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Abstract—The data of social networks contains a large amount of personal information, of which may be public or insignificant, but
some may be sensitive and private. Once the user privacy leaked, it may bring a variety of troubles for users. To protect the privacy of
users, holders of social networking data first conduct anonymization before the data is published. However, the simple anonymity
method does not play a very good protection. At present, a number of de-anonymization attacks for the data releasing of social
networks have arisen. These de-anonymization attacks are mostly based on the network structure with the use of feature matching and
other methods. In this paper, we integrate the structural characteristics of social networks and the attributes of social nodes, thus the
social network is modeled as a Structure-Attribute (SA) framework. The similarity measurement of social network nodes is proposed,
with the consideration of the structure similarity and attribute similarity. The accuracy of node matching and de-anonymization is
improved. We also present the similarity analysis of different measurements and discuss how graph anonymization techniques affect

network characteristics with elaborate experimental results. We conduct our de-anonymization based on three realistic datasets to

verify the accuracy and efficiency.

Index Terms—social network; privacy preservation; k-anonymity; de-anonymization; differential privacy.

1 INTRODUCTION

A Large number of different online social networks have
gained tremendous popularity in recent years. These
social networks provide the online information sharing and
exchange platform for different groups with different func-
tions [1]. As a true social portrayal, social networking data
contains a lot of personal information. In many social net-
working sites, users will be asked to fill in personal informa-
tion such as name, gender, birthday, educational level, work
situation, marital status, e-mail or even personal photos. In
addition, the text, pictures, videos, geographical location
published by users (User-generated content) will also be
retained in the database. According to the privacy policy of
social networking sites and users’ privacy preferences, some
of these information may be open or insignificant, and some
may be very sensitive and private [2]. Once the user privacy
leaked, it may bring troubles to the users, such as receiving
spam mail, junk message or telephone harassment. It may
also cause damages to the personal reputation, property
damage, and even brings personal injury [3]. So the privacy
issue has received a lot of attention and has been paid much
attention. For example, the nature of smart homes inevitably
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raises security and privacy concerns [4]. Due to the close
correlation with individuals physical features and status,
the adoption of Cyber-Physical Social Systems (CPSSs) has
been inevitably hindered by users’ privacy concerns [5]. The
Internet of Things (IoT) changes human lives greatly by
connecting every objects together. As a result, billing can
be conducted automaticly from the shopping cart itself, pre-
venting customers from waiting in a long queue at checkout.
Therefore, it is necessary to design secure communication
protocols to make the system practical [6].

To protect the involved user privacy, holders of social
networking data will be anonymized before the data is
released [7], [8]. In general, data anonymization techniques
can be divided into three categories: naive ID removal, k-
anonymization (randomly increase or delete a few edges)
[9], [10], and differential privacy [11], [12].

However, the naive ID removal does not play a very
good protection effect. There have been a number of de-
anonymization attacks to the releasing data of social net-
works [13], [14], [15], [16], [17], [18], [19], [20]. These tech-
nologies are mostly based on the network structure, with the
use of node degree or connectivity and other information.
It also conducts the disclosure of identity of anonymous
users with the adoption of feature matching and other
means. Based on a variety of background knowledge, the
de-anonymization has a strong attack ability. The naive
ID removal has been proven that it cannot resist the de-
anonymization attack. For the k-anonymity method, it is
not well protected against structurally anonymous attacks.
Differential privacy was originally intended to protect the
privacy of interactive queries. However, structure-based de-
anonymization attacks are generally non-interactive queries.

In the existing de-anonymization attacks, the accuracy
of the de-anonymization result is unknown because of the
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inaccuracy of the feature matching process, and the absence
of the true mapping from the attacker’s background knowl-
edge to the target network.

e In this paper, we model the social network as a
Structure-Attribute (SA) framework which integrates
the structural characteristics of social networks and
social node properties, adding some attribute nodes
to the social network. Each attribute node represents
the user’s attribute value. The link between the social
user and the attribute node indicates that the user has
the attribute value.

o We propose a novel similarity measurement of social
network nodes, with the consideration of structural
similarity and attribute similarity of social network
nodes, so as to improve the accuracy of node match-
ing and the accuracy of de-anonymization.

o We firstly adopt the spectral graph partition algorith-
m to partition large social networks into a number
of small graphs. Then we develop a concrete de-
anonymization algorithm including two phases. In
the first phase, we construct a bipartite graph based
on the anonymized graph and the auxiliary graph.
In the second phase, the node matching problem is
reduced to find a maximum weighted matching of
the bipartite graph.

o We present the similarity analysis of different mea-
surements and discuss how graph anonymization
techniques affect network characteristics with elabo-
rate experimental results. It is conducted on the Twit-
ter dataset based on three anonymization methods.

o We simulate the de-anonymization attack on three
realistic datasets. The experiment proves that the
method in this paper can improve the accuracy of de-
anonymization. Moreover, the run time and accuracy
of the de-anonymization method are tested.

The remainder of this paper is organized as follows.
In Section 2, we describe and analyze the methods of de-
anonymization in recent years. The problem definition and
network model are introduced in Section 3. We also present
the definition and the hypothesis of the de-anonymization
method, and introduce the SA framework model in de-
tail. In section 4, we introduce the spectrum partitioning
algorithm briefly to partition the large social network. Sec-
tion 5 describes the definition of node similarity and the
de-anonymization algorithm. In Section 6, we present the
similarity analysis of different measurements and discuss
the effect of graph anonymization techniques on network
characteristics with many experimental results based on
Twitter dataset. We collect three datasets to evaluate our de-
anonymization attack in Section 7. The social structure and
user attributes are collected to construct the SA framework.
In Section 8, the de-anonymization attack is conducted on
three social network datasets. The experiments prove the
good performance of the accuracy and the efficiency of
our de-anonymization algorithm. Section 9 summarizes our
work and gives the prospect of further research works.

