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Abstract—In this paper, we consider the problem of mutual privacy-protection in social participatory sensing in which individuals
contribute their private information to build a (virtual) community. Particularly, we propose a mutual privacy preserving k-means
clustering scheme that neither discloses individual’s private information nor leaks the community’s characteristic data (clusters). Our
scheme contains two privacy-preserving algorithms called at each iteration of the k-means clustering. The first one is employed by
each participant to find the nearest cluster while the cluster centers are kept secret to the participants; and the second one computes
the cluster centers without leaking any cluster center information to the participants while preventing each participant from figuring out
other members in the same cluster. An extensive performance analysis is carried out to show that our approach is effective for
k-means clustering, can resist collusion attacks, and can provide mutual privacy protection even when the data analyst colludes with all
except one participant.
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1 INTRODUCTION

ONLINE/MOBILE social networking and the sensors (pedome-

ter, cardio watch, etc.) embedded in various smart devices

have become deeply involved in our daily lives, which conse-

quently triggers a large variety of social participatory sensing

applications. Participatory sensing is a process of acquisition,

integration, and analysis of big and heterogeneous data, which

is generated by a diversity of sources, such as smart devices

and sensors [1], [2], and it can reduce the resource cost as data

collection no longer depends on the large-scale deployment of

sensors. With such applications, people show more or less inter-

ests in performing social comparisons with others, which could

help them get an accurate view about themselves and motivate

them to achieve more, according to the social psychology theory

[3]. For example, people constantly engage in comparison with

their friends on emotional moods, travelled locations, walking

distances, fitness status, etc. One question that is frequently asked

is: where am I in my community? A study on the community

data with data mining techniques could answer such questions.

However, although the underlying data about the participants are

greatly helpful, such information may trigger serious concerns

on privacy leakage (location, emotion, health, etc.). Consequently

there is a conflict between data privacy and the wide adoption of

social participatory sensing applications.

For a typical social participatory sensing application, it is
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important to motivate participation while at the same time the

participatory sensing process should not disclose the private

information of any participating party (the private data) or the

community (patterns, distribution, etc.). Therefore it is essential

to develop a mutual privacy preserving data mining technique to

protect both the users and the community. In other words, we

need a technique that can mutually protect the privacy of both the

participants and the community, i.e., a technique that allows the

data analyst (the social application server) to extract information

about the community without accessing any user’s private data

while no participatory participant can obtain any information

about other participants and the community.

However, existing privacy-preserving techniques either focus

on protecting the privacy of one single side only, namely the

participating users, or leak intermediate results during community

learning to potential privacy attackers, or cannot resist collusion

attacks. For example, the collaborating participants could iden-

tify the candidate clusters within each iteration of the k-means

clustering in [4]. Exposing such intermediate information or the

final community characteristics data can possibly put individual’s

privacy at risk, or cause panic and extreme actions among the

participants in the community.

In this paper, we propose a mutual privacy preserving clus-

tering scheme based on a well-known data mining method, the

k-means algorithm [5], [6], which groups similar entities into

clusters with the goal of minimizing intra-group distance and

maximizing inter-group distance. Specifically, k-means clustering

is an iterative algorithm with each iteration consisting of two steps:

assigning each participant to the nearest cluster, and updating the

center of each cluster. The iteration terminates in a fixed number

of rounds or until the change of the cluster centers meets a given

threshold [6].

Our main contributions can be summarized as follows:

• We propose two privacy-preserving algorithms called at
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each iteration of the k-means clustering. The first one is

employed by each participant to find the nearest cluster

and the second one updates cluster centers. Security and

privacy analysis demonstrates that our k-means clustering

scheme can resist collusion attacks.

• The proposed algorithms enable mutual privacy protection

in clustering not only via keeping individuals’ information

private, but also by restraining the leakage of any cluster

center information to the participants and preventing each

participant from figuring out other members of the cluster,

which is different from traditional approaches [7].

• To our best knowledge, this is the first mutual priva-

cy preserving and collusion-resistant k-means clustering

scheme, and we believe that its basic idea can be general-

ized to other iterative data mining algorithms for privacy

protection.

• We carry out an extensive experimental study to validate

our design. The results indicate that our privacy-preserving

k-means clustering scheme is effective in clustering, and

can provide mutual privacy protection.

The rest of the paper is organized as follows. Section 2

introduces the most related existing work on privacy-preserving

k-means clustering. Section 3 presents the preliminary knowledge

about k-means clustering and introduces the assumptions adopted

by this paper. Our privacy-preserving k-means clustering algo-

rithm is detailed in Section 4, and its corresponding privacy and

cost analyses are carried out in Section 5. Experimental studies

are reported in Section 6. We conclude this paper with a future

research discussion in Section 7.

2 RELATED WORK

Many existing privacy-preserving k-means clustering algorithms

have been developed for different data distributions such as

(horizontally partitioning data, vertically partitioning data, and

arbitrarily partitioned data [4]) to protect the privacy of the users

and the communities in a social participatory sensing application.

In this subsection, we mainly summarize the state-of-the-art of

existing privacy-preserving k-means clustering algorithms.

In a vertically partitioned data distribution, the data of an

entity is distributed to different participants in such a way that

each party obtains a portion of the attributes owned by the entity.

Hence there is a need for the participating participants to disclose

their private data during the computation of k-means clustering.

