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Abstract

Machine learning in real-world high-skew domains is dif-
ficult, because traditional strategies for crowdsourcing la-
beled training examples are ineffective at locating the scarce
minority-class examples. For example, both random sam-
pling and traditional active learning (which reduces to ran-
dom sampling when just starting) will most likely recover
very few minority-class examples. To bootstrap the ma-
chine learning process, researchers have proposed tasking
the crowd with finding or generating minority-class exam-
ples, but such strategies have their weaknesses as well. They
are unnecessarily expensive in well-balanced domains, and
they often yield samples from a biased distribution that is un-
representative of the one being learned. This paper extends
the traditional active learning framework by investigating the
problem of intelligently switching between various crowd-
sourcing strategies for obtaining labeled training examples
in order to optimally train a classifier. We start by analyz-
ing several such strategies (e.g., annotate an example, gener-
ate a minority-class example, etc.), and then develop a novel,
skew-robust algorithm, called MB-CB, for the control prob-
lem. Experiments show that our method outperforms state-of-
the-art GL-Hybrid by up to 14.3 points in F1 AUC, across
various domains and class-frequency settings.

Introduction

In high-skew environments, where class frequencies are ex-
tremely imbalanced, traditional strategies for obtaining la-
beled training examples perform poorly. Traditional labeling
queries, which task crowd workers with labeling randomly-
selected or even intelligently-selected examples (e.g. via
standard active learning) are ineffective because the prob-
ability that any given example belongs to the minority-class
is virtually zero (Attenberg and Provost 2010). Further-
more, heuristic labeling methods, such as distant supervision
(Craven and Kumlien 1999b) or data programming (Ehren-
berg et al. 2016), are only applicable when a good knowl-
edge base or pretrained predictor is available.

To address these problems, which are ubiquitous in real-
world supervised machine learning (Piskorski and Yangar-
ber 2013; Patterson et al. 2016), Attenberg et al. (2010) pro-
pose guided learning, a method for obtaining labeled train-
ing examples that uses generation queries, or tasks that ask
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crowd workers to find or generate, as opposed to just la-
bel, training examples. Because of the increased human ef-
fort, guided learning is more expensive per example. How-
ever, Attenberg et al. show that in highly-skewed domains,
the added cost translates to training sets with more bal-
anced class frequencies and thus more effective initial learn-
ing. Guided learning can quickly obtain minority-class ex-
amples, while other strategies like active learning flounder,
looking for needles in a haystack.

Of course, guided learning isn’t always appropriate and
shouldn’t be used indiscriminately. In balanced domains
where examples of all classes are readily available, even ask-
ing workers to label randomly-selected examples will likely
be cheaper than any generation strategy. And even in high-
skew domains, Attenberg et al. show that after the classifier
has been bootstrapped by guided learning, simply switch-
ing from generation to crowd-labeling of actively-selected
examples can improve performance.

So how should a learner dynamically switch between gen-
eration, labeling, or other kinds of queries when gathering
training examples? We observe that the key differences be-
tween these various queries are their costs and the distribu-
tions of data that they obtain; ultimately, the best strategy
at any given time will differ depending on a number of fac-
tors, including the domain’s class skew and the progress in
training. Therefore, for optimal learning, solving the fol-
lowing meta-active learning problem is crucial: given (1) a
set of example-acquisition primitives (EAPs), i.e., various
classes of queries for obtaining labeled training examples
(e.g., annotate a random example; generate a minority-class
example), (2) a classifier previously trained on N examples
(where N could be 0), (3) a labeled training set (possibly
empty), (4) an unlabeled corpus, and (5) a budget, which
EAP should be used next to obtain another labeled example
in order to maximize performance of the classifier at the end
of training? In our exploration of this problem, we make the
following contributions:

e We propose a novel example acquisition primitive (EAP),
enumerate five existing EAPs, and evaluate their effec-
tiveness in training classifiers.

e We present a novel, online algorithm, called MB-CB, that
adapts multi-armed bandit methods (Auer, Cesa-Bianchi,
and Fischer 2002) to dynamically choose EAPs based



on evolving estimates of how cheaply they can obtain
minority-class examples.

o We perform experiments with both synthetic and real data
comparing the behavior of various control algorithms in
multiple skew settings; these show that our bandit-based
algorithm can yield up to a 14.3 point gain in F1 AUC,
compared to the state-of-the-art baseline.