2 RELATED WORK

The current privacy protection technology can be divided
into three main categories: naive ID removal, k- anonymiza-
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tion [9], [10] and differential privacy protection [11], [12].
The naive ID removal is not well protected against de-
anonymization attacks [13], [14], [18]. However, the naive
ID removal is still widely used to anonymize data before
data sharing, data publishing and/or data transferring. k-
anonymization is an important way to protect information
privacy when data is published. It requires that the pub-
lished data contains a certain number (at least k) indistin-
guishable records so that the attacker cannot distinguish
the specific privacy information belonging to individuals,
thus protecting the privacy of individuals. k-anonymization
protects the privacy of the individual to a certain extent,
but it cannot resist the de-anonymization attack of node
matching based on structural features. In [21], K. Xing et
al. considered the problem of mutual privacy-protection in
social participatory sensing, in which individuals contribute
their private information to build a (virtual) community.
Xing and Hu provided a mutual privacy preserving k-
means clustering scheme which neither leaks individual’s
private information nor discloses the community’s charac-
teristic data. Differential privacy was first proposed in the
traditional database area, and it has been widely used in
various traditional data analysis tasks before applying to
social networking data. By adding carefully calculated ran-
dom noise to the query results, differential privacy ensures
that any change in the set of records in the database does
not statistically distinguish between query results. For social
networking data, differential privacy is only applied to the
simple statistical analysis of attribute information, such as
the distribution of node degree, attribute value distribution
[22], [23]. Afterwards, differential privacy began to be used
to analyze the social network structure information, such as
the data privacy protection in interactive queries [11], [12].
The differential privacy for social networks can be divided
into node-based differential privacy and edge-based differ-
ential privacy.

At present, the inference attacks in social networks are
divided into two main categories: private attribute infer-
ence [24], [25], [26], [27], [28], [29], [30], [31] and user de-
anonymization [14], [18], [19], [20]. Private attribute infer-
ence intends to dig out the hidden attribute information that
are intentionally protected by the users or data publisher.
Attackers can easily collect information from social net-
works through some crawlers, which can be combined with
other side channel information for the attribute inference.
User de-anonymization attack adopts two graphs as input,
with one anonymized and the other (the auxiliary graph)
including the true user identities, and the purpose is to
map the nodes in these two graphs so as to achieve the
de-anonymization.

In [13], structure based de-anonymization was intro-
duced where they proposed both active attacks and passive
attacks to de-anonymize social network data. The basic
idea of these attacks is to create a subgraph and a link
pattern to the target users before releasing data. Then the
target users can be de-anonymized by identifying the pre-
viously created subgraph and the link pattern. However,
these attacks are not scalable and difficult to control for the
continuous growth of social network data during the data
release process. And for the passive attacks [13], it can be
easily defended against by obfuscating the social network
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structure, while it is still difficult to be extended to large
scale social networks. In [14], Narayanan and Shmatikov et
al. proposed a robust and scalable de-anonymization attack
which is extended to large-scale directed social networks.
This algorithm consists of two processes: seed identification
and propagation. In the first phase, a set of seed mappings
is identified. In the second phase, the de-anonymization
is propagated from the seed mappings to other users in
the anonymized graph with the adoption of several de-
anonymization heuristics.

Srivatsa and Hicks et al. first proposed a de-
anonymization attack to mobility traces, using social net-
works as the side-channel information [18]. They proposed
three two-phase schemes to perform the de-anonymization.
Firstly, a contact graph is constructed based on a mobility
trace. Then, a social graph is adopted to de-anonymize
the target contact graph subsequently. However, scalability
is still an important limitation of this algorithm [18]. In
[32], Ji et al. designed an adaptive de-anonymization (ADA)
framework for the scenario that the anonymized and aux-
iliary graphs have partial overlap. ADA also includes seed
identification phase and a propagation phase. In [33], Ji et
al. presented the de-anonymization method under the con-
figuration model. Moreover, a practical optimization-based
de-anonymization algorithm is proposed. Nilizadeh et al.
proposed a community-based de-anonymization scheme of
social networks, which can be employed to enhance seed-
based attacks [20]. In this scheme, community-level de-
anonymization is first used. Subsequently, within each de-
anonymization community, the obtained information can
be used to enhance the user-level de-anonymization. In
[19], Ji et al. conduct the first perfect de-anonymizability
and partial de-anonymizability with seed information in
general scenarios. In this de-anonymization scheme, social
networks can follow an arbitrary distribution model. The
detailed theoretical analysis for the existing structure based
de-anonymization attacks is proposed in this quantification.
In [34], Qian et al. introduced a knowledge graph to explicit-
ly represent the prior information of the attacker for any
individual user. Based on the defined knowledge graph,
they formulate the process of de-anonymization and pri-
vacy inference. Ji et al. studied the impacts of non-Personal
Identifiable Information on the privacy of graph data with
attribute information in [35]. The attribute-based anonymity
analysis for structure-attribute graph data are conducted.

3 DEFINITION AND MODEL
Social Network

To make the paper more readable, all the notations are
summarized in Table 1.

Assume that the attacker has a certain background
knowledge to help them complete the de-anonymization.
We use undirected graphs G, = (V;, E;s) to represent
social networks, where E; represents the social relationships
between nodes in V;. In addition to the social network
structure, each node contains the associated attributes and
behaviors. For instance, in Sina microblog set, nodes are the
Sina microblog users, and edges represent the friendship
between users. Node attributes can be derived from the user
profile information such as age, gender, major, occupation,
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residence, etc. There are several kinds of behaviors in social
networks, like giving comments, clicking “Like” button,
forwarding other people’s status or the set of items (apps,
books). In this paper, we regard the user’s behavior as an
attribute.

