate wetting and three-
 135 dimensional island growth.³⁹ For $x = 0.47$, the mesas fuse

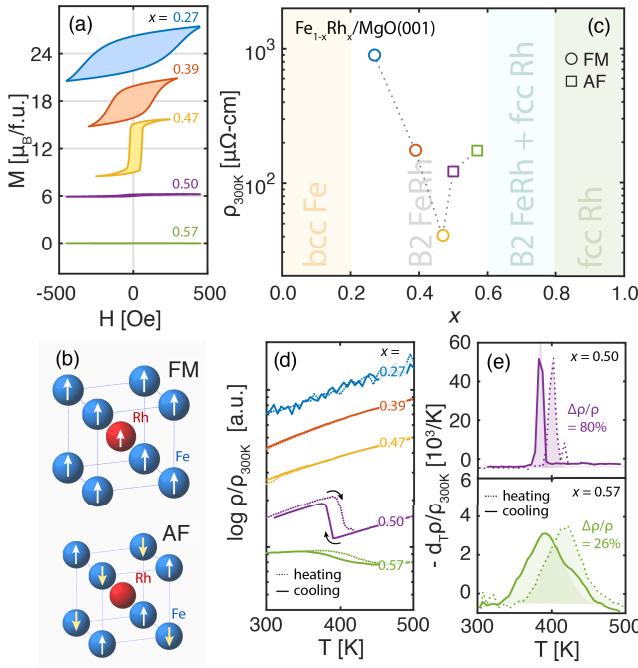


FIG. 3. (a) Magnetization M of $\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ films versus applied magnetic field H as a function of rhodium fraction x . Curves are offset by $6 \mu_B/\text{f.u.}$ for clarity. (b) The crystal structure and spin configurations of ferromagnetic (FM: $x < 0.48$) and antiferromagnetic (AF: $x > 0.48$) $\text{Fe}_{1-x}\text{Rh}_x$. (c) Room-temperature $\text{Fe}_{1-x}\text{Rh}_x$ resistivities $\rho_{300K}(x)$ for $x = 0.20$ through 0.80 , spanning the B2 single-phase field. (d) Temperature-dependent resistivities $\rho(T)$ as a function of x ; curves are vertically offset for clarity. (e) Negative temperature-derivative of $\rho(T)$ for samples exhibiting AF-FM transitions ($0.48 < x \lesssim 0.60$).

leaving a smooth surface with sub-monolayer height fluctuations ($\rho_{\text{rms}} = 0.1 \text{ nm}$). Further increasing x to 0.57 is accompanied by the appearance of mounds faceted along $\text{Fe}_{1-x}\text{Rh}_x \langle 100 \rangle$ due to the combination of high surface energies and high diffusivities.^{40,41} Thus, the smoothest films with the highest structural perfection are obtained near $x = 0.50$.

Figure 3(a) shows the in-plane room-temperature magnetization M of $\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ films measured as a function of applied magnetic field H using a vibrating sample magnetometer. Films with $x \leq 0.48$ display hysteretic behavior characteristic of FM ordering with saturation magnetizations of $\sim 4\mu_B/\text{f.u.}$, consistent with prior reports.³⁶ Coercive fields H_c , defined as the value of H where M changes maximally, decrease with increasing x from 235 ($x = 0.27$) to 129 ($x = 0.39$) and 59 Oe ($x = 0.47$). Fitting $H_c(x)$ with a mean-field behavior, $H_c \propto \sqrt{x - x_c}$, yields a critical rhodium fraction of $x_c = 0.48$ below which $\text{Fe}_{1-x}\text{Rh}_x$ is FM. For x above x_c , $\text{Fe}_{1-x}\text{Rh}_x$ films are macroscopically demagnetized at room temperature, but recover their magnetization when heated above ~ 400 K. Since symmetries are necessarily restored by heating across any phase transition,⁴² the

loss of magnetization in films with $x > 0.48$ implies AF ordering, for which heating leads to the recovery of additional symmetry operations and the emergence of a FM state. These conclusions are in agreement with Mössbauer spectroscopy²⁶ and neutron scattering³⁶ results. The crystal structure and spin configurations of ferromagnetic and antiferromagnetic $\text{Fe}_{1-x}\text{Rh}_x$ is illustrated in Figure 3(b).