In the rest of this paper, we assume the binary classification
setting and that the positive class is the minority class.

Example-Acquisition Primitives

We begin by listing existing EAPs, example-acquisition
primitives (also known as query types (Settles 2012)), and
proposing a novel one (LABEL-PREDPOS). We categorize
the primitives into three types: labeling primitives, genera-
tion primitives, and machine primitives. Labeling and gen-
eration primitives rely on crowd annotators, while machine
primitives can be executed without any human involvement.

Labeling primitives refer to strategies for choosing exam-
ples for labeling. Any active learning algorithm is a label-
ing primitive. These are usually cheap and simple, but as
we have discussed earlier, ineffective in high skew domains.
Generation primitives ask the crowd to generate or find ex-
amples; they are more costly per example, but reliably pro-
duce examples of any class, albeit often from a different dis-
tribution than desired. Machine primitives are used to create
heuristically-labeled training data with no human involve-
ment; thus, they are free, but can be noisy.

Labeling Primitives

e LABEL-RANDOM samples a random unlabeled example
for labeling by a crowd worker; this is the traditional (non
active) way that researchers have gathered i.i.d. data for
supervised learning.

e LABEL-ACTIVE asks a crowd worker to label an exam-
ple from the unlabeled corpus, selected using an active
learning technique (e.g., uncertainty sampling (Lewis and
Catlett 1994)). Different active learning schemes are con-
sidered separate primitives for the downstream decision
algorithm.

o LABEL-PREDPOS asks a worker to label an example that
the current classifier predicts to be positive. We expect
this novel primitive to be helpful in high-skew domains,
as it may find many positive examples cheaply. It may
also improve precision by correcting false positives.

Generation Primitives

o GENERATE-POSITIVE tasks a crowd worker with gener-
ating/finding a positive example (Attenberg and Provost
2010); this primitive is the quintessential guided learning
strategy, and should improve recall. Note that generation
of examples can be more difficult in some domains than
in others (e.g., vision vs. natural language processing).

o GENERATE-NEGATE tasks a worker with minimally
modifying a positive example to turn it into a negative ex-
ample. By creating “near-miss” negatives, we expect this

primitive may will allow a classifier to quickly identify
important features.

Machine Primitives

e ADD-RANDOM-NEG picks a random unlabeled exam-
ple and inserts it into the training set as a negative
example. This primitive, commonly used in the con-
text of distant supervision (Craven and Kumlien 1999a;
Mintz et al. 2009), does not require any crowd work. In
domains with high class skew, it provides relatively clean
negative examples. However, in more balanced domains,
many positive examples may be inserted erroneously as
negative examples.

Given an unlabeled corpus with an unknown class skew,
our goal is to sequence these EAPs for efficient and cost-
effective training. We describe our control algorithm next.

EAP Controller for Training Classifiers

Our decision making algorithm, which we call MB-CB
(Make Balanced — Cost Bound), selects the next primitive
to enhance the training set. In order to be robust to high
skews, it pays special attention to positive class examples.
It has two main parts. The “Cost Bound” part selects EAPs
based on cost analysis for obtaining minority class (positive)
examples, and the “Make Balanced” part is a heuristic to ar-
tificially make the training set balanced (if needed). We first
describe the intuition behind the “Cost Bound” part.

We observe that a necessary condition for an effec-
tive EAP is that it should obtain positive examples cost-
effectively. Labeling primitives work well in balanced set-
tings because they are cheap and positive examples are com-
mon. In contrast, generation primitives are expensive, but
may be cost effective in high-skew domains, since they are
guaranteed to produce an example with the desired label.
For example, suppose LABEL-RANDOM costs $0.03 per ex-
ample and GENERATE-POSITIVE costs $0.15 per example;
if fewer than 2% of the examples in the unlabeled corpus are
positive, then GENERATE-POSITIVE will produce ten times
as many positive examples per dollar. LABEL-ACTIVE will
be at a similar disadvantage, at least until the classifier is
partially trained.

The “Cost Bound” part of MB~CB operationalizes these
insights. For every EAP, it computes the expected cost of
obtaining a single positive example, and then chooses the
cheapest primitive. Unfortunately, the expected cost of ob-
taining a positive from a labeling primitive is unknown and
must be learned.

