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Abstract—In this paper, we consider the problem of mutual privacy-protection in social participatory sensing in which individuals
contribute their private information to build a (virtual) community. Particularly, we propose a mutual privacy preserving k-means
clustering scheme that neither discloses individual’s private information nor leaks the community’s characteristic data (clusters). Our
scheme contains two privacy-preserving algorithms called at each iteration of the k-means clustering. The first one is employed by
each participant to find the nearest cluster while the cluster centers are kept secret to the participants; and the second one computes
the cluster centers without leaking any cluster center information to the participants while preventing each participant from figuring out
other members in the same cluster. An extensive performance analysis is carried out to show that our approach is effective for
k-means clustering, can resist collusion attacks, and can provide mutual privacy protection even when the data analyst colludes with all

except one participant.

Index Terms—Privacy Preservation; k-Means Clustering; Social Participatory Sensing; Homomorphic Encryption; Social Networking

Big Data.

1 INTRODUCTION

NLINE/MOBILE social networking and the sensors (pedome-
O ter, cardio watch, etc.) embedded in various smart devices
have become deeply involved in our daily lives, which conse-
quently triggers a large variety of social participatory sensing
applications. Participatory sensing is a process of acquisition,
integration, and analysis of big and heterogeneous data, which
is generated by a diversity of sources, such as smart devices
and sensors [1], [2], and it can reduce the resource cost as data
collection no longer depends on the large-scale deployment of
sensors. With such applications, people show more or less inter-
ests in performing social comparisons with others, which could
help them get an accurate view about themselves and motivate
them to achieve more, according to the social psychology theory
[3]. For example, people constantly engage in comparison with
their friends on emotional moods, travelled locations, walking
distances, fitness status, etc. One question that is frequently asked
is: where am I in my community? A study on the community
data with data mining techniques could answer such questions.
However, although the underlying data about the participants are
greatly helpful, such information may trigger serious concerns
on privacy leakage (location, emotion, health, etc.). Consequently
there is a conflict between data privacy and the wide adoption of
social participatory sensing applications.
For a typical social participatory sensing application, it is
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important to motivate participation while at the same time the
participatory sensing process should not disclose the private
information of any participating party (the private data) or the
community (patterns, distribution, etc.). Therefore it is essential
to develop a mutual privacy preserving data mining technique to
protect both the users and the community. In other words, we
need a technique that can mutually protect the privacy of both the
participants and the community, i.e., a technique that allows the
data analyst (the social application server) to extract information
about the community without accessing any user’s private data
while no participatory participant can obtain any information
about other participants and the community.

However, existing privacy-preserving techniques either focus
on protecting the privacy of one single side only, namely the
participating users, or leak intermediate results during community
learning to potential privacy attackers, or cannot resist collusion
attacks. For example, the collaborating participants could iden-
tify the candidate clusters within each iteration of the k-means
clustering in [4]. Exposing such intermediate information or the
final community characteristics data can possibly put individual’s
privacy at risk, or cause panic and extreme actions among the
participants in the community.

In this paper, we propose a mutual privacy preserving clus-
tering scheme based on a well-known data mining method, the
k-means algorithm [5], [6], which groups similar entities into
clusters with the goal of minimizing intra-group distance and
maximizing inter-group distance. Specifically, k-means clustering
is an iterative algorithm with each iteration consisting of two steps:
assigning each participant to the nearest cluster, and updating the
center of each cluster. The iteration terminates in a fixed number
of rounds or until the change of the cluster centers meets a given
threshold [6].

Our main contributions can be summarized as follows:

e We propose two privacy-preserving algorithms called at
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each iteration of the k-means clustering. The first one is
employed by each participant to find the nearest cluster
and the second one updates cluster centers. Security and
privacy analysis demonstrates that our k-means clustering
scheme can resist collusion attacks.

e The proposed algorithms enable mutual privacy protection
in clustering not only via keeping individuals’ information
private, but also by restraining the leakage of any cluster
center information to the participants and preventing each
participant from figuring out other members of the cluster,
which is different from traditional approaches [7].

e To our best knowledge, this is the first mutual priva-
cy preserving and collusion-resistant k-means clustering
scheme, and we believe that its basic idea can be general-
ized to other iterative data mining algorithms for privacy
protection.

e We carry out an extensive experimental study to validate
our design. The results indicate that our privacy-preserving
k-means clustering scheme is effective in clustering, and
can provide mutual privacy protection.

The rest of the paper is organized as follows. Section 2
introduces the most related existing work on privacy-preserving
k-means clustering. Section 3 presents the preliminary knowledge
about k-means clustering and introduces the assumptions adopted
by this paper. Our privacy-preserving k-means clustering algo-
rithm is detailed in Section 4, and its corresponding privacy and
cost analyses are carried out in Section 5. Experimental studies
are reported in Section 6. We conclude this paper with a future
research discussion in Section 7.

2 RELATED WORK

Many existing privacy-preserving k-means clustering algorithms
have been developed for different data distributions such as
(horizontally partitioning data, vertically partitioning data, and
arbitrarily partitioned data [4]) to protect the privacy of the users
and the communities in a social participatory sensing application.
In this subsection, we mainly summarize the state-of-the-art of
existing privacy-preserving k-means clustering algorithms.