Room-temperature resistivities $\rho_{300K}(x)$ of ~ 35 -nm-thick $\text{Fe}_{1-x}\text{Rh}_x/\text{MgO}(001)$ films are shown in Fig. 3(c). As x is varied across the single-phase field, ρ_{300K} decreases from $898.3 \mu\Omega\cdot\text{cm}$ ($x = 0.27$) to $40.9 \mu\Omega\cdot\text{cm}$ ($x = 0.47$), rises rapidly to $122.3 \mu\Omega\cdot\text{cm}$ ($x = 0.50$), and continues increasing slowly to $174.9 \mu\Omega\cdot\text{cm}$ ($x = 0.57$). The resistivity obtained here for stoichiometric $\text{Fe}_{0.50}\text{Rh}_{0.50}$, which represents the lowest value reported in the literature,⁴³ reflects the structural perfection and chemical purity of the layer. The large $\rho_{300K}(x)$ values near the $\text{Fe}_{1-x}\text{Rh}_x$ phase field boundaries stem predominantly from increased structural disorder.

Temperature-dependent $\text{Fe}_{1-x}\text{Rh}_x$ resistivities $\rho(T)$ between 300 and 500 K are plotted in Fig. 3(d). For rhodium-deficient films ($0.27 \leq x \leq 0.47$), $\rho(T)$ increase linearly with T demonstrating metallic phonon-limited conduction. The superposition of resistivity curves measured during heating and cooling reflect the stability of these layers in air. At $x = 0.50$, a drop in resistivity is observed near $T_c \approx 392$ K, associated with a transition⁷ between AF ($T < T_c$) and FM ($T > T_c$) states. The negative derivative of $\rho(T)/\rho_{300K}$, plotted in Fig. 3(d), shows that the transition is sharp, hysteretic, and symmetric — attributes consistent with first-order transitions — and occurs at 385 ± 3 and 401 ± 3 K during heating and cooling, respectively. The pronounced modulation in resistivity observed, $\Delta\rho/\rho \equiv (\rho_{\text{AF}} - \rho_{\text{FM}})/\rho_{\text{FM}} = 80\%$, represents the highest thermally-induced value reported^{6,10,22,43-45} and is consistent with the $85 \pm 6\%$ theoretical maximum realizable for well ordered films;²² the narrow transition widths, $\Delta T = 3$ K, are the smallest observed to date.^{6,10,11,22,43-45} For bulk stoichiometric samples, a comparable resistivity change was observed at room temperature by driving the AF-FM transition with pulsed magnetic fields exceeding 15 T; thermally-induced resistivity changes were not investigated, but a T_c of 405 K, in close agreement with our measured values, was deduced from temperature-dependent heat capacity measurements.⁴⁶

Rhodium-rich films with $x = 0.57$ also exhibit a similar transition. In this case, the resistivity changes by only 26% (versus 80% for $x = 0.50$) as AF regions slowly transform into FM domains at 418 ± 32 K and back at 393 ± 40 K (Figs. 3(c) and 3(d)). The smaller $\Delta\rho/\rho$ values for $x = 0.57$ results from defect scattering, which simultaneously raises ρ_{AF} and ρ_{FM} . The broader transition stems from fluctuations, as expected for a film characterized by chemical disorder, crystalline mosaicity, and high surface roughness.