MB-CB learns the expected costs by executing primitives,
which results in an exploration-exploitation setting. We
model the problem using a multi-armed bandit, where the
arms correspond to EAPs, and the reward of each arm is the
negative expected cost of obtaining a single positive exam-
ple from that EAP. Any control algorithm that tries to solve
this problem must make a tradeoff between exploiting the
knowledge it currently has (by executing the primitive it be-
lieves is cheapest), and exploring to update the model (by
executing primitives in order to learn more about their non-
stationary costs).



Algorithm 1 MB-CB

Input: EAPs V), budget b, exploration constant c., desired
skew (the desired # negatives per positive in training set)
r, batch size k
costSoFar = 0;
pe = {} /[Track estimated cost of positive per primitive
po = {} // Track # positives obtained per primitive
ps = {} // Track # negatives obtained per primitive
prn, = {} //Track # times each primitive is called
forv e Vdo
pelt] = pulv] = palv] = palv] = 0
end for
while costSoFar < bdo
best Action = None, bestCost = 0o

/* For every primitive, compute the cost of a single pos-
itive based on historical costs and a UCB exploration

term. */
forv € Vdo
cost = pcv] — 4/ ce 1083 ey Palv]

P [v]
if cost < bestCost then
bestAction = v
bestCost = cost
end if
end for
Execute bestAction k times, tracking numPos and
numNeg.
Insert all num Pos positive examples into training set.

/* Balance the training set by discarding or adding neg-
ative examples */
if isGeneration Primitive(best Action) then
if numNeg < r - numPos then
Insert (r - numPos) — numNeg randomly sel-
ected examples, labeled negative, into training set
end if
else if isLabeling Primitive(best Action) then
Insert at most r - numPos of the obtained negative
examples into training set.
end if

/* Update the historical data for the chosen primitive */
palbestAction] = p,[best Action] + numPos
pplbestAction] = pg[best Action] + numNeg

expectedNumPos = (numPos + numNeg)-
po [bestAction]
PalbestAction]+pglbest Action]

i — _bestAction.cost
DPe [bestActzon] ~ expectedNumPos

prnbestAction] = py,[best Action] + 1
costSoFar = costSoFar + best Action.cost
end while

MB-CB manages this tradeoff by adapting the UCB al-
gorithm (Auer, Cesa-Bianchi, and Fischer 2002) from the
multi-armed bandit literature. (We also implement a similar
algorithm using Thompson sampling (Thompson 1933), but
we omit the results because of space limitations and the per-

formance is very similar to MB—CB.) It maintains a lower
bound on the cost of a single positive example for every
primitive. Each lower bound is computed using an exploita-
tion term (determined using the history of costs from the
respective primitive) and an exploration term (determined
based on the number of times the primitive has been ex-
ecuted). As each primitive is executed, its corresponding
exploration bonus decreases. An exploration constant c. de-
termines the relative value of exploration and exploitation.

At each timestep, MB—CB selects the EAP with the lowest
bound and executes a batch of k. This produces an obser-
vation about the cost of positive examples, which MB-CB
uses to update the lower bound for that primitive. We note
that the costs of primitives can be non-stationary, since they
depend on the classifier’s evolving precision. We tried mod-
eling the problem using non-stationary bandits (Garivier and
Moulines 2011; Cortes et al. 2017), but did not obtain sig-
nificant improvements over MB—CB’s simpler approach.

Of course positive examples are only part of the story,
and MB-CB needs to ensure that it adds enough (but not too
many!) negative examples as well. The “Make-Balanced”
part of MB—CB enforces the desired skew (an input to the
algorithm) by either discarding excess negatives or insert-
ing additional, randomly-selected examples labeled as neg-
ative, as needed. Artificially bounding the training set skew
by undersampling negatives or oversampling positives is a
common practice in domains with high class imbalance (e.g.
(Weiss and Provost 2003; Zhu and Hovy 2007)). Algorithm
1 shows the pseudocode for MB-CB.

Experiments

We now present a series of experiments with both real and
synthetic data to answer three questions. The first question
explores the relative effectiveness of the various EAPs for
obtaining negative examples, the second question quantifies
the value of our novel EAP (LABEL-PREDPOS), and the last
question investigates the effectiveness of MB—CB at selecting
EAPs:

1. How cost-effective is generating near-miss negative ex-
amples (GENERATE-NEGATE) compared to other ways
of generating negative examples like random labeling
(LABEL-RANDOM) or inserting random examples as neg-
ative (ADD-RANDOM-NEG)?