In a vertically partitioned data distribution, the data of an
entity is distributed to different participants in such a way that
each party obtains a portion of the attributes owned by the entity.
Hence there is a need for the participating participants to disclose
their private data during the computation of k-means clustering.
The intermediate assignments of entities to their nearest clusters
also pose a threat to privacy. The first privacy-preserving k-means
algorithm for vertically partitioned data was proposed by Vaidya
in [7], in which the distance between participants is securely com-
puted based on the secure permutation scheme proposed by Du
[8] and homomorphic encryption. However, this protocol requires
the existence of three non-colluding participants, an assumption
that cannot be easily guaranteed in many real-life applications. In
[9], additive secret sharing [10] was adopted as a cryptographic
primitive to implement a secure multi-party computation proto-
col, so as to realize privacy preserving clustering. To avoid the
requirement of non-colluding participants, Samet [11] proposed
an algorithm to compute the sum of distances by adopting the
secure sum scheme. There also exists other research [12], [13]
on vertically partitioned data distribution; but none of them can
protect the number of entities in a cluster from being leaked. This
problem is solved by our scheme proposed in this paper.

In a horizontally partitioned data distribution, each entity is
owned by a single party; thus the distance to cluster centers can be
computed without violating privacy. However, privacy disclosure
can happen during the computation of intermediate cluster centers.
Inan et al. [14] introduced a protocol for securing multi-party
computation of a dissimilarity matrix over horizontally partitioned
data, which constructs the dissimilarity matrix of objects from
different sites in a privacy preserving manner. Jha et al. [15] p-
resented a privacy-preserving k-means clustering algorithm based
on oblivious polynomial evaluation and homomorphic encryption.
This approach can be applied in a multi-party environment, but the
intermediate centers are often exposed to potential privacy attacks.
Our privacy preserving k-means clustering proposed in this paper
can be applied to horizontally partitioned data and to prevent
the disclosure of any additional information about intermediate
centers and the cluster label of each entity.

Arbitrarily partitioned data was first considered in [4], in
which a privacy preserving k-means clustering was proposed for
arbitrarily partitioned data distributed between two participants.
The idea is to split all the intermediate results into random
partitions. Yu et al. [16] applied the concept of parallel computing
to tackle the privacy-preserving multi-party k-means clustering
problem, which can speed up the clustering process. This approach
was designed for both vertically partitioned and horizontally
partitioned data. Bunn et al. [17] proposed a two-party k-means
clustering protocol based on homomorphic encryption to guaran-
tee privacy in arbitrarily partitioned data, in which the protocol
does not disclose the intermediate results and cluster assignments.
Moreover, they designed a secure protocol for randomly selecting
k initial centers. However, if the protocol is extended to multi-
party k-means clustering, it may bring new security and privacy
risks. For example, the protocol cannot resist collusion attacks
when more than 5 participants have collusion activities, where
there are n participants.

There exist many other research on privacy-preserving k-
means clustering. Rao et al. [18] described a two-party k-means
clustering protocol, which can be implemented by utilizing any
semantically secure homomorphic encryption scheme. Liu et al.
[19] presented an outsourced k-means clustering, which proposed
an encryption algorithm to generate trapdoor information; but this
scheme only protects one party’s privacy. Lin [20] applied the
linear transformation and the random perturbation of the kernel
matrix for privacy preservation in k-means clustering. Patel et al.
[21] adopted secret sharing and the code-based zero-knowledge
identification scheme to construct a distributed privacy-preserving
k-means clustering scheme under the malicious adversarial model,
in contrast with the mainstream research that assumes the semi-
honest adversarial model. In [22], an overview on existing privacy
preserving k-means clustering algorithm based on secure multi-
party computation was provided. To ensure I/O efficiency, [23]
and [24] proposed a privacy-preserving version of the simple de-
terministic algorithm Recluster; but the cluster centers are exposed
to both participants in the protocol. Erkin et al. [25] distributed
trust among a number of helper users instead of relying on a single
party to obtain k-means clustering without leaking the clusters’
privacy; but this approach requires a strong assumption of non-
colluding activities among the participants. Samanthula ez al. [18]
proposed a privacy-preserving distributed clustering mechanism
via outsourcing multi-user k-means clustering to cloud servers;
unfortunately this scheme still cannot resist collusion attacks.

In summary, existing privacy preserving clustering solutions
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cannot provide mutual privacy protection as either the private data
of the participants or the (intermediate) cluster information may be
disclosed; moreover, most of them cannot resist collusion attacks.
In this paper, we propose a robust mutual privacy preserving k-
means clustering algorithm that can preserve the privacy of the
participating participants as well as the intermediate results of
the cluster centers while resisting collusion attacks. Our research
was motivated by social participatory sensing applications where
the community information should be kept confidential since
otherwise it may result in panic or extreme actions among the com-
munity members, and the personal data of the social participants
should be kept private as regular community members usually do
not want to disclose their private information; meanwhile, such
applications are vulnerable to collusion attacks.

