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ABSTRACT

Since Artificial Intelligence (AI) software uses techniques like deep
lookahead search and stochastic optimization of huge neural net-
works to fit mammoth datasets, it often results in complex behavior
that is difficult for people to understand. Yet organizations are de-
ploying Al algorithms in many mission-critical settings. In order
to trust their behavior, we must make it intelligible — either by
using inherently interpretable models or by developing methods
for explaining otherwise overwhelmingly complex decisions by
local approximation, vocabulary alignment, and interactive dialog.
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1 INTRODUCTION

Artificial Intelligence (AI) systems have reached or exceeded hu-
man performance on many circumscribed tasks. As a result, they
are increasingly deployed in mission critical roles — credit scoring,
predicting if a bail candidate will commit another crime, selecting
the news we read on social networks, and soon we may have self-
driving cars. Unlike other mission critical software, it’s very hard
to test Al systems, which are extraordinarily complex. Al decisions
are context specific, often based on thousands or millions of fac-
tors. Typically, Al behaviors are generated by searching vast action
spaces or learned by the opaque optimization of mammoth neural
networks operating over inhuman amounts of training data. Almost
by definition there is no deterministic method for accomplishing
the AT’s task.

Unfortunately, much computer-produced behavior is alien — it
can fail in unexpected ways. This lesson is most clearly seen in
the performance of the latest deep neural network image analysis
systems. While their accuracy at object-recognition on naturally oc-
curring pictures is extraordinary, imperceptible changes to the input
images can lead to erratic predictions, as shown in Figure 1. Why is
the recognition system so brittle, making different predictions for
apparently identical images? Unintelligible behavior isn’t limited
to machine learning — many Al programs perform search-based
lookahead and inference whose complexity exceeds human abilities
to verify. However, if we don’t understand a system’s behavior, it
is dangerous to trust it.

Yet it’s crucial that we be able to trust deployed systems, and this
requires improving robustness and developing ways to make their
reasoning intelligible [7]. As a result, researchers have increasingly
focused on ways for enabling Al system to explain their learned
models and reasoning — so that humans can understand and trust
their operation. Such explanations may help reveal situations where
biased training data has resulted in a learned model that unfairly
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discriminate against certain social groups [14]. Furthermore, in
cases where the data and learned-models are accurate or where
search algorithms have provably-correct properties, explanations
can give humans useful insights about the domain at hand [6].

But it’s remarkably hard to specify what makes an explanation
“intelligible” or to navigate the tension between a concise account
and an accurate one. We discuss desiderata for explanations later
in this article, but in brief, a good explanation should allow the
human to see what factors caused the Al’s action and to predict how
changes in the situation would have led to alternative behaviors.

We focus on two high-level approaches to building intelligible
AI: 1) ensure that the underlying reasoning or learned model is
inherently interpretable (aka transparent, intelligible), e.g., learning
a linear model over a small number of well-understood features,
and 2) generate post hoc explanations of more complex, inscrutable
reasoning, such as the predictions of complex neural networks or
deep-lookahead search. Using an interpretable model has the benefit
of veracity — in theory, the human can see exactly what the model
is doing. But this approach has the drawback that interpretable
methods may not perform nearly as well as more complex methods,
such a deep neural networks. Conversely, the post-hoc approach
has the benefit that it promises to apply to whichever Al technique
is currently delivering the best performance, but it raises additional
concerns since the explanation is inherently different from the way
the Al system is actually operating. How can a person trust that
the explanation reflects the essence of the underlying decision and
isn’t sweeping important details under the rug? We argue that the
answer is making the explanation system interactive so the user
can drill down until they are satisfied with their understanding.

Since the key challenge for designing intelligible Al is commu-
nicating a complex computational process to a human, it requires
interdisciplinary skills, including HCI as well as Al and machine
learning expertise. Furthermore, since the nature of explanation
has been long studied by philosophy and psychology, these fields
should also be consulted.

The next section reviews the common methodology for train-
ing and evaluating machine learning models, enumerating reasons
why one might wish for more understanding than is provided by
traditional performance metrics. Next, we describe the benefits and
limitations of GAZM, a class of interpretable ML models. Section 4
discusses methods and challenges for generating explanations of in-
scrutable models, including blackbox models such as those provided
by remotely managed cognitive services. We close by sketching a
vision for interactive explanation systems.