2. In a high-skew domain, is it better to request labels for

likely-positive examples (LABEL-PREDPOS) or simply
use uncertainty sampling (LABEL-ACTIVE)?

3. Overall, how does MB-CB compare to baselines and state-

of-the-art guided learning algorithms in different domains
and across varying skews?

Data Sets

LD and Modified LD: To answer our first experimental
question, we consider the task of relation extraction, which
involves determining whether a natural language sentence
expresses a given relation between two given entities. We
use two relation extraction datasets: one from Liu ef al
(2016), which we denote LD, and an extension, which we
crowdsource ourselves, Modified LD.



LD contains examples of five relations, with gold labels
inferred from labels provided by crowdsourced workers. In
particular, it contains 471 positive and 17,632 negative ex-
amples of “Born in,” 1,375 positive and 16,635 negative ex-
amples of “Died in,” 1,339 positive and 16,136 negative ex-
amples of “Traveled to,” 1,175 positive and 14,231 negative
examples of “Lived in,” and 1,203 positive and 16,230 neg-
ative examples of “Nationality.”

Modified LD enhances LD via crowdsourcing with Ama-
zon Mechanical Turk. We provide workers with a relation
and a positive example from LD, and ask them to minimally
modify it to turn it into a negative example for that relation.
For example, a good submission for the relation “Died in”
and the sentence “He died yesterday in Prague” might be
“He did not die yesterday”, whereas an incorrect submis-
sion for the same relation and sentence might be “He died
the day before yesterday in Prague”, because the sentence
still expresses that someone died somewhere. We run this
task once for each of the positive examples in LD to obtain
an equally-sized set of negative examples.

In an effort to increase the diversity of examples that
workers submit, the task also provides a list of “taboo”
words (Hasbro 2000; von Ahn and Dabbish 2004) that work-
ers are barred from using in the sentences they submit. A
word becomes “taboo” if the number of times it has been
used has exceeded a threshold. We use a threshold of 20.
The taboo list is computed by using the words that appear in
the modified sentence but not in the original sentence (ex-
cluding stop words).

News Aggregator Data Sets: To answer our second and
third experimental questions, we use two topic modeling
datasets, which we denote as NADS (News Aggregator Data
Set) and NADS-Generate. We use different (20x larger)
datasets for the last two questions because these two ques-
tions involve the testing of intelligent algorithms that will
almost always take different sequences of actions, which
means that they require many more examples to sample
from. Moreover, the scale of this dataset is also amenable
to high skew experiments (such as 1:1000), which was not
feasible using LD.

NADS is a dataset from UCI Machine Learning Repos-
itory (Bache and Lichman 2013), and consists of 422,937
news headlines that are labeled as one of four possible top-
ics. 152,746 are labeled as “Entertainment,” 108,465 are
labeled as “Science and Technology,” 115,920 are labeled
as “Business,” and 45,615 are labeled as “Health.” We con-
struct NADS-Generate by asking crowdsourced workers to
find examples of news headlines of the appropriate topic
(e.g., Business) on the web. NADS-Generate contains 1,000
generated headlines for each topic. We note that workers are
free to find headlines from any source, and hence, this gener-
ated distribution will likely be different from the distribution
in NADS.

Experimental Setup

While we make use of pre-annotated corpora, we set the cost
of all labeling EAPs to be $0.03; this wage is consistent with
prior work on crowd-labeling, e.g. (Liu et al. 2016). After

preliminary experimentation, we set the cost of GENERATE-
NEGATE to be $0.10, and GENERATE-POSITIVE to be
$0.15, in order to produce an effective hourly wage equiva-
lent to that paid for labeling.

In addition, for adaptive algorithms, instead of making a
new decision at every timestep, we batch execute the next
primitive 50 times (k = 50) to reduce computational costs.
Thus, each GENERATE-POSITIVE costs $7.50. We set the
exploration constant ¢, = 1.0 for MB—-CB, thereby equally
balancing between exploration and exploitation terms.