Specifically, we need to distinguish between attributes
and attribute values. For example, major, occupation, resi-
dence are different attributes, and each attribute may have
many multiple attribute values; for example, the user’s
major can be computer science, mathematics or physics.
Therefore, we adopt a binary representation for each at-
tribute value, and the number of all the distinct attribute
values are denoted as d. Then, the attribute information of
the node u can be represented as a d-dimensional binary
column vector b,. The ith entry equals to 1 when node
u has the ith attribute value, and the value is 0 when
the node does not have this attribute value. Therefore, the
attribuig \glues of all social nodes are represented by matrix
B = [bi,bs..
nodes.

.by,], of which n; is the number of all social

Social-Attribute Framework

Once a Social-Attribute (SA) network model is constructed,
a social structure and user attributes are combined into a
unified framework. Given a social ne‘rwor_k> Gs = (Vs, Ey)
with an attribute matrix B = [by, by ...b,,], an enhanced
network is constructed by adding additional d attribute
nodes, where each node corresponds to an attribute value.
For each node u in V;, when u has the attribute value, the
node u has an undirected edge with the additional attribute
node. Therefore, in the SA framework, the corresponding
node in (G, is called the social node; the node which
represents the attribute value is called attribute node. The
edge between the social nodes is called social link, and
the edge between the social node and the attribute node
is called attribute link. Fig.1 shows an example of a simple
SA network. Bob, Alice, Linda, and Mike are social nodes;
while Male, female, computer science, doctor, biology, age
< 30 and angry birds are the attribute nodes. The friendship
between Mike and Linda is considered as the social link,
and the attribute link between Alice and computer science
means that Alice has this attribute value.

Network Model

Anonymized graph. We adopt the SA framework to mod-
el the social network. So the anonymized social net-
work is modeled by graph G* = (V% E% t*), where
Ve is the set of nodes, and E“ represents all the
links between the nodes, that is E¢ = {ef;li,j €
V® a social tie exists between i and j}, and m® = |E“|
represents the number of edges. Then, ¢* represents the
node type. For instance, t represents the type of node ¢,
when t¢ = S, it means that node ¢ is a social node, and when
t¢ = A, it means node 7 is an attribute node. Given Vi € V,
its neighborhood is defined as N“(i) = {j € V*|ef ; € E}.
Then we define A? = |[N®(i)| as the number of neighbor
nodes of ¢. The attribute information of the node 7 can be
expressed as a d-dimension binary vector bf, thus the matrix
B¢ representing all attribute values of all social nodes.
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TABLE 1
Description of Notations

Variable Name ‘

Description

Gs = (Vs, Ey) the social network
B= [b_l), by ... I: ] the attribute values of all social nodes
G*,G" the anonymized and auxiliary graph
Ve, v the node set in anonymized and auxiliary graph
Ee B all the links between nodes in anonymized and auxiliary graph
it the type of node 7 in anonymized graph and node j in auxiliary graph
N, N} the neighborhood of node ¢ in anonymized graph and node j in auxiliary graph
o the mapping of V¢ — V"
AY, A}‘ the number of neighbor nodes of node ¢ in anonymized graph and node j in auxiliary graph
(A9, (AY)® the number of social node neighbors of node 7 in anonymized graph and node j in auxiliary graph
b?, bz% the attribute value of node 7 in anonymized graph and node j in auxiliary graph
Sal(i,j) the attribute similarity between node i and j
Z;, E; the degree sequence of social neighbors of node 7 in G“and j in G*
Sr(i,7) the structural similarity between node ¢ and j
S(i,7) the similarity between node i and j
S gm(Ga, G") the similarity between the anonymized graph and auxiliary graph under the mapping o
Ci, Cj the closeness centrality of node 7 in anonymized graph and node j in auxiliary graph
Sc(iyj) the correlation similarity between node i and j
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Fig. 1. An example of Social-Attribute network

Auxiliary graph. The auxiliary graph is modeled by
G" = (V*, E" t") where V" is the set of nodes, and E* rep-
resents all links between the nodes, that is E* = {ef;]i,j €
V¥ a social tie exists between i and j}, and m* = |EY|
represents the number of edges. Then, t* represents the n-
ode type, for instance, ¢7 represents the type of node j, when
t}* = S, it means that node j is a social node, and when
t}‘ = A, it means node j is an attribute node. Given Vj € V%,
its neighborhood is defined as N*(j) = {i € V"|e}'; € E"}.
Then we define A} = [N"(j)| as the number of neighbor
nodes of j. The attribute information of the node j can be
expressed as a d-dimension binary vector 0}, thus the matrix
B" representing all attribute values of all social nodes.

Attack Model

The goal of de-anonymization is to map the nodes in G* to
the nodes in G* as accurately as possible. In a real social
network, the auxiliary network can be obtained in a vari-
ety of ways, such as data mining, cooperative information
system, knowledge/data attacks. Given G* and G*, we can
employ a mapping to formally define a de-anonymization
attack: o : V¢ — V" For Vi € V¢, its mapping under
ois o(i) € V*J{L}, where L is a special not existing
indicator. Under o, a successful de-anonymization attack on
i € V®is defined as o(i) = ¢/, if i/ € V¥ and 7 and ¢’
correspond to the same user; or o(i) =L. Otherwise, other
cases imply that the attack on ¢ fails. Accordingly, our goal of
a de-anonymizaiton attack is to successfully de-anonymize
as many users in V' as possible.

