
Sprout: Crowd-Powered Task Design for Crowdsourcing
Jonathan Bragg

University of Washington
Seattle, WA, USA

jbragg@cs.washington.edu

Mausam
Indian Institute of Technology

New Delhi, India
mausam@cse.iitd.ac.in

Daniel S. Weld
University of Washington

Seattle, WA, USA
weld@cs.washington.edu

ABSTRACT
While crowdsourcing enables data collection at scale, ensuring
high-quality data remains a challenge. In particular, effective
task design underlies nearly every reported crowdsourcing suc-
cess, yet remains difficult to accomplish. Task design is hard
because it involves a costly iterative process: identifying the
kind of work output one wants, conveying this information to
workers, observing worker performance, understanding what
remains ambiguous, revising the instructions, and repeating
the process until the resulting output is satisfactory.

To facilitate this process, we propose a novel meta-workflow
that helps requesters optimize crowdsourcing task designs and
SPROUT, our open-source tool, which implements this work-
flow. SPROUT improves task designs by (1) eliciting points
of confusion from crowd workers, (2) enabling requesters to
quickly understand these misconceptions and the overall space
of questions, and (3) guiding requesters to improve the task
design in response. We report the results of a user study with
two labeling tasks demonstrating that requesters strongly pre-
fer SPROUT and produce higher-rated instructions compared
to current best practices for creating gated instructions (in-
structions plus a workflow for training and testing workers).
We also offer a set of design recommendations for future tools
that support crowdsourcing task design.

Author Keywords
Crowdsourcing; workflow; task design; debugging.

CCS Concepts
•Information systems → Crowdsourcing; •Human-
centered computing→ Interactive systems and tools;

INTRODUCTION
Ensuring high-quality work is considered one of the main
roadblocks to having crowdsourcing achieve its full poten-
tial [34]. The lack of high quality work is often attributed
to unskilled workers, though it can equally be attributed to
inexperienced or time-constrained requesters posting imper-
fect task designs [15, 35]. Often, unclear instructions confuse
sincere workers because they do not clearly state the task
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242598

expectations [12]. In other cases, the task may be clear but
complex; here, the lack of guided practice creates a mismatch
between worker understanding and task needs [11,23]. Finally,
in many cases, the requesters themselves do not appreciate
the nuances of their task, a priori, and need to refine their task
definition [21].

Our hypothesis is that explicit or implicit feedback from work-
ers can guide a requester towards a better task design. Unfor-
tunately, existing tools for crowdsourcing fall severely short in
this regard. While they often include best practice recommen-
dations to counter variance in worker quality [10] (e.g., gold
standard question insertion for identifying under-performing
workers, aggregation of redundant labels), they do not provide
mechanisms for supporting requesters in effectively defining
and designing the task itself, which can mitigate the need for
these downstream interventions.

In response, we present a novel meta-workflow that interleaves
tasks performed by both crowd workers and the requester (see
Figure 1) for improving task designs. SPROUT, our initial
prototype, focuses on clarifying the task instructions and en-
suring workers follow them, which are difficult [2] and im-
portant [12, 15, 23] aspects of task design. SPROUT evaluates
a preliminary task design and organizes confusing questions
by clustering explanations and instruction edits suggested by
crowd workers. SPROUT’s dashboard displays these orga-
nized confusions, allowing the requester to navigate their own
dataset in a prioritized manner. The system goal is to support
the requester in efficiently identifying sources of confusion, re-
fining their task understanding, and improving the task design
in response.

SPROUT provides additional support for ensuring workers
understand the instructions. It allows requesters to embed
illustrative examples in the instructions and recommends po-
tential test questions (questions with reference answers that
test understanding of the instructions). Upon acceptance by
the requester, the instructions and test questions are compiled
into gated instructions [23], a workflow consisting of an in-
teractive tutorial that reinforces instruction concepts and a
screening phase that verifies worker comprehension before
commencing work (see Figure 2). Overall, SPROUT provides
a comprehensive interface for requesters to iteratively create
and improve gated task instructions using worker feedback.

We evaluate SPROUT in a user study, comparing it against
structured labeling [21], a previous method that is likely to
aid requesters in creating instructions [4], while their under-
standing of the task may be evolving (unassisted by workers).

https://doi.org/10.1145/3242587.3242598

Meta Workers

Resolve

Diagnose
Workers diagnose
possibly unclear

questions

Clarify
Workers suggest
changes to the
instructions

Organize
Cluster items
and compute

item similarities

Work
Workers answer

questions using the
current workflow

Filter
Select confusing &
low-agreement

questions
GenTest
Workers create
test questions

with explanations

Requester provides
initial instructions

AutomatedAutomated

Refine
Requester clarifies
the instructions &
test questions

RequesterWorkers

Figure 1. SPROUT is our implemented task-improvement meta-workflow (workflow for improving a task workflow), that interleaves steps where workers
answer questions using the base workflow (blue box) and meta steps (orange boxes), where meta-workers diagnose problems and suggest fixes, while
SPROUT guides the requester to iteratively improve the instructions, add clarifying examples, and insert test questions to ensure understanding.

Requesters who participated in our study created gated in-
structions for two different types of labeling tasks—the most
common crowdsourcing task type [15]—strongly preferred
and produced higher-rated instructions using SPROUT.

In summary, this paper makes four main contributions:

• A novel meta-workflow—combining the efforts of both
crowd workers and the requester—that helps the requester
create high-quality crowdsourcing tasks more quickly and
with substantially less effort than existing methods.

• SPROUT, an open-source tool that implements this workflow
for labeling tasks, the most common crowdsourcing task
type [15]. SPROUT first has workers suggest changes to the
task instructions. It then clusters the suggestions and pro-
vides the requester with a comprehensive task-improvement
interface that visualizes the clusters for fast task exploration
and semi-automates the creation of a gated instruction (train-
ing and testing) workflow by suggesting test questions re-
lated to the instructions the requester has written.

• A user study with requesters with varying amounts of
crowdsourcing experience comparing SPROUT and struc-
tured labeling on two different types of labeling tasks. The
results demonstrate an overall preference for SPROUT over
structured labeling and for the use of worker feedback dur-
ing task design. Furthermore, requesters using SPROUT
produced instructions that were rated higher by experts.

• A set of design principles for future task authoring and
debugging tools, informed by our experience building
SPROUT, and our observations and discussion with re-
questers during the user study.

We implement the SPROUT tool as a web application and
release the source code for both it and for structured labeling
in order to facilitate future research.1

PREVIOUS WORK
We first discuss (1) previous work that characterizes good task
design and (2) gated instructions; then, we describe existing

1https://crowdlab.cs.washington.edu/task-design.html

tools that help requesters (3) understand user behavior and (4)
improve their task design.

Design Principles for Tasks and Workflows
There is a small but growing body of work elucidating best
practices for task design. CrowdFlower, a major crowdsourc-
ing platform, reinforces that tasks should be divided into dis-
crete steps governed by objective rules; they also highlight the
importance of clear instructions [9] and test questions [10].
Several studies of worker attitudes also point to task clarity
problems as a major risk factor for workers [12, 25, 35]. Fur-
thermore, large-scale analyses have found positive correlations
between task clarity features like the presence of examples
and task performance metrics like inter-annotator agreement
and fast task completion times [15]. Other controlled empir-
ical studies provide further evidence that examples improve
task outcomes [35]. Some work has sought to systematically
understand the relative importance of various task design fea-
tures [1, 35], but this work is limited to specific task types and
general design principles remain poorly understood.

