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Abstract—To facilitate apps to collaborate in finish complex
jobs, Android allows isolated apps to communicate through
explicit interfaces. However, the communication mechanisms
often give additional privilege to apps, which can be exploited
by attackers. The Android Task Structure is a widely-used
mechanism to facilitate apps’ collaboration. Recent research has
identified attacks to the mechanism, allowing attackers to spoof
UIs in Android. In this paper, we present an analysis on the
security of Android task structure. In particular, we analyze the
system/app conditions that can cause the task mechanism to leak
privilege. Furthermore, we identify new end-to-end attacks that
enable attackers to actively interfere with victim apps to steal
sensitive information. Based on our findings, we also develop a
task interference checking app for exploits to the Android task
structure.

I. INTRODUCTION

Android has dominated the smartphone market with a

market share of 82.8% [1], with over 1,900,000 applications

(apps) available on Google Play as of the first quarter of

2016 [2]. As smartphones are deeply integrated into our daily

life, it is becoming an information and communication hub for

tasks including communication, planning, banking, and health

care. As a result, securing the apps and data on smartphones

against malicious activities has become a top priority.

The Android system’s security is based on several layers of

security mechanisms. In particular, each app is assigned a set

of permissions, and is only allowed to access system resources

and services within the permissions given. In addition, to

prevent apps from accessing information of others, each app is

confined into its own partition. It is enforced using the process

isolation and user-based protection mechanisms provided by

Linux, where each app is assigned to a unique Linux user ID.

Strong isolation increases the bar for attackers to carry

out malicious activities, but it also hinders benign apps from

communicating and collaborating with one another. To facil-

itate apps collaboration in a complex task, Android allows

isolated apps to communicate through explicit interfaces, such

as the Intent mechanism. For example, Instagram uses intents

to access the Single Sign-On (SSO) service of Facebook to

authenticate users. Furthermore, Android provides the Android

Task Structure mechanism to allow activities from different

apps to be seamlessly integrated into a task, giving them

the convenience when accessing common information. For

example, when Instagram uses the Facebook API for the au-

thentication service provided by Facebook, users can navigate

through activities Instagram app and Facebook app as if they

are the same app.
Though the mechanisms are designed for facilitating app

communication and collaboration, relaxing the isolation pro-

vided by the Android system often causes over-permissive

privilege to apps. As the task mechanism of Android is

developed to facilitate inter-app collaboration, apps in a task

may get additional privilege beyond what is allowed by the

isolation-based Android security mechanism. Demonstrated

by recent exploits [3], a malicious app can hijack the task

mechanism for attacks such as spoofing and phishing. The

privilege obtained by apps in the same task is well beyond

that for collaboration, effectively making the Android task

mechanism a form of authorization.
In this paper, we conduct an analysis of the security of the

Android task mechanism. First, we analyze possible ways that

an app can join a task and the privilege “leaked” to other apps

in the same task. Specifically, to explore the ways Android

controls tasks, we dynamically probe possible combinations

of the flags and system states that can affect an app’s task

status. We also analyze the additional privilege that can be

obtained by an app when it joins a task.
Second, built on the understanding of the task control

mechanism and task privileges, we identify end-to-end attacks

that steal information from other apps. In particular, we

identified four proof-of-concept attacks based on exploiting

the task mechanisms. The attacks include UI phishing, screen-

shot based password stealing, man-in-the-middle activity, and

gallery stealing. All of them only require common permis-

sions, e.g., INTERNET and READ EXTERNAL STROAGE.

Compared to the attacks by existing exloits, we have identified

new attack mechanisms that can actively interfere with benign

apps. The short video demos can be found in [4].
Finally, to prevent attackers from misusing the task mech-

anism, we develop an efficient scanner that can help users to

identify the risks related to Android tasks.
Contributions. In summary, we made the following contri-

butions in this paper:

• Identification of novel attacks exploiting the Android task
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mechanism. We have conducted a security study on the

Android task mechanism, in terms of both the reachability

and impact of attacks. Beyond the known passive attacks

reported in related work [3], [5], we have identified

additional threat of privilege leakage through the task

mechanism, which leads to new types of active attacks.