The intermediate assignments of entities to their nearest clusters

also pose a threat to privacy. The first privacy-preserving k-means

algorithm for vertically partitioned data was proposed by Vaidya

in [7], in which the distance between participants is securely com-

puted based on the secure permutation scheme proposed by Du

[8] and homomorphic encryption. However, this protocol requires

the existence of three non-colluding participants, an assumption

that cannot be easily guaranteed in many real-life applications. In

[9], additive secret sharing [10] was adopted as a cryptographic

primitive to implement a secure multi-party computation proto-

col, so as to realize privacy preserving clustering. To avoid the

requirement of non-colluding participants, Samet [11] proposed

an algorithm to compute the sum of distances by adopting the

secure sum scheme. There also exists other research [12], [13]

on vertically partitioned data distribution; but none of them can

protect the number of entities in a cluster from being leaked. This

problem is solved by our scheme proposed in this paper.

In a horizontally partitioned data distribution, each entity is

owned by a single party; thus the distance to cluster centers can be

computed without violating privacy. However, privacy disclosure

can happen during the computation of intermediate cluster centers.

Inan et al. [14] introduced a protocol for securing multi-party

computation of a dissimilarity matrix over horizontally partitioned

data, which constructs the dissimilarity matrix of objects from

different sites in a privacy preserving manner. Jha et al. [15] p-

resented a privacy-preserving k-means clustering algorithm based

on oblivious polynomial evaluation and homomorphic encryption.

This approach can be applied in a multi-party environment, but the

intermediate centers are often exposed to potential privacy attacks.

Our privacy preserving k-means clustering proposed in this paper

can be applied to horizontally partitioned data and to prevent

the disclosure of any additional information about intermediate

centers and the cluster label of each entity.

Arbitrarily partitioned data was first considered in [4], in

which a privacy preserving k-means clustering was proposed for

arbitrarily partitioned data distributed between two participants.

The idea is to split all the intermediate results into random

partitions. Yu et al. [16] applied the concept of parallel computing

to tackle the privacy-preserving multi-party k-means clustering

problem, which can speed up the clustering process. This approach

was designed for both vertically partitioned and horizontally

partitioned data. Bunn et al. [17] proposed a two-party k-means

clustering protocol based on homomorphic encryption to guaran-

tee privacy in arbitrarily partitioned data, in which the protocol

does not disclose the intermediate results and cluster assignments.

Moreover, they designed a secure protocol for randomly selecting

k initial centers. However, if the protocol is extended to multi-

party k-means clustering, it may bring new security and privacy

risks. For example, the protocol cannot resist collusion attacks

when more than n
2 participants have collusion activities, where

there are n participants.

There exist many other research on privacy-preserving k-

means clustering. Rao et al. [18] described a two-party k-means

clustering protocol, which can be implemented by utilizing any

semantically secure homomorphic encryption scheme. Liu et al.
[19] presented an outsourced k-means clustering, which proposed

an encryption algorithm to generate trapdoor information; but this

scheme only protects one party’s privacy. Lin [20] applied the

linear transformation and the random perturbation of the kernel

matrix for privacy preservation in k-means clustering. Patel et al.
[21] adopted secret sharing and the code-based zero-knowledge

identification scheme to construct a distributed privacy-preserving

k-means clustering scheme under the malicious adversarial model,

in contrast with the mainstream research that assumes the semi-

honest adversarial model. In [22], an overview on existing privacy

preserving k-means clustering algorithm based on secure multi-

party computation was provided. To ensure I/O efficiency, [23]

and [24] proposed a privacy-preserving version of the simple de-

terministic algorithm Recluster; but the cluster centers are exposed

to both participants in the protocol. Erkin et al. [25] distributed

trust among a number of helper users instead of relying on a single

party to obtain k-means clustering without leaking the clusters’

privacy; but this approach requires a strong assumption of non-

colluding activities among the participants. Samanthula et al. [18]

proposed a privacy-preserving distributed clustering mechanism

via outsourcing multi-user k-means clustering to cloud servers;

unfortunately this scheme still cannot resist collusion attacks.

In summary, existing privacy preserving clustering solutions
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cannot provide mutual privacy protection as either the private data

of the participants or the (intermediate) cluster information may be

disclosed; moreover, most of them cannot resist collusion attacks.

In this paper, we propose a robust mutual privacy preserving k-

means clustering algorithm that can preserve the privacy of the

participating participants as well as the intermediate results of

the cluster centers while resisting collusion attacks. Our research

was motivated by social participatory sensing applications where

the community information should be kept confidential since

otherwise it may result in panic or extreme actions among the com-

munity members, and the personal data of the social participants

should be kept private as regular community members usually do

not want to disclose their private information; meanwhile, such

applications are vulnerable to collusion attacks.

3 PRELIMINARIES AND ASSUMPTIONS

For better elaboration, the notations used in this paper and their

semantic meanings are presented in Table 1.