Emerging understanding of good workflow design suggests
that investing in worker understanding is critically important to
crowdsourcing outcomes. A large-scale controlled study com-
pared the efficacy of different quality control strategies, con-
cluding that training and screening workers effectively is more
important than other workflow interventions [27]. Providing
feedback about a worker’s mistakes has also been shown to be
very helpful in improving their answer quality [11].

These studies demonstrate the strong need for tools like
SPROUT to help requesters clarify the task, include illustrative
examples, provide training with feedback, and screen workers.

Gated Instructions
The importance of instructions, training, and screening was
also demonstrated by an analysis of several attempts to crowd-
source training data for information extraction [23]. SPROUT
adopts gated instruction from this work (see Figure 2). Gated
instructions is a quality control method that uses test questions
to ensure that workers have read and understood the instruc-
tions. It differs from the common practice of mixing 10–30%

https://crowdlab.cs.washington.edu/task-design.html

Interactive
Tutorial

Gating
Questions

Main
Task

Yes
Pass?

NoWork

Figure 2. SPROUT runs a gated instruction workflow [23] in the Work
step of the meta-workflow (Figure 1), which ensures workers understand
the instructions before starting the main task. Workers who do not pass
gating do not continue with the task (indicated by the terminal square).
The Refine step of the meta-workflow updates all parts of this workflow
(before the first Refine step, only the main task is run since the system
cannot yet construct tutorial or gating questions).

gold standard questions into a work stream in the hope of de-
tecting spammers [3,28], since the former is intended to ensure
understanding not diligence. It also has advantages over other
approaches like instructional manipulation checks [29], which
test attentiveness, not understanding; can be gamed [14]; and
do not provide training. A gated instruction workflow inserts
two phases before the main task: an interactive tutorial, fol-
lowed by a screening phase consisting of a set of questions
workers must pass in order to start work on the actual task.

Understanding Task Ambiguities and Worker Behavior
Several tools support understanding of task behaviors. Crowd-
Scape provides visualizations to help requesters understand
individual worker behaviors and outputs [31]. Noting that ex-
perimenting on different versions of task instructions, rewards,
and flows is time-intensive, CrowdWeaver provides a graphi-
cal tool to help manage the process and track progress [20].
Cheng et al. [5] propose methods for automatically determin-
ing task difficulty. Kairam and Heer [17] provide methods for
clustering workers (rather than questions, as SPROUT does).
While there has been more emphasis on understanding worker
behaviors, Papoutsaki et al. [30] instead study behaviors of
novice requesters designing workflows for a data collection
task; they distill several helpful lessons for requesters.

Other tools focus on dataset clustering and understanding.
Structured labeling [21] is a tool that produces a clustered
dataset with each cluster labeled by a single person akin to the
requester. These “structured labels” are a flexible data asset
(e.g., can support efficient data relabeling), but are expensive
to produce. Revolt [4] outputs structured labels created by the
crowd (to save requester effort). While structured labels are
flexible, it is prohibitively expensive to run Revolt on large
datasets because Revolt asks workers to explain and catego-
rize every unresolved data item. Since Revolt’s goal is not
task improvement, it does not provide a user interface for the
requester nor help the requester create good instructions; their
evaluation used simulated requesters. In contrast, SPROUT
uses the crowd to help requesters create unambiguous instruc-
tions (thereby improving task quality) by examining a larger,
more diverse subset of the data than previously possible.

Tools for Task and Workflow Design
SPROUT extends a line of research on tools that support de-
signing and debugging workflows. We are inspired by Turko-
matic [22], which proposed having workers themselves de-
compose and define a workflow to solve a high-level task
description provided by a requester. Both systems embody

a meta-workflow with crowd workers acting in parallel with
the requester. While Turkomatic was only “partially success-
ful” [22], the vision is impressive, and we see SPROUT as div-
ing deeper into the task specification aspect of the greater work-
flow design challenge. SPROUT also leverages the reusability
of instructions across many instances of a task, while Turko-
matic considered one-off tasks where reusability is limited.
Fantasktic [13] was another system designed to help novice
requesters be more systematic in their task instruction creation
via a wizard interface, but did not incorporate worker feed-
back or aid requesters in identifying edge cases like SPROUT.
Developed in parallel with our work, WingIt [24] also has
workers make instruction edits to handle ambiguous instruc-
tions, but does not provide a requester interface and relies
on the requester approving or modifying each individual edit
(which could be very time-consuming).

Forward-thinking marketplaces, such as CrowdFlower and
Daemo [7], already encourage requesters to deploy prototype
tasks and incorporate feedback from expert workers before
launching their main task. These mechanisms demonstrate the
feasibility and value of worker feedback for improving tasks.
SPROUT makes this paradigm even more useful with a meta-
workflow that produces structured task feedback, does not
require expert workers, and enables requesters to efficiently
resolve classes of ambiguities via a novel user interface.

SPROUT: A TOOL SUPPORTING TASK DESIGN
In this section, we present the design of SPROUT, our system
for efficiently creating gated task instructions for new tasks.
The design decisions for SPROUT are based on previous work
and the authors’ extensive experience running crowdsourcing
tasks, and were iteratively refined through pilot studies with
workers and requesters (target users).

SPROUT embodies a feedback loop for task authoring and
debugging. First, the requester writes a version of the in-
structions, which are shown to the crowd on an evaluation set
(a small subset of the data) during a Work step of the meta-
workflow (Figure 1). SPROUT identifies possibly confusing
questions during an automated Filter step using signals such
as low inter-annotator agreement. A different set of (meta)-
workers then perform a Diagnose step (Figure 3b), where they
decide if the question is ambiguous given the current instruc-
tions. Immediately after the Diagnose step, workers perform
either a Clarify step (Figure 3c) where they edit the instruc-
tions based on their own definition of the task (if they diagnose
the question to be ambiguous) or a GenTest step where they
create a test question with an explanation (if they believe the
question has an unambiguous answer). These three steps are
implemented as a single, conditional Resolve HIT (Figure 3).

During a subsequent Organize step, SPROUT uses these edits
and explanations to cluster various items and create item-item
similarity scores. These clusters (and closely related items)
are exposed in SPROUT’s dashboard (Figure 4), which allows
the requester to efficiently identify various ambiguities in the
previous task design as part of a Refine step. The requester
improves the instructions and test questions on the basis of
this feedback, SPROUT compiles these into gated instructions,
and the feedback loop repeats. When the current task design

Figure 3. The Resolve meta-worker HIT primitive, which implements the Diagnose, Clarify, and GenTest steps of the meta-workflow (Figure 1). A worker
(a) is shown a question from the base task (here, the Cars task) and (b) is asked to perform a Diagnose step. If she decides the question is ambiguous
(has multiple correct answers) given the current instructions, she then (c) performs a Clarify step by adding a rule to the instructions (based on how she
might define the task). Workers who decide the question is unambiguous instead perform a GenTest step (not pictured) by creating a test question.

no longer results in worker confusion or the requester ends the
process, the final task design is run on the whole dataset.