2 WHY DOUBT LEARNED MODELS?

We’ve argued that if Alis interpretable or can explain itself, then this
will increase humans’ understanding of the system. But what type
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Figure 1: Figure 1 from Goodfellow etal [10], demon-
strating adversarial example generation applied to the
GoogLeNet [39] image recognizer, trained on ImageNet.
Adding an imperceptibly small vector changes GoogLeNet’s
classification of the image.

of understanding is desired? Different people will likely have differ-
ent questions about the system, e.g., depending on their relationship
to the Al system. The concerns of someone whose mortgage ap-
plication was denied due to a FICO score probably differ from the
developer or data scientist debugging such an ML system. In Sec-
tion 5 we return to the issue of customized explanations, but for
now we focus on a developer’s concerns in the context of machine
learning (a single type of Al). Quoting Lipton, a learned model “may
be considered trustworthy in the sense that there is no expected
cost of relinquishing control” [24]. It is natural, then, to ask what
might cause a learned model to act unexpectedly, incurring a cost.

2.1 Traditional Machine Learning
Methodology

Since practitioners have been evaluating machine learning for many
decades, it’s natural to wonder how current methodology could fall
short. To see this, we review traditional ML performance evaluation
to see what might be missing.! A developer uses machine learning
because they want to create a model that can predict the future.
Suppose the objective is to predict the chance that a patient will
soon die from pneumonia; we’ll call this the target, denoted y. The
prediction should be made based on easily observable input features,
like age, presence of a cough, etc.., so the developer next decides on
this set, denoted X = {xi,...,x,}. The input and target features
can be numbers or discretely typed.

Supervised learning starts with a labeled corpus of data, (X, y),
such as a large database of medical cases. The developer starts by
splitting this data into training and test sets. They also choose a
class of models (mathematical functions), such as decision trees or
deep neural networks; these models are parameterized, and once
the parameter values are chosen, the model will be a predictor — a
function mapping the input features to the output class. Machine
learning training is an optimization process, where the learning
algorithm searches for a set of model parameters that minimizes a
loss function, such as the number of misclassified training examples.

The developer performs the optimization on the training set and
then evaluates the performance (e.g., accuracy, precision, recall,
etc.) on the test set only after committing to the features, model

10ur treatment here is by necessity an over-generalization. Furthermore, there are
alternative methodologies, such as machine teaching [34] which surmount some of the
issues we discuss. Yet the approach described here is in wide practice.

class, optimization algorithm etc.. Since the model has never seen
the test data, it can be used to give an independent estimate of the
learned model’s performance.

2.2 Model Assessment

This methodology seemingly gives an impartial and quantitative
assessment of the learner. If the learned model’s performance on
the test set is low, then one knows that there is a problem. But
what if test-set performance is extremely high, say 100%. Isn’t that
enough to earn trust? Why might one also wish to understand why
the model is making each prediction? There are at least five reasons,
of which three are technical:

¢ Inadequate Loss Function In some situations, even 100% per-
fect performance may not be good enough, if the performance
metric is flawed or incomplete due to the difficulty of specifying
it explicitly. For example, as Lipton observed [24], “an algorithm
for making hiring decisions should simultaneously optimize
for productivity, ethics and legality,” but how does one express
this trade off? Other examples include balancing training error
while uncovering causality in medicine and balancing accu-
racy and fairness in recidivism prediction [14]. In the case of
recidivism prediction, a simplified loss function such as accu-
racy combined with historically biased training data may result
uneven performance for different groups (e.g., people of color).

o Overfitting A learned model may be optimized to perform
well on a held-out validation set. However, repeated testing
may cause the model to overfit on this set. Most practitioners
know that they shouldn’t repeat a measurement on the test set,
but it often seems necessary and human nature finds a way to
justify it, e.g., “The new pipeline for computing input features
fixes a bug” The irreversible slide towards overfitting is often
imperceptible. Only a few members of the development team
may even know of the risk.

o Distributional Drift A deployed model may perform poorly
in the wild, especially if there is a difference between the train
(or test) distribution and that encountered during deployment.
In fact, the deployment distribution may change over time. For
example, there may be a feedback loop as a result of deployment.
Indeed, this is common in adversarial domains such as spam
detection, online ad pricing, and search engine optimization.