• Task interference detection and prevention. Based on our

analysis, we have built an app to detect potential task

interference and give warning to users when they install

an app that may misuse the Android task mechanism.

• Implementation and evaluation. We presented four practi-

cal attacks targeting Android System 6.0.1 to demonstrate

the effectiveness of our method and the severity of the

identified vulnerability. To explore the feasibility of the

attacks, we also have evaluated their overhead.

Paper Organization. The rest of this paper is organized as

follows. Section II gives an overview of the target problem

and our approach. Section III presents our analysis framework

and introduces the key techniques and analysis results. Sec-

tion IV summarizes the new attacks we identified. Solutions

are discussed in Section V. Section VI presents the related

work and Section VII concludes the paper.

II. OVERVIEW

In this section, we give an overview the Android task

mechanism and the threat model, as well as an introduction

to our approach.

A. Android Security Basis and Android Task Mechanism

Components in Android include Activity, Service, Content
Provider, and Broadcast Receiver. An activity, representing a

single screen with user interface, is the most basic elements

in Android OS. A service in Android is a UI-less component

running in the background. A content provider supplies data

from one application to another through methods of the

ContentResolver class with the ways of storing data in

databases, in files, or over the network. A broadcast receiver

responds to broadcast messages from other applications.

Android adopts several layers of isolation and sandboxing

mechanism as its basic mechanism of security. In particular,

it defines a set of permissions to control the access of apps.

Apps can access specific resources only if they are granted

with required permission. In addition, Android uses user-based

protection of Linux to isolate apps. It allocates a unique Linux

user ID to each app, which naturally isolates the app from

others using the process-based isolation mechanism provided

by the Linux kernel.

Android Task Mechanism

The Android task mechanism is designed for facilitate inter-

app communication and for better support app collaborating

under same tasks. It allows activities from different apps can

reside in the same task to perform communications more

conveniently [6]. As an example, when the user clicks a

“feedback” button from an activity of a game app, Android

starts the composer activity of an email app, and puts it onto

the game app’s activity. After the user finishes sending email,

the composer activity is put off and the game app returns to

the top. In such a way, two activities are organized to finish a

task, while they are actually from different apps.

The Android task mechanism is affected by several flags of

apps. The following are the key attributes affecting how apps

are grouped.

launchMode: This is the attribute which decides how an

activity will be launched. It has four values, i.e., standard,

singleTop, singleTask and singleInstance. Activities with stan-
dard or singleTop can be instantiated multiple times while

activities with singleTask or singleInstance can only begin a

task and be the root of the task. Moreover, singleInstance does

not permit other activities to be part of its task. An activity

without launchMode specifically set is assumed to be standard
by default.

taskAffinity: Activities with the same taskAffinity, normally

the name of the package, conceptually are in the same task,

but this is not always the case. We refer to Section III and

Table I for more details. An activity without this attribute set

is assumed to have the same taskAffinity as its own package

name.

allowTaskReparenting: This is a boolean attribute indicat-

ing whether an activity can be moved to the task which has

the same taskAffinity from the original task it is started. An

activity without this attribute specifically set is assumed to be

allowTaskReparenting=false.

For better demonstration, consider the example where an

app has the functionalities of viewing contacts as well as

sending emails to contacts. The app has two activities for these

two functionalities, SendEmailActivity and ViewContactActiv-
ity. For better IPC and logic concerns, designers of the app

set the taskAffinity of SendEmailActivity to be the same as the

system email app, the taskAffinity of ViewContactActivity to

be the same as system contact app and allowTaskReparenting
to be true for both activities.

B. Threat Model

To study the security of the Android task mechanism, we

consider a scenario as follows. There are two apps, i.e., AppB

and AppM, installed in the same Android device, where AppB

is benign and AppM is developed by attackers. We assume

AppM does not have to require any permission to manipulate

tasks. However, we assume AppM can be granted permissions

for following-up behaviors, such as sending the retrieved

information out or accessing local storage.

C. Approach Overview

The goal of our work is to comprehensively analyze the

Android task mechanism to identify attacks, as well as creating

solutions to prevent such attacks.

As shown in Figure 1, our research consists of four compo-

nents: Understanding Task Control, Understanding Task Privi-

lege, Exploitation Analysis and Task Interference Checking.