Finding and Characterizing Ambiguous Items
SPROUT’s Filter step identifies possible points of confusion in
a Work step (run on the requester’s current instructions), using
either indirect signals (e.g., questions with low inter-annotator
agreement) or direct signals (e.g., via a feedback input on the
task itself). Possibly confusing questions trigger Resolve HITs,
where crowd workers resolve potential ambiguities and in the
process generate useful metadata for organizing the dataset
and creating gated instructions.

Resolve HIT Part 1: In the first part of the HIT (Figure 3b),
a worker performs a Diagnose step by labeling whether the
question (Figure 3a) could have multiple correct answers (is
ambiguous) or has exactly one answer (is unambiguous). De-
pending on their response, the worker subsequently performs
either a Clarify step or GenTest step, respectively, in the sec-
ond part. These subsequent steps take about the same amount
of work, so workers tend to perform Diagnose steps honestly.

The Diagnose step is designed to improve work quality. Our
initial design omitted the Diagnose step, instead asking work-
ers to perform a Clarify or GenTest step in the appropriate
location of a single form. However, some workers entered
GenTest justifications in the intended Clarify location. Forcing
workers to make an explicit initial judgement and dynamically
adding a follow-up question helps to reduce these errors.

Resolve HIT Part 2, Clarify Option: If the worker decides
the question is ambiguous, SPROUT elicits a category from
the worker (via the text input box in Figure 3c) by having
them perform a Clarify step in the second part of the HIT.
This step consists of adding a clarification bullet to the instruc-
tions by describing the nature of ambiguity (category) and
deciding how items in that category should be labeled if they
were the requester (yes or no). SPROUT ultimately discards
worker labeling decisions (since only the requester can make

the final determination); their only purpose is to make the HIT
feel more natural to workers. The category input field auto-
completes to categories previously written by other workers
to help workers reduce redundancy and arrive at a relatively
small set of categories for future review by the requester.

SPROUT’s method of eliciting ambiguous categories by having
workers directly suggest edits to the instructions is designed to
produce a rich set of categories. Workers in our experiments
often entered non-standard categories that function as rich
decision boundaries, useful for defining the task acceptance
criteria, e.g., workers entered “has the car as the main subject”
or “has windshields and seats and wheels” which could help
define acceptable car images. Simply asking workers to cate-
gorize ambiguities did not produce these types of categories.

SPROUT’s Clarify step also aims to produce focused text to
improve similarity comparisons and clustering results in the
next Organize step of the meta-workflow. Describing an am-
biguity in the context of instructions that other workers will
see helps keep the text succinct. For example, the first two
workers performing Clarify steps for the same question en-
tered “should only include photographs or realistic images of
birds” and “is a toy bird,” and a third worker also entered “is a
toy bird” (via auto-complete). These short phrases could all
be included directly in the instructions. When asked to explain
ambiguities without this context, workers often entered many
words unrelated to the actual ambiguity.2

Resolve HIT Part 2, GenTest Option: Workers that decide
the question is unambiguous instead perform a GenTest step
in the second part of the HIT (alternative version of Figure 3c,
not pictured), where they create a test question (for use in the
gated instruction workflow) by marking the correct answer and
providing an explanation. These questions are good candidates

2E.g., one worker wrote, “Although the image is of a bird made from
legos, it is still an image of a bird. I would think that meets the
criteria. However, the instructions are a bit ambiguous and don’t say
whether it needs to be an actual bird or one depicted in an image.”

for testing workers because (1) a worker has a reason for why
it is unambiguous and (2) it is likely to help filter workers who
do not fully understand the instructions and initially disagreed
with that worker, causing the question to be flagged.

For some questions, multiple workers indicated that an item
is not confusing by performing GenTest steps, but submitted
conflicting answers. We believe this is an important source
of ambiguity, which likely happens due to differing interpre-
tations of the same instructions. We include all such items
in the set of ambiguous items and perform automatic cluster-
ing based on GenTest step explanations (since Clarify step
categories are unavailable).

Clustering and Determining Related Items
Organize is the next meta-workflow step; here, SPROUT uses
all worker feedback to organize confusing questions for pri-
oritized exploration by the requester and to determine ques-
tion relatedness for context. It also maintains information for
suggesting test questions to the requester in the Refine step.
Toward this end, SPROUT creates (1) a two level-hierarchy
of ambiguous categories, (2) a priority order for top-level
categories, and (3) similarity scores for each item pair.

SPROUT adapts the taxonomization algorithm from Cascade
[6] for creating its prioritized hierarchical clusters. Proceed-
ing from the largest categories (auto-completed instruction
edits from Clarify steps) with the most confusions to the least,
SPROUT selects a category to include at the top-level and nests
all smaller categories with overlapping items as “related” cat-
egories (see Figure 4a). This also creates a natural order for
top-level categories, since the more confusing categories are
prioritized higher. Note that this is a soft clustering, i.e., an
item can appear in multiple categories, which is appropriate
for our task, since one item could be confusing for multiple
reasons—all such reasons are likely valuable to the requester.3

To compute item-item similarity, SPROUT first creates an item
embedding. It uses all the text written by workers in the Re-
solve HITs and takes a TF-IDF-weighted linear combination
of word embeddings in that text. Since the amount of text
written by workers is relatively small, pre-trained word em-
beddings based on a Google News Corpus [26] suffice for this
task—they capture similarities between semantically related
words. SPROUT creates item-item similarity scores using the
cosine distance between item embeddings.

Requester Dashboard for Improving Task Design
The SPROUT dashboard guides requesters performing a Refine
step of the meta-workflow to efficiently identify important
categories of confusion (Figure 4a), inspect individual items
to gain deeper understanding (Figure 4b), and redesign the
task (Figure 4c,d) in response.

Following visualization principles of “overview first and de-
tails on demand" [32], requesters can view all the top-level
categories (largest, most confusing first) in the left column
(Figure 4a), and expand categories to inspect individual items
as needed. Category size is indicated next to the category
3During pilot experiments, we also tried hierarchical clustering, but
found the unprioritized, hard clustering to be less useful and coherent.

name, along with a visualization of the distribution of work-
ers who have answered yes, no, or ?. Test question labels
from GenTest steps are denoted as yes and no, while Clarify
step labels are denoted as ? (SPROUT discards labels from
workers editing the instructions). Individual items within each
category are represented by a button marked with the item
id and colored with the mean worker answer. This compact
item representation is inspired by Kulesza et al.’s [21] original
structured-labeling implementation. The category and item
visualizations use pink, white, and green to represent no, ?,
and yes worker answers, respectively.

Requesters can view additional details about individual items
in the central preview column (Figure 4b), which is accessed
by clicking on an item. The top of the preview shows worker
responses from the Resolve HITs issued for the item. Below
the preview, a panel shows thumbnails of similar items (sorted
by descending similarity). These thumbnails are adapted from
the original structured labeling implementation [21] for pro-
viding context about how to label an item.

The requester’s instructions editor (Figure 4c) supports ex-
ample creation and rich text editing. SPROUT lets requesters
format their text using the Markdown markup language, and
extends that language to support referencing items as exam-
ples using Twitter mention notation (e.g., @12 will insert a
reference to item 12). A preview tab lets the requester preview
a formatted version of the text, with referenced items replaced
by clickable item buttons.