These problems can lead to learned models which appear to perform
well on the test set, but behave poorly, perhaps disastrously, during
deployment. Making the Al intelligible could help users detect
these technical problems. But intelligible Al is important for social
reasons too:

e User Acceptance. Studies have shown that users are more
likely to accept algorithmic decisions if they are accompanied
by an explanation [19].

e Legal. A final reason stems from the legal system, for example
the European Union’s GDPR legislation decreeing the right to
an explanation [11] or the Al owner’s concerns about liability.
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Figure 2: The dashed blue shape indicates the space of pos-
sible mistakes made by humans. The red shape denotes the
AT’s mistakes; it’s smaller size indicates a net reduction in
the number of errors. The gray region denotes Al-specific
mistakes a human would never make. Despite reducing the
total number of errors, a deployed model may create new
areas of liability (gray), necessitating explanations [5].
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A related reason is assessing legal liability. A deployed model
(e.g., self-driving cars) may introduce new areas of liability by caus-
ing accidents unexpected from a human operator, such as the “Al-
specific error” region in Figure 2. Auditing such situations, e.g., for
the purpose of liability, requires explaining the model’s decisions.

In the rest of this paper, we focus on two broad approaches to-
wards intelligible Al: machine learning of inherently interpretable
models and methods for explaining the predictions of opaque,
“black-box” learned models.

3 INHERENTLY INTERPRETABLE MODELS

If the domain contains a moderate number of features that have
intuitive meanings known to the people involved, then it is some-
time possible to build a model which is considered interpretable.
Few computing researchers have tried to formally define what is
an interpretable model [8], but one suggested criterion is human
simulatability [24] — can a human easily predict the model’s output
for a given input. Under this definition, sparse linear models are
more interpretable than dense or non-linear models.

Philosophers, such as Hempel and Salmon have long debated the
nature of explanation. Lewis [23, p 217] summarizes “To explain
an event is to provide some information about its causal history.”
But many causal explanations may exist. The fact that event C
causes E is best understood relative to an imagined counterfactual
scenario, where absent C, E would not have occurred; furthermore,
C should be minimal — an intuition known to early scientists, such
as William of Occam and formalized by Halpern and Pearl [13].

Following this logic, we suggest (instead of human simulatability)
a better criterion is the ability to answer counterfactuals, known as
“What-if” questions. Specifically, we say that a model is interpretable
to the degree that a human can predict how a change to a feature,
e.g. a small increase to its value, will change the model’s output.
Note that if one can simulate the model, predicting its output, then
one can predict the effect of a change — but not vice versa.

Linear models are especially interpretable under this definition
because they allow answering counterfactuals. For example, con-
sider a naive Bayes, unigram model for sentiment analysis, whose
objective is to predict the emotional polarity (positive or negative)
of a textual passage. Even if the model is large, combining evidence
from the presence of thousands of words, one can see the effect of a
given word by looking at the sign and magnitude of the correspond-
ing weight. This answers the question “What-if the word had been
omitted?” Similarly, by comparing the weights associated with two
words, one can predict the effect on the model of substituting one
for another.

Unfortunately, linear models have limited utility because they
often result in poor accuracy. We next discuss another class of
interpretable models that perform better in practice.

3.1 Generalized Additive Models

Generalized additive models (GAMs) are the class of machine learn-
ing models that relate a set of features to a target with a linear
combination of (potentially-nonlinear) single-feature models called
shape functions [26]. For example, if y represents the target and
{x1,....xn} represents the features then a GAM model takes the
formy = fo + 2.; fj(xj), where the fis denote the shape functions
and the target y is computed by summing up single-feature terms.
Popular shape functions include non-linear functions such splines
and decision trees. If the shape functions are restricted to be linear,
then a GAM reduces to be a linear model.