3 PRELIMINARIES AND ASSUMPTIONS

For better elaboration, the notations used in this paper and their
semantic meanings are presented in Table 1.

TABLE 1
The Notations and Their Semantic Meanings

Notations means

U; The ith cluster, 1 <1 < k
u; The jth cluster center
P1,q1 Two prime integers

E() Encryption operation
D(") Decryption operation

PU Public key

PR Private key

3.1 The k-Means Clustering Algorithm

The process of k-means clustering is based on (1) and (2). Assume
that there are n participants with each participant a; holding a g-
dimensional sample data a;. Suppose that the participants need to
be grouped into k clusters Uq, ..., Uy, with the center of the j-th
cluster denoted by u;. Initially, each cluster center is arbitrarily
and randomly assigned. Note that cluster centers can also be
initialized with the method proposed in [26]. A sample data a;
belongs to a cluster Uj if the center uj is the closest among all
centers to a; according to (1), where u; is the mean of the samples
in U; computed from (2). There are many criterions to measure
the distance between a sample and the related cluster center. In
this paper, we adopt the Euclidean distance as our criterion. At
each iteration, the k-means algorithm re-assigns the sample data
to their nearest centers following (1) and re-computes the cluster
centers Uy, ..., Uk according to (2). The iteration terminates when
there is no or little change in the cluster centers.

c; = argmin||ai—uj|\2, (1)
J

Z?:l I{cl :]}al

211:1 I{Ci :]}

where 1 < j < k, 1 <4 < n,and I{c; = j} is the index
function that equals 1 if ¢; = j and 0 otherwise.

2

Uj:

3.2 Homomorphic Encryption

Homomorphic encryption [27] allows certain computation over
encrypted data. Paillier cryptosystem [28] is a popular Homo-
morphic encryption scheme that provides fast encryption and
decryption, which is a probabilistic asymmetric algorithm based
on the decisional composite residuosity problem. It is adopted by
the secure scalar product, which has been widely used in privacy
preserving data mining. The Paillier cryptosystem is briefly intro-
duced as follows:

o Key generation: An entity selects two large primes p;
and ¢ and computes N = piq; and A = lem(py —
1,q1 — 1), where lcm stands for the least common mul-
tiple. It then chooses an integer g such that ged(L(g*
mod N?2),N) = 1, where gcd stands for the greatest
common divisor, g € Z}, and L(z) = %5*. The public
key and private key are respectively { N, g} and {\}.

e Encryption: Let m € Z}; be a plaintext and r € Z}; be

a random number. The ciphertext of m is computed by
E(m)=g¢™-r" mod N?, 3)

where E/() denotes the encryption operation using public
key {N, g}.

o Decryption: For the ciphertext F(m), the corresponding
plaintext can be computed by

L(E(m)» mod N?)
D(E = dN, “
(BOm) = = L g vy oA N @
where D() denotes the decryption operation using private
key {A}.

e Homomorphic : The Paillier cryptosystem is additively
homomorphic as it satisfies the following conditions: Giv-
en {my, ma} € Z%, we have:

E(my) - E(m2) = E(mq + ma), 5

Furthermore, given FE(m) and a constant ¢, E(c - m) can
be computed by:

E(c-m) = E(m)°. (6)

3.3 Clustering Model

We consider a clustering problem consisting of n participants
ai, ..., a,. Each participant a; holds its own private information
aj, a g-dimensional vector describing its features or activities.
As shown in Fig. 1, there also exists a data analyst A who is
responsible for grouping those participants with similar proper-
ties/activities into one cluster. However, due to privacy concerns,
the data analyst cannot access the private information of any
participant.

Our goal is to build mutual privacy protection between the
data analyst A and the participants aq, .., a,, when computing
the k centers of the private data ay,as,- - ,ay,. Neither of A
and the participants should deduce any private information about
the other side except those being published as a result of the
k-means clustering scheme. In other words, the data analyst A
cannot learn any private information owned by the participants
since a compromised A may potentially sell the data to others.
Similarly, malicious participants should learn nothing about the
data analyst A’s data (the centers) and should not be able to disrupt
A’s computation.
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Data Analyst

Fig. 1. Clustering Model

We assume that:

e any pair of the participants a; and a; share a unique
pairwise key;

o the data analyst A shares a unique pairwise key with each
participant a;;

o the data analyst A generates a public and private key pair
(PU, PR) that can be used for additive homomorphic
encryption, and distributes its public key PU to all the
participants.

Messages from each participant a; to A need to be encrypted
with PU. Let m denote the plaintext, and m/’ the corresponding
ciphertext. We have m’ = E(PU,m) and m = D(PR,m/).
Due to homomorphic property, we have

E(PU,ml)-E(PU,mQ):E(PU7m1 —|—m2) (7)

4 PRIVACY PRESERVING K-MEANS CLUSTERING

In this section, we present our privacy preserving k-means cluster-
ing algorithm. As mentioned earlier, there exist two steps within
each iteration: assigning each participant to its closest center, and
computing the new center of each cluster in a secure way.

4.1 Stage 1: Assign Participants to Their Nearest Cen-
ters

This step assigns participants to their nearest centers within
an iteration. The cluster centers (uy, ..., uy) are initialized and
updated by the data analyst A.