4 SPECTRAL GRAPH PARTITION

Social networks in real world can be very large. So the
computation cost of different structural characteristics such
as clustering coefficient are expensive. Therefore, we adopt
the spectral graph partition algorithm in [36] to partition the
large social network into a number of small graphs and then
de-anonymize them in parallel. From another aspect, graph
partition can effectively reduce the error accumulation of
de-anonymization. We just introduce the algorithm briefly,
which can be referred to the citation for details. For the
graph G = (V, E), let matrix A = |a; ;| be the weighted
adjacency matrix of graph G. Notice that in this paper, graph
G is unweighted graph, the edge weights can be considered
to be all one. So the matrix A of graph G = (V, E) be defined
through it elements:
o ,_{ 1 if(i,j) € E
“ 1 0 otherwise

M
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And D is a diagonal matrix that D = diag(Ae), where
vector e = (1,...,1)T. Actually, for the unweighted graph
G, the entry a; ; denotes an edge between node ¢ and j, and
the diagonal matrix D denotes the degree of each node. The
Laplacian matrix L is defined as L = D — A.

Let a set of vertices S C V then its boundary is a set of
edges 0(5) C F that only one end point vertex of each edge
is in .S, in other words,

a(S) ={(i,4):ie SNj¢ S} @)

and leta cut C' = (S, T') of a graph be a partition of vertices
V into two disjoint sets S,T" C V. For the problem of graph
partitioning, our goal is to find a minimum balanced cut
C = (S,5) of a graph G = (V,E) in the sense that S
satisfied either the condition

wl@(s))
p(S) = min BEEE 3)

or
0(S) = min vol(9(9)) @

s |vol(S)||vol (S)]

where S is the complement set of S with respect to V,
| - | denotes the cardinality of a set. The cost function p(S) is
often referred to as ratio cut, while the 7(.S) is referred to as
normalized cut.

vol(9(5)) = 10(S)] ®)

vol(S) = d(i)

€S

(6)

The graph partitioning in our solution is shown in Algo-
rithm 1. [36]

Algorithm 1: Spectral Graph Partitioning

1: Let G = (V, E) be an input graph and A be its
adjacent matrix, D be the degree matrix.

2: Let B = I is the ratio cut.

3: Let p be the number of desired partitions, then
compute the Laplacian matrix L =D — A

4: Find p smallest eigenpairs of the eigenvalue problem
LU = BUY, of which ¥ = diag([M1,...,Ap])

5: Scale the p eigenvectors U by row or by column.

6: Run k-means clustering algorithm on points defined
by rows of U, so that the similar vertices could be
clustered together.

Consequently, the large social graph can be divided into
several small subgraphs. Both the anonymized graph and
the auxiliary graph are divided into subgraphs by the same
approach. Then corresponding subgraphs can be matched
according to the k largest eigenvalues. Finally, all the sub-
graphs of the two social graphs can be matched one by one.
Moreover, the de-anonymization of nodes in the subgraphs
can be executed according to structural characteristics and
attribute information to achieve the identification of social
network users.

5 DE-ANONYMIZATION

Similarity Measurement

Firstly, we formally define the similarity measurement of
nodes with the consideration of structure characteristics
and attributes of social networks before introducing the
de-anonymization algorithm. The similarity S(i, j) between
nodes i, 7, includes (obviously, here we only measure the
similarity between social nodes), the attribute similarity and
the structural similarity.

Attribute Similarity. The attribute similarity of node i €
Ve tl = Sand j € V¥ 1} = S is denoted as Sa(i, j). For
each node i € V¢t = S in G“, the vector b_f represents
the attribute values of node ¢. Similarly, for each node j €
Ve ity = S in GY, the vector b?‘ represents the attribute

values of node j. So the vector b_l‘-i and b?-‘ can be shown as:
byt = (b, b3, b3, - - b;)

b = (b

U U U
1j>b2j7b3j : "bdj)

of which d is the dimension of the vector, that is, the d is the
number of all attribute values.

G o bl
by e by

Salij) = — @)

3 (b5, Dby) + b e b
From the definition of S (i, j), we can see that it is between
0 and 1. If the two nodes have more of the same attribute
values, then their attribute similarity is high.

Structural Similarity. In addition to the attribute sim-
ilarity of nodes, we also consider the structural similarity
between nodes. We adopt Sg(i,j) to represent the struc-
tural similarity between node i € V%t = S and node
Jj € Vit = S. The number of neighbors of node i in
G® is denoted as A? = |N%(i)|. We compute the number
of social neighbors of node i, denoted as (A%)Y = |{v €
Ne(i)|t% = S}|. Moreover, we develop the 1-hop degree-
based model.The detailed procedure can be shown in Algo-
rithm 2. Here we use to N(i,1) to emphasize the one-hop
neighbor node. Therefore, the structural similarity between
two nodes is:

(A7) = (AY)7] )
maz{(A§)S, (AY)5}

G

count Al e B

: . x 2
maz{IN( DLING DI~ @) < | B

Salisj) = 1/2(1 -
8)

+1/2(

Node similarity. The node similarity between node i €
Ve tl = S and node j € V¥, t} = S is denoted as S(i, j),
then it is computed as

S(i,4) = 1/254(i,j) + 1/2Sr(i, j) ©)

As mentioned in our attack model, a de-anonymization
scheme can be defined as a mapping: 0 = V¢ — V%
Therefore, our goal of the de-anonymizaiton is to find a
mapping ¢ which maximizes the similarity between G*“
and G*. We use the function S7m to measure the similarity
between G* and G" after nodes matching by o.
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Algorithm 2: 1-hop degree-based model

1: foreachi € V*and t{ = S do
2. Define N (i, 1), which represents the 1-hop social

neighbor nodes of node i, where z1, 22 --- € N(i, 1).