TABLE 1
The Notations and Their Semantic Meanings

Notations means
Ui The ith cluster, 1 ≤ i ≤ k
uj The jth cluster center
p1, q1 Two prime integers
E(·) Encryption operation
D(·) Decryption operation
PU Public key
PR Private key

3.1 The k-Means Clustering Algorithm

The process of k-means clustering is based on (1) and (2). Assume

that there are n participants with each participant ai holding a q-

dimensional sample data ai. Suppose that the participants need to

be grouped into k clusters U1, ..., Uk, with the center of the j-th

cluster denoted by uj. Initially, each cluster center is arbitrarily

and randomly assigned. Note that cluster centers can also be

initialized with the method proposed in [26]. A sample data ai
belongs to a cluster Uj if the center uj is the closest among all

centers to ai according to (1), where uj is the mean of the samples

in Uj computed from (2). There are many criterions to measure

the distance between a sample and the related cluster center. In

this paper, we adopt the Euclidean distance as our criterion. At

each iteration, the k-means algorithm re-assigns the sample data

to their nearest centers following (1) and re-computes the cluster

centers u1, ...,uk according to (2). The iteration terminates when

there is no or little change in the cluster centers.

ci := argmin
j

||ai − uj||2, (1)

uj =

∑n
i=1 I{ci = j}ai∑n
i=1 I{ci = j} (2)

where 1 ≤ j ≤ k, 1 ≤ i ≤ n, and I{ci = j} is the index

function that equals 1 if ci = j and 0 otherwise.

3.2 Homomorphic Encryption
Homomorphic encryption [27] allows certain computation over

encrypted data. Paillier cryptosystem [28] is a popular Homo-

morphic encryption scheme that provides fast encryption and

decryption, which is a probabilistic asymmetric algorithm based

on the decisional composite residuosity problem. It is adopted by

the secure scalar product, which has been widely used in privacy

preserving data mining. The Paillier cryptosystem is briefly intro-

duced as follows:

• Key generation: An entity selects two large primes p1
and q1 and computes N = p1q1 and λ = lcm(p1 −
1, q1 − 1), where lcm stands for the least common mul-

tiple. It then chooses an integer g such that gcd(L(gλ

mod N2), N) = 1, where gcd stands for the greatest

common divisor, g ∈ Z
∗
N , and L(x) = x−1

N . The public

key and private key are respectively {N, g} and {λ}.

• Encryption: Let m ∈ Z
∗
N be a plaintext and r ∈ Z

∗
N be

a random number. The ciphertext of m is computed by

E(m) = gm · rN mod N2, (3)

where E() denotes the encryption operation using public

key {N, g}.

• Decryption: For the ciphertext E(m), the corresponding

plaintext can be computed by

D(E(m)) =
L(E(m)λ mod N2)

L(gλ mod N2)
mod N, (4)

where D() denotes the decryption operation using private

key {λ}.

• Homomorphic : The Paillier cryptosystem is additively

homomorphic as it satisfies the following conditions: Giv-

en {m1,m2} ∈ Z
∗
N , we have:

E(m1) · E(m2) = E(m1 +m2), (5)

Furthermore, given E(m) and a constant c, E(c ·m) can

be computed by:

E(c ·m) = E(m)c. (6)

3.3 Clustering Model
We consider a clustering problem consisting of n participants

a1, ..., an. Each participant ai holds its own private information

ai, a q-dimensional vector describing its features or activities.

As shown in Fig. 1, there also exists a data analyst A who is

responsible for grouping those participants with similar proper-

ties/activities into one cluster. However, due to privacy concerns,

the data analyst cannot access the private information of any

participant.

Our goal is to build mutual privacy protection between the

data analyst A and the participants a1, .., an when computing

the k centers of the private data a1,a2, · · · ,an. Neither of A
and the participants should deduce any private information about

the other side except those being published as a result of the

k-means clustering scheme. In other words, the data analyst A
cannot learn any private information owned by the participants

since a compromised A may potentially sell the data to others.

Similarly, malicious participants should learn nothing about the

data analyst A’s data (the centers) and should not be able to disrupt

A’s computation.
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Fig. 1. Clustering Model

We assume that:

• any pair of the participants ai and aj share a unique

pairwise key;

• the data analyst A shares a unique pairwise key with each

participant ai;
• the data analyst A generates a public and private key pair

(PU, PR) that can be used for additive homomorphic

encryption, and distributes its public key PU to all the

participants.

Messages from each participant ai to A need to be encrypted

with PU . Let m denote the plaintext, and m′ the corresponding

ciphertext. We have m′ = E(PU,m) and m = D(PR,m′).
Due to homomorphic property, we have

E(PU,m1) · E(PU,m2) = E(PU,m1 +m2) (7)

4 PRIVACY PRESERVING K-MEANS CLUSTERING

In this section, we present our privacy preserving k-means cluster-

ing algorithm. As mentioned earlier, there exist two steps within

each iteration: assigning each participant to its closest center, and

computing the new center of each cluster in a secure way.

4.1 Stage 1: Assign Participants to Their Nearest Cen-
ters
This step assigns participants to their nearest centers within

an iteration. The cluster centers (u1, ...,uk) are initialized and

updated by the data analyst A.

Let Dij be the distance between the i-th participant ai and the

center of the j-th cluster Uj , i.e.,

Dij = (ai − uj)
T (ai − uj)

Now consider ai and its distances to the clusters Uj and Uj′ . We

have

Dij −Dij′

= (ai − uj)
T (ai − uj)− (ai − uj′)

T (ai − uj′)

= aTi ai − 2aTi uj + uT
j uj − (aTi ai − 2aTi uj′ + uT

j′uj′)

= uT
j uj − uT

j′uj′ − 2aTi (uj − uj′) (8)

Remark 1: If A can send uT
j uj −uT

j′uj′ and uj −uj′ to ai,
then ai can calculate Dij−Dij′ according to (8). If Dij−Dij′ <
0, ai is closer to uj ; otherwise, ai is closer to uj′ . This process

can be repeated for k−1 times for ai to identify the closest cluster

center among all the k clusters.

