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Abstract—We study distributed searches in fully decentralized
peer-to-peer networks. This papers reports on a study that aims
to understand the robustness and load balancing of a distributed
search network. We focus on a visual analysis of search traffic,
load distribution, and edge density when the network experiences
adversaries. The analysis reveals that the network tends to rely
more heavily on an even smaller portion of nodes for searches
when an increasing number of nodes become unavailable. In the
meanwhile, nodes become more exploratory and tend to engage
more of those previously unutilized. The trade-off between a
more skewed traffic distribution and a greater edge density in
related scenarios is important to the robustness of the network
and requires further investigation.
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I. INTRODUCTION

Decentralization is the nature of many naturally, socially,
and technologically grown structures that scale. The Web and
the Internet operate in a rather decentralized manner without
explicit global control. On the Internet, fundamental technolo-
gies such as routing and lookup operations are decentralized
by design and are able to scale with the rapid growth of the
network.

From the perspective of the Internet of everything, where
any tiny gadgets and daily items can be attached to a highly
interconnected digital world, the question of finding relevant
pieces of information about and on these devices is stag-
geringly challenging. While centralization is likely to fail
in the long term, decentralization represents the future of
technological innovation; searching is an essential part of the
trend.

Our research envisions a fully decentralized architecture in
which individual search engines can interconnect and con-
tribute to the collective power of finding relevant information,
through distributed routing or network traversal. The goal
of this research is to understand the general mechanisms
by which a large number of distributed systems can work
together to support scalable search and retrieval operations.
It aims to explore alternative search engine architectures that
can function, scale, and cope with the increasing magnitude
and dynamics of networks such as the Web.

II. RELATED WORK

Related challenges facing distributed or decentralized
searches have been studied in areas of distributed (feder-

ated) information retrieval, peer-to-peer networks, multi-agent
systems, and complex networks [16]. Classic distributed IR
research has focused on distributed database content and char-
acteristics discovery, database selection, and result fusion in a
relatively small number of distributed, persistent information
collections [9].

Peer-to-peer IR research often involves a larger number
of distributed systems which dynamically join and leave the
community. Related projects have employed techniques such
as distributed hashing tables (DHTs) in structured P2P net-
works and semantic overlay networks (SONs) in unstructured
networks for efficient discovery [6]. Agent-based modeling has
proven to be a powerful tool in distributed information retrieval
(IR) research [10]. The agent paradigm has been extensively
used to model processes such as P2P search [24], intelligent
crawling [20], and expert finding [15].

The central idea of peer segmentation or clustering in
frameworks such as SONs to support efficient decentralized
searches has also been studied in complex network research.
In networks with small world properties, studies have demon-
strated that globally relevant targets can be found efficiently
through collaboration of distributed, local intelligence in large
networks [3].

Our research has studied related decentralized/distributed
information retrieval problems in light of network formation
and clustering, emergent from interconnectivity among dis-
tributed systems. In a series of large-scale IR experiments
we conducted, network clustering based on semantic overlay
was found to be useful for decentralized searches, however,
with qualifications [11], [12]. The best search efficiency and
effectiveness were supported by a very specific level of net-
work clustering. Any departure from that fine-tuned level, i.e.
stronger or weaker clustering, degraded search performance
significantly [13].

III. SEARCH SCALABILITY & ROBUSTNESS

The small world phenomenon suggests that distributed
searches can be conducted to find results within a short radius,
regardless of the network size. However, if we allow queries
to traverse the edges of a network to find relevant information,
there has to be some association between the network space
and the relevance space in order to orient searches.



A. Network Clustering and Searches

Distributed information retrieval, particularly unstructured
peer-to-peer IR, relied on peer-level clustering for better
decentralized search efficiency. Topical segmentation based
techniques such as semantic overlay networks (SONs) have
been widely used for efficient query propagation and high
recall [1], [5], [19], [6]. Hence, overall, clustering was often
regarded as beneficial whereas the potential negative impact
of clustering (or over-clustering) on retrieval has often been
overlooked.

Research on complex networks has found that a proper
level of network clustering with some presence of remote
connections has to be maintained for efficient searches [17],
[23], [18], [21], [3]. Clustering reduces the number of “irrel-
evant” links and aids in creating topical segments useful for
orienting searches. Without sufficient clustering, the network
has too much randomness to guide efficient traversals because
weak ties dominate. While searches may jump quickly from
one place to another (hops) in the network space, there is
no “gradient” to lead them toward targets. With very strong
clustering, on the other hand, a network tends to be fragmented
into local communities with abundant strong ties but few weak
ties to bridge remote parts [7], [22]. Although searches might
be able to move gradually toward targets, necessary “hops”
become unavailable.