To make an item into a test question, the requester simply drags
it to the test questions panel (Figure 4d). Test questions are
used for the gated instruction workflow that ensures that a new
worker has understood the task (see next subsection). Clicking
on the item in that panel opens a dialog box with a form that
lets the requester edit the explanation. The form also provides
guidance on best practices for writing test questions [10].

SPROUT suggests improvements to the task’s training regimen
in the form of test-question recommendations. Each time a
requester references an example item using the instructions
editor, SPROUT recommends the most similar item (above
a minimum similarity threshold) as a potential test question.
These questions in general are good candidates for test ques-
tions because they are likely to reinforce or test understanding
of the examples during the gated instruction workflow. In
Figure 4d, the system has recommended an image of a boat
carrying cars (item 349) since the requester had previously
created an example of cars on a ferry (item 444).

As part of the overall workflow, requesters can quickly see
which categories they have (and have not yet) inspected by the
presence (or absence) of a checkmark to the left of the category
name. SPROUT also provides a measure of the requester’s
overall progress toward viewing all confusing categories with
a progress bar above the categories.

Compiling Gated Instructions
As the final part of the Refine step, SPROUT compiles the se-
lected test questions into gated instructions [23] (see previous
work and Figure 2 for details). SPROUT partitions the test

Figure 4. The SPROUT requester interface during a Refine step of the meta-workflow (Figure 1) for the Cars task. SPROUT enables requesters to (a) drill
down into categories of ambiguous items, (b) view details of items (Item 444 shown), e.g., individual worker feedback (top) and similar items (bottom),
(c) edit the instructions in response, and (d) create test questions, possibly from the set of recommended test questions (SPROUT recommended item 349
because it is similar to Item 444—an example the requester provided in the instructions—and thus a good candidate for testing worker understanding).

questions for each label into two equal-sized sets for construct-
ing the interactive tutorial and the gating questions (ensuring
similar label distributions). These sets are subject to a maxi-
mum size, which is tunable and limits the duration of gated
instruction. SPROUT uses any remaining test questions as gold
standard questions to ensure workers remain diligent, using,
e.g., a decision-theoretic gold question insertion strategy [3].

EXPLORATORY USER STUDY DESIGN
We conducted a user study to validate our system design and
inform the design of future tools for improving task design.
Our evaluation is guided by three primary research questions:

RQ1: How useful do requesters find SPROUT’s worker-
powered interface for improving task design?

RQ2: How helpful are SPROUT’s task improvement affor-
dances (e.g., worker-powered structured navigation and test
question suggestions)?

RQ3: How much improved are task designs produced with
SPROUT?

Our research questions seek to validate our initial hypothesis
that worker feedback helps task design by measuring requester
attitudes and behaviors (RQ1, RQ2) and task design quality
(RQ3). While it may seem obvious that feedback can help
aspects of task design like wording of instructions, it is less
clear that it will help other major task design bottlenecks like
discovering and defining the nuances of the task. Thus, our
evaluation compares SPROUT to structured labeling [21], a
strong alternative to worker feedback that embodies best prac-
tices for exploring one’s dataset and identifying important edge
cases, which requesters can then add to the instructions [4].

To answer these research questions, we conducted a within-
subjects laboratory study that allowed us to observe requesters
using both SPROUT and structured labeling on two different
task types, and to survey them on the relative benefits and
weaknesses of the approaches. This study design let us get
feedback from requesters with varying amount of crowdsourc-
ing expertise, and control for interface condition and task type.

Our experiment design asks requesters to refine their task de-
signs according to their own understanding of the concept,

resulting in many different task definitions. We initially at-
tempted to control for different requester concepts by fixing
the concept up-front, but could find no way to communicate
a fixed concept to requesters without interfering with the ex-
periment. If one fully describes the concept to the requester
up front, the requester could simply pass this description on
to the workers, obviating much of the tool’s benefit (finding
ambiguities). We also tried having requesters interact dur-
ing the experiment with an oracle that answers whether the
requester has correctly labeled an item according to a fixed
concept. However, in pilot studies, we found this interaction
to be overly complex and unnatural. Ultimately, we decided to
let requesters specify their own concepts and account for this
in our analysis. Previous studies of requester behavior [30]
employed a similar design.

Following the user study, we evaluated the quality of the result-
ing instructions to help answer RQ3. SPROUT’s objective and
the truest measure of instruction quality is accuracy of the data
generated by workers given those instructions. Unfortunately,
we could not measure data accuracy because we do not have
access to ground truth labels for comparison (each requester
has their own, latent concept, which is only partially expressed
through the instructions). In order to approximate data quality,
we measured instruction quality directly by having two crowd-
sourcing experts4 rank the instructions for each task, blind to
tool condition, based on the number of ambiguous categories
addressed in the instructions.5 We asked the experts to base
their rankings on this criterion, since reducing ambiguities is
likely to improve data quality (assuming appropriate quality
control measures are employed [23]),

In the rest of this section, we describe how we created the tasks
and two requester interfaces, how we recruited participants for
our study, and the details of our experimental procedure.

Labeling Tasks and Requester Interfaces
We selected two classification task types of different com-
plexity: one image and one website (mix of text and images),
inspired by prior work [4]. Since prior researchers did not re-
lease their tasks, we constructed two new equal-sized datasets:

• The Cars image dataset. We obtained this dataset by select-
ing images from all the ImageNet [16] synsets containing
the word car, as described in prior work [4].

• The Travel website dataset. In order to have a dataset of
sufficient size for measuring instructions, we collected a
new, expanded version of the dataset created by Kulesza et
al. [21] from the DMOZ directory.6 We found that sampling
all pages from the travel category resulted in a sufficient
number of ambiguous examples that it was not necessary to
sample negative examples from other categories.

4The experts are researchers (one author, one non-author) who have
each posted over 20 different crowdsourcing tasks and authored pa-
pers on the topic. Neither expert had previously seen the instructions.
5The experts determined categories independently by performing
open coding [8] on the instructions.
6We used an archived version of DMOZ [33], since the original
DMOZ site is no longer active.

Figure 5. Our implementation of structured labeling [21], a method for
labeling new tasks, which previous researchers have used to construct
instructions [4]. Structured labeling supports concept evolution (one’s
changing definition of the task as one explores more data) by allowing
the requester to defer labeling decisions with a maybe label, quickly
change labels for groups of items (e.g, by dragging the “multiple cars”
group to a different label), and name groups for fast recall. Here, a
requester is hovering over an item (Item 458 here), which displays a
thumbnail preview; a requester can also click on the item to view a larger
preview (not pictured) or drag the item to a different label or group.

Our structured labeling implementation (Figure 5) operates
completely independently of worker feedback and adapts key
ideas from structured labeling. Requesters can label items
by dragging them into yes, no, or maybe sections, organize
items in groups within those sections, and name groups for
easier recall. Figure 5 shows one requester’s use of these
sections during the user study. Our structured labeling imple-
mentation retains the instructions and test question editors of
SPROUT (Figure 4c,d), but provides space for requesters to
organize items themselves (Figure 5) in place of the panel with
categories created by workers (Figure 4a). We implemented
structured labeling as closely as possible to the original paper,
since the authors did not release their tool or source code.

We have released the tasks, a library for generating similar
tasks, and the source code for SPROUT and structured labeling
for use by future researchers.7 Our requester interface im-
plementations are web applications built on the open-source
React front-end library.