In general, GAMs are more expressive than linear models and
have been shown to achieve high accuracy on many real-world
problems [6]. In fact, the performance of GAMs can be further im-
proved by including terms that model interaction between features.
GA2M models are an extension of GAM models that in addition
to the single-feature terms include terms for pairwise interactions
between features. GA2M models take the following form:

y=po+ Y. fi(x)+ D filxinx)) (1)
J i#]
————
pairwise terms

Caruana et al. observed that for domains that contain a moderate
number of semantic features GA2M models achieve performance
that is competitive with uninterpretable models, such as random
forests and neural networks, whilst remaining intelligible [6]. Lou
et al. observed that among many methods available for learning
GA%M models, the version where the shape functions are bagged
shallow regression trees learned via gradient boosting achieve the
highest accuracy[26]. Other approaches include spline regressions
where a piece wise polynomial function is fit via least squares
estimate. They further noticed that while spline regression pro-
duces smoother line plots, tree-based methods better model abrupt
changes in prediction such as discrete thresholds.

Both GAM and GA%M are considered interpretable because the
model’s learned behavior can be easily understood by examining or
visualizing the contribution of terms (individual or pairs of features)
to the final prediction. For example, Figure 3 depicts the contribu-
tion (log odds) of a subset of terms to total risk for a GA2M model
trained to predict a patient’s risk of dying due to pneumonia. A pos-
itive contribution increases risk, whereas a negative contribution
decreases risk. For example, 3(a) clearly shows how the patient’s
age affects predicted risk. While the risk is low and steady for young
patients (e.g., age < 20), it increases rapidly for older patients (age
> 67). Interestingly, the model shows a sudden increase at age 86;
perhaps this results from less aggressive care by doctors for patients
“whose time has come.” Even more surprising is the sudden drop
for patients over 100. This might be another social effect — once a
patient reaches the magic “100” they get more aggressive care. One
benefit of an interpretable model is their ability to highlight these
issues, spurring deeper analysis.



1.2 100 0.5
! 90 0.4
0.8 80 03
0.6 70 .
0.4 60 0.2
0.2 50 0.1
S — _ 40 0
0.2 ! 30 -0.1
0.4 20 -0.2
20 30 40 50 60 70 80 90 100 -1 05 0 05 1 -1 05 0 0.5 1
a) age b) asthma ) age vs. cancer

Figure 3: A part of Figure 1 from [6] showing 3 (of 56 total) components for a GA2M model, which was trained to predict a
patient’s risk of dying from pneumonia. The two line graphs depict the contribution of individual features to risk: a) patient’s
age, and b) boolean variable asthma. The y-axis denotes its contribution (log odds) to predicted risk. The heat map, c, visualizes
the contribution due to pairwise interactions between age and cancer rate.

Figure 3(b) illustrates another surprising aspect of the learned
model — apparently a history of asthma, a respiratory disease, de-
creases the patients risk from pneumonia! This is counter-intuitive
to any physician, who recognizes that asthma, in fact, should in-
crease such risk. When Caruana et al. checked the data, they con-
cluded that the lower risk could be explained by the fact that asthma
patients typically have been receiving timely and aggressive therapy
for lung issues. Therefore, although the model was highly accurate
on the test set, it would likely fail, dramatically underestimating the
risk to a patient with asthma who had not been previously treated
for the disease. A domain expert can fix such erroneous patterns
learned by the model by the setting the weight of the asthma term
to zero. In fact, GAMs allow users to provide much more compre-
hensive feedback to the model by using a GUI to redraw a line
graph for a term in the model [6]. An alternative remedy might be
to introduce a new feature to the model, representing whether the
patient had been recently seen by a pulmonologist. After adding
this feature, which is highly correlated with asthma, the learned
model would likely change its prediction and record that asthma
increases risk from pneumonia. There are two more takeaways
from this anecdote. First, the absence of an important feature in the
data representation can cause any Al system to learn unintuitive
behavior for another, correlated feature. Secondly, if the learner is
interpretable, then this unintuitive behavior is immediately appar-
ent, allowing appropriate skepticism (despite high test accuracy)
and easier debugging.

Recall that GA2M are more expressive than simple GAM models
by including pairwise terms. Figure 3(c) depicts such a term for the
features age and cancer. This explanation indicates that among the
patients who have cancer, the younger ones are at higher risk. This
is likely because the patients who develop cancer when they are
young are probably critically ill. Again, since doctors can readily
inspect these terms, they are made aware if the learner develops
unexpected conclusions.