(Here we use to N (i, 1) to emphasize the one-hop
neighbor)

3:  Sort the degree sequence in descending order,
d(x1) > d(x2) - - -, of which d(x;) represents the
degree of node z;

De-anonymization Algorithm

The objective of our de-anonymization attack is to find a
map which maximizes the similarity of social nodes in G*
and G*. To transform this problem, we construct a complete
weighted bipartite graph GP = (V@ + V* £B), where a
weight S(i,j) is assigned to each link e;; € 8. That is,
we connect all links between all social nodes. Then the de-
anonymization problem can be reduced to the maximum
weighted bipartite matching problem, thus can be solved

(We use d(z1) to represent the degree for simplicity) by the Hungary algorithm and KM algorithm. However, the

4: end for

5: foreach j € V* and t]' = S do

6:  Define N(j,1), which represents the 1-hop social
neighbor nodes of node j, where y1,y2--- € N(j,1)

7: Sort the degree sequence in descending order,
d(y1) > d(yz) - - -, of which d(y;) represents the
degree of node y;

8: end for
9: é} = (d(z1),d(x2), - d(z|n (1))
10: By = (d(y1), d(y2), - d(y|n (1))
11: while compute Sr(i,7) do
12:  for each vector element of A; do
13: Compute |d(£§) — d(y;)| with all the vector
elements of B;
14: Record the (d(x;),d(y;)) as the matching pair
which satisfies that |d(z;) — d(y;)| is minimized
15:  end for
16:  Compare all | N (7, 1)] matchin& pairs
17:  if more than two gements of A; are matched to the
same element of B; then
18: Compare the values of these matching pairs,
delete the matching pair with bigger value
19:  end if
20:  Else
21:  Record all the matching pairs (d(x;),d(y;)), and
denote the number of matching pairs as count
22:  Let each vector element of A] equals the left value
of each matching pair .,
23:  Likewise, let each vector element of B ; equals of

the right value of each matching pair
24: end while

= S(i, ) (10)

Sim(G*,GY) = >
(i,0(i)=j)€0

Consequently, the de-anonymization problem can be
defined as follows:

Definition 1.1 De-anonymization Problem
Input: The anonymized graph G and auxiliary graph G*
output: A best map o

Goal: To maximize the similarity between G® and G“,
arg max Sim(G*, G*).

social networks in real world can be very large. Therefore,
constructing the complete bipartite graph has large time
and space complexity. Furthermore, finding the maximum
weighted matching also is a great challenge for large social
networks.

So a light-weighted bipartite graph is built in Algorithm
3. We transverse the social nodes in G* and calculate the
similarity with the social nodes in G to find the first k
nodes with the highest similarity, of which k is the prede-
fined parameter. Finally, a mapping is obtained that each
node corresponds to k matching nodes. In the beginning,
G® has no links. The breadth first search (BFS) is performed
on G. An outstanding initial node is selected from G so
that it can be mapped with high accuracy. This initial node
can be selected by many different ways. In our algorithm,
we randomly selected a node and calculate the similarities
between it and all nodes in G" to examine if there is a
successful mapping (We match the node in G with the
corresponding node in G* who has the largest similarity,
which is greater than a threshold). Then the node can be
selected as the initial node.

Then the BFS is performed in G. In this process, our
strategy is that if two nodes match, then their neighbors are
likely to match. Before mapping each social node i € G¢,
the algorithm first checks whether 7 has a predecessor node,
which is denoted as pr(i). If so, it searches the pr(i)’s can-
didate nodes and their neighbors, computes the similarity
and then compares the similarity with the threshold r. If the
similarity is less than 7, then we delete this candidate node.
Otherwise, it searches all the nodes in V'“.

Line 3-19 in Algorithm 3: For eachnode 7 € V' and t¢
S, we firstly verify that the node ¢ has a predecessor node
pr(i). If there is a predecessor node, we can search the
neighbors of pr(i)’s candidate nodes to get the top k similar
candidate nodes of the node 7 in this range.

Line 21-27 in Algorithm 3: If node ¢ does not have a
predecessor node, each j € V" and t;-‘ = S is traversed
directly to find the first k candidate matching nodes.

Line 28-34 in Algorithm 3: Therefore, k links from ¢ to
the candidate nodes are added to the graph G, and the
similarity score between the node ¢ and its candidate node
is the weight of the edge. So the bipartite graph is obtained.
The classical KM algorithm is adopted to find a maximum
weighted bipartite matching based on this bipartite graph.

In our algorithm, only the parent node needs to compare
with all the nodes to obtain the first £ nodes with the
highest similarity. The most nodes only compare with the
neighbors of his predecessor node’s candidate matching
nodes to obtain the first k nodes with the highest similarity,
which greatly decreases the time complexity. Moreover, if
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we construct a complete bipartite graph, we need to trans-
verse all the nodes in the graph. The number of links in this
complete bipartite graph is O(n? - n%)(the number of social
nodes in G* and G*). To reduce the mapping complexity,
we can decrease the links by keeping only links with the
top k largest weights. Each node in V* is linked to top k
candidate nodes in V*. Accordingly, the number of links is
reduced to O(kn?). Thus the time and space complexity of
solving the maximum weighted bipartite matching problem
is lowered respectively.

Herein, k and r are the predefined parameters to balance
the accuracy of the de-anonoymization and the complexity
of the algorithm. So k and r affect the accuracy of the final
mapping results. When the value of k is too large and r
is too small, it will lead to a bipartite graph with many
unnecessary edges for the mapping; if k is too small and r
is too large, it will make the matching process missing some
important links. Therefore, we will evaluate the impact of
the parameters through experiments.

6 SIMILARITY ANALYSIS ofF DIFFERENT
ANONYMIZED METHODS

Similarity Analysis

The structural characteristics of social networks can be the
reference for de-anonymization, while both the anonymized
and auxiliary data can be modeled as graphs. The de-
anonymization based on structural characteristics is mean-
ingful because we also adopt other approaches to refine
the coarse granularity de-anonymiztion. In this section, we
present three widely accepted measurements to discuss
the topological properties of social nodes, namely degree
distribution, closeness centrality and correlation similarity
respectively[32]. In particular, it is needed to be explained
that we only consider the social nodes and social links of
the data graph in this section.

Degree Distribution. The degree distribution considers
the number of edges that a node has (or the number of
neighbor nodes) in a graph. In the anonymized data graph,
the degree of i € V° is defined as A? = |N%(7)], similarly
AY = [N*(j)| for j € V* which are defined in Section 3.