7https://crowdlab.cs.washington.edu/task-design.html

https://crowdlab.cs.washington.edu/task-design.html

Participants
We recruited 11 participants8 to use SPROUT and structured
labeling as requesters, by emailing relevant mailing lists (with
IRB approval). Our participants were graduate (10) and under-
graduate (1) students at a major research university. Partici-
pants ranged in age from 21 to 45 and were balanced in terms
of gender (5 male, 5 female, 1 other). Eight of the participants
indicated prior experience as requesters, with four reporting
having launched 1–3 different tasks and four reporting hav-
ing launched 4–10 different tasks. Seven of the participants
indicated some prior experience as crowd workers, but no par-
ticipant indicated completing more than 10 HITs. Participants
were paid $25 for approximately one hour of their time.

Procedure
We used a within-subjects experimental design. Each requester
used SPROUT and structured labeling to improve the instruc-
tions for the two tasks, one per task. We assumed there was
no learning effect across tasks, so we fixed the task order as
Cars followed by Travel. We used a Latin square to randomize
the order in which each requester encountered the interfaces.
Before each task, requesters completed a tutorial and practice
task (a dataset of confusing bird images) using the assigned
interface in order to ensure they understood the goal and how
to use the interface. After each task, requesters completed a
brief survey about their experience, and after the last task, they
also rated their preferred interface.

To ensure that the study completed within the allotted one hour
(including tutorials and surveys), requesters were given 18 min-
utes per task to create an improved version of the instructions.
We selected 300 items for each task as the evaluation set for
the instructions, anticipating 300 to be sufficiently large such
that (1) it would contain most of the common ambiguities in
the task definition and (2) requesters would not be limited by
the number of sample items during the experiment.9

Requesters were instructed to improve the initial instructions
with the goal of having workers produce higher-accuracy an-
swers that agree with the requester’s concept. We used simple
initial instructions for both datasets: “Is this an image of a car?”
and “Is this a website about travel?” Accuracy depends on the
task specification, and since each task is underspecified to start,
each requester may arrive at a different target concept. Re-
questers who were unsure what their concept should be were
prompted to pretend they were “launching a service for detect-
ing cars” or “launching a website for travel tips.” Requesters
were also instructed to create at least three test questions that
would ensure that workers understand their instructions.

In order to reduce the cost and variability of running the full
SPROUT workflow with every requester, we pre-collected
worker (and meta-worker) answers for all questions in the
evaluation sets by seeding SPROUT with the initial versions
of the instructions. These answers were replayed by SPROUT
during experiment sessions. We deployed the Resolve HIT to
8We excluded one participant who was not directly affiliated with
the university mailing lists we advertised to, and who had difficulty
understanding the objective and procedure of the experiment.
9Experimentation during pilot studies showed that 18 minutes was a
reasonable upper bound and 300 items was sufficiently large.

(a) (b)

Figure 6. Requester responses to the questions (a) “Which interface did
you prefer for creating instructions?” and (b) “Which interface would
you use to create instructions in the future?”. Requesters in our study
overall preferred SPROUT with worker feedback rather than in struc-
tured labeling, but about half still saw uses for both interfaces.

three workers for each of the 300 items in each task, paying
$0.05 per image HIT and $0.07 per website HIT (based on a
wage of $8 / hour calculated from pilot deployment timings).
We limited participation to U.S. workers who had completed
at least 100 HITs with an approval rate of at least 95%.

RESULTS

RQ1: Usefulness of Worker Feedback
Figure 6a shows that requesters overall preferred SPROUT
over structured labeling. P1 summarized the high-level ben-
efits of worker feedback with SPROUT: “[c]ategorizing the
inputs, showing me the cases where there was confusion, etc.,
made it SUPER easy to identify cases that needed clarification.”
In contrast, structured labeling didn’t provide “a sense of what
the data looked like as a whole.” Another requester (P4) ex-
pressed dismay after switching from SPROUT to structured
labeling: “It sucks that you have to start from a completely
blank slate. [SPROUT] gave you some more support.”

While most requesters preferred SPROUT, about half indicated
that they would use both interfaces in the future (Figure 6b),
indicating that worker feedback is not always desired. P3
wrote “Before I had any crowd data, I liked [structured label-
ing] because it let me try doing the task myself...But after I had
some preliminary labeled data, I would like to use [SPROUT]
to see what kinds of things people were confused about.” P2
wanted to use structured labeling to start to avoid being bi-
ased by workers when deciding on her task concept. P11
expressed mixed feelings about structured labeling; she liked
that it “forced [her] to personally think through what was in the
image and what [she] was looking for,” but also said that “it
was...pretty time consuming to create the different categories.”

Requesters did not find the organizational aspects of structured
labeling particularly useful and rarely created groups, likely be-
cause the instructions editor itself serves as an organizational
tool that lets requesters describe categories with example items.
Usage might change with more extended interaction; P1 noted
“[groups] might be [useful] if [he] were iterating multiple times
and wanted to come back...in the future.”

The one requester who indicated he would use neither interface
in the future (P1) did so because he prefers crafting examples
by hand as a domain expert in natural language processing,
explaining “[a]lthough SPROUT does help with quickly identi-
fying the confusing cases...to make the instructions concise I
typically have to come up with my own examples anyway (so
I can reuse the same example sentence for a lot of examples).”

RQ2: Usefulness of SPROUT’s Affordances
Requesters found the recommended test questions particularly
useful. One requester (P2), an NLP researcher, wrote “The
most helpful features...is (sic) the automatically suggested test
questions. The similarity metrics seems (sic) to be working
great and the suggested items are great for testing the points
I emphasized in the instructions.” Overall, a significant frac-
tion of test questions created by requesters were previously
recommended by SPROUT (on average, 29% and 20% for the
Cars and Travel tasks, respectively). Requesters reported them
useful in surveys, and several created test questions almost
exclusively based on recommendations (4/5 test questions by
P1 on the Cars task and 4/4 test questions by P2 on the Travel
task). Still, semantically similar items are not always the best
test questions; P11 complained, “if I used a ferry with cars on
it as an example, it’d just return a boat as a suggestion.”

Requesters used the similar items panel infrequently, perhaps
due to lack of familiarity with the interface or because SPROUT
already recommends the most similar item to each example in
the instructions as a test question.

While most requesters looked at individual items first, P9
scanned the text descriptions of the categories and began to
edit the instruction text without inspecting items. This type
of rapid instruction improvement was made possible by the
organized presentation of worker feedback. We did not instruct
requesters about such strategies, and other requesters may have
learned to use SPROUT more effectively with instruction.

RQ3: Impact on Task Design Quality
On average, requesters using SPROUT wrote longer instruc-
tions, cited more examples, and were rated higher by experts.10

Requesters using SPROUT on average wrote longer instruc-
tions (µ = 1672 vs. 1110 characters) and cited nearly twice
as many examples on the Travel task compared to structured
labeling (µ = 4.6 vs. 2.6 examples). These results are weakly
significant based on a two-sided Welch’s t-test (t = 1.89,
p = 0.10; t = 1.77, p = 0.11). There was no significant dif-
ference on the Cars task (t = −0.30, p = 0.78; t = −0.09,
p = 0.93).