3.2 Limitations of GA2M Models

GA%Ms decompose their prediction into effects of individual terms
which can be visualized. However, if the users are confused about
the meaning of the terms, they won’t understand the model nor
be able to ask meaningful “What-if” questions. Furthermore, if
there are too many features, the sheer complexity of the model may

overwhelm the user. Lipton notes that the effort required to simulate
some models (such as decision trees), may grow logarithmically
with the number of parameters [24], but for GA2M the number
of visualizations to inspect may increase quadratically. Several
methods may help users cope with this complexity — for example
the terms might be ordered by importance; however, it’s not clear
how importance should be computed. Possible methods include:
1) conduct an ablation analysis to compute influence of terms on
model performance, and 2) compute the maximum contribution of
term as seen in the training samples. Alternatively, a human expert
might be able to group the terms semantically to facilitate perusal.
However, when the number of features grows into the millions,
which happens when dealing with classifiers over text, audio, image
and video data, existing interpretable models don’t perform nearly
as well as inscrutable methods, like deep neural networks and giant
boosted decision forests. Since these models may combine millions
of features in complex, nonlinear ways, they are beyond human
capacity to simulate. The next section discusses nascent methods
for understanding these opaque learned models, but one should
strongly consider interpretable models, such as GAZM, for problems
with a moderate number of semantically meaningful features.

4 EXPLAINING INSCRUTABLE MODELS

We now consider the case of an inscrutable, learned model; such as
a neural network, where one has access to a myriad learned param-
eters but can’t reasonably interpret them, or a blackbox model, such
as an API like Microsoft Cognitive Services, which uses machine
learning to provide image-recognition capabilities, but doesn’t al-
low inspection of the underlying model. How can an Al system
best convey aspects of this model to a human?

Grice introduced four rules characterizing cooperative commu-
nication, which hold for good explanations [12]. The maxim of
quality: be truthful and only say things which are supported by
evidence. The maxim of quantity: give as much information as
is needed, and no more. The maxim of relation: only say things
that are relevant to the discussion. The maxim of manner: avoid
ambiguity; be as clear and as brief as possible.

Miller summarizes decades of work by psychological research,
noting that explanations are contrastive, i.e. of the form “Why P
rather than Q?” The event in question, P, is termed the fact and Q
is called the foil [29]. Often the foil isn’t explicitly stated, but it’s



crucially important to the explanation process. For example, con-
sider the question “Why did you predict that the image depicts an
indigo bunting?” An explanation which points to the blue color is
implicitly assuming that the foil is another bird, such as a chickadee.
But perhaps the questioner is wondering why the recognizer didn’t
predict a pair of denim pants; in this case a better explanation might
highlight the presence of wings and a beak. Clearly, an explanation
targeted to the wrong foil will be unsatisfying, but the nature and
sophistication of a foil can depend on the end user’s expertise, and
hence the ideal explanation will be different for different people [8].
For example, to verify that a ML system is fair, an ethicist might
come up with more complex foils than a data scientist. Most im-
plemented ML explanation systems have restricted their attention
to elucidating the behavior of a binary classifier, where there is
only one possible foil choice, but as we seek to explain multi-class
systems addressing this issue will become essential.

This section summarizes two key challenges that must be ad-
dressed by practical systems that seek to generate explanations for
complex, learned models where minimal counterfactuals are poorly
defined. Specifically, we consider the simplicity / fidelity tradeoff
and discuss the challenges of finding an appropriate vocabulary to
express an explanation.

4.1 Explanation as an Approximation

A good explanation of an event is 1) simple and easy to understand,
and 2) faithful (accurate), conveying the true cause of the event.
Unfortunately, these two criteria are almost always in conflict. Con-
sider the predictions of a deep neural network with millions of
nodes — a complete and accurate trace of the network’s prediction
would be much too complex to understand, but any simplification
sacrifices accuracy. Finding a good explanation, therefore, requires
balancing the competing desires of comprehensibility and fidelity.
Lakkaraju et al. [22] suggest formulating an explicit optimization of
this form and propose an approximation algorithm for generating
global explanations in the form of compact sets of if-then rules.
Ribeiro et al. describe a similar optimization algorithm that balances
precision and coverage in its search for summary rules [32].