In all experiments, we vary the skew in the original unla-
beled corpus artificially to understand each algorithm’s be-
havior for datasets of varying class imbalance. For each
skew s (i.e., unlabeled corpus has s negative examples for
each positive one) and each EAP-choosing strategy, we train
the target classifier at multiple cost points and compute the
corresponding F1 scores. We then calculate the area under
the F1-cost curve (cost-sensitive learning curve) to compute
F1 AUC. We repeat this training many times and report the
mean value for each skew.

Finally, we note that skew, 1:s, in the unlabeled corpus
should not be confused with skew in the training set, 1:r.
Typically, s may have a very high value, but r will be small
(e.g., 1 to 3) — achieved by under-sampling negatives.

The Value of Generating ‘Near-Miss’ Negatives

We first investigate whether or not the GENERATE-NEGATE
EAP is more cost-effective than other primitives for gener-
ating negatives, such as ADD-RANDOM-NEG and LABEL-
RANDOM. Specifically, we compare three different strate-
gies: Gen+Modify— simulates GENERATE-POSITIVE by
sampling positive examples from LD and uses GENERATE-
NEGATE to obtain corresponding negative examples (from
Modified LD). Gen+Rand- uses the same source for pos-
itive examples, but instead of using GENERATE-NEGATE
to create negatives, it uses ADD-RANDOM-NEG, which
randomly samples examples from LD. We compare these
against a simple LABEL-RANDOM baseline, which gener-
ates both positives and negatives via random labeling over
LD.

For every relation and every skew s € {1,9,99}, we set a
budget of b = %122 where £ is the number of positive ex-
amples for the chosen relation (e.g., xk = 471 for the “Born
in” relation). We set the budget in this way in order to en-
sure we do not run out of examples during experimentation.
Note that for both Gen+Modi fy— and Gen+Rand—- we set
r = 1, because of the limited number of modified negatives
in the dataset. For fairness, we artificially maintain » = 1 in
LABEL-RANDOM by discarding excess negative examples.

First, notice that all these strategies have very different
cost profiles. Gen+Modify—- is most expensive, since it
uses two generate actions that cost 15 and 10 cents each.
In contrast, Gen+Rand-’s way of generating negatives is
free (but can be noisy at low skews); thus it spends all its
budget generating positives. Finally, LABEL-RANDOM does
not utilize any expensive generate actions, but must dis-
card negatives to maintain training skew. Because of this,
at each cost point, their training datasizes will be differ-
ent, with Gen+Modi fy— being the smallest at low skews,



and LABEL-RANDOM being the largest. At high skews,
LABEL-RANDOM will be small, since excess negatives are
discarded, and Gen+Rand- will always generate a larger
training set than Gen+Modify-.

We train logistic regression classifiers using the training
sets constructed by the three strategies, using standard NLP
features from the IE literature (Mintz et al. 2009). We eval-
uate using the test set from Liu et al. (2016). Figure 1 shows
the results for the five relations. The error bars represent
95% confidence intervals.

We find that LABEL-RANDOM vastly outperforms the
other strategies at low skews. Gen+Rand- is especially
poor in this context, because ADD-RANDOM-NEG puts
many false negatives into the training set. We also ob-
serve that at high skew, Gen+Rand- outperforms the other
strategies. Presumably, it beats Gen+Modify— because
GENERATE-NEGATE is costly, leading to a 40% smaller
training set. Disappointingly, there doesn’t appear to be a
setting where the GENERATE-NEGATE EAP is helpful, as
Gen+Modi fy- is dominated for every value of skew.

Overall, we conclude that although GENERATE-NEGATE
can be more cost-effective than ADD-RANDOM-NEG in low
skew settings, ultimately it is unlikely to be the best EAP to
use in any skew setting. Thus, we do not continue to further
investigate the GENERATE-NEGATE EAP.

Uncertainty Sampling vs. Predicted Positives

We now study the relative value of LABEL-PREDPOS and
LABEL-ACTIVE. Since finding positive examples is cru-
cial in high-skew domains, we conjecture that examples
thought by the current classifier to be positive should be es-
pecially promising. Having the workers label these points
should generate more true positive training examples than a
standard active learning algorithm like uncertainty sampling
(Lewis and Catlett 1994). This experiment aims to test this
hypothesis.