In summary, ~ 35 -nm-thick epitaxial $\text{Fe}_{1-x}\text{Rh}_x$

²¹⁷ /MgO(001) films are grown at 420 °C by molecular-
²¹⁸ beam epitaxy and systematically investigated as a
²¹⁹ function of rhodium fraction x . Within the CsCl-
²²⁰ structure $\text{Fe}_{1-x}\text{Rh}_x$ single-phase field ($0.20 \lesssim x \lesssim 0.60$),
²²¹ rhodium replaces iron producing a linearly increasing
²²² lattice parameter due to its larger metallic radius (134
²²³ versus 126 pm)³³. B2 CsCl-type ordering is established
²²⁴ by pronounced x-ray diffraction from mixed-integer
²²⁵ film reflections. A lattice parameter discontinuity of
²²⁶ $\Delta a = 0.0028$ nm ($\Delta a/a = -0.9\%$) is observed at
²²⁷ $x_c = 0.48$, below (above) which films are FM (AF).
²²⁸ The perfection and surface smoothness of the layers are
²²⁹ optimized near $x = 0.50$. Room-temperature resistivities
²³⁰ $\rho_{300K}(x)$ exhibit a minimum of $40.9 \mu\Omega\cdot\text{cm}$ at $x =$
²³¹ 0.47. For AF layers ($x \geq 0.48$), FM ordering can
²³² be recovered by heating across the first-order phase
²³³ transition. Temperature-dependent resistivity measure-
²³⁴ ments demonstrate sharp, hysteretic, and symmetric
²³⁵ transitions at 385 ± 3 K and 401 ± 3 K during heating and
²³⁶ cooling of stoichiometric $\text{Fe}_{0.50}\text{Rh}_{0.50}/\text{MgO}(001)$ films.
²³⁷ The large resistivity modulation achieved, $\Delta\rho/\rho = 80\%$,
²³⁸ represents the largest thermally-induced value observed
²³⁹ to date for $\text{Fe}_{1-x}\text{Rh}_x$ films. In rhodium-rich layers, the
²⁴⁰ transition is broadened by fluctuations and the percent

²⁴¹ resistivity change is reduced due to defect scattering.

I. ACKNOWLEDGEMENTS

²⁴³ The authors thank K. Palmen and W. Zander for
²⁴⁴ their help performing RBS measurements. A.B.M., Y.T.,
²⁴⁵ J.L.G., and D.G.S. acknowledge support in part by
²⁴⁶ the Semiconductor Research Corporation (SRC) under
²⁴⁷ nCORE tasks 2758.001 and 2758.003, and by the NSF
²⁴⁸ under the E2CDA program (ECCS-1740136). Materi-
²⁴⁹ als synthesis was performed in a facility supported by
²⁵⁰ the National Science Foundation (Platform for the Ac-
²⁵¹celerated Realization, Analysis, and Discovery of Inter-
²⁵²face Materials (PARADIM)) under Cooperative Agree-
²⁵³ment No. DMR-1539918. This work made use of the
²⁵⁴ Cornell Center for Materials Research (CCMR) Shared
²⁵⁵ Facilities, which are supported through the NSF MRSEC
²⁵⁶ program (No. DMR-1719875). Substrate preparation
²⁵⁷ was performed in part at the Cornell NanoScale Facility,
²⁵⁸ a member of the National Nanotechnology Coordinated
²⁵⁹ Infrastructure (NNCI), which is supported by the NSF
²⁶⁰ (Grant No. ECCS-1542081).

²⁶¹ * amei2@illinois.edu

²⁶² ¹ J.-U. Thiele, S. Maat, and E. E. Fullerton, *Appl. Phys. Lett.* **82**, 2859 (2003).

²⁶³ ² X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, *Nat. Mater.* **13**, 367 (2014).

²⁶⁴ ³ Y. Liu, L. C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and B. Dkhil, *Nat. Commun.* **7**, 11614 (2016).

²⁶⁵ ⁴ K. Nishimura, Y. Nakazawa, L. Li, and K. Mori, *Materials Transactions* **49**, 1753 (2008).

²⁶⁶ ⁵ J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Íñiguez, B. D. Huey, and R. Ramesh, *Nature* **516**, 370 (2014).