However, if the data analyst A sends all the {uj − uj′}’s

directly to a participant ai, then ai can collect u1 − u2, u2 −

u3, · · · , uk−1 − uk, and thus the cluster centers can be leaked.

Therefore, A should send randomly perturbed values of {uj −
uj′}, as shown below, where the ρ(i,j) > 0 values are random

numbers:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(i,1)[(u1
Tu1)− (u2

Tu2)], ρ(i,1)(u1 − u2)

ρ(i,2)[(u1
Tu1)− (u3

Tu3)], ρ(i,2)(u1 − u3)

· · · ,
ρ(i,k−1)[(u1

Tu1)− (uk
Tuk)], ρ(i,k−1)(u1 − uk)

ρ(i,k)[(u2
Tu2)− (u3

Tu3)], ρ(i,k)(u2 − u3)

ρ(i,k+1)[(u2
Tu2)− (u4

Tu4)], ρ(i,k+1)(u2 − u4)

· · · ,
ρ(i,2k−3)[(u2

Tu2)− (uk
Tuk)], ρ(i,k+1)(u2 − uk)

· · · ,
· · · ,
ρ
(i, k(k−1)

2 )
[(uk−1

Tuk−1)− (uk
Tuk)],

ρ
(i, k(k−1)

2 )
(uk−1 − uk)

(9)

Remark 2: Since ρ(i,j) > 0, the randomized results have no

influence on determining the sign of Dij − Dij′ , as well as the

closeness between the participant ai and the clusters.

After obtaining this information, each participant ai can i-

dentify the nearest center based on its own private data ai.
The procedure is stated as follows. The participant ai first

computes the value S(i,1) = ρ(i,1)[(u1
Tu1) − (u2

Tu2)] −
2ρ(i,1)ai

T [(u1 − u2)], which is related to the received infor-

mation ρ(i,1)[(u1
Tu1) − (u2

Tu2)] and ρ(i,1)(u1 − u2). If

S(i,1) < 0, ai is closer to u1, and it can choose ρ(i,2)[(u1
Tu1)−

(u3
Tu3)] and ρ(i,2)(u1 − u3) to calculate the value of S(i,2) =

ρ(i,2)[(u1
Tu1)− (u3

Tu3)]−2ρ(i,2)ai
T [(u1−u3)]; otherwise,

ai is closer to u2, and it can compute the value S(i,k) =
ρ(i,k)[(u2

Tu2) − (u3
Tu3)] − 2ρ(i,k)ai

T [(u2 − u3)] based

on the received information ρ(i,k)[(u2
Tu2) − (u3

Tu3)] and

ρ(i,k)(u2 − u3). This process repeats until the nearest center is

figured out. Then ai informs the data analyst A which cluster (the

one with the nearest center) it belongs to. Note that when this

procedure terminates, A only knows which cluster ai belongs to;

it has no knowledge about ai’s private information ai.
The above process is summarized in Algorithm 1.

Note that each ai only needs k rows of the information

included in (9) to identify its nearest cluster. But we choose to let

the data analyst A deliver all information included in (9) to each

participant ai for privacy protection as an interactive procedure

asking only the required cluster center information may disclose

the privacy of both ai and the cluster centers.

4.2 Stage 2: Update the Cluster Centers
After each participant identifies its closest cluster with Algorithm

1 and informs the data analyst A, A should re-evaluate the cluster

center uj for each cluster Uj . Assume that there are nj participants

assigned to cluster Uj ; then n1 +n2 + · · ·+nk = n. After Stage

1, A can get the cluster membership list shown in Table 2, where

s(j,l) ∈ {a1, ..., an} is a participant indicating that this participant

is the l-th participant in the j-th cluster, where 1 ≤ l ≤ nk and

1 ≤ j ≤ k.

Next, we present an additive homomorphic encryption scheme

to re-compute the cluster centers, in order to ensure that only

the data analyst knows the intermediate cluster centers, and the

participants are kept blind to such private information. While in
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Algorithm 1 Identifying the nearest cluster for a participant ai.

1: Initialize: There are n participants and one data analyst

A. Each participant ai owns a q-dimensional private

data ai = (ai1, · · · , aiq). There are k cluster centers

{u1, · · · ,uk}, with their initial values randomly deter-

mined by A.

2: τ = 1
3: for j = 1 to k − 1
4: γ = j + 1;

5: for ι = γ to k
6: A sends to ai: ρ(i,τ)[uj

Tuj − uι
Tuι] and ρ(i,τ)(uj −

uι);
7: τ = τ + 1
8: endfor
9: endfor

10: ai identifies the nearest center based on the received data and

its own private data as follows:

11: ai first compares its distance to u1 and u2 by computing

S(i,1) = ρ(i,1)[(u1
Tu1)−(u2

Tu2)]−2ρ(i,1)ai
T [(u1−

u2)];
12: If S(i,1) < 0, ai is closer to u1, and then ai compares the

distances to u1 and u3 using the related received data and

its own private data as in Step 11;

13: else if ai is closer to u2, then ai compares its distances to u2

and u3 as in Step 11;

14: EndIf
15: ai repeats Steps 11 to 14 to identify the nearest cluster.