To compare LABEL-PREDPOS and LABEL-ACTIVE, we
implement two versions of MB-CB, which select between
two EAPs each. Both versions use GENERATE-POSITIVE
as one of the EAPs, but differ on the second. MB-CB (Pos)
uses LABEL-PREDPOS, whereas MB-CB (Active) uses
uncertainty sampling as its second EAP.

Recall that MB-CB artificially bounds the class ratio to
1:r. In contrast to the previous experiment, we set r = 3
because the larger dataset that we use (NADS) allows us to
utilize a training set with slightly more minority examples
than majority examples, which tends to work well in skewed
domains (Weiss and Provost 2003). Any time the algo-
rithms pick GENERATE-POSITIVE, they automatically ex-
ecute three ADD-RANDOM-NEG actions for each generated
positive. Any time the algorithms pick LABEL-PREDPOS or
LABEL-ACTIVE, if n is the number of obtained positive ex-
amples, then the strategy will keep all n positive examples
in the training set, but keep at most 3n of the obtained neg-
atives and discard the rest. We make an exception if n = 0.
In this case, we pretend n = 1 and keep 3 negative exam-
ples so that we are always adding some data with each EAP
execution and avoid infinite loops.

To compare the two algorithms, we train logistic regres-
sion classifiers using a unigram bag of words model. We
first set a topic to be the positive class (e.g., “Health”). For
each skew s € {1,9,49,99,499,999}, we run each algo-
rithm 10 times using a budget of $100. For each run of an
algorithm, we construct a new synthetic dataset from NADS
in the following manner: we first construct a generation set
by sampling 2000 positive examples from NADS. Anytime
an algorithm executes the GENERATE-POSITIVE action, we
randomly sample examples from this generation set. Then,
we construct a test set by sampling 100 positive examples
and 100 X s negative examples. Finally, we construct an un-
labeled corpus by sampling from the remaining examples as
many positive examples as possible while maintaining the
desired skew s. When an algorithm executes labeling or ma-
chine primitives, we sample from this set. As before we plot
the area under the F1-cost curve, averaged over the 10 runs.

Figure 2(a) shows our results for the “Health” domain.
To our surprise, we see that MB-CB (Active) domi-
nates MB—CB (Pos). This result is unexpected, because
MB-CB (Pos) uses a primitive designed specifically to lo-
cate positive examples, and yet it loses to uncertainty sam-
pling, even at high skews.

To find out why, we investigate the behavior of the two
algorithms by comparing how often they execute generation
primitives versus labeling primitives. Figure 2(b) shows the
case for extreme skew, s = 999. Note that both algorithms
start with 100% labeling actions (because they are cheaper),
but both become disenchanted by low yield and switch to
generation. After the classifiers have been trained with some
generated positives (increasing recall), they switch back to
labeling. But MB—-CB (Active) does significantly more la-
beling, which means that it must be finding more positives
during labeling.

Figure 2(c) confirms the analysis, showing that
MB-CB (Active) actually obtains many more posi-
tive examples from labeling than does MB-CB (Pos) . Only
when the budget is nearly exhausted does MB-CB (Pos)
catch up. We find similar results on the other three domains
(graphs omitted for space). This suggests that classifiers are
unable to distinguish between classes in the early stages of
learning, because otherwise MB—CB (Pos) would be able
to identify positive examples sooner.

Overall, we conclude that LABEL-PREDPOS’s benefits
over time-tested uncertainty sampling are unclear. By the
time classifiers are more competent at identifying positive
examples, explicitly finding such examples may be less im-
pactful, because positive examples are most useful early on,
when recall is low.

Performance of MB-CB

Having ruled out the LABEL-PREDPOS and GENERATE-
NEGATE EAPs in the previous two experiments, we final-
ize our best MB—-CB algorithm as MB-CB (Active), one
which switches between two EAPs — GENERATE-POSITIVE
and LABEL-ACTIVE, while using ADD-RANDOM-NEG to
manage the class ratio of the generation primitive. (We also
rule out LABEL-RANDOM as it is outperformed by LABEL-
ACTIVE. We omit this result for lack of space.) Indeed, we
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many skew settings.

believe that switching between labeling and generation is the
critical technique for achieving robustness to skew. We now
answer the third experimental question, “How does our al-
gorithm for choosing EAPs, MB-CB (Active), compare
to other strategies?”” For comparison, we choose two simple
baselines, Round-Robin and LABEL-ACTIVE, and two
state-of-the-art algorithms, GL and GL-Hybrid (Attenberg
and Provost 2010).