The first component is to analyze the Android task mech-

anism, identifying control conditions that can be leveraged
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Fig. 1: Approach Overview

by attackers. We aim to find out the interference of tasks

between two apps, and identify the dominating factors de-

ciding the apps’ property. Secondly, we focus on studying

the additional privilege apps obtained when two apps are

in the same task. We delicately test sensitive system APIs

and compare the difference of the results before and after

apps in the same task. Based on the understanding from the

previous stages, to demonstrate the achievability and severity

of the privilege escalation against Android task mechanism, we

develop four light-weight real-world attacks that can steal the

sensitive information successfully, most of which only requires

INTERNET permission. At last, we design a task interference

checking app to detect the task interference between users’

important apps and other installed apps.

III. SECURITY ANALYSIS OF ANDROID TASK STRUCTURE

In this section, we introduce our approach. We focus on two

aspects of the Android task mechanism. First, We analyze the

conditions that affect Android task control to identify different

ways that can include an app into a task. Second, we explore

the privilege an app can get when it is included into a task.

These are two necessary components to identify new attacks.

A. Understanding Android Task Control Conditions

We explore the conditions and actions of Android task

control through dynamic testing. To do this, we examine the

Android documentation [6] to create test cases to drive the

exploration. Our goal is to check the influence of the flags

introduced in Section II on the task mechanism.

Testing Methodology. We implemented the two template apps

introduced in Section II-B, AppB and AppM, as the inputs to

drive the testing process. For each combination of the task-

control-related flags, such as launchMode and taskAffinity, we

set the corresponding value in app templates, create a pair

of AppB and AppM, and test them with different sequences

of launching events, e.g., using the Android Launcher to start

AppB (denoted as Launcher→AppB) or using AppB to launch

AppM (denoted as AppB→AppM). During our test, AppB’s

taskAffinity is set to “TaskB”. We only test the conditions

where AppM’s allowTaskReparenting is set to “true”, as a

“false” value in this flag will not result in task interference.

The results are summarized in Table I. We are interested

in cases with potential task interference, i.e., AppM ends up

running as part of TaskB. We mark the cases for task inter-

ference, i.e., AppM running as part of TaskB, with an asterisk

“*”. The cases without an asterisk attached are considered to

be safe. We list four identified dangerous cases below.

• Case 2. Under the conditions of this case, AppM is

launched first by the Android Launcher, followed by

AppB. Only AppM runs at the foreground, while AppB

cannot be executed.

In this case, AppM blocks AppB from execution, which

is a case of denial-of-use to AppB.

• Case 4. Under the conditions of this case, AppM is

launched by the Android Launcher, followed by AppB.

AppB runs in the foreground, and AppM runs in the

background, both in TaskB.

• Case 9. Under the conditions of this case, the Android

Launcher starts AppM. AppM then starts AppB. AppB

runs in the foreground, and AppM runs in the back-

ground, both in TaskB.

• Case 10. Under the conditions of this case, the Android

Launcher starts AppB. AppB then starts AppM. AppM

runs in the foreground, and AppB runs in the background,

both in TaskB.

Whether two Apps are in the same task can be determined

by viewing the Recents screen which renders all processes that

were opened since last clearance [7]. Recents screen is ren-

dered when a user presses the Recents button which is located

at the third from left to right at the button bar followed by Back
and Home buttons. If two Apps are in the same task, Recents
screen will only show one process other than two when they

do not reside in the same task. Note that according to our

experiment, flags such as FLAG_ACTIVITY_CLEAR_TOP
and FLAG_ACTIVITY_REORDER_TO_FRONT do not pose

a difference than the SIGLE_TOP in our case. Therefore, we

only include the SINGLE_TOP flag in our Table I.

B. Understanding Privilege Obtained in the Same Task

From the results in Table I, we can see that AppM has

several ways to be included into the task of AppB, often

without involving actions from other apps or the system. Next,
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TABLE I: Task Interference Table. We assume AppB is running with the task “TaskB.” In the events, the operation A→B stands

for A launches B. In the resulting state’s status, F stands for execution in foreground; B stands for execution in background;

X stands for not-running.