²⁶⁷ ⁶ Y. Lee, Z. Q. Liu, J. T. Heron, J. D. Clarkson, J. Hong, C. Ko, M. D. Biegalski, U. Aschauer, S. L. Hsu, M. E. Nowakowski, J. Wu, H. M. Christen, S. Salahuddin, J. B. Bokor, N. A. Spaldin, D. G. Schlom, and R. Ramesh, *Nat. Commun.* **6**, 189 (2015).

²⁶⁸ ⁷ M. Fallot, *Ann. Phys.* **11**, 291 (1938).

²⁶⁹ ⁸ M. Baibich, J. Broto, A. Fert, N. V. D. F. F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, *Phys. Rev. Lett.* **61**, 2472 (1988).

²⁷⁰ ⁹ G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, *Phys. Rev. B* **39**, 4828 (1989).

²⁷¹ ¹⁰ V. Uhlíř, J. A. Arregi, and E. E. Fullerton, *Nat. Commun.* **7**, 13113 (2016).

²⁷² ¹¹ A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.-W. Wang, and F. Hellman, *Appl. Phys. Lett.* **111**, 172401 (2017).

²⁹⁴ ¹² J. Cao, N. T. Nam, S. Inoue, H. Y. Y. Ko, N. N. Phuoc, and T. Suzuki, *J. Appl. Phys.* **103**, 07F501 (2008).

²⁹⁵ ¹³ M. A. de Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, *New J. Phys.* **15**, 013008 (2013).

²⁹⁶ ¹⁴ J. P. Ayoub, C. Gatel, C. Roucau, and M. J. Casanove, *Journal of Crystal Growth* **314**, 336 (2011).

²⁹⁷ ¹⁵ K. Aikoh, S. Kosugi, T. Matsui, and A. Iwase, *J. Appl. Phys.* **109**, 07E311 (2011).

²⁹⁸ ¹⁶ C. Bordel, J. Juraszek, D. W. Cooke, C. Baldasseroni, S. Mankovsky, J. Minár, H. Ebert, S. Moyerman, E. E. Fullerton, and F. Hellman, *Phys. Rev. Lett.* **109**, 117201 (2012).

²⁹⁹ ¹⁷ S. Mankovsky, S. Polesya, K. Chadova, H. Ebert, J. B. Staunton, T. Gruenbaum, M. A. W. Schoen, C. H. Back, X. Z. Chen, and C. Song, *Phys. Rev. B* **95**, 155139 (2017).

³⁰⁰ ¹⁸ A. Heidarian, S. Stienien, A. Semisalova, Y. Yuan, E. Josten, R. Hübner, S. Salamon, H. Wende, R. A. Gallardo, J. Grenzer, K. Potzger, R. Bali, S. Facsko, and J. Lindner, *Phys. Status Solidi B* **254**, 1700145 (2017).

³⁰¹ ¹⁹ P. M. Derlet, *Phys. Rev. B* **85**, 174431 (2012).

³⁰² ²⁰ J. B. Staunton, R. Banerjee, M. d. S. Dias, A. Deak, and L. Szunyogh, *Phys. Rev. B* **89**, 54427 (2014).

³⁰³ ²¹ S. Inoue, H. Y. Y. Ko, and T. Suzuki, *IEEE Trans. Magn.* **44**, 2875 (2008).

³⁰⁴ ²² J. van Driel, R. Coehoorn, G. J. Strijkers, E. Brück, and F. R. de Boer, *J. Appl. Phys.* **85**, 1026 (1999).

³⁰⁵ ²³ G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, *Phys. Rev.* **131**, 183 (1963).

³⁰⁶ ²⁴ I. Petrov, M. Braun, T. Fried, and H. E. Sätherblom, *J. Appl. Phys.* **54**, 1358 (1983).

³⁰⁷ ²⁵ C. P. Flynn, *J. Phys. F* **18**, L195 (2000).