Let D;; be the distance between the i-th participant a; and the
center of the j-th cluster U}, i.e.,

Dij = (ai — ;)" (a; — uy)

Now consider a; and its distances to the clusters U; and U,,. We
have

Dij — Dij/

(a; — ;)" (a; — ;) — (ai —uy) " (a; — uy)
= ala; —2aju; + u;‘-ruj —(ala; — 2al uj + u;‘(:uj/)
= u;‘-ruj — u?,uj/ —2a] (uj — uj) (3)

Remark 1: If A can send uJTuj - uJT,uj/ and u;
then a; can calculate D;; — D; ;s according to (8). If D;; — D, <
0, a; is closer to u;; otherwise, a; is closer to u,. This process
can be repeated for k£ — 1 times for a; to identify the closest cluster
center among all the & clusters.

However, if the data analyst A sends all the {u; — u;/}’s
directly to a participant a;, then a; can collect u; — us, us —

—uy to ay,

ug, - -+, Ugx_1 — Ug, and thus the cluster centers can be leaked.
Therefore, A should send randomly perturbed values of {u; —
uj/}, as shown below, where the Plig) > 0 values are random
numbers:

panl(ar
p(i,2)[<u1

)

ug) — (U2’ uz)|, piy (w1 — uz)

T
Tuy) — (us us)], p(i,2)(ur — us)

T
T

P -1y [(ua"ur) — (we )], pip—1) (01 — )

P(i k) [(UzTuz) - (U3Tu3)}, p(i,k)(u2 - 113)
P(ik+1) [(ulelz) - (u4T114)L p(i,k+1)(u2 - u4)
P(i,2k—3) [(uz"ug) —

)

©
(ukTUk)], P(i,k+1)(ll2 — uy)
P ey (a1 1) —
T2

Pr: k(k—1) (uk_l — uk)
(7“, 2 )

()],

Remark 2: Since P(i,j) > 0, the randomized results have no
influence on determining the sign of D;; — D;;, as well as the
closeness between the participant a; and the clusters.

After obtaining this information, each participant a; can i-
dentify the nearest center based on its own private data a;.
The procedure is stated as follows. The participant a; first
computes the value S; 1) = pgnl[(ur’uy) — (upx’ug)] —
2p(i71)aiT[(u1 — ug)], which is related to the received infor-
mation panl(ui’uy) — (uzTuz)] and pg1y(ugr — ug). If

S, 112 < 0, a; is closer to uy, and it can choose p(; 2) [(urTuy) —

(uz” ug)] and P(i,2) (u; — ug) to calculate the value of S(Z 2) =
pi.2y[(ui’uy) — (usus)] — 2p(; 2)a; " [(ug — ug)]; otherwise,
a; is closer to ug, and it can compute the value S(; ) =
piwl(uzTuz) — (usTug)] — 2p; pya;’[(uz — ug)] based
on the received information p(; )[(uz”uz) — (us’uz)] and
p(i’k)(uz — ug). This process repeats until the nearest center is
figured out. Then a; informs the data analyst A which cluster (the
one with the nearest center) it belongs to. Note that when this
procedure terminates, A only knows which cluster a; belongs to;
it has no knowledge about a;’s private information a;.

The above process is summarized in Algorithm 1.

Note that each a; only needs k rows of the information
included in (9) to identify its nearest cluster. But we choose to let
the data analyst A deliver all information included in (9) to each
participant a; for privacy protection as an interactive procedure
asking only the required cluster center information may disclose
the privacy of both a; and the cluster centers.

4.2 Stage 2: Update the Cluster Centers

After each participant identifies its closest cluster with Algorithm
1 and informs the data analyst A, A should re-evaluate the cluster
center u; for each cluster U;. Assume that there are n; participants
assigned to cluster Uj; then ny +ngo + - - - +ng = n. After Stage
1, A can get the cluster membership list shown in Table 2, where
5(;,1) € {a1, ..., an} is a participant indicating that this participant
is the [-th participant in the j-th cluster, where 1 < [ < nj and
1<j<k.

Next, we present an additive homomorphic encryption scheme
to re-compute the cluster centers, in order to ensure that only
the data analyst knows the intermediate cluster centers, and the
participants are kept blind to such private information. While in
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Algorithm 1 Identifying the nearest cluster for a participant a;.

1. Initialize: There are n participants and one data analyst
A. Each participant a; owns a ¢-dimensional private
data a; = (a1, - ,aq). There are k cluster centers
{u1, - ,ux}, with their initial values randomly deter-
mined by A.

T=1

forj=1tok—1

y=J+1
for.=vtok
A sends to a;: p(; 7 [u;Tv; — u,Tu,] and P (g —
w,);
T=17+1

8:  endfor

9: endfor

10: a; identifies the nearest center based on the received data and
its own private data as follows:

11: a; first compares its distance to u; and ugz by computing
Sy = pan[(waTur) — (uauz)] —2p(; 1ya; " [(ug —
uz)];

12: If S; 1) < 0, a; is closer to uy, and then a; compares the
distances to uy and ug using the related received data and
its own private data as in Step 11;

13: else if a; is closer to ug, then a; compares its distances to ug
and ug as in Step 11;

14: EndIf

15: a; repeats Steps 11 to 14 to identify the nearest cluster.