Case # Initial Conditions Events Resulting State
AppB AppM AppB AppM

LaunchMode LaunchMode TaskAffinity Reparenting Status Status Task

1 standard or standard or TaskB True Launcher→AppB; Launcher→AppM F X -
singleTop or singleTop or

flag(SINGLE TOP) flag(SINGLE TOP)

2 standard or standard or TaskB True Launcher→AppM; Launcher→AppB X F TaskB
* singleTop or singleTop or

flag(SINGLE TOP) flag(SINGLE TOP)

3 singleTask or standard or TaskB True Launcher→AppB; Launcher→AppM F X -
flag(NEW TASK) singleTop or

flag(SINGLE TOP)

4 singleTask or standard or TaskB True Launcher→AppM; Launcher→AppB F B TaskB
* flag(NEW TASK) singleTop or

flag(SINGLE TOP)

5 singleTask or singleTask or TaskB True Launcher→AppB; Launcher→ AppM B F TaskM
flag(NEW TASK) flag(NEW TASK)

6 singleTask or singleTask or TaskB True Launcher→ AppM ; Launcher→AppB F B TaskM
flag(NEW TASK) flag(NEW TASK)

7 singleInstance or any or TaskB True Launcher→AppB; Launcher→AppM F X -

8 singleInstance or any or TaskB True Launcher→AppM; Launcher→AppB F B TaskM

9 standard or standard or TaskB True Launcher→AppM; AppM→AppB F B TaskB
* singleTop or singleTop or

flag(SINGLE TOP) flag(SINGLE TOP)

10 standard or standard or TaskB True Launcher→AppB; AppB→AppM B F TaskB
* singleTop or singleTop or

flag(SINGLE TOP) flag(SINGLE TOP)

we explore the privilege obtained through the Task mechanism,

including privilege for retrieving other apps’ information and

privilege for changing other apps’ states. Therefore, if the

privilege given to apps in the same task allows them to carry

out dangerous actions, it can be potentially misused by the

malicious app.

1) Retrieving Information of Other Apps:
Figuring out the execution state of a victim app, such as

whether it is running and which activity is in foreground,

is often used as the first step in several attacks, such as UI

hijacking [5]. Therefore, Android by default disallows one app

from directly querying another app’s runtime information from

through the Android sandbox policy.

In older versions of Android, there were APIs allowing

inter-app runtime information checking. For devices that are

prior to Android Lollipop (v5.0), directly calling the API

getRunningTasks(int maxNum) will return the infor-

mation of as many as maxNum running activities [8]. However,

this function is deprecated after Lollipop since allowing third-

party apps to invoke the function directly will cause informa-

tion leakage in important apps.

For devices prior to Android MarshMallow (v6.0), directly

calling getRunningAppProcesses() returns a list of

application processes that are running on the device [8].

This function returns a RunningAppProcessInfo object, which

includes a member variable called importance that represents

the importance level that the system places on the process [9].

It has one of these values: IMPORTANCE_FOREGROUND,

IMPORTANCE_VISIBLE, IMPORTANCE_SERVICE,

IMPORTANCE_BACKGROUND and IMPORTANCE_EMPTY.

If importance is IMPORTANCE_FOREGROUND, the

corresponding process is running in the foreground. This

method, however, cannot accurately point out which activity

running in the foreground since it operates on a process level

and accesses only the package name. This method is also no

longer supported for MarshMallow devices with API level

23 unless the third-party app who is making a call to this

function has the same process ID as the target process.

Getting App Running Information in a Task: Although the

Android API getRunningTasks() is deprecated for direct

usage, we have found that it still works if the calling app and

the target app are in the same task. The official documentation

of getRunningTasks() does not explicitly point it out but

only states that if it is called, this function only returns a small

subsets of information, e.g., the information of the caller’s own

task and home task which is considered to be not sensitive [8].

2) Changing States of Other Apps:
UI Injection: Ideally, if an app is running in the

foreground, other apps isolated from this app should

not perform sensitive operations on it. Chen et al. [5]

show two UI-injection methods that do not require

any permissions: (1) starting an Activity by setting

lauchMode=singleInstance. This is also how most

system apps, such as the alarm app, pop up a window on

the top of another app [10]; (2) starting an Activity from

the Android broadcast receiver [11].