Comparison Algorithms: GL (Guided Learning) tasks
workers with generating examples at a specified class ratio.
GL simply cycles between executing GENERATE-POSITIVE
once and ADD-RANDOM-NEG 3 times in order to match the
ratio that we use in MB—CB (Act ive) . GL does not execute
LABEL-ACTIVE.

Round-Robin simply cycles between GENERATE-
POSITIVE and LABEL-ACTIVE, where LABEL-ACTIVE
only executes uncertainty sampling.

Finally, GL-Hybrid begins by executing GL. After ev-
ery action, it estimates performance using cross-validation

and constructs a learning curve. It then estimates future ex-
pected gain in performance by estimating the derivative of
the learning curve at the last computed point. When the
derivative drops below a threshold t, it switches to execut-
ing LABEL-ACTIVE and never executes GL again. We set
t = 0.00005 as suggested by Attenberg et al. (2010).

Experimental Results With Real Generation Sets: We
use the same dataset construction as the previous experiment
to compare algorithms, with one exception. Instead of simu-
lating generation by sampling positives from the NADS cor-
pus, we use NADS-Generate (populated by AMT workers)
as a real generation set. This setting is far more challenging,
since algorithms may suffer losses from the distributional
differences between the generated examples and the actual
test examples.

Figure 3 shows the results for the “Entertainment,” “Busi-
ness,” “Science”, and “Health” domains. We use a log scale
on the y-axis in order to more clearly show the differences.
We first observe that, unsurprisingly, LABEL-ACTIVE per-



forms well in low-skew environments, but eventually is un-
able to learn anything at the highest skews. GL is a strong
strategy only in high-skew domains; and Round-Robin
achieves better results than GL at low-skew, but only outper-
forms LABEL-ACTIVE at high skew.

Next, we observe that GL-Hybrid does not clearly im-
prove upon GL. The key weakness of GL-Hybrid lies in
the difficulty of setting the threshold parameter. The estima-
tions used to compute whether to switch to active learning
can be wildly wrong, causing the algorithm to switch from
guided learning to active learning either far too early or far
too late if the threshold is not set correctly. For example, in
a low-skew setting, GL-Hybrid may execute GENERATE-
POSITIVE for an extremely long time if the performance of
the classifier consistently rises.

Finally, we see that our algorithm, MB-CB (Active),
is the most robust algorithm overall, and averages a 14.3
gain in F1 AUC over state-of-the-art GL-Hybrid across all
skews and domains. This result underscores the importance
of adaptive switching between the two primitives using a
learning-based approach.

Code and data to reproduce our experiments can be found
at: https://github.com/polarcoconut/thesis-skew.

Discussion

MB-CB is a first step towards an intelligent active learning
approach that is robust to skew. Many different kinds of
EAPs could be added into its repertoire, like distant super-
vision (Craven and Kumlien 1999a; Angeli et al. 2014) or
feature labeling (Patterson and Hays 2016).

However, MB—CB has an important technical weakness.
While it is very good at learning about the cost-effectiveness
of an EAP for finding positive examples (which is especially
valuable for initial training at high skews), it does not differ-
entiate between the qualities of different positive (or nega-
tive) examples. For instance, its selection mechanism cannot
prefer LABEL-ACTIVE over GENERATE-POSITIVE (which
may produce positive examples from a completely different
distribution), except when active learning is generating pos-
itive examples more cheaply. An alternative approach may
be to model the problem using budget-limited multi-armed
bandits (Tran-Thanh et al. 2010; 2012; Ding et al. 2013) that
chooses the next EAP based on the expected gain in preci-
sion, recall or F1, though it may be challenging to robustly
predict the expected gain.

Furthermore, we note that MB—CB’s selection rule does
not explicitly attempt to gather negative examples, which is
rectified by the make-balanced heuristic. We hope that a
future modification will make adding negatives an explicit
part of the algorithm’s selection policy, so that the number
of negatives may also be chosen intelligently.