In other words, trade-off is required between strong ties
for search orientation and weak ties for efficient traversal.
In Granovetter’s terms, whereas strong ties deal with local
connections within small, well-defined groups, weak ties cap-
ture between-group relations and serve as bridges of social
segments [7].

One key parameter widely used in complex network re-
search for studying the impact of clustering is the clustering
exponent α. [17] studied decentralized search in small world
using a two dimensional model, in which peers had rich
connections with immediate neighbors and sparse associations
with remote ones. The probability pr of connecting to a neigh-
bor beyond the immediate neighborhood was proportional to
r−α, where r was the search distance between the two in
the dimensional space and α a constant called clustering
exponent. It was shown that only when clustering exponent
α = 2, search time (i.e., search path length) was optimal and
bounded by c(logN)2, where N was the network size and c
was some constant [16]. More generally, when α = d on a
d-dimension space, decentralized search is optimal. Further
studies conducted on small world networks as well as in
distributed IR have shown consistent results [18], [21], [12],
[13].

B. Verified Scalability Model

Our research has focused on search efficiency and scalability
with growing network sizes N and varied (distributed system)
neighborhood size d distributions (degree distributions). We
have studied and validated a scalability function which we
discuss below.

Let L denote search path length, the number of hops
(distributed systems) a search has to traverse the network
to reach a desired target. According to [16] and several
studies in distributed IR, when network clustering is optimal,
a reasonable relationship between L̂ (expected value of L
based on relevance/similarity searches) and network size N
(the number of distributed systems in the network) is:

L̂ = β′ · (logbN)λ (1)

where β′ is a constant and b is the logarithmic base. λ is
an exponent parameter to be identified with empirical data.

Assume the majority of distributed systems (hops) have a
neighborhood size (number of interconnected systems) dm.
Let Lg denotes the ideal search path length given a (imagined)
perfect, global index of all distributed systems. It can be shown
that Lg ∝ logbN as well as N ≈ dLg

m :

Lg ∝ logbN (2)
≈ logdm N (3)

Hence, we can replace logbN with logdm N (i.e. using dm
as the logarithmic base) in Equation 1, which becomes:

L̂ = β · (logdm N)λ (4)

= β · (logN/ log dm)λ (5)

where β is a constant and dm the neighborhood size (degree)
of majority distributed systems. To simulate real networks, a
power-law function will be used for degree distribution d ∈
[dm, dx], where dm is the min degree (which the vast majority
have in a power law) and dx is the maximum value (which
only a small number of nodes have).

C. Research Focus on Robustness

In a previous study, we validated the scalability model with
large-scale experiments, identified the exponent λ, estimated
the β coefficient with varied N and dm settings, and predicted
potential search efficiency in real-scale environments with
millions to billions distributed systems [14].

In this study, we aim to better understand how distributed
service nodes can continue to function efficiently in unstable
environments. In particular, we are interested to know whether
the system as a whole can stand and how well it performs
when a significant number of members become unavailable
and unresponsive due to individual failures or attacks.

IV. SIMULATION FRAMEWORK AND ALGORITHMS

We have developed a decentralized search simulation frame-
work based on multi-agent systems for finding relevant infor-
mation in distributed settings. Each agent (node) represents an
search (retrieval) system, which has its document collection
and can connect to others to route queries. The simulation
system was implemented in Java the multi-agent system JADE
[2] and full-text search library Lucene [8].



In the simulation framework, each node builds an index
on a local document collection and connects to a number of
neighbors (a variable in this study) for help with unanswered
queries. When a node receives a query/task, it first searches
its local collection and, if the result is unsatisfactory, forwards
the query to one of its neighbors most likely to have relevant
information. The query routing continues until relevant results
have been found or when it reaches a limit (i.e. max search
path length). Further details on the simulation framework can
be found in [13].

The subsections below elaborate on specific algorithms
implemented in the framework for 1) information represen-
tation and weighting (to represent documents and queries), 2)
neighbor (node) representation, 3) neighbor selection (search)
method, and 4) a network interconnectivity (clustering) func-
tion.