16: ai notifies A which cluster it belongs to.

TABLE 2
participant Label

����������Cluster
participants

participant Label

U1 (n1 participants) s(1,1), s(1,2), · · · , s(1,n1)

U2 (n2 participants) s(2,1), s(2,2), · · · , s(2,n2)

.

.

.
.
.
.

Uk (nk participants) s(k,1), s(k,2), · · · , s(k,nk)

many existing privacy-preserving k-means clustering algorithms

such as [7], [15] and [24] this information cannot be protected.

According to (2), a cluster center is the mean of the private

data of the participants that belong to that cluster. From Table

2, one can see that the data analyst knows nj , the number of

participants in cluster Uj . Therefore we need to compute the sum

of the private data of the participants belonging to Uj . Consider the

cluster Uj and its member participants s(j,1), s(j,2), · · · , s(j,nj).

First, the data analyst A randomly generates nj q-dimensional

vectors V(j,1),V(j,2), · · · ,V(j,nj) satisfying

V(j,1) +V(j,2) + · · ·+V(j,nj) = 0 (10)

Then A securely sends {V(j,l),+} to each participant s(j,l) ∈ Uj

encrypted with their pairwise key, where “+” denotes that s(j,l)
belongs to the cluster currently under consideration. Meanwhile,

A generates another (n − nj) q-dimensional vectors R(j′,l) for

each s(j′,l) /∈ Uj satisfying:

R(1,1) +R(1,2) + · · ·+R(1,n1) + · · ·
+R(j−1,1) +R(j−1,2) + · · ·+R(j−1,nj−1)

+R(j+1,1) +R(j+1,2) + · · ·+R(j+1,nj+1)

+ · · ·+R(k,1) + · · ·+R(k,nk) = 0

(11)

Then A securely sends {R(j′,l),−} to each s(j′,l) /∈ Uj .

Next, all of the n participants should compute their encrypted

data. Recall that each participant owns a q-dimensional private

vector. For each s(j,l) ∈ Uj , s(j,l) should encrypt the received

vector V(j,l) and its private vector a(j,l) after receiving the mes-

sage {V(j,l),+} with a label “+”. The encryption is computed

with the public key PU of the homomorphic encryption system.

Then s(j,l) obtains:

Yj,l = E(PU,a(j,l) +V(j,l)). (12)

While for each s(j′,l) /∈ Uj , s(j′,l) only encrypts the received

vector upon receiving the message {R(j′,l),−} with a label “−”.

That is, s(j′,l) gets:

Yj′,l = E(PU,R(j′,l)). (13)

After completing the encryption operation, each participant

should share part of its ciphertext with others. This can be

done as follows. Each participant s(p,q) first randomly divides its

ciphertext Yp,q (computed either from (12) or from (13)) into m
components Y 1

p,q , Y 2
p,q , · · · , Y m

p,q , where 1 ≤ m ≤ n, satisfying

Y 1
p,q · Y 2

p,q · · · · · Y m
p,q = Yp,q.

Note that s(p,q) must keep one of the m components to itself.

Then s(p,q) randomly selects m − 1 participants in the network

and sends one component to each chosen participant through the

secure channel protected by their pairwise keys.

Note that each participant should complete the above slicing

and distributing process on its ciphertext computed from (12) or

(13). Meanwhile, each participant may receive components (slices

of ciphertexts) from other participants. Then each participant

applies the homomorphic operation on all the received cipher

components as well as the slice kept to itself by multiplying them

together to get r(p,q), which should be sent to the data analyst A
after the computation is over.

Lastly, A multiplies all the received data, and obtains the

following result according to (7), (10), and (11):

Yj,1 · Yj,2 · · · ·Yj,nj
· · · ·Yj′,l · · · ·

= E(PU,a(j,1) + a(j,2) + · · ·+ a(j,nj)+
V(j,1) +V(j,2) + · · ·+V(j,nj) + · · ·+R(j′,l) + · · · )

= E(PU,a(j,1) + a(j,2) + · · ·+ a(j,nj))
(14)

Then A gets a(j,1) + a(j,2) + · · · + a(j,nj) by decrypting with

its private key PR, and finally computes the cluster center uj

by dividing it by nj . The whole procedure is summarized by

Algorithm 2.

An example detailing the procedure is given in Fig. 2, which

illustrates how to compute the center of the first cluster whose

members include the circled participants 1, 2, 3.

Following the above process, the data analyst can compute the

new center for each cluster. The advantage of our algorithm is the

ability to ensure mutual privacy preservation.

• The data analyst can obtain the sum of the data in a

cluster without accessing the private information of each

participant.
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1 2 3 
,  

Data Analyst 

1 2 3 4 
, , ,  , ,  

(a) The data analyst sends random data to each participant, satisfy-
ing V(1,1) + V(1,2) + V(1,3) = 0, R(2,1) + R(2,2) + R(2,3) +
R(2,4) = 0.
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(b) Each participant slices its encrypted data, keeps one piece to
itself, and sends the remaining to randomly chosen participants.

1 

2 

3 

1 

2 3 4 

      

    

            

   

(c) Each the participant multiplies its received data and the compo-
nent held by itself.