Another way to simplify the explanation of a learned model
is to make it relative to a single input query. Such explanations,
which are termed local [31], are akin to a doctor explaining the
reasons behind her diagnosis of a single patient rather than trying
to communicate all of her medical knowledge. Local explanations
are common practice in Al systems. For example, early rule-based
expert systems included explanation systems that augmented a
trace of the system’s reasoning — on a particular case — with
background knowledge [38]. Recommender systems, which were
one of the first deployed uses of machine learning, also induced
demand for explanations of their specific recommendations; the
most satisfying answers combined justifications based on the user’s
previous choices, ratings of similar users, and features of the items
being recommended [30].

In many cases, however, even a local explanation is too complex
to understand without approximation. In such a case the key chal-
lenge is deciding which details to omit in order to create a simple,
explanatory model. This is a question long studied by psychologists,
who determined that several criteria are prioritized for inclusion

in an explanation: necessary causes (vs. sufficient), intentional ac-
tions (vs. those taken without deliberation), proximal causes (vs.
distant), details that distinguish between fact and foil, and abnormal
features [29].

According to Lombrozo, humans prefer explanations that are
simpler (i.e., contain fewer clauses), more general, and coherent
(i.e., consistent with what the human’s prior beliefs) [25]. In par-
ticular, she observed the surprising result that humans preferred
simple (one clause) explanations to conjunctive explanations —
even when the probability of the conjunction was higher than the
single clause) [25]. These results raise important questions about
the purpose of explanations in an Al system. Is an explanation’s
primary purpose to convince a human to accept the computer’s
conclusions (perhaps by presenting a simple, plausible, but un-
likely explanation) or to educate the human about the most likely
true situation? Tversky, Kahneman, and other psychologists have
documented many cognitive biases that lead humans to incorrect
conclusions; for example, people reason incorrectly about the prob-
ability of conjunctions, with a concrete and vivid scenario deemed
more likely than abstract situation which strictly subsumes it [18].
Should an explanation system exploit human limitations or seek to
protect us from them?

Other studies raise an additional complication about how to com-
municate a system’s uncertain predictions to human users; Koehler
found that simply presenting an explanation for a fact makes people
think that it is more likely to be true [19]. Furthermore, explain-
ing a fact in the same way as previous facts have been explained
amplifies this effect [36].

4.2 Locally-Approximate Explanations

In recent years, researchers have built systems that can generate
post-hoc explanations of a learned classifier, including those typi-
cally considered noninterpretable, such as deep neural networks.
Indeed, there are too many such systems to enumerate; many are
domain- or classifier-specific. For example, Simonyan et al. describe
methods for explaining CNN ImageNet classifiers by calculating
class appearance models and saliency maps [35]. Recurrent neural
models for translating text or answering questions often display
heatmaps to show which parts of the text are getting the model’s
attention [2]. Ribeiro et al.’s LIME system [31] is an interesting ex-
ample, because it has the additional benefit of explaining black-box
models whose structure and parameters are completely unknown,
such as models which are deployed as an API by a third-party.

While LIME can generate explanations for the predictions of any
learned model, it requires the developer to provide two additional
inputs: 1) a semantically meaningful set of features X’ that can
be computed from the original features, and 2) an interpretable
learning algorithm, such as a linear classifier (or a GAZM), which
it will use to generate an explanation in terms of the X”.

The intuition is shown in Figure 4. Given an instance to explain,
shown as the bold red cross, LIME randomly generates a set of
similar instances and uses the blackbox classifier, f, to predict their
values (shown as the red crosses and blue circles). These predictions
are weighted by their similarity to the input instance and used to
train a new, simpler, interpretable classifier, shown as the linear de-
cision boundary, using X’, the smaller set of semantic features. The
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4.3 Choosing an Explanatory Vocabulary

Ribeiro et al.’s decision to explain image classification decisions
in terms of pre-segmented regions of the photo illustrates the
larger problem of determining an explanatory vocabulary. Clearly,
it wouldn’t make sense to try and identify the exact pixel that led
to the decision — pixels are too low level a representation; they
aren’t semantically meaningful to people. In fact, the power of deep
neural networks comes from the very fact that the hidden layers
are trained to recognize latent features in a manner that seems to
perform much better than previous efforts to define such features
independently. Deep networks are inscrutable exactly because we
don’t know what those hidden features denote.