16: a; notifies A which cluster it belongs to.

AN AN

~

TABLE 2
participant Label

Cluster participants participant Label
U1 (n1 participants)

Us (n2 participants)

S(1,1):8(1,2)5 """ > S(1ng)
5(2,1),5(2,2)> " 5 5(2,na)

Uy (ny_participants) S(k,1)>S(k,2)0 " 5 S(kyny)

many existing privacy-preserving k-means clustering algorithms
such as [7], [15] and [24] this information cannot be protected.

According to (2), a cluster center is the mean of the private
data of the participants that belong to that cluster. From Table
2, one can see that the data analyst knows n;, the number of
participants in cluster U;. Therefore we need to compute the sum
of the private data of the participants belonging to U;. Consider the
cluster U; and its member participants s(; 1), 5(;,2)," " - 2 S(jny)-
First, the data analyst A randomly generates n; g-dimensional
vectors V1), Vijay, -+, V(jn,) satisfying

Vi +Vga++Vin) =0 (10)

Then A securely sends {V; ;), +} to each participant s; ;) € Uj
encrypted with their pairwise key, where “+” denotes that s; ;)
belongs to the cluster currently under consideration. Meanwhile,
A generates another (n — n;) g-dimensional vectors R;/ ;) for

each s, ;) ¢ Uj satisfying:

Ray+Rauzy+-+Rany+--
+R_1,1) + Ry +- + R(j—1,nj,1)
R F Ry + -+ Ripin, )

+oo Ry + o+ Ry =0

an

Then A securely sends {R,;/ 1), —} to each sy & Uj.

Next, all of the n participants should compute their encrypted
data. Recall that each participant owns a g-dimensional private
vector. For each s(;;) € Uj, s(;,) should encrypt the received
vector V (; ;) and its private vector a(; ;) after receiving the mes-
sage {V (1), +} with a label “+”. The encryption is computed
with the public key PU of the homomorphic encryption system.
Then s(; ;) obtains:

Y}J = E(PU, ag + V(jJ)). (12)

While for each s;: 1y ¢ Uj, s¢jv,1y only encrypts the received
vector upon receiving the message {R; ), —} with a label “—".
That is, S(jr,1) gets:

Y; ;= E(PU, R(j/,l)). (13)

After completing the encryption operation, each participant
should share part of its ciphertext with others. This can be
done as follows. Each participant $(,, o) first randomly divides its
ciphertext Y), , (computed either from (12) or from (13)) into m

components Y;)l,q, Y;fq, s Y;}Z, where 1 < m < n, satisfying
1 2 m __
%,q'l’é,q”"'%,q—%m

Note that s(, ;) must keep one of the m components to itself.
Then s, 4 randomly selects m — 1 participants in the network
and sends one component to each chosen participant through the
secure channel protected by their pairwise keys.

Note that each participant should complete the above slicing
and distributing process on its ciphertext computed from (12) or
(13). Meanwhile, each participant may receive components (slices
of ciphertexts) from other participants. Then each participant
applies the homomorphic operation on all the received cipher
components as well as the slice kept to itself by multiplying them
together to get r(;, ), which should be sent to the data analyst A
after the computation is over.

Lastly, A multiplies all the received data, and obtains the
following result according to (7), (10), and (11):

}/},1.}/}2....}/}7”] ""}/j’,l""
= E(PU.ag) +ag2) + - +aga,)+
Vi + Vg + o+ Vi) + + Ry +-0)
= E(PU,ag) +agz) + - +agn,)
(14)
Then A gets a(j1) + agj2) + -+ + ajn,) by decrypting with
its private key PIR, and finally computes the cluster center u;
by dividing it by n;. The whole procedure is summarized by
Algorithm 2.

An example detailing the procedure is given in Fig. 2, which
illustrates how to compute the center of the first cluster whose
members include the circled participants 1,2, 3.

Following the above process, the data analyst can compute the
new center for each cluster. The advantage of our algorithm is the
ability to ensure mutual privacy preservation.

o The data analyst can obtain the sum of the data in a
cluster without accessing the private information of each
participant.
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[ Data Analyst ]

Y11= E@antVan) ¥ay=ERen) ¥iz=E@ua+Vaz): Yis=E@as +Vas) Va2 = ERaa): Yos = ERazs), Yaa = ERoa)
(a) The data analyst sends random data to each participant, satisfy-
ing Vie) + Vi) + Vs =0 By + Ree) + Res) +
R(274) =0.

mJ-
(%)
k

(b) Each participant slices its encrypted data, keeps one piece to
itself, and sends the remaining to randomly chosen participants.

—_y2 .yl .y2_.y2
Ty =Yg Yy, Y1, Vi

= y},1 : Y%,z

_y3 .yl y2 .y2
r3=Yi1Yip Y31 V23

rs=Yi, Vi, V3, V3
sT 2 22 as o y3 v, v, vE, rr= iV YEs oYY,
(3] []

(c) Each the participant multiplies its received data and the compo-
nent held by itself.