1 2 3 

 

Data Analyst 

1 2 3 4 

      

(d) All the participants send their results from Fig. 2(c) to the data
analyst, who can compute the new cluster centers.

Fig. 2. The process of computing the new cluster centers within one
iteration.

• The participants know nothing about each other. Particu-

larly, they do not know who else are in the same cluster.

• The participants know nothing about the intermediate clus-

ter centers. This information is protected by the random

values (the ρ values) known only by the data analyst.

4.3 Stopping Criterion
Stage 1 and Stage 2 should be repeated iteratively until little

or no change occurs in the clustering process. At the end of

Algorithm 2 Computing the new center of cluster Uj .

1: Initial State: Cluster Uj has the member participants s(j,1),
s(j,2), · · · , s(j,nj), with a(j,l) being the private data of

member s(j,l).
2: The data analyst A generates the random V values according

to (10) and the random R values according to (11).

3: The data analyst A sends (V(j,l),+) to each s(j,l)∈Uj
, and

sends R(j′,l) to each participant s(j′,l) /∈ Uj .

4: Each member computes its encrypted data with (12) if it

belongs to cluster Uj , or with (13) otherwise.

5: Each member slices the ciphertext into m components, and

sends m − 1 components to other participants randomly

selected in the network.

6: Each participant multiplies the encrypted component it has

kept for itself and all the received cipher components to

compute r.

7: Each participant sends r to the data analyst A.

8: The data analyst multiplies all the received data to get a(j,1)+
a(j,2) + · · ·+ a(j,nj) via decryption.

9: The new center of the cluster Uj can be obtained by a(j,1) +
a(j,2) + · · ·+ a(j,nj)/nj .

each iteration, the data analyst needs to compare the newly

obtained cluster centers with those from the previous iteration.

If they are “close enough” according to an application-specific

parameter (e.g., the total distance change of the clusters and their

corresponding participants is no more than a threshold between

two iterations), the iteration process can terminate.

5 PRIVACY AND EFFICIENCY ANALYSIS

In this section, we discuss the ability of our scheme to ensure

privacy preservation against potential passive and active attacks.

Before delving into details, we first define our goals in privacy

protection. In our consideration, each participant should not get

the following information:

• cluster centers;

• other participants in the same cluster;

• the private data of the other participants.

The data analyst A knows where are the cluster centers, but it

cannot access any private information of any participant. In other

words, A knows that the participant s(j,l) belongs to the j-th

cluster, but it does not know the private data a(j,l) of s(j,l) nor the

distance from s(j,l) to the associated cluster center uj.

5.1 Privacy Analysis on the Stage of Assigning Partici-
pants to Their Nearest Clusters

In Stage 1, each participant only notifies A which cluster is the

closest; therefore the data analyst knows nothing about the private

information of the participants. Now considering the worst case

when n − 1 participants collude with each other to detect the

cluster centers. Without loss of generality, we assume that these

n − 1 participants are denoted by a1, a2, · · · , an−1 and they

combine their information to compute the cluster center u1. All

these colluding n − 1 participants can construct the following
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equations using the received data from the data analyst A and

their own data:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(1,1)(u1
Tu1 − u2

Tu2)− 2ρ(1,1)a1
T (u1 − u2) = S(1,1)

ρ(2,1)(u1
Tu1 − u2

Tu2)− 2ρ(2,1)a2
T (u1 − u2) = S(2,1)

ρ(3,1)(u1
Tu1 − u2

Tu2)− 2ρ(3,1)a3
T (u1 − u2) = S(3,1)

· · · ,
ρ(n−1,1)(u1

Tu1 − u2
Tu2)− 2ρ(n−1,1)an−1

T (u1 − u2)

= S(n−1,1)

ρ(1,2)(u1
Tu1 − u3

Tu3)− 2ρ(1,2)a1
T (u1 − u3) = S(1,2)

ρ(2,2)(u1
Tu1 − u3

Tu3)− 2ρ(2,2)a2
T (u1 − u3) = S(2,2)

ρ(3,2)(u1
Tu1 − u3

Tu3)− 2ρ(3,2)a3
T (u1 − u3) = S(3,2)

· · · ,
ρ(n−1,2)(u1

Tu1 − u3
Tu3)− 2ρ(n−1,2)an−1

T (u1 − u3) = S(n−1,2)

· · · ,
ρ(1,k−1)(u1

Tu1 − uk
Tuk)− 2ρ(1,k−1)a1

T (u1 − uk) = S(1,k−1)

ρ(2,k−1)(u1
Tu1 − uk

Tuk)− 2ρ(2,k−1)a2
T (u1 − uk) = S(2,k−1)

ρ(3,k−1)(u1
Tu1 − uk

Tuk)− 2ρ(3,k−1)a3
T (u1 − uk) = S(3,k−1)

· · · ,
ρ(n−1,k−1)(u1

Tu1 − uk
Tuk)− 2ρ(n−1,k−1)an−1

T (u1 − uk)

= S(n−1,k−1)

(15)

For the participants, the coefficients {ρ(1,1), ρ(2,1), ..., ρ(n−1,1),
ρ(1,2), ρ(2,2), ..., ρ(n−1,2), ......, ρ(1,k−1), ρ(2,k−1), ..., ρ(n−1,k−1)}
and {u1,u2,u3, ....,uk} are unknowns in (15), which come

from the data analyst A, and the cluster center is a q-dimensional

vector. Thus there are (k − 1)(n− 1) + kq unknown parameters

in (15), but there exist only (k − 1)(n − 1) equations; therefore

the participants cannot figure out the cluster u1. Similarly,

the colluding participants cannot find out other cluster centers

{u2,u3...,uk}. Actually, when all the available information from

the n − 1 colluding participants are combined, (n − 1) · k(k−1)
2

equations can be obtained but there are (n − 1) · k(k−1)
2 + kq

number of unknowns, which again proves that it is impossible for

the participants to recover the cluster centers {u1,u2,u3...,uk}.