In order to explain the behavior of such models, however, we
need to find some high-level abstraction over the input pixels that
can be used to communicate the essence of the model. Ribeiro
et al’s decision to use an off-the-shelf image-segmentation system
was pragmatic. On the plus side, the regions it selected are easily
visualized and carry some semantic value. On the minus side, the
choice of regions is done completely without regard to the way
that the classifier is making the decision. If one wishes to explain a
blackbox model, where there is no possible access to the classifier’s
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Description: This is a large bird with a white neck and a black
beak in the water.

The Laysan Albatross is a large seabird with
a hooked yellow beak, a black back, and a white belly.

Visual Explanation: This is a Laysan Albatross because this
bird has a hooked yellow beak white neck and black back.

Figure 5: A visual explanation, taken from [15]: “Visual ex-
planations are both image relevant and class relevant. In
contrast, image descriptions are image relevant, but not nec-
essarily class relevant, and class definitions are class rele-
vant but not necessarily image relevant.”

internal representation, then there is likely no better option — any
explanation will lack faithfulness.

However, if one has access to the classifier and is willing to
tailor the explanation system to it, there are ways to choose a more
meaningful vocabulary. One interesting method jointly trains a
classifier with a natural-language, image captioning system [15].
The classifier uses training data that is labeled with the objects
appearing in the image, while the captioning system is labeled
with English sentences describing the appearance of the image.
By training the systems jointly, the variables in the hidden layers
may get aligned to semantically meaningful concepts even as they
are being trained to provide discriminative power. This results in
English descriptions of images that have both high image relevance
(from the captioning training data) and high class relevance (from
the object recognition training data) as shown in Figure 5.

While this method works well on many examples, the explana-
tions sometimes include descriptions of details that aren’t actually
present in the image; newer approaches, such as phrase-critic meth-
ods, may create even better descriptions [16]. Another approach
might determine if there are hidden layers in the learned classifier,
that learn concepts correspond to something meaningful. For ex-
ample, Zeiler and Fergus observed that certain layers may function
as edge or pattern detectors [40]. Whenever one can identify the
presence of such layers then it might be a good idea to prefer using
them in the explanation. Bau et aldescribe a automatic mechanism
for matching CNN representations with semantically-meaningful
concepts, using a large, labeled corpus of objects, parts, and tex-
ture Bau et al.; furthermore, using this alignment, their method
can quantitatively score the interpretability of the CNN, potentially
suggesting a way to optimize for intelligible models. Many chal-
lenges remain. As one example, it’s not clear that there are good



H: Why?
C: See below:

ML Classifier

Green regions argue
for FISH, while RED
pushes towards DOG.

C: I predict FISH

There's more green.

H: (Hmm. Seems like it might
be just recognizing anemone
texture!) Which training
examples are most influential
to the prediction?

C: These ones:

H: What happens if the
background
anemones are

removed? E.g., Q

C: Istill predict
FISH, because
of these green
superpixels.

Figure 6: An example of an interactive explanatory dialog for gaining insight into a DOG/FISH image classifier. (For illustration,
the questions and answers are shown in English, but our use of ‘dialog’ is meant to be suggestive. An interactive GUI might

well be a better realization.)

ways to describe important, discriminative features, which are of-
ten intangible, e.g., textures. A satisfying explanation may need to
define new terms or combine language with other modalities, like
patches of the image. Fortunately, research is moving quickly in
this area.

4.4 Explaining Combinatorial Search

Most of the preceding discussion has focused on intelligible machine
learning, which is just one type of artificial intelligence, but the
same issues also confront systems based on deep-lookahead search.
While many search algorithms have strong theoretical properties,
true correctness depends on assumptions made when modeling the
underlying actions [28], so a human might wish to question the
agent’s choices.

Consider a planning algorithm that has generated a sequence
of actions for a remote, mobile robot. If the plan is short with a
moderate number of actions, then the problem may be inherently
intelligible, but larger search spaces will likely be cognitively over-
whelming. In these cases, local explanations are a simplification
technique that is helpful, just as it was when explaining machine
learning. The vocabulary issue is likewise crucial — how does one
succinctly summarize a complete search subtree abstractly? De-
pending on the choice of explanatory foil, different answers are
appropriate [9]. Sreedharan et al. describe an algorithm for gen-
erating the minimal explanation that patches a human’s partial
understanding of a domain [37]. Many AI systems, such as Al-
phaGo [33], combine both deep search and machine learning; these
will be especially hard to explain, since complexity arises from the
interaction of combinatorics and a learned model.