In our analysis, we find that if two apps are in the

same task, the UI-injection attack becomes easier. The

attacker can simply call the function startActivity()
to achieve the same effect. Through understanding

the Android SDK source code, startActivity()
invokes startActivityForResult()
with requestCode=-1. Later

startActivityForResult() invokes

155



execStartActivity() in the Instrumentation class,

a base class for implementing application instrumentation

code [12]. execStartActivity() then checks

the base package of the calling activity by invoking

getBasePackageName(). If the base package of calling

activity matches with that of target activity, the Android

system launches the target activity.

Terminating UI: Android does not allow a third-party

app to terminate a running app unless they are in the same

process. Although an app is not in the foreground, the An-

droid system still allows any third-party apps to make calls

to killBackgroundProcesses() [13] to terminate any

specific background app. There is no direct way to terminate

a foreground-running activity.

Unlike startActivity(), even if two apps are in

the same task, calling finish() or finishActivity()
will not terminate the foreground activity, but will termi-

nate the activity that makes the call. However, we found

that as long as two apps are in the same task, calling the

API finishAndRemoveTask() results in terminating the

whole Task regardless of whether an activity is running in the

foreground [14] or not. This provides the malicious app an

interface to terminate other apps which are within the same

task as it.

IV. INFORMATION STEALING ATTACKS

Based on analysis from Section III, we develop four proof-

of-concept attacks: UI Phishing, Activity-in-the-middle Attack,

Gallery Stealing, and Screen Shot Capture. These four attacks

demonstrate the severity of the security problems we identi-

fied. In this section, the attacks are illustrated using two most

popular social apps, Instagram and Facebook. Except Gallery

Stealing, which requires READ_EXTERNAL_STORAGE, all

other three attacks only require the INTERNET permission (in

order to send out the information stolen).

A. UI Phishing

UI Phishing is a popular type of attacks to spoof users.

The difficulty of phishing attack is to decide the timing

when the spoofing interface should be prompted, in order to

prevent the victim from noticing it. Ren et al. [3] introduced

“Back Hijacking”, which directs users to a spoofed bank

LoginActivity. The key difference is that the attack method

identified in our approach actively interact with the victim

app using the privilege obtained through the approaches we

discussed in Section III-B.

Our proof-of-concept UI Phishing attack is implemented

against the scenario when a user logs in to Instagram using

his/her Facebook account. In order to ease understanding the

phishing attack against this scenario, we brief the Facebook

SSO service. According to the Facebook Android developer

documentation [15], Facebook SDK takes three ways for apps

who require Facebook Login as part of functionality:

• Native App Login. If the Android device already has

the Facebook app installed, pressing the Facebook login

button directly opens the Facebook app where user can

log in his/her Facebook account and grants permission to

the third-party app to access his/her Facebook personal

information.

• Chrome Custom Tab Login. If the Android device does

not have the Facebook app installed, a third-party app can

ask the Chrome browser to open Facebook login page by

registering a scheme in the Manifest with the format

fb+facebook_app_id.

• WebView Login. Finally if neither the Android device

has Facebook app installed, nor does the third-party app

register for Chrome Custom Tab Login, an embedded

WebView will be launched dynamically rendering the

content of Facebook login page.

Our attack works when a user presses the “Log in with

Facebook” button in Instagram. We assume that a user

already has Facebook App installed in the device. Instagram

includes Facebook Login as a part of its functionality. It

does not register for Chrome Custom Tab Login. In other

words, after pressing the “Log in with Facebook” button in

Instagram, it will launch Facebook App directly. The package

name of Facebook app is "com.facebook.katana",

the package name of self-build WebView is

"com.android.webview" and the package name of

Instagram is "com.instagram.android". Shown in

Figure 2, it works in the following steps.

(1) Attacking app declares the same task as Instagram. This

step can be achieved by setting the attributes of taskAffinity
and allowTaskReparenting as follows.

<activity
android:name=".UIPhishingActivity"
android:allowTaskReparenting="true"
android:taskAffinity="com.instagram.

android">

(2) The launcher first launches the attacking app, which

launches Instagram immediately through invoking the task

parent since Instagram is the parent of the current task. Before

Instagram’s setContentView(R.layout.main) func-

tion can be called, the attacking app launches Launcher

(Home), meaning that Instagram cannot be displayed in order

to achieve the stealthiness. The process can be completed in

a fairly short time and will not be noticed by the victim with

bare eyes. After that, our attacking app waits for victim to

launch Instagram herself.