A. Basic Functions

1) TF*IDF Information Representation: Each node pro-
cesses information it individually has and produces a local
term space, which is used to represent each information
item using the classic TF*IDF (Term Frequency * Inverse
Document Frequency) weighting scheme. Note that IDF values
are based on the node’s local collection.

2) DF*INF Neighbor Representation: A node uses a meta-
document to represent each of its neighbors. The weight of
term t in a meta-document is computed by: W ′(t) = df ′(t) ·
log(

N ′
b

nf ′(t) ), where df ′(t) is the number of documents in the
neighbor node (collection) containing term t, N ′b is the total
number of the node’s neighbors (meta-documents), and nf ′(t)
is the number of neighbors containing the term t. We refer to
this function as DF*INF, or Document Frequency * Inverse
Neighbor Frequency.

3) Similarity Scoring Function: Given a query q, the simi-
larity score of a document d matching the query is computed
by:

∑
t∈qW (t) · coord(q, d) · queryNorm(q), where W (t) is

the weight of term t given by the above TF*IDF or DF*INF,
coord(q, d) a coordination factor based on the number of terms
shared by q and d, and queryNorm(q) a normalization value
for query q given the sum of squared weights of query terms.
This scoring function is used to compute query-document
similarities as well as query-metadocument (query-neighbor)
similarities.

B. Neighbor Selection (Search) Methods

We use the following strategies to decide which neighbors
should be contacted for the query: 1) SIM (Similarity) Search
which selects the neighbor with the highest similarity score,
and 2) Sim*Deg (similarity times degree) which combines
similarity and degree scores to determine the best neighbor.

C. Interconnectivity and Network Clustering

To interconnect nodes, the first step is to determine how
many links (degree du) each distributed node u should have.
Once the degree is determined, the system will interact with
a large number of other systems (from a random pool) and

select only du systems as neighbors based on a connectivity
probability function guided by the clustering exponent α.
Based on the ClueWeb data, given the number of incoming
hyperlinks d′u of system/site u, the normalized degree is
computed by:

du = dm +
(dx − dm) · (d′u − d′m)

d′x − d′m
(6)

where d′x is the maximum degree value in the hyperlink
in-degree distribution and d′m the minimum value in the same
distribution. Once degree du is determined from the degree
distribution, a number of random nodes will be added to its
neighborhood pool such that the total number of neighbors
d̂u � du (d̂u = 1, 000 in this study). Then, the node in
question (u) queries each of the d̂u neighbors (v) to determine
their topical distance ruv . Finally, the following connection
probability function is used by system u to decide who should
remain as neighbors (to build the interconnectivity overlay):

puv ∝ r−αuv (7)

where α is the clustering exponent and ruv the pairwise
topical (search) distance. The finalized neighborhood size
will be the expected number of neighbors, i.e., du. With
a positive α value, the larger the topical distance, the less
likely two systems/nodes will connect. Large α values lead to
highly clustered networks while small values produce random
networks with many topically remote connections.

V. EXPERIMENTAL DESIGN

A. Data Collection

We rely on the ClueWeb09 Category B collection created
by the Language Technologies Institute at Carnegie Mellon
University for IR experiments. The ClueWeb09 collection
contains roughly 1 billion web pages and 8 billion outlinks
crawled during January - February 2009. The Category B
is a smaller subset containing the first crawl of 50 million
English pages from 3 million sites with 454 million outlinks.
The ClueWeb09 dataset has been adopted by several TREC
tracks including Web track and Million Query track [4].
Additional details about the ClueWeb09 collection can be
found at http://boston.lti.cs.cmu.edu/Data/clueweb09/.

A hyperlink graph is provided for the entire collection and
the Category B subset. In the Category B subset, there are
428,136,613 nodes and 454,075,604 edges (hyperlinks). Nodes
include the first crawl of 50 million pages and additional
pages that were linked to. Only 18,607,029 nodes are the
sources (starting pages) of the edges (average 24 outlinks per
node) whereas 409,529,584 nodes do not have outgoing links
captured in the subset.

B. Network Model and Sizes

Each node represents an IR system serving a collection
of pages (documents). We assume that there is no global
information about all document collections. Nor is there cen-
tralized control over individual nodes. Nodes have to represent

http://boston.lti.cs.cmu.edu/Data/clueweb09/


themselves using local information they have and evaluate
relevance based on that. Using the ClueWeb09 collection, we
treat a web site/domain as a distributed system/node and use
hyperlinks between sites to construct the initial network.