Two crowdsourcing experts independently ranked the instruc-
tions for each task into five quality buckets (valued 1 to 5), as-
signing higher values to instructions that mentioned more cat-
egories of ambiguous items. Both experts ranked instructions
produced using SPROUT higher on the Cars task compared to
structured labeling (µ = 4.0 vs. 2.8; µ = 3.2 vs. 2.0). These
results are weakly significant based on a two-sided Welch’s
t-test (t = 1.78, p = 0.11; t = 1.88, p = 0.11). There was no
significant difference on the Travel task for either expert rating
(t = 0.0, p = 1.0; t = 0.0, p = 1.0).

Together, these results suggest that SPROUT helps create more
comprehensive instructions. Detailed instructions can elicit
higher quality data from workers when combined with proper
training and screening methods like gated instructions [23].

10Larger samples are needed to establish statistical significance. We
excluded P5 from analysis of the Travel task, since she was unable to
complete the task due to difficulty finding a motivation for the task.

DESIGN IMPLICATIONS FOR TASK DESIGN

How to make exploration frictionless?
It is essential that future task design tools help requesters view
items with minimal overhead. In structured labeling, even
dragging items into yes / no / maybe sections was inefficient
for some requesters, who found it faster to scroll through
the carousel of item thumbnails. P1 complained that even
this carousel had too much friction and the images were too
small. A more efficient view might have been a vertical scroll
(used by websites like Instagram) with an option to resize im-
ages, though factors such as scrolling direction and number of
items per page can have subtle effects on performance [18,19].
One requester (P8) seemed to experience similar friction with
SPROUT, repurposing the similar items (bottom of Figure 4b)
for quickly retrieving new items (not just similar ones).

SPROUT was designed with the idea that one must explore
items before writing instructions. However, one can also view
exploration in service of the ultimate goal of creating instruc-
tions. From this viewpoint, P10 felt that the instructions editor
would be more natural on the left. Other requesters felt that
SPROUT could have benefited from more “visual hierarchy”
(P8) and “linear process” (P3).

How much information to show?
Another design decision to consider is how much and when to
show information about worker confusions to the requester. P5
felt overwhelmed by the number of categories displayed and
began clicking through categories without regard to their prior-
itization. In contrast, P9 benefited from having all categories
displayed initially, as his strategy was to read the descriptions,
edit the instructions, and only look at items periodically. Pro-
viding the right amount of support for a diverse set of users is
a challenging problem for mixed-initiative systems. One possi-
bility is to make the frictionless vertical scroll described above
the default mode, and enable the requester to use additional
features from SPROUT and structured labeling on demand as
they learn what tools most benefit their personal workflow.

How much initiative to take?
Another possibility is to create an adaptive version of SPROUT
that shows the requester a sequence of only the most important
and diverse categories, taking into account the set of items
the requester has viewed and the instructions she has written
up to that point. More knowledge about the space of items
considered by the requester so far could also enable smarter
suggestions for improvements to the instructions.

While our tool supports test question creation by the requester,
it is unclear whether the requester need be the one to do so,
once she has written a clear set of instructions with examples.
Indeed, our high-level vision (Figure 1) is that workers (or the
system) should be able to determine when the requester’s input
is needed. This suggests that other tedious task components,
such as gold questions or task advertisements, might be created
automatically by meta-workers, saving requester time. And
while P1 wanted SPROUT to help him ensure the distribution of
test question labels matched the overall distribution of labels—
as recommended by CrowdFlower for gold questions [10]—
such tools may not be necessary either.

How to balance self-organization and worker support?
While the instructions themselves can be used for organiza-
tional purposes, additional support for self-organization in
SPROUT could have been helpful. For instance, P9 had trouble
recalling and finding a category of items he had previously
read (but not opened, so it did not have a check mark). P4
on the other hand wanted to incorporate some of the intelli-
gence of SPROUT into structured labeling by automatically
narrowing the set of items classified as maybe using structured
labeling (e.g., using item vector embeddings), when items in
that section are covered by the instructions. Finding a middle
ground and making transparent what the workers have done
vs. what the requester has done is challenging but could pay
dividends.

How much of the workflow to support?
Even if one starts out with a binary-classification problem,
one can realize down the line that the task might benefit from
decomposition or structured output of a different kind. Two of
our requesters familiar with crowdsourcing for NLP (P1, P2)
wanted to change the task interface, for instance by changing
the answer labels, or to break the task into smaller subtasks
“since it is easier to write instructions for small tasks.” Support-
ing these aspects of task design are a worthy goal and could
benefit from SPROUT’s feedback loop; we chose to focus on
binary labeling tasks since (a) they are the most common
crowdsourcing task type [15] and (b) we wanted to constrain
the design space to avoid some of the pitfalls of previous work
that tackled broader problems [22].

In addition to supporting more aspects of task design, we be-
lieve that future versions of SPROUT could naturally support
additional types of tasks. Labeling tasks with more than two
answers are possible with minor interface changes, and more
generally, we envision SPROUT being useful for any task with
many different instances (questions) that share a common de-
sign (so that improvement benefits many questions) and have
a correct answer (so workers can be tested before beginning
the task), for example information-seeking tasks [30].

How to scaffold the process of learning to design tasks?
Our requesters were largely unpracticed at writing high-quality
crowdsourcing instructions. There is opportunity to incorpo-
rate tools for helping requesters—such as guiding them toward
effective strategies—into SPROUT. P4 mentioned it would
helpful to have templates for common things to say to workers
like “use your best judgement.” P1 thought better support for
task criteria labels would be useful for overall consistency.
We agree that these would be great to add, but determining a
single set of best practices is difficult. It may also be possible
to train crowd workers instead to hone the presentation of the
task.

LIMITATIONS
Several additional types of evaluation would strengthen our
findings. Future studies should strive to measure both data
accuracy and worker satisfaction resulting from task improve-
ment. More studies are also needed to investigate what hap-
pens when instructions become very complex, and to demon-
strate that our findings generalize to many types of requesters.

While our study design allowed for controlled observation of
requester behavior, we also encountered several experimental
challenges. Several requesters experienced difficulty deciding
on a motivating concept to help them make labeling decisions,
causing large delays (P5) or concept changes just to simplify
the task (P11); providing tools to requesters solving their own
problems may improve motivation. Future studies could also
seek to better control for the amount of time requesters spend
on each task (some requesters ended the task early), or the
style of instructions (e.g., by providing more requester train-
ing). Finally, studying multiple task types was informative but
decreased statistical power; future studies could try other ex-
perimental designs (e.g., with task type as a blocking factor).

CONCLUSIONS
To achieve high-quality output from crowdsourcing, one re-
quires diligent workers working on well-designed, and clearly-
explained tasks. While there are many papers on identifying
diligent workers and substantial research on patterns for task
decomposition, our work is perhaps the first tool that helps
requesters design effective instructions. Instructions may be
less glamorous than some other aspects of crowdourcing, but
they have been shown to be deeply important [23].

Furthermore, SPROUT uses a novel method to aid instruction
design and debugging: having the crowd evaluate the current
design on a sample of data, identifying confusing questions
based on disagreement and worker diagnoses, clustering confu-
sion categories based on worker instruction edits, and showing
those in an organized and prioritized manner so that a requester
can quickly learn the various nuances of their task and its cur-
rent flaws. SPROUT further aids a requester by providing a
natural interface for improving instructions with embedded
illustrative examples and recommending test questions for a
gated instruction workflow that ensures worker understanding.