Closeness Centrality. The degree distribution indicates
the local property of nodes in social network since we
only consider the adjacent links. To fully characterize the
topological property of nodes, it is useful and significant
to describe the measurement of closeness centrality defined
from a broader and global view. The closeness centrality
measures how close a node is to all other nodes in a graph,
which is defined as the ratio between n — ¢ — 1 and the sum
of its distances to all other nodes (if the number of social
nodes is n), of which t is the number of nodes which can’t
be reached. Formally, the closeness centrality ¢; for node
1 € V' is shown as follows:

Vel —¢—1
C; = - (11)
> (i)
zeVae x#i

of which p®(i, z) represents the shortest path from node ¢
to node z, and [p®(i, x)| represents the hops of this path.

Algorithm 3: SA-based De-Anonymization (SA-DA)
Input: Anonymized graph G* = (V*, E%,t%);
Auxiliary graph G* = (V*, E*,t") , parameter k, 7.
Output: a maximum weighted bipartite matching o

1: Define e¥ = (J, build a bipartite graph
GB — (Va + Vu’e,_:B),.

2: Define Can = ), which represents the candidate
matching nodes

3: Perform BFS in G starting from pg(an initial node
po € G*)

4: foreachi € V* and t{ = S following the BFS order do
5. if ¢ has a predecessor pr(i) then
6: Define N = @
7: for each v € Cany,.(;) do
8: for each neighbor j of v do
o N = N U} Ulo}

10: end for

11: end for

12: foreachn € N do

13: Compute S(i,n)

14: if S(i,n) > r then

15: Can; = Can; | J{n}

16: end if

17: end for

18: Select the top k similar nodes in C'an; as i’s

candidates

19:  end if

20:  Else

21:  foreachj € V" and t} = S do

22: Calculate S(i,5)

23 if S(i,7) > r then

24: Can; = Can; U{j}

25: end if

26:  end for

27:  Select the top k similar nodes in C'an;
28: for each a € Can; do

29: Attach the node i, a, and £? = 8 |J €ia
30: end for
31: end for

32: Construct the bipartite graph G
33: Execute the KM algorithm on the bipartite graph G
34: Return a maximum weighted bipartite matching o

Similarly, the closeness centrality ¢; of j € V' is defined as:

-t )
! > |pt( o)l
zeVY x#j

Correlation Similarity. It is observed that two nodes are
likely to match if they have more common neighbors that
have been mapped. Here, we denote correlation similarity as
sc (i, j) which can be shown in equation 13 for node i € V'
and j € V" First, M (4, j) represents the neighbors which
have been mapped of node ¢ and j. M (i,j) = {(x,2')|z €
Ne(i),a’ € Nu(j), (z,2) € o}.
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Sgr(z, 2
(A2)S — (A%)S) nle)

~ ) (o)€M )
maz{(Af)S, (AY)5}

M (i, )

(13)
of which, Sg(z,2’) is the structural similarity between z
and 2’ which is formally defined in section 5.

We have defined three measurements to evaluate the
network properties of the anonymized graphs and the o-
riginal one as well as how close they are based on d-
ifferent anonymization methods. Therefore, to anonymize
the social networks for different datasets, we employ 3
popular anonymization techniques, namely Ran Add/Del,
partitioning and summarizing Anonymity [9] and Union-
Split Anonymity(UniSpl) [37] with their default parameters.
We briefly describe these anonymization techniques, which
can be referred to the citations for elaborate details.

Sc(i,j) = (1

e Rand Add/Del, we randomly insert one edge fol-
lowed by deleting another edge and repeat this pro-
cess for many times. This strategy keeps the total
number of edges unchanged in the original graph.
Here we randomly delete 4% links of the social
network and randomly insert the same number of
edges.

o Partitioning and summarizing [9], this algorithm
anonymizes a graph by grouping nodes into parti-
tions, and describes the graph at the level of parti-
tions. Then the number of nodes in each partition
will be published, along with the density of edges
that exist within and across partitions. Therefore, the
output of this algorithm is a generalized graph.

e UniSpl [37], this algorithm clusters individuals into
groups in social networks with similar social roles,
while satisfying a minimum cluster size constraint.
Then edges are added and removed strategically
based on the node’s inter-cluster connectivity.

Experimental Analysis

Now we discuss how graph anonymization techniques af-
fect network properties. The network properties explained
above are commonly measured and reported on the realistic
dataset of Twitter. After analyzing the data we crawled from
the Twitter dataset, the social network includes 7910 social
nodes, 874222 social links. We consider the degree distribu-
tion of all nodes, then we randomly select some nodes to
record and compare their different network properties.

As shown in Fig.2(a), it is observed that the degree of
Twitter dataset follows the power-law distribution. More-
over, the degree distribution of the anonymized graph and
the original graph are similar for the algorithm of Rand
Add/Del. For the algorithm of partitioning and summariz-
ing anonymity, the degree distribution of the anonymized
graph are qualitatively similar to the original graphs, which
is shown in Fig.2(b). Besides, the high degrees are reduced
systematically by the graph processing. Similarly, the graph
anonymized by the method of UniSpl are similar to the o-
riginal graphs of the degree distribution as demonstrated by
Fig.2(c). This method performs well in preserving network
properties by attempting to retain local network structure
and global structure. In the simulation process, we set k = 8

8

of this algorithm. It is worthwhile to note that while % is
relatively large(such as k = 50), the anonymized graph has a
larger deviation from the original one in virtue of the degree
requirement of k-anonymity.

Therefore, we can conclude that degree distribution can
be used for de-anonymization. Moreover, multiple nodes
in the anonymized and original graphs also have similar
degree as shown in Fig.2(d) (we randomly select twenty
nodes of the Twitter dataset), which also illustrates that
degree distribution can be used for de-anonymization.