—vy3 .yl .y2
e =Y1 Vi3 V2,

®

[ Data Analyst ]

®@ o B B &

(d) All the participants send their results from Fig. 2(c) to the data
analyst, who can compute the new cluster centers.

Fig. 2. The process of computing the new cluster centers within one
iteration.

e The participants know nothing about each other. Particu-
larly, they do not know who else are in the same cluster.

o The participants know nothing about the intermediate clus-
ter centers. This information is protected by the random
values (the p values) known only by the data analyst.

4.3 Stopping Criterion

Stage 1 and Stage 2 should be repeated iteratively until little
or no change occurs in the clustering process. At the end of

Algorithm 2 Computing the new center of cluster U;.

1: Initial State: Cluster U; has the member participants s(; 1),
8(j,2)> "' S(jn,)s With a¢; ) being the private data of
member $; ;).

2: The data analyst A generates the random V' values according
to (10) and the random R values according to (11).

3: The data analyst A sends (V/; ), +) to each s(; ;ep,, and
sends R,/ ;y to each participant s ;) ¢ Uj.

4: Each member computes its encrypted data with (12) if it
belongs to cluster U, or with (13) otherwise.

5: Each member slices the ciphertext into /m components, and
sends m — 1 components to other participants randomly
selected in the network.

6: Each participant multiplies the encrypted component it has
kept for itself and all the received cipher components to
compute r.

7: Each participant sends r to the data analyst A.

8: The data analyst multiplies all the received data to get a; 1)+
a(jo) + -+ & n,) via decryption.

9: The new center of the cluster U; can be obtained by a; 1) +
ag2) o+ agn) /1

each iteration, the data analyst needs to compare the newly
obtained cluster centers with those from the previous iteration.
If they are “close enough” according to an application-specific
parameter (e.g., the total distance change of the clusters and their
corresponding participants is no more than a threshold between
two iterations), the iteration process can terminate.

5 PRIVACY AND EFFICIENCY ANALYSIS

In this section, we discuss the ability of our scheme to ensure
privacy preservation against potential passive and active attacks.
Before delving into details, we first define our goals in privacy
protection. In our consideration, each participant should not get
the following information:

e cluster centers;
o other participants in the same cluster;
o the private data of the other participants.

The data analyst A knows where are the cluster centers, but it
cannot access any private information of any participant. In other
words, A knows that the participant s(;;) belongs to the j-th
cluster, but it does not know the private data a; 1) of s(; ;) nor the
distance from s(; ;) to the associated cluster center u;.

5.1 Privacy Analysis on the Stage of Assigning Partici-
pants to Their Nearest Clusters

In Stage 1, each participant only notifies A which cluster is the
closest; therefore the data analyst knows nothing about the private
information of the participants. Now considering the worst case
when n — 1 participants collude with each other to detect the
cluster centers. Without loss of generality, we assume that these
n — 1 participants are denoted by aj, a9, - - ,a,—1 and they
combine their information to compute the cluster center u;. All
these colluding n — 1 participants can construct the following
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equations using the received data from the data analyst A and
their own data:

pan(ui’ur —u2"uz) — 2p a1’ (ur — uz2) = S )
pen(i’ur —u2"uz) — 2pya2” (ur — uz2) = Seo 1)
pian(ui’ur —u2"uz) — 2p31)as” (ur — uz2) = Sg 1)
pin—1,1y(w1Tur —u2"uz) — 2p(, 1 nan-1” (U1 — uz)
= Sm-1,1)

pa2y (w1’ ur —us"us) — 2p1 2pa1” (1 — us) = S 2
pe2y (w1’ ur —us"us) — 2p a2’ (ur — us) = S 2
pi2y(ui’ur —us"us) — 2pz 2)a3” (U1 — us) = Sz 2

)

pa k-1 (u1ur —u k) — 2p( p-nyar’ (U1 — uk) = S ko)
pek—1 (a1 ur — u k) — 2p2 p-1yaz”’ (U1 — uk) = S k1)
pir—1 (1w —u k) — 2p3 p-1yas”’ (U1 — uk) = Sz p-1)
Pin—1 -1 (@1 w1 —u k) — 2p(n—1k-nan—1" (U1 — uk)

= Stn—1,k=1)

(15)
For the participants, the coefficients {0(1,1), P(2,1)s -+ Pn—1,1)5

P(1,2)5 P(2,2)5 -5 P(n—1,2)5 -+=++- y P(1k—1)5 P(2,k—1)s -+ p(n71,k71)}

and {uy,uz,us,....,ux} are unknowns in (15), which come
from the data analyst A, and the cluster center is a g-dimensional
vector. Thus there are (k — 1)(n — 1) 4+ kg unknown parameters
in (15), but there exist only (k — 1)(n — 1) equations; therefore
the participants cannot figure out the cluster uj. Similarly,
the colluding participants cannot find out other cluster centers
{u2,us..., ux}. Actually, when all the available information from
the n — 1 colluding participants are combined, (n — 1) - @
equations can be obtained but there are (n — 1) - w + kq
number of unknowns, which again proves that it is impossible for
the participants to recover the cluster centers {uy, uz, us..., ux }.
Thus we conclude that our scheme can resist the collusion attacks
launched by any number of participants without leaking any
information about the cluster centers.