Nearly all the requesters in our user study (with varying
amounts of crowdsourcing expertise) preferred to use SPROUT
(which has worker feedback) over structured labeling, a natu-
ral baseline that supports requesters learning about their task
themselves rather than through worker feedback. Some re-
questers felt that structured labeling is a good interface for
creating the first set of instructions, but overall they preferred
the full power of SPROUT, which makes effective task design
more convenient. On average, instructions produced using
SPROUT were longer, cited more examples, and were rated
higher by multiple crowdsourcing experts. This user study
also led to our set of design implications for future task de-
sign, and we have released our source code and web-based
implementations for further use by requesters and researchers.

In the future, we plan to use the crowd to improve other as-
pects of task and workflow design, such as task decomposition,
and to support task design beyond labeling tasks. For example,
we envision crowd workers retrieving task details from re-
questers as needed and collaboratively developing even better
designs with minimal requester effort. We encourage other
researchers to continue to explore new ways to leverage and
develop worker task design skills, and to build systems that
mediate worker-requester communications.

ACKNOWLEDGEMENTS
We thank Gagan Bansal, Quanze Chen, and Christopher Lin,
for their early feedback, and Eytan Adar, Danielle Bragg, Ravi
Karkar, Tongshuang Wu, and the anonymous reviewers for
their feedback on paper drafts. We also thank the requesters
and workers who participated in our study, as well as the
external crowdsourcing expert who judged the instructions.
This work was supported in part by NSF grant IIS-1420667,
ONR grants N00014-15-1-2774 and N00014-18-1-2193, the
WRF/Cable Professorship, support from Google, a Bloomberg
award, an IBM SUR award, and a Visvesvaraya faculty award
by the Government of India to the second author.

REFERENCES
1. Harini Alagarai Sampath, Rajeev Rajeshuni, and Bipin

Indurkhya. 2014. Cognitively Inspired Task Design to
Improve User Performance on Crowdsourcing Platforms.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 3665–3674. DOI:
http://dx.doi.org/10.1145/2556288.2557155

2. Omar Alonso and Stefano Mizzaro. 2012. Using
crowdsourcing for TREC relevance assessment.
Information Processing and Management 48, 6 (2012),
1053–1066. DOI:
http://dx.doi.org/10.1016/j.ipm.2012.01.004

3. Jonathan Bragg, Mausam, and Daniel S. Weld. 2016.
Optimal Testing for Crowd Workers. In Proceedings of
the 2016 International Conference on Autonomous
Agents & Multiagent Systems (AAMAS ’16). International
Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 966–974.
http://dl.acm.org/citation.cfm?id=2937029.2937066

4. Joseph Chee Chang, Saleema Amershi, and Ece Kamar.
2017. Revolt: Collaborative Crowdsourcing for Labeling
Machine Learning Datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems (CHI ’17). 2334–2346. DOI:
http://dx.doi.org/10.1145/3025453.3026044

5. Justin Cheng, Jaime Teevan, and Michael S. Bernstein.
2015. Measuring Crowdsourcing Effort with Error-Time
Curves. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 1365–1374. DOI:
http://dx.doi.org/10.1145/2702123.2702145

6. Lydia B. Chilton, Greg Little, Darren Edge, Daniel S.
Weld, and James A. Landay. 2013. Cascade:
Crowdsourcing Taxonomy Creation. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
1999–2008. DOI:
http://dx.doi.org/10.1145/2470654.2466265

7. Stanford Crowd Research Collective. The Daemo
Crowdsourcing Marketplace. In CSCW ’17.

8. Juliet Corbin and Anselm Strauss. 2014. Basics of
Qualitative Research. SAGE Publications, Inc.

9. Crowdflower. 2017a. Ideal Jobs for Crowdsourcing.
(2017). https://success.crowdflower.com/hc/en-us/
articles/202703295-Ideal-Jobs-for-Crowdsourcing

Downloaded on 9/17/17.

10. Crowdflower. 2017b. Test Question Best Practices.
(2017). https://success.crowdflower.com/hc/en-us/
articles/213078963-Test-Question-Best-Practices

Downloaded on 9/17/17.

11. Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn
Hartmann. 2012. Shepherding the Crowd Yields Better
Work. In Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work (CSCW ’12).
ACM, New York, NY, USA, 1013–1022. DOI:
http://dx.doi.org/10.1145/2145204.2145355

12. Ujwal Gadiraju, Yang Jie, and Alessandro Bozzon. 2017.
Clarity is a Worthwhile Quality - On the Role of Task
Clarity in Microtask Crowdsourcing. In Proceedings of
the 28th ACM Conference on Hypertext and Social Media
(HT ’17). 5–14. DOI:
http://dx.doi.org/10.1145/3078714.3078715

13. Philipp Gutheim and Björn Hartmann. 2012. Fantasktic :
Improving Quality of Results for Novice Crowdsourcing
Users. Master’s thesis. University of California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/

EECS-2012-112.html

14. David J. Hauser and Norbert Schwarz. 2016. Attentive
Turkers: MTurk participants perform better on online
attention checks than do subject pool participants.
Behavior Research Methods 48, 1 (2016), 400–407. DOI:
http://dx.doi.org/10.3758/s13428-015-0578-z

15. Ayush Jain, Akash Das Sarma, Aditya Parameswaran,
and Jennifer Widom. 2017. Understanding Workers,
Developing Effective Tasks, and Enhancing Marketplace
Dynamics: A Study of a Large Crowdsourcing
Marketplace. In 43rd International Conference on Very
Large Data Bases (VLDB). DOI:
http://dx.doi.org/10.14778/2735471.2735474

16. Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. 2009. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 248–255. DOI:
http://dx.doi.org/10.1109/CVPRW.2009.5206848

17. Sanjay Kairam and Jeffrey Heer. 2016. Parting Crowds:
Characterizing Divergent Interpretations in
Crowdsourced Annotation Tasks. In Proceedings of the
19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing (CSCW ’16).
ACM, New York, NY, USA, 1637–1648. DOI:
http://dx.doi.org/10.1145/2818048.2820016

18. Diane Kelly and Leif Azzopardi. 2015. How Many
Results Per Page?: A Study of SERP Size, Search
Behavior and User Experience. In Proceedings of the
38th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’15).
ACM, New York, NY, USA, 183–192. DOI:
http://dx.doi.org/10.1145/2766462.2767732

http://dx.doi.org/10.1145/2556288.2557155
http://dx.doi.org/10.1016/j.ipm.2012.01.004
http://dl.acm.org/citation.cfm?id=2937029.2937066
http://dx.doi.org/10.1145/3025453.3026044
http://dx.doi.org/10.1145/2702123.2702145
http://dx.doi.org/10.1145/2470654.2466265
https://success.crowdflower.com/hc/en-us/articles/202703295-Ideal-Jobs-for-Crowdsourcing
https://success.crowdflower.com/hc/en-us/articles/202703295-Ideal-Jobs-for-Crowdsourcing
https://success.crowdflower.com/hc/en-us/articles/213078963-Test-Question-Best-Practices
https://success.crowdflower.com/hc/en-us/articles/213078963-Test-Question-Best-Practices
http://dx.doi.org/10.1145/2145204.2145355
http://dx.doi.org/10.1145/3078714.3078715
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-112.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-112.html
http://dx.doi.org/10.3758/s13428-015-0578-z
http://dx.doi.org/10.14778/2735471.2735474
http://dx.doi.org/10.1109/CVPRW.2009.5206848
http://dx.doi.org/10.1145/2818048.2820016
http://dx.doi.org/10.1145/2766462.2767732