(3) The attacking app then creates a background thread

which runs in a cycle of, we devise, every 100 milliseconds.

In the meantime, it checks whether there is a change in

the foreground package name, i.e., in our case, the pack-

age name changes from "com.android.webview" to

"com.facebook.katana". This can be achieved by sim-

ply making API call to getRunningTasks(). Once the

foreground package has been changed to Facebook, our attack

pops up our counterfeit Facebook LoginActivity overriding the

real one. The spoofed UI collects the user’s login information

and send it to adversary’s back-end server.
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permission to access the user’s Facebook resources. (b) The malicious app Mal App declares same taskAffinity as Instagram.

Mal App creates a background thread and monitors the running states of Instagram. When the user selects Facebook login button

and Instagram launches the Facebook activity, Mal App will override Facebook with a fake login UI. The username/password

input by the user will be sent to Mal App’s service provider.
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Fig. 3: Man-in-the Middle Attack on SSO. (a) When a user wants to login with Facebook in the Instagram, Instagram

sends system its application ID with application secret, Inst App ID and Inst App Secret. Android system forwards request

with Inst App ID and Inst App Secret to Facebook service provider and retrieves Facebook Login Activity bound with

Inst App ID. The user inputs her/his username/password for authentication. Facebook service provider returns the access

token to Android system if the authentication passed. Android system sends the access token to Instagram according to the

application ID that system received. (b) The malicious app Mal App overrides the ownership of the Instagram task in the

same way as UI-phishing. It monitors the Instagram running status and sends system its Facebook login request (including
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B. Activity-in-the-middle Attack

The Facebook SSO process is based on OAuth 2.0 [16]. The

main steps of this mechanism are: (1) When the user opens

the relying party (RP) app, in our case, Instagram, it passes

its Facebook_app_id and directed URL to the Android

System. (2) The Android system then redirects user to the

Service Provider (SP), in our case, Facebook, and passes it

the Facebook_app_id. (3) If the user requests to grant the

permission to the RP, SP will issue an access token to the

Android system. (4) The Android system passes the access

token to RP, by which RP is able to access the user’s protected

resource on SP.

Facebook has two types of access tokens, short-term and

long-term [17]. Short-term access token lasts several hours and

long-term lasts for 60 days. Unless specifically required, Face-

book usually issues short-term access token. RPs use graph

API provided by Facebook to retrieve protected resources

hosted on Facebook server [18]. Graph API is an HTTP-based

API, which is implemented as the following URL:

https://graph.facebook.com/me?fields=xxx&
access_token=xxx

In other words, any party who has the access token can

access the user’s protected resources hosted on Facebook

servers. In Android, redirecting to the Facebook app is done by
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intent transition based on startActivityForResult()
and onActivityResult(). We implement an MITM at-

tacking app whose model runs in the following steps, shown

in Figure 3.

(1) It follows the first three steps in the UI Phishing attack

model.

(2) Instead of popping up a phishing login page like

UI Phishing, the MITM attack pops up a transparent ac-

tivity, which blocks the traffic that is supposed to be re-

layed to Facebook server from user’s device system and

passes our own traffic to Facebook. This step can be eas-

ily realized by creating an invisible Facebook Login But-

ton and sending a button pressed event itself by invoking

mFacebookLoginBtn.performClick().

(3) After the user grants the permission, which he/she

intends for Instagram, the MITM app retrieves the access

token. Since Instagram runs in the background, once the

foreground finishes, Instagram will be invoked.

(4) To finalize the process, the adversary needs to verify

APP_ID and App Secret with Facebook. An adversary can

either register its attacking app in Facebook Developer Website

and use its own APP_ID and App Secret or steal other RP

apps’ ID and Secret. Facebook RP Apps will post an HTTP

message when user system launches native Facebook App.