Related Work
High-Skew Active Learning

Various methods for active learning in high skew environ-
ments have been proposed, such as those based on near-
est neighbors (He and Carbonell 2007; Doersch et al. 2012;
Patterson et al. 2016), query by committee (Tomanek and

Hahn 2009), and uncertainty sampling (Vijayanarasimhan
and Grauman 2011). Other approaches use multiple clas-
sifiers to choose the next examples to label (Wallace et al.
2010; Li et al. 2012). Extensions of active learning algo-
rithms for high skew scenarios include allowing the anno-
tators to perform keyword search to generate examples (Vi-
jayanarasimhan and Grauman 2011), labeling attributes in-
stead of data points (Patterson and Hays 2016), and guided
learning, which enables the annotators to generate training
data points (Attenberg and Provost 2010). Our work builds
upon guided learning. However, all these approaches are tar-
geted at developing a single active learning strategy, whereas
our work adaptively chooses among various strategies to
achieve more efficient training. In some sense, our work
can be understood as a meta-active learning approach.

Training algorithms often artificially reduce class imbal-
ance by oversampling minority class examples (Zhu and
Hovy 2007) or choosing skew-dependent misclassification
costs (Bloodgood and Vijay-Shanker 2009). We choose the
former strategy in our experiments.

Guided Learning and Example Generation

Attenberg et al. (2010) propose guided learning in which
annotators generate or find positive examples. Guided learn-
ing has been useful in creating a variety of NLP datasets,
including text classification datasets over tweets (Sadilek et
al. 2013) and advertisements (Sculley et al. 2011); and para-
phrase data for training dialog systems (Wang et al. 2012)
and semantic parsers (Wang, Berant, and Liang 2015).

The original guided learning paper shows that in high-
skew settings, guided learning is more effective than un-
certainty sampling, and guided learning followed by uncer-
tainty sampling is more effective than either of them in isola-
tion. Our work builds upon this sequential hybrid, but allows
the algorithm to dynamically choose between the two (and
other EAPs). Our experiments show that this added power
of interleaving performs substantially better than the user-
defined switch point of the original paper.

Generation of near-miss examples has been used for
training object detectors (Gurevich, Markovitch, and Rivlin
2006) and visual QA systems (Zhang et al. 2016).

Heuristics for Identifying Positive Examples

An alternative for generating balanced training sets in high-
skew domains is to use a heuristic to noisily label exam-
ples. For example, distant supervision is frequently used
for information extraction (Craven and Kumlien 1999b;
Wu and Weld 2007). It labels as positive any sentence that
contains two entities that are known to have a relation be-
tween them (in an external knowledge base). Unfortunately,
the assumption that the target concept is in some external
knowledge base is, in many cases, unrealistic.

Data programming (Ehrenberg et al. 2016) is a paradigm
in which humans design domain-specific rules that can be
programmatically used to label examples (e.g., (Hoffmann,
Zettlemoyer, and Weld 2015)). Whenever feasible, data pro-
gramming is a strategy for obtaining examples, and can be
considered another EAP.



Conclusion

Active learning systems can use many different query types
to acquire labeled training data; we present a novel solu-
tion aimed at maximizing classifier performance for a given
annotation budget. After listing several existing EAPs and
proposing a new one, we introduce a bandit algorithm for
the problem of selecting EAPs. MB-CB works by comput-
ing the expected cost of obtaining a single positive example
from each method and then picking the cheapest EAP. Be-
cause these costs can only be learned through execution of
the EAPs, MB-CB adapts from the multi-armed bandit liter-
ature to make the tradeoff between exploiting the EAP it be-
lieves to be cheapest and exploring the costs of other EAPs.

We perform experiments on real and synthetic datasets to
explore the behavior of the basic primitives and our con-
trol algorithm. First, we show that asking the crowd to
generate ‘near-miss’ negative examples is not cost-effective
compared to either traditional labeling (at low skew) or
blindly labeling a random example to be negative (at high
skew). Second, we demonstrate that, surprisingly, trying to
label predicted positive examples actually results in finding
fewer positive examples than active learning during the early
stages of training. As a result, using LABEL-ACTIVE cre-
ates a better classifier. Finally, we show that MB—CB has
the ability to adapt to domains of varying skew and outper-
forms state-of-the-art baselines, yielding a 14.3 point gain
on average in F1 AUC over 24 environments (6 domains X
4 skews) compared to Attenberg et al.’s (2010) best algo-
rithm, GL-Hybrid.
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