19. Jaewon Kim, Paul Thomas, Ramesh Sankaranarayana,
Tom Gedeon, and Hwan-Jin Yoon. 2016. Pagination
Versus Scrolling in Mobile Web Search. In Proceedings
of the 25th ACM International on Conference on
Information and Knowledge Management (CIKM ’16).
ACM, New York, NY, USA, 751–760. DOI:
http://dx.doi.org/10.1145/2983323.2983720

20. Aniket Kittur, Susheel Khamkar, Paul André, and Robert
Kraut. 2012. CrowdWeaver: Visually Managing Complex
Crowd Work. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work
(CSCW ’12). ACM, New York, NY, USA, 1033–1036.
DOI:http://dx.doi.org/10.1145/2145204.2145357

21. Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel
Fisher, and Denis Charles. 2014. Structured Labeling for
Facilitating Concept Evolution in Machine Learning. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 3075–3084. DOI:
http://dx.doi.org/10.1145/2556288.2557238

22. Anand Kulkarni, Matthew Can, and Björn Hartmann.
2012. Collaboratively Crowdsourcing Workflows with
Turkomatic. In Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work (CSCW ’12).
ACM, New York, NY, USA, 1003–1012. DOI:
http://dx.doi.org/10.1145/2145204.2145354

23. Angli Liu, Stephen Soderland, Jonathan Bragg,
Christopher H. Lin, Xiao Ling, and Daniel S. Weld. 2016.
Effective Crowd Annotation for Relation Extraction. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies
(NAACL-HLT ’16). The Association for Computational
Linguistics, 897–906.
http://aclweb.org/anthology/N/N16/N16-1104.pdf

24. V. K. Chaithanya Manam and Alexander J. Quinn. 2018.
WingIt: Efficient Refinement of Unclear Task
Instructions. In Proceedings of the Sixth AAAI
Conference on Human Computation and Crowdsourcing
(HCOMP ’18). AAAI Press, 108–116. https://aaai.org/
ocs/index.php/HCOMP/HCOMP18/paper/view/17931

25. Brian McInnis, Dan Cosley, Chaebong Nam, and Gilly
Leshed. 2016. Taking a HIT: Designing Around
Rejection, Mistrust, Risk, and Workers’ Experiences in
Amazon Mechanical Turk. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
2271–2282. DOI:
http://dx.doi.org/10.1145/2858036.2858539

26. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed Representations of
Words and Phrases and their Compositionality. In NIPS.
1–9. DOI:
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951

27. Tanushree Mitra, C.J. Hutto, and Eric Gilbert. 2015.
Comparing Person- and Process-centric Strategies for
Obtaining Quality Data on Amazon Mechanical Turk. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 1345–1354. DOI:
http://dx.doi.org/10.1145/2702123.2702553

28. David Oleson, Alexander Sorokin, Greg P. Laughlin,
Vaughn Hester, John Le, and Lukas Biewald. 2011.
Programmatic Gold: Targeted and Scalable Quality
Assurance in Crowdsourcing. In Human Computation,
Papers from the 2011 AAAI Workshop. AAAI. http://www.
aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3995

29. Daniel M. Oppenheimer, Tom Meyvis, and Nicolas
Davidenko. 2009. Instructional manipulation checks:
Detecting satisficing to increase statistical power. Journal
of Experimental Social Psychology 45, 4 (2009), 867–872.
DOI:http://dx.doi.org/10.1016/j.jesp.2009.03.009

30. Alexandra Papoutsaki, Hua Guo, Danae
Metaxa-Kakavouli, Connor Gramazio, Jeff Rasley,
Wenting Xie, Guan Wang, and Jeff Huang. 2015.
Crowdsourcing from Scratch: A Pragmatic Experiment in
Data Collection by Novice Requesters. In Proceedings of
the Third AAAI Conference on Human Computation and
Crowdsourcing (HCOMP ’15). AAAI Press, 140–149.
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/

view/11582

31. Jeffrey Rzeszotarski and Aniket Kittur. 2012.
CrowdScape: Interactively Visualizing User Behavior
and Output. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 55–62. DOI:
http://dx.doi.org/10.1145/2380116.2380125

32. Ben Shneiderman. 1996. The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualizations. In
Proceedings of the 1996 IEEE Symposium on Visual
Languages (VL ’96). IEEE Computer Society,
Washington, DC, USA, 336–.
http://dl.acm.org/citation.cfm?id=832277.834354

33. Gaurav Sood. 2016. Parsed DMOZ data. (2016). DOI:
http://dx.doi.org/10.7910/DVN/OMV93V

34. Daniel S. Weld, Mausam, Christopher H. Lin, and
Jonathan Bragg. 2015. Artificial Intelligence and
Collective Intelligence. In Handbook of Collective
Intelligence, Thomas W. Malone and Michael S.
Bernstein (Eds.). The MIT Press.

35. Meng-Han Wu and Alexander J. Quinn. 2017. Confusing
the Crowd: Task Instruction Quality on Amazon
Mechanical Turk. In Proceedings of the Fifth AAAI
Conference on Human Computation and Crowdsourcing
(HCOMP ’17). AAAI Press, 206–215. https://aaai.org/
ocs/index.php/HCOMP/HCOMP17/paper/view/15943

http://dx.doi.org/10.1145/2983323.2983720
http://dx.doi.org/10.1145/2145204.2145357
http://dx.doi.org/10.1145/2556288.2557238
http://dx.doi.org/10.1145/2145204.2145354
http://aclweb.org/anthology/N/N16/N16-1104.pdf
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17931
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17931
http://dx.doi.org/10.1145/2858036.2858539
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
http://dx.doi.org/10.1145/2702123.2702553
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3995
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3995
http://dx.doi.org/10.1016/j.jesp.2009.03.009
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/view/11582
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP15/paper/view/11582
http://dx.doi.org/10.1145/2380116.2380125
http://dl.acm.org/citation.cfm?id=832277.834354
http://dx.doi.org/10.7910/DVN/OMV93V
https://aaai.org/ocs/index.php/HCOMP/HCOMP17/paper/view/15943
https://aaai.org/ocs/index.php/HCOMP/HCOMP17/paper/view/15943

	Introduction
	Previous Work
	Design Principles for Tasks and Workflows
	Gated Instructions
	Understanding Task Ambiguities and Worker Behavior
	Tools for Task and Workflow Design

	Sprout: A Tool Supporting Task Design
	Finding and Characterizing Ambiguous Items
	Clustering and Determining Related Items
	Requester Dashboard for Improving Task Design
	Compiling Gated Instructions

	Exploratory User Study Design
	Labeling Tasks and Requester Interfaces
	Participants
	Procedure

	Results
	RQ1: Usefulness of Worker Feedback
	RQ2: Usefulness of Sprout's Affordances
	RQ3: Impact on Task Design Quality

	Design Implications for Task Design
	How to make exploration frictionless?
	How much information to show?
	How much initiative to take?
	How to balance self-organization and worker support?
	How much of the workflow to support?
	How to scaffold the process of learning to design tasks?

	Limitations
	Conclusions
	Acknowledgements
	References