We first construct a list of all web domains in the category
B subset with at least one in-link in the provided web graph.
We take the first 1000 web sites to construct the initial network
and extend it to 10000 nodes/systems. Network clustering is
performed using the method described in Section IV-C to
establish individual node neighborhoods. We use an observed
optimal clustering exponent α = 2 in the experiments.

C. Search Task - Rare Item Search

Given the size of the web (and likewise the ClueWeb09
collection), it is nearly impossible to manually judge the rel-
evance of every document and establish a complete relevance
base. Hence, we primarily rely on existing evidence in data
to do automatic relevance judgment. We use documents (with
title and content) as queries for decentralized searches. From
the first 1000 web domains constructed above, we select as
queries 12 random web pages with at least 3 in-links. The
final set of query documents include (all trecids with prefix
clueweb09-en000): 1-42-03978, 1-73-04287, 1-90-26216, 2-
73-04700, 2-91-14776, 3-27-30577, 3-30-28328, 3-51-10345,
3-55-31539, 4-61-19060, 4-72-24215, 4-92-04942.

The search task is to find the exact copy of a given document
(query). Specifically, when a query document is assigned to an
node, the task involves finding the site or author who created
it and therefore hosts it. In other words, in order to satisfy
a query, an node must have the exact document in its local
collection. The strength of this task is that relevance judgment
is well established provided the relative objectiveness and
unambiguity of creatorship or a “hosting” relationship. The
extreme rarity will pose a great challenge on the proposed
decentralized search methods.

D. Degree Distribution: [dm, dx]

We will use the degree (in-degree) distribution of the
ClueWeb09B hyperlink graph and normalize the distribution to
fall within a range [dm, dx]. With different dm and dx values,
the degree distribution will continue to follow a power-law
pattern in which the majority of nodes have the degree of
dm. We use degree ranges du ∈ [16, 64] and [64, 128], to
examine the impact of degree distribution (neighborhood size)
on decentralized searches.

E. Fraction of Unavailable Nodes f

We simulate the number of nodes that become unavailable
and cannot provide routing services to help route any query.
In the experiments, we randomly select a number of service
nodes (from 10% to 80% of the entire network) and make
them unresponsive. However, we make sure the target nodes
with relevant information to search queries are available so
that all searches can be conducted successfully.

F. Evaluation

In previous research we focused on the evaluation of search
effectiveness and efficiency, using classic metrics based on
precision, recall, and search time. In this study, we shift our
focus to understanding dynamics and utility of the network
to support distributed searches. With the varied fraction of
unavailable nodes in different network settings, we examine
the overall network traffic and load balancing using the fol-
lowing methods: 1) edge density, which computes the ratio
of the number of edges (paths of search requests) and the
number of possible edges, 2) cumulative distributions of the
number of search requests to each node, and 3) network
visualization of searched nodes to explore the underlying
network structured formed by the search traffic. While the
first two approaches enable quantitative evaluation of the
search network, network visualization enables more qualitative
evaluation and preliminary observation that can be explored
further.

G. Parameter Settings

The list below summarizes major variables discussed above.
We use full combinations of these parameters in experiments,
i.e., 1 (network size) × 2 (degree ranges) × 2 (search methods)
× 5 (simulations of node unavailability).
• Network sizes N = 10, 000 and max search path lengths
Lmax = N ;

• Degree ranges d ∈: [16, 64] and [64, 128];
• Search methods: Similarity (SIM) search and similar-

ity*degree (SimDeg) search.
• Fraction of unavailable nodes: we vary the portion of

unavailable nodes from 0 (all available), to 10%, 20%,
40%, and 80%.

VI. RESULTS

A. Network Visualization and Analysis

With the recorded chains of nodes engaged in the searches,
we visualize the searched network under different parameter
settings. As shown in Figure 1, each network is produced
using the force-directed Fruchterman-Reingold layout. With
the exception of green (query starting point) and red (target)
nodes, the (orange) node size is proportionate to the number
of search requests one has received whereas an arrow indicates
the direction of requests.

Examination of the visualizations reveals that when all
nodes are available (top plots in Figure 1 with f = 0), search
requests are highly distributed among many network nodes.
When f (fraction of unavailable nodes) increases, the network
becomes increasingly sparse and there is a much smaller
portion of nodes that are actively engaged in the searches (e.g.
as indicated by a smaller number of larger yellow circles in
plots closer to the bottom of Figure 1).