Then, since the number of nodes in dataset is too big, we
also randomly selected 20 nodes in the Twitter dataset to
compute and compare their closeness centrality. As shown
in Fig.2(e), it presents closeness centrality of the random-
ly selected nodes in the anonymized graph and the real
mapping nodes in the original graph based on the three
anonymized methods. Also the closeness centrality of nodes
in the anonymized graph agrees with that in the original
graph to a certain extent. Therefore, it suggests that the
closeness centrality can be a measure of utility to evaluate
how close the anonymized graph to the original one.

Since some nodes with distinguished structural property,
they agree with their real mapping nodes and significantly
disagree with other nodes in the original graph. Conse-
quently, it indicates that even just based on some structural
property, these nodes with distinguished characteristics can
be de-anonymized successfully. However, for the nodes
with indistinctive structural similarities, it is difficult and
impossible to achieve the exact mapping just based on
structural property especially for different anonymization
techniques. So we need to consider other proper and effec-
tive multimeasurements collaboratively.

Based on the definition of correlation similarity S (4, ),
we can find that two nodes are likely to match if they
have more common neighbors which have been mapped
when executing the de-anonymization, and resulting in high
correlation similarity score. We also consider the effect of
degree difference between two nodes. When it is small,
the correlation similarity is greater. Based on the three
anonymization methods, it is assumed that half of the
nodes have been mapped. Then we randomly selected 13
nodes from the rest of nodes, their correlation similarity
between the anonymized graph and the auxiliary graph is
shown in Fig.2(f), 2(g), 2(h) for the Twitter dataset. In this
figure, real mapping means that the correlation similarity
between v € V“ and its successful node mapping. Max
represents maz{sc(v,x)|lx € V¥ & # o(v)}. Min shows
min{sc(v,x)|lr € V¥, x # o(v)} and average denotes
|Vu17—1\ > wevu ato(y) SC(v,x). It is important to note that
the nodes we selected are different in three anonymization
methods. Under the assumption that half number of nodes
have been mapped, some nodes such as nodes 3, 6, 11 in
Fig.2(f), nodes 2, 6, 10 in Fig.2(g), nodes 4, 12, 13 in Fig.2(h)
agree with their real mapping nodes while significantly
disagreeing with all other nodes in the auxiliary graph. It
implies that we can take the correlation similarity into con-
sideration because sometimes nodes are potentially easier
to be de-anonymized under this metric. However, it doesn’t
perform well for all the nodes.

In summary, the differentiability of anonymized nodes
is distinct based on diverse anonymized techniques as well
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as different similarity measurements. The analysis on the
datasets suggests us to define a multimeasurement with the
consideration of multiple similarity metrics and measure-
ment for effective de-anonymization.

7 DATA COLLECTION

In this section, we study and discuss the performance of
our presented de-anonymization algorithm on three real
datasets. First, we collect a dataset from Twitter. Specifically,
we collected social structures (including the social users and
the relationship between them) and user attributes from
Twitter by using Twitter APIs. We first collected a social
network with user attributes by iteratively crawling the
social users and their friends. Subsequently we crawled
the user id, screen name, user name, create time, city, time
zone and biography. Due to the Twitter API limits, our
program only access the most recent 3000 tweets and the
most recent 7000 friend ids for each social user. Secondly,
the dataset of Facebook is obtained from Stanford Network
Analysis Projects(SNAP) [39]. It is a popular online social
network which contains rich network data and users’ file.
We also collected the social nodes and social links, with
some user attributes. However, some of user attributes are
anonymized. Then, we also execute our algorithm on the
arXiv dataset [40] to evaluate its performance. The dataset is
crawled from the arXiv Condensed Matter E-print Archive,
which contains all the e-prints of scientific papers in the
category of cs.NI(Network and Internet Architecture) and
¢s.CR(Cryptography and Security). All the collected infor-
mation is publicly available.

Twitter DataSet

Each user in Twitter has the unique id, and friend lists. The
Twitter website provides the API to share their data. So we
can crawl the data using the Twitter API. We construct an
undirected social network by keeping an undirected link
between user a and user b if a is in b’s friend list or b is in
a’s friend list. Our dataset consists of 7910 users and 874222
undirected social links after the processing.

User attributes: The data we crawled from Twitter in-
cludes the attributes of user id, gender, screen name, user
name, create time, city, time zone and biography. We consid-
er two attributes of create time and cities. We get the content
of Twitter profile as users” attributes. It is noted that users
fill in their profiles freely resulting in many infrequent at-
tribute values or meaningless and duplicate attribute values.
Moreover, small typos of inputs sometimes make the same
attribute value be different. So when we preprocess it, the
incomplete or invalid or duplicate attributes are removed.
Therefore, we label the attribute values specifically.

(1) Create time. The Twitter website will record the
“create time” of each user. We adopt the time as one of
user’s attribute. The time is specific to the minute. When
it is used as the user attribute, we just quote the “year” as
the attribute value. So we consider nine attribute values as
2005 — 2013.

(2) Cities. We select the top-70 cities in which most users
claimed they have lived in. Afterwards, we process the
crawling data by manually merging cities which actually
refer to the same one, then 70 distinct cities are obtained.

9
TABLE 2
Basic statics of the SA network
Dataset | Social Social Attribute| Attribute
nodes | links nodes links
Twitter | 7910 874222 79 7910 * 2
Facebook| 4032 88234 112 4032 % 3
arXiv 17955 34976 92 17955% 3

In total, we consider 79 distinct attribute values, includ-
ing 9 time and 70 cities. It is acknowledged that our dataset
might not be a representative sample of the recent entire
Twitter network.