³²⁶ ²⁶ G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, *J. Appl. Phys.* **34**, 1044 (1963).

³²⁷ ²⁷ A. Zunger and D. M. Wood, *Journal of Crystal Growth* **98**, 1 (1989).

³²⁸ ²⁸ R. Bruinsma and A. Zangwill, *Journal de Physique* **47**, 2055 (1986).

³²⁹ ²⁹ A. R. Kaul, O. Y. Gorbenko, and A. A. Kamenev, *Russ. Chem. Rev.* **73**, 932 (2004).

³³⁰ ³⁰ E. S. Machlin and T. J. Rowland, *Synthesis and Properties of Metastable Phases*, Proceedings of a Symposium (The Metallurgical Society of AIME, Warrendale, 1980).

³³¹ ³¹ C. P. Flynn, *Phys. Rev. Lett.* **57**, 599 (1986).

³³² ³² J. B. Nelson and D. P. Riley, *Proceedings of the Physical Society* **57**, 160 (1945).

³³³ ³³ N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements* (Elsevier, 2012).

³³⁴ ³⁴ M. Ibarra and P. Algarabel, *Phys. Rev. B* **50**, 4196 (1994).

³³⁵ ³⁵ M. E. Gruner, E. Hoffmann, and P. Entel, *Phys. Rev. B* **67**, 64415 (2003).

³³⁶ ³⁶ G. Shirane, R. Nathans, and C. W. Chen, *Phys. Rev.* **134**, A1547 (1964).

³³⁷ ³⁷ S. Maat, J. U. Thiele, and E. E. Fullerton, *Phys. Rev. B* **72**, 214432 (2005).

³³⁸ ³⁸ J. L. Schroeder, A. S. Ingason, J. Rosen, and J. Birch, *Journal of Crystal Growth* **420**, 22 (2015).

³³⁹ ³⁹ C. W. Barton, T. A. Ostler, D. Huskisson, C. J. Kinane, S. J. Haigh, G. Hrkac, and T. Thomson, *Nature Publishing Group* **7**, 44397 (2017).

³⁵³ ⁴⁰ I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, *J. Vac. Sci. Technol. A* **21**, S117 (2003).

³⁵⁴ ⁴¹ J. A. Thornton, *J Vac Sci Technol* **12**, 830 (1975).

³⁵⁵ ⁴² P. M. Chaikin and T. C. Lubensky, *Principles of Condensed Matter Physics* (Cambridge University Press, 2000).

³⁵⁶ ⁴³ Z. Q. Liu, L. Li, Z. Gai, J. D. Clarkson, S. L. Hsu, A. T. Wong, L. S. Fan, M.-W. Lin, C. M. Rouleau, T. Z. Ward, H. N. Lee, A. S. Sefat, H. M. Christen, and R. Ramesh, *Phys. Rev. Lett.* **116**, 097203 (2016).

³⁵⁷ ⁴⁴ J. D. Clarkson, I. Fina, Z. Q. Liu, Y. Lee, J. Kim, C. Frontera, K. Cordero, S. Wisotzki, F. Sánchez, J. Sort, S. L. Hsu, C. Ko, L. Aballe, M. Foerster, J. Wu, H. M. Christen, J. T. Heron, D. G. Schlom, S. Salahuddin, N. Kioussis, J. Fontcuberta, X. Martí, and R. Ramesh, *Nature Publishing Group* **7**, 15460 (2017).

³⁵⁸ ⁴⁵ C. Le Graët, M. A. de Vries, M. McLaren, R. M. D. Brydson, M. Loving, D. Heiman, L. H. Lewis, and C. H. Marrows, *J Vis Exp* , 50603 (2013).

³⁵⁹ ⁴⁶ P. A. Algarabel, M. R. Ibarra, C. Marquina, A. del Moral, J. Galibert, M. Iqbal, and S. Askenazy, *Appl. Phys. Lett.* **66**, 3061 (1995).