Comparing Similarity search (left) and Sim*Degree search
(right) in Figure 1, it appears that Sim*Deg searches engage a
smaller portion of nodes that are disproportionate in their load
(circle size). This is likely due to the fact that Sim*Deg con-
siders connectivity (out-degree) as a major factor in deciding



sim, f=0, dm=64 simdeg, f=0, dm=64

sim, f=20, dm=64 simdeg, f=20, dm=64

sim, f=40, dm=64 simdeg, f=40, dm=64

sim, f=80, dm=64 simdeg, f=80, dm=64

c) Similarity Search d) Sim*Degree Search
Fig. 1. Network visualization of searched nodes with Similarity Search (left
column) and Sim*Degree Search (right column), with dm = 64. From top to
bottom, the fraction of unavailable nodes f increases from 0% to 80%. The
green node is where queries are initially issued (routing starts) whereas the
red node is where targets are (routing ends).

which neighbor nodes should be included in the search/routing
process.

B. Cumulative Distribution of Traffic

The visualizations seem to suggest that nodes are dispro-
portionately engaged in search activities with an increasing
number of unavailable nodes. We plot cumulative distributions
of traffic (search requests to each node) given the varied
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Fig. 2. Cumulative distribution of load (search requests), with dm = 64.

parameters. Figure 2 plots the cumulative distribution for sim
search and sim*degree search with dm = 64, where each curve
is on a specific f (fraction of unavailable nodes) setting.
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Fig. 3. Cumulative distribution of load (search requests), with dm = 16.

As Figure 2a shows, the distribution of f = 80 (80%
unavailable) departs very much from that of f = 0 (all nodes
available), and the distribution curve is flatter. This tells that
with a large number of unavailable nodes, there is a much
greater discrepancy among the heavily loaded nodes and others
that are lightly engaged in searches. The same can be observed
from distribution plots for Sim and Sim*Degree searches with
dm = 16.

The overall observation of these distribution plots is that
when a large number of nodes become unavailable randomly,
the network tends to rely more heavily on even fewer nodes for
query routing. Even though our previous research showed that
searches can be more efficient due to a downsized network,
this is at the expense of more highly connected nodes and the
load is more unevenly distributed.

C. Searched Network Density

We look at edge density, which is defined as the number
of edges (i.e. search requests from one node to another) as
the ratio to the number of all possible edges. We plot the the
overall network edge density vs. the fraction of unavailable
nodes f in Figure 4.

As Figure 4 shows, edge density increases with an in-
creasing number of unavailable nodes for both Similarity and
Sim*Degree searches. This is advantageous as it suggests that
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Fig. 4. Network Density vs. f Fraction of Unavailable Nodes

nodes are more exploratory and/or use a larger portion of other
nodes that were not previously engaged in searches when
the network shrinks in size due to node unavailability. The
interplay of this impact on edge density and that on traffic
distribution is important to the overall utility of the search
network and should be studied further.

VII. CONCLUSION

In this paper we report on a visual analysis of search traffic,
load distribution, and edge density of a network for distributed
searches. We focus on the impact of node unavailability on the
robustness and load balancing of the network. Results show
that the network relies more heavily on an even smaller portion
of nodes for searches when an increasing number of nodes
become unavailable. Nodes also tend to be more exploratory
and ultimately engage more of those previously unutilized.

In general, increased node unavailability (e.g. due to attacks)
in the network leads to a more skewed traffic distribution and
a greater edge density. Understanding the trade-off in related
scenarios is important to the robustness of the network for
distributed searching and requires further investigation.
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[3] M. Boguñá, D. Krioukov, and K. C. Claffy. Navigability of complex
networks. Nature Physics, 5(1):74 –80, 2009.

[4] C. L. A. Clarke, N. Craswell, and I. Soboroff. Overview of the TREC
2009 Web Track. In Proc. of TREC-2009, 2009.

[5] A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p
systems. In Agents and Peer-to-Peer Computing, pages 1–13, 2005.

[6] C. Doulkeridis, K. Norvag, and M. Vazirgiannis. Peer-to-peer similarity
search over widely distributed document collections. In LSDS-IR ’08:
Proceeding of the 2008 ACM workshop on Large-Scale distributed
systems for information retrieval, pages 35–42, New York, NY, USA,
2008. ACM.

[7] M. S. Granovetter. The strength of weak ties. American Journal of
Sociology, 78(6):1360–1380, May 1973.
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