Thus we conclude that our scheme can resist the collusion attacks

launched by any number of participants without leaking any

information about the cluster centers.

Cost Analysis on Stage 1:
We next analyze the communication and computation overheads

of our algorithm in Stage 1. It should be noted that both com-

munication and computation overheads of the k-means clustering

algorithm depend on the size of the data set. The number of

iterations being conducted to meet the stopping criterion depends

on the dataset size and the initial cluster centers. A clustering algo-

rithm targeting real world applications should not incur too much

communication and computation overheads. A simple analysis

on the complexity of Algorithm 1 reveals the following results:

In Stage 1, each participant needs to do multiplication at the

complexity of O(q(k − 1)) to find the nearest cluster. For each

participant, the communication complexity is O(kq(k − 1) + 1).
The total communication complexity is O(kq(k − 1)n+ n)).

5.2 Privacy Analysis on the Stage of Computing New
Cluster Centers
In Algorithm 2, a public-key based additive homomorphic en-

cryption scheme is adopted to compute the cluster centers. The

encrypted data Yi = E(PU,ai +Vi) or Yi = E(PU,Ri) held

by the participant ai is semantically secure, since only the data

analyst A knows the private key PR. As Yi is sliced, shared, and

finally sent to A, the process is secure for both ai and A. The

data Yi is mixed with a random vector Vi only known by A and

secured by the pubic-key cryptosystem; thus Yi is secured against

other participants. As the data that A obtains has already been

mixed and operated by the participatory participants, A knows

nothing about the private data of ai.
At each round of Algorithm 2, the data analyst A sends a

random vector to each participant. Then a participant ai slices

its encrypted data Yi into m components and sends m − 1
components to m − 1 randomly selected participants. Participant

ai reserves the remaining component to itself. As a result, no

one knows which participants are in the same cluster, and no one

knows who are selected to receive the slices. If an attacker wants

to acquire the private data held by ai, it must break all the m− 1
outgoing slices and other incoming slices. Since 1 ≤ m ≤ n, the

maximum number of incoming slices for a participant is n − 1,

and the maximum number of outgoing slices is n − 1; and the

private data of a participant may be disclosed only if an attacker

has the ability to break all the 2n − 2 slices in this case. Let p
denote the possibility that a single slice is leaked to an attacker.

Then the possibility that the private slices held by the participant

ai may be disclosed is:

Pi = pm−1.

Cost Analysis on Stage 2:
In Stage 2, some computation is done by the data analyst, while

the participants need to perform very little calculation. Consider

the computational complexity of Algorithm 2. Each participant

does one public-key encryption in step 3, then takes O(n∗q) time

for each of step 4 and 5. The data analyst conducts the public-key

decryption and takes O(n∗q) time on the multiplication operation

in step 7, and takes O(q) time in step 8.

Now we consider the communication complexity of Algorithm

2. We observe that step 2 takes O(n ∗ q) time, step 4 takes

O(n2 ∗ q) time, and step 6 takes O(n ∗ q) time. To update all the

cluster centers, the data analyst needs to execute the corresponding

steps in Algorithm 2 for k times. Therefore the communication

complexity for updating all cluster centers is O(n2qk).

5.3 Security Against Collusion Attacks
Our algorithm makes no assumption on non-colluding partici-

pants. In the following, we will show that our algorithm can

resist against collusion attacks. We assume that a semi-honest data

analyst and participants follow the proposed protocol.

5.3.1 Collusion Between the Data Analyst and Participants
Our method ensures that a participant can hide its private data

safely, even if the data analyst is an adversary. In Algorithm 2, the

data analyst A receives r1, r2, · · · , rn from the n participants.

Although A can decrypt the data ri, no further information can be

derived since ri is the result of the sliced components mixed with

other random data.

Consider the scenario when the data analyst A colludes with

one or more participants. At maximum, there can be as many

as n − 1 participants colluding with A to deduce the private

information of the remaining participant ai. We assume ai has

sliced its encrypted data into m pieces, then m − 1 of the m
components will be taken by the n − 1 colluded participants.
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Although A knows the decryption key and the random vector held

by ai, A cannot get ai’s private information since one of the m
slices is reserved by ai. Thus the collusion alliance still cannot

get ai, which illustrates that our algorithm is robust even in the

worst case where there are as many as n−1 participants colluding

with the data analyst. Therefore we conclude that our protocol can

protect the privacy of each participant under the collusion of the

data analyst and the participants.

5.3.2 Collusion Among the Participants
We have argued that the data analyst can hide the cluster centers

with a random vector in our algorithm in Section 5.1. According

to the analysis in Section 5.1, even if there are n− 1 participants

colluding together, they still cannot deduce any information about

the cluster centers, because there exist (n − 1) · k(k−1)
2 + kq

unknowns for the cluster centers while there are only (n − 1) ·
k(k−1)

2 equations. Thus we claim that our algorithm can securely

protect the data analyst’s privacy.