5 TOWARDS INTERACTIVE EXPLANATION

The best choice of explanation depends on the audience. Just as
a human teacher would explain physics differently to students
who have or not yet had calculus, the technical sophistication and
background knowledge of the recipient affects the suitability of
a machine-generated explanation. Furthermore, an ML developer
will have very different concerns than someone impacted by the
ML’s predictions, and hence they may need different types of expla-
nations. Ideally, the explainer might build a model of the listener’s
background over the course of many interactions, as have been
proposed by the intelligent tutoring systems community [1].

Even with an accurate user model, it’s likely that the explana-
tion won’t answer all of the listener’s questions. We conclude that
an explanation system should be interactive, supporting follow-up
questions and actions from the user. This matches results from
the psychology literature showing that explanation is best thought
of as a social process, a conversation between explainer and ex-
plainee [17, 29]. This perspective highlights the motivations and
backgrounds of the participants. It also recalls Grice’s maxims,
described before, especially those of quantity and relation.

We envision an interactive explanation system that supports a
number of different follow-up and drill-down actions, after present-
ing the human it’s initial explanation:

e Redirecting the answer by changing the foil: “Sure, but why
didn’t you predict class C?”

o Asking for more detail (i.e., a more complex explanatory model),
perhaps while restricting the explanation to a subregion of
feature space: “I'm only concerned about women over age 50..”

o Asking “What made you believe this?” to which the system
might respond by displaying the labeled training examples that
were most influential in reaching that decision, e.g., ones iden-
tified by influence functions [20] or nearest neighbor methods.

e Changing the vocabulary by adding (or removing) a feature to
the explanatory model, either from a predefined set or by using
methods from machine teaching [34].

e Perturbing the input example to see the effect on both prediction
and explanation. In addition to aiding understanding of the
model, this action is useful if an affected user wishes to contest
the initial prediction “But officer, one of those prior DUI's was
overturned...?”

o Attempting to repair the model. A data scientist may wish to add
new training examples, correct an erroneous label in existing
data, specify a new feature, or change learning parameters and
architecture. Here we expect to use affordances from interactive
machine learning [4] and explanatory debugging [21].

To make these ideas concrete, Figure 6 illustrates a possible dia-
log as a user tries to understand the robustness of a deep neural dog /
fish classifier built atop Inception v3 [39]. 1) The computer correctly
predicts that the image depicts a fish. 2) The user requests an expla-
nation, which is provided using LIME [31]. 3) The user is concerned
that the classifier is paying more attention to the background than



to the fish itself, and asks to see the training data that influenced
the classifier; the nearest neighbors are computed using influence
functions [20]. While there are anemones in those images, it also
seems as if the system is recognizing clownfish. 4) To gain confi-
dence, the user edits the input image to remove the background,
resubmits to the classifier and checks the explanation. While we
plan to add additional actions to the interactive explanation system,
the system has already provided useful insights.

6 FINAL THOUGHTS

The increasing deployment of complex Al systems increases the
need for humans to be able to audit and understand their deci-
sions. Depending on the complexity of the models involved, two
approaches may be appropriate: 1) using an inherently interpretable
model, or 2) adopting an inscrutably-complex model and generat-
ing post-hoc explanations. When learning a model over a medium
number of human-interpretable features, one may get an excel-
lent balance of performance and intelligibility with approaches
like GAZMs. However, for problems with thousands or millions
of features, performance requirements likely force the adoption
of inscrutable methods such as deep neural networks or boosted
decision forests. In these situations post-hoc explanations may be
the only way to facilitate human understanding.

Research on explanation algorithms is developing rapidly with
work on both local (instance-specific) explanations and global ap-
proximations to the learned model. A key challenge for all these ap-
proaches is discovery or construction of an explanation vocabulary
— essentially a set of features used in the approximate explanation
model. Results from psychology show that explanation is a social
process and is best thought of as a conversation. As a result we
advocate increased work on interactive explanation systems that
support a wide range of follow-up actions which further this con-
versation. To spur rapid progress in this important field, we hope
to see collaboration between researchers in multiple disciplines.
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