C. Gallery Stealing

Starting from Android 6.0 (API level 23), in

order to access gallery, an app has to request for

READ_EXTERNAL_STORAGE permission at runtime

rather than at the installation time, which is classified as one

of the dangerous permissions [19]. This mechanism provides

more secure and flexible protection to user’s photo gallery.

However, this new security mechanism can be bypassed by

exploits to the Android task mechanism, as shown in this

section.

Timing. For Android devices before marshmallow (API level

lower than 23), permissions are requested at the time when

an app is being installed. Apps with suspicious permissions

will easily trigger the user’s attention and likely be denied

access. However, with the new requesting-permissions-at-run-

time mechanism, our attacking app can avoid requesting

permission when being installed since it is requested at the

run time. To figure out the suitable timing, it continuously

monitors Instagram. Once the victim clicks the “Camera”

button on Instagram which allows Instagram to access the

gallery and camera, our attacking app instantly kills Instagram

and pops up our requesting dialog for access photos in gallery.

User mistakenly believes that he/she is granting the permission

to Instagram. After the permission is granted, our attacking

app retrieves all the photos from user’s gallery and send them

to the back-end server. In order to be stealthier, the attacking

app pops up a dialog shows “System encounters errors” and

finally kills itself.

Permission Dialog. Even though timing improves the natural-

ness of the attack, Android permission dialog shows the name

of the app in bold who makes the request. We propose two

ways to circumvent this problem.

(1) By employing the idea of social engineering, the attacker

can name the attacking app using a name similar to the target

app. In our case, e.g., “Instgram” or “Instagam”. However,

naming the app in this way can hardly pass the review of

Google Play. Even if it does, careful users may still notice

the difference. Therefore, in our attack, we do not use this

method.

(2) Employing the tapjacking. The idea of tapjacking

is putting message the attacker wishes to display

on the top of the real system message by setting a

window layout flag TYPE_SYSTEM_OVERLAY. Android

realizes the potential threat and adopts the mechanism

MotionEvent.FLAG_WINDOW_IS_OBSCURED
which alerts the real dialog is being overlaid

[20]. Unfortunately, Banaś [21] found that

MotionEvent.FLAG_WINDOW_IS_OBSCURED is not

triggered if the covered text does not cover the touch points,

which are the buttons in the dialog. Android does not give a

patch to the issue. Instead, it adopts an intent transition scheme

to notify the user that the content is being overlaid starting

from Android 6.0 (API level 23). We managed to circumvent

the issue by implementing our main attacking app with

targetSdkVersion=23, and in the target app we tricked

the user to install a helper package, which is an activityless

service. Only app which has the targetSdkVersion=22
and has the overlaying functionality implemented. It seems

tricking users to install additional package is not applicable,

but it is in fact a very common situation for many apps such

as those who require Android SQLite Manager.

The basic steps of the attack model are listed as follows.

(1) The attack follows the first three steps of UI Phishing

attack.

(2) Once a user presses the camera but-

ton of Instagram as shown in Figure 4(a),

the foreground Activity will change to

"com.instagram.android.creation.activity.-
MediaCaptureActivity". Therefore, Instead of

detecting whether the foreground package has changed to

another app, we zoom in the design to focus on changing of

the foreground Activity.

(3) Instead of popping up a counterfeit page like UI Phishing

does, it pops up an Activity which immediately asks a

user for READ_EXTERNAL_STORAGE so that the user thinks

he/she is granting the permission to Instagram.

(4) Once the attack app gets the permission, it traverses all

the pictures and transmits the image buffers to server.

(5) To achieve better stealthiness, we introduce the Tap-

jacking to assist our attack. Its basic idea is to cover the real

texts with some fake texts. Then we are able to change the

text of the permission dialog to “Allow Instagram to access

...?” instead of the real text which is “Allow GalleryStealing to

access ...?”, which is shown in Figure 4(b). Once user grants

the permission, the app quickly sends all images as buffer to

the server. Meanwhile, it fools the user by showing a “system
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(a) (b) (c)

Fig. 4: Gallery Stealing Attack: first the user clicks the camera button highlighted in the first picture. Then the attacking app

kills the real Instagram and pops up its Activity asking for user permission, the text of permission dialog is overlaid by

the fake text as shown in the second picture. Once user grants the permission, the app quickly sends all images as buffer to

the server, meanwhile, it