6 EXPERIMENTAL STUDY

We use three datasets for the experiments. The first one is a health

dataset that includes systolic pressure and heart rate. This data

set is collected from 20 elderly people with high blood pressure

and surveying 70 healthy students. The clustering results can help

the subjects perceive their health conditions in their community.

The second dataset is about location [29], and users can figure out

the population distribution in the vicinity from the results of our

clustering algorithm. In the last experiment, we consider mobile

users and select the Human Activity Recognition on Smart-phones
[30] as the test dataset. This dataset contains mobile location

data which describes the historical location of some mobile users

belonging to a telecommunications operator. It records about 900

users’ latitude and longitude data in several days. This dataset is

important to reflect the spatial distribution of travel demands.
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Fig. 3. Clustering results from our algorithm.

Fig. 3 shows our clustering results on the health data. If

the clustering results indicate a very bad health condition in the

neighborhood, then users may be alerted to start a healthy diet

habit or look for health advisory, which can help promote a

healthy life while preserving all users’ privacy. Fig. 4 compares

the cluster centers computed from our scheme and the classic k-

means algorithm. The results show that our scheme can achieve
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Fig. 4. Comparison on the cluster centers computed from our algorithm
and the general k-means algorithm.

TABLE 3
Evaluation on the cluster assignment in our algorithm.

cluster accuracy recall
1 99.89% 99.81%
2 99.92% 99.87%
3 99.91% 99.98%
4 99.97% 99.90%

almost the same accuracy while being able to preserve individual’s

privacy. Table 3 shows the accuracy and recall of our scheme

compared with the clustering results which are computed from the

original private data. One can conclude that our privacy preserving

clustering scheme can compute cluster centers with the same

accuracy.
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Fig. 5. Clustering distribution result without leaking each person’s loca-
tion.

Fig. 5 shows our clustering results on the location data.

The results demonstrate that a user can be clustered with others

in vicinity even though no location information is disclosed to

each other. With our scheme, users can perceive the population

distribution without leaking anyone’s location information. Fig.

6 indicates that our scheme can compute cluster centers at the

same accuracy as the non-privacy preserving algorithm. Table 4
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Fig. 6. Cluster center comparison of our scheme with the general k-
means algorithm.

TABLE 4
Cluster assignment evaluation of our scheme.

cluster accuracy recall
1 99.51% 99.18%
2 97.1% 99.8%
3 99.67% 98.82%
4 99.39% 99.71%

indicates our scheme can get the same accurate clustering results

without disclosing private location information.

In our last experiment, we select the Human Activity Recog-
nition on Smart-phones [30] as our test dataset. This data was

collected from a group of 30 volunteers within an age bracket

of 19-48 years. Each person carries a smart-phone with an

embedded accelerometer and a gyroscope. The data contains 3-

axial linear acceleration and 3-axial angular velocity. Each of the

7352 samples contains 561 features. A certain part of the samples

reflect one particular type of activity. Participants do not want to

disclose their activities or location information, but want to play

with others participating in similar activities. Next we conduct

experiments to show that our solution allows the mobile users

to recognize the others participating in the same activity without

leaking the private activity information.

We perform privacy preserving clustering on the test data to

group people’s activities into several categories. Fig. 7 shows the

clustering results from our scheme compared with the ground truth

grouping.

One can conclude from Fig. 7 that our clustering solution can

effectively group participants with similar activities in a secure

way. The mobile users can easily find people who share the same

interests without leaking anyone’s individual private data.

Table 5 presents a simple comparison study over the three

!htb
TABLE 5

The comparisons among [7], [12], [19] and our scheme.

Properties [7] [12] [19] Our scheme
Collusion attack resistance No No No Yes
Individual’s information protection Yes Yes Yes Yes
Cluster center protection No No No Yes
Intermediate result leak Yes Yes Yes No

Fig. 7. Result comparison between our experiment result and users’
ground truth action.

schemes proposed in [31], [12], and [19]. From Table 5, one can

notice the significant advantages of our scheme compared to the

other three schemes in terms of privacy preservation and collusion

attack resistance.

7 CONCLUSION AND FUTURE RESEARCH

In this paper we propose an efficient privacy-preserving clus-

tering scheme that ensures no leak of any intermediate result.

Our scheme can securely compute the nearest cluster center for

each participant without disclosing any cluster information to the

participants. In addition, our scheme can update the cluster centers

at each iteration without exposing any participants’ information to

the data analyst.

Our scheme can achieve more privacy preservation goals when

compared to other existing works. No participant can obtain any

private information of other participants or the cluster centers.

Furthermore, the cluster centers can be computed without leak-

ing the cluster label of each participant. And participants have

no knowledge about the other participants in the same cluster.

Through an extensive security analysis, we conclude that even in

the existence of collusion participants, no private information of

the remaining participants is released. Finally, we conclude that

our scheme does not incur much communication and computation

overheads on the participants.

In our future research, we shall consider the mutual privacy-

protection of other clustering algorithms such as the Gaussian

Mixture Modeling for social participatory sensing. On the other

hand, we will investigate how to figure out the relative position

of a participant in a community when the community model is

available while protecting the privacy of both the participant and

the community.
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