Facebook DataSet and arXiv

For Facebook dataset, it contains 4032 nodes and 88234
undirected social links. The data we crawled contains the
education school, hometown and some anonymized fea-
tures. So we do some process for the network data such as
removing the invalid and duplicate attributes. Moreover, we
add one user attribute of gender for the social network by
randomly assigning the attribute value to the social network
users. So after processing, it contains three attribute values
of “education school”, “hometown” and ”gender”. In total,
112 distinct attribute values are considered including 40
education schools, 70 hometowns and 2 gender attributes.

For the dataset of arXiv, the authors are considered as the
vertices in the social network. If the scientists coauthor the
same paper, there exist social links between them. It contains
17955 nodes and 34976 social links in the constructed social
networks. The website records the “time” of each paper. So
we adopt the time as one of users’ attribute. The time is spe-
cific to the minute. When it is used as the user attribute, we
just quote the “year” as the attribute value. So we consider
20 attribute values as 1996 — 2015. Then we also execute
some process on the dataset. We add two attributes to each
user including school of author and gender. We select the
top-70 schools of USA and randomly assign to each user.
Similarly, the attribute value of “gender” is assigned to each
user in the same way. In total, 92 distinct attribute values
are considered including 70 schools, 20 time and 2 gender
attributes.

Constructing SA Frame work

We take each user as a social node and the friendship
between them as the social links of three datasets. For
each user, we consider the attribute values thus adding
many attribute nodes. If a user has the attribute value, we
create a link between the social node and the corresponding
attribute node. Table 2 shows the basic statistics of our
constructed SA framework.

Anonymized Graph: We firstly need to generate an
anonymized graph before conducting the de-anonymization
algorithm on datasets. Both the nodes and the links should
be perturbed to obtain an anonymized graph. In this paper,
we use the first anonymization method mentioned in sec-
tion 6. We will execute some perturbation on the network
graph. First, the social nodes are perturbed by removing the
node identity and substituting with the random generated
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Fig. 2. The evaluation analysis of Twitter dataset.

anonymous identifiers. Then we randomly delete some links
and then randomly insert the same number of edges. In our
experiment, if we want to add p noise to the anonymized
graph, we randomly delete (p/2) x |E“| links and then add
the same number of links.

8 EXPERIMENT EVALUATIONS

We describe metrics of accuracy (the ratio of successful
matchings) and run time to evaluate our de-anonymization
algorithm, which are used to measure the utility and time
complexity. The impact of different parameters are also
evaluated in this section. Our presented de-anonymization
algorithm is exploited on three datasets of Twitter, Facebook
and arXiv.

For the Twitter dataset, Fig.3 shows the impact of the
parameters of k and r on the accuracy and run time. As
depicted in Fig.3(a), the success rate can be improved with
the increasing k when k£ < 8. However, when k > 8, the im-
provement is not obvious. Moreover, the run time increases
with the growing k constantly as shown in Fig.3(b). So we
often choose k = 8 as default. Then as depicted in Fig.3(c)
and Fig.3(d), when r increases, the obtained bipartite graph
is reduced and some real links will be missed, which may
cause the node matching to fail, so the success rate and run
time greatly decrease. Similarly, for the dataset of Facebook
and arXiv, the simulation results in Fig.4 and Fig.5 also
demonstrate the conclusion.

In Fig.6(a), we discuss the impact of perturbation of
the anonymized graph on the matching accuracy. For the
twitter dataset, the accuracy rate does not decrease too much
while the perturbation rate increases, which varies from
0.91 to 0.84. But for the dataset of Facebook and arXiv, the
perturbation rate has an obvious effect on the accuracy. It
has a great drop from 0.903 to 0.72 for Facebook dataset,
from 0.803 to 0.64 for arXiv dataset. That’s because the
number of social nodes is not too much and the number
of social links is very large in Twitter dataset resulting in
the more average degree of the social network. So when we
execute the perturbation on the social graph, the change is
not so obvious. Consequently, it suggests that sometimes

11

correlation similarity of UniSpl

0.9

real mapping —=—

0.8 | max
0.7 |

: /%Zg\:

05 I[N/
/

sl A\ 1))
ol N\ LA/
A\ AVAY T
0 V/‘ ‘

"

correlation similarity score
/
—_—
——

\
\
/)
\
\
\

N

(h) correlation similarity of UniSpl

the de-anonymization results may be different based on
different datasets, that is, instance-specific.

Fig.6(b), 6(c), 6(d) show the de-anonymization accuracy
of different methods on the three datasets, including the
methods of RF [41], ADA [32], RFC [42] and our algorithm.
It can be seen that our method achieves the best perfor-
mance. Even for high perturbation, our method can still
guarantee high accuracy. It is worth noting that when more
than 20% links are changed, the structure of social network
graph is significantly changed. For data integrity, the data
publisher will not change dramatically in real datasets.

Discussion The good performance of our algorithm
mainly can be attributed to the consideration of both the
attribute similarity and structure similarity. It can greatly
improves the matching accuracy. In our evaluation, we only
use two or three attributes. The more attributes we adopted,
the more the accuracy will be. On the other hand, the time
and space complexity correspondingly increase much when
we adopt the attribute matrix. But if we consider it carefully,
the matrix is a sparse matrix. So when we analyze the matrix
and calculate the node similarity, we can perform some cor-
responding compression processing and calculation skills.

9 CONCLUSION

In this paper, we construct an SA framework network
which models the social network. The social network users,
attributes, and behaviors (in this model, the user behav-
ior is treated as an attribute) are integrated. Based on
the SA network model, the de-anonymization attack on
the social network is conducted. The method proposed
in our paper also considers node attribute similarity and
structural similarity for node matching, thus improving the
accuracy of de-anonymization. Through three realistic social
network datasets, the accuracy and efficiency of the de-
anonymization method are verified. Moreover, we discuss
how graph anonymization techniques affect network prop-
erties and provide similarity analysis based on different
anonymized methods. The elaborate analysis suggests us
to define a multimeasurement with the consideration of
multiple similarity metrics for effective de-anonymization.
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