Cost Analysis on Stage 1:

We next analyze the communication and computation overheads
of our algorithm in Stage 1. It should be noted that both com-
munication and computation overheads of the k-means clustering
algorithm depend on the size of the data set. The number of
iterations being conducted to meet the stopping criterion depends
on the dataset size and the initial cluster centers. A clustering algo-
rithm targeting real world applications should not incur too much
communication and computation overheads. A simple analysis
on the complexity of Algorithm 1 reveals the following results:
In Stage 1, each participant needs to do multiplication at the
complexity of O(g(k — 1)) to find the nearest cluster. For each
participant, the communication complexity is O(kq(k — 1) 4+ 1).
The total communication complexity is O(kq(k — 1)n + n)).

5.2 Privacy Analysis on the Stage of Computing New
Cluster Centers

In Algorithm 2, a public-key based additive homomorphic en-
cryption scheme is adopted to compute the cluster centers. The
encrypted data Y; = E(PU,a; +V;) or Y; = E(PU,R;) held
by the participant a; is semantically secure, since only the data

analyst A knows the private key PR. As Y is sliced, shared, and
finally sent to A, the process is secure for both a; and A. The
data Y; is mixed with a random vector V; only known by A and
secured by the pubic-key cryptosystem; thus Y; is secured against
other participants. As the data that A obtains has already been
mixed and operated by the participatory participants, A knows
nothing about the private data of a;.

At each round of Algorithm 2, the data analyst A sends a
random vector to each participant. Then a participant a; slices
its encrypted data Y; into m components and sends m — 1
components to m — 1 randomly selected participants. Participant
a; reserves the remaining component to itself. As a result, no
one knows which participants are in the same cluster, and no one

T T T _ . .
Pin-1.2) (W1 U1 — U3 Ug) = 2p(n_12)8n-1" (W1 — U3) = S(n—12knows who are selected to receive the slices. If an attacker wants

to acquire the private data held by a;, it must break all the m — 1
outgoing slices and other incoming slices. Since 1 < m < n, the
maximum number of incoming slices for a participant is n — 1,
and the maximum number of outgoing slices is n — 1; and the
private data of a participant may be disclosed only if an attacker
has the ability to break all the 2n — 2 slices in this case. Let p
denote the possibility that a single slice is leaked to an attacker.
Then the possibility that the private slices held by the participant
a; may be disclosed is:

P=pm Tt

Cost Analysis on Stage 2:

In Stage 2, some computation is done by the data analyst, while
the participants need to perform very little calculation. Consider
the computational complexity of Algorithm 2. Each participant
does one public-key encryption in step 3, then takes O(n *q) time
for each of step 4 and 5. The data analyst conducts the public-key
decryption and takes O(n*¢) time on the multiplication operation
in step 7, and takes O(q) time in step 8.

Now we consider the communication complexity of Algorithm
2. We observe that step 2 takes O(n * ¢) time, step 4 takes
O(n? % q) time, and step 6 takes O(n * q) time. To update all the
cluster centers, the data analyst needs to execute the corresponding
steps in Algorithm 2 for k times. Therefore the communication
complexity for updating all cluster centers is O(n2 qk).

5.3 Security Against Collusion Attacks

Our algorithm makes no assumption on non-colluding partici-
pants. In the following, we will show that our algorithm can
resist against collusion attacks. We assume that a semi-honest data
analyst and participants follow the proposed protocol.

5.3.1 Collusion Between the Data Analyst and Participants

Our method ensures that a participant can hide its private data
safely, even if the data analyst is an adversary. In Algorithm 2, the
data analyst A receives ry,ro,--- ,r, from the n participants.
Although A can decrypt the data r;, no further information can be
derived since r; is the result of the sliced components mixed with
other random data.

Consider the scenario when the data analyst A colludes with
one or more participants. At maximum, there can be as many
as n — 1 participants colluding with A to deduce the private
information of the remaining participant a;. We assume a; has
sliced its encrypted data into m pieces, then m — 1 of the m
components will be taken by the n — 1 colluded participants.
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Although A knows the decryption key and the random vector held
by a;, A cannot get a;’s private information since one of the m
slices is reserved by a;. Thus the collusion alliance still cannot
get a;, which illustrates that our algorithm is robust even in the
worst case where there are as many as n — 1 participants colluding
with the data analyst. Therefore we conclude that our protocol can
protect the privacy of each participant under the collusion of the
data analyst and the participants.

5.3.2 Collusion Among the Participants

We have argued that the data analyst can hide the cluster centers
with a random vector in our algorithm in Section 5.1. According
to the analysis in Section 5.1, even if there are n — 1 participants
colluding together, they still cannot deduce any information about
the cluster centers, because there exist (n — 1) - @ + kq
L]ir(l’]:n(l);vns for the cluster centers while there are only (n — 1) -

——5— equations. Thus we claim that our algorithm can securely

protect the data analyst’s privacy.

6 EXPERIMENTAL STUDY

We use three datasets for the experiments. The first one is a health
dataset that includes systolic pressure and heart rate. This data
set is collected from 20 elderly people with high blood pressure
and surveying 70 healthy students. The clustering results can help
the subjects perceive their health conditions in their community.
The second dataset is about location [29], and users can figure out
the population distribution in the vicinity from the results of our
clustering algorithm. In the last experiment, we consider mobile
users and select the Human Activity Recognition on Smart-phones
[30] as the test dataset. This dataset contains mobile location
data which describes the historical location of some mobile users
belonging to a telecommunications operator. It records about 900
users’ latitude and longitude data in several days. This dataset is
important to reflect the spatial distribution of travel demands.
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Fig. 3. Clustering results from our algorithm.

Fig. 3 shows our clustering results on the health data. If
the clustering results indicate a very bad health condition in the
neighborhood, then users may be alerted to start a healthy diet
habit or look for health advisory, which can help promote a
healthy life while preserving all users’ privacy. Fig. 4 compares
the cluster centers computed from our scheme and the classic k-
means algorithm. The results show that our scheme can achieve
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Fig. 4. Comparison on the cluster centers computed from our algorithm
and the general k-means algorithm.

TABLE 3
Evaluation on the cluster assignment in our algorithm.
cluster | accuracy recall
1 99.89% | 99.81%
2 99.92% | 99.87%
3 99.91% | 99.98%
4 99.97% | 99.90%

almost the same accuracy while being able to preserve individual’s
privacy. Table 3 shows the accuracy and recall of our scheme
compared with the clustering results which are computed from the
original private data. One can conclude that our privacy preserving
clustering scheme can compute cluster centers with the same
accuracy.
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Fig. 5. Clustering distribution result without leaking each person’s loca-
tion.

Fig. 5 shows our clustering results on the location data.
The results demonstrate that a user can be clustered with others
in vicinity even though no location information is disclosed to
each other. With our scheme, users can perceive the population
distribution without leaking anyone’s location information. Fig.
6 indicates that our scheme can compute cluster centers at the
same accuracy as the non-privacy preserving algorithm. Table 4
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Fig. 6. Cluster center comparison of our scheme with the general k-
means algorithm.

TABLE 4
Cluster assignment evaluation of our scheme.

cluster | accuracy recall
1 99.51% | 99.18%
2 97.1% 99.8%
3 99.67% | 98.82%
4 99.39% | 99.71%

indicates our scheme can get the same accurate clustering results
without disclosing private location information.

In our last experiment, we select the Human Activity Recog-
nition on Smart-phones [30] as our test dataset. This data was
collected from a group of 30 volunteers within an age bracket
of 19-48 years. Each person carries a smart-phone with an
embedded accelerometer and a gyroscope. The data contains 3-
axial linear acceleration and 3-axial angular velocity. Each of the
7352 samples contains 561 features. A certain part of the samples
reflect one particular type of activity. Participants do not want to
disclose their activities or location information, but want to play
with others participating in similar activities. Next we conduct
experiments to show that our solution allows the mobile users
to recognize the others participating in the same activity without
leaking the private activity information.

We perform privacy preserving clustering on the test data to
group people’s activities into several categories. Fig. 7 shows the
clustering results from our scheme compared with the ground truth
grouping.

One can conclude from Fig. 7 that our clustering solution can
effectively group participants with similar activities in a secure
way. The mobile users can easily find people who share the same
interests without leaking anyone’s individual private data.

Table 5 presents a simple comparison study over the three

thtb
TABLE 5
The comparisons among [7], [12], [19] and our scheme.
Properties [7] [12] | [19] | Our scheme
Collusion attack resistance No No No Yes
Individual’s information protection | Yes | Yes | Yes Yes
Cluster center protection No No No Yes
Intermediate result leak Yes | Yes Yes No

Walking Standing Laying Walking_Upstais  Walking_Downstars Siting
i

Fig. 7. Result comparison between our experiment result and users’
ground truth action.

schemes proposed in [31], [12], and [19]. From Table 5, one can
notice the significant advantages of our scheme compared to the
other three schemes in terms of privacy preservation and collusion
attack resistance.

7 CONCLUSION AND FUTURE RESEARCH

In this paper we propose an efficient privacy-preserving clus-
tering scheme that ensures no leak of any intermediate result.
Our scheme can securely compute the nearest cluster center for
each participant without disclosing any cluster information to the
participants. In addition, our scheme can update the cluster centers
at each iteration without exposing any participants’ information to
the data analyst.

Our scheme can achieve more privacy preservation goals when
compared to other existing works. No participant can obtain any
private information of other participants or the cluster centers.
Furthermore, the cluster centers can be computed without leak-
ing the cluster label of each participant. And participants have
no knowledge about the other participants in the same cluster.
Through an extensive security analysis, we conclude that even in
the existence of collusion participants, no private information of
the remaining participants is released. Finally, we conclude that
our scheme does not incur much communication and computation
overheads on the participants.

In our future research, we shall consider the mutual privacy-
protection of other clustering algorithms such as the Gaussian
Mixture Modeling for social participatory sensing. On the other
hand, we will investigate how to figure out the relative position
of a participant in a community when the community model is
available while protecting the privacy of both the participant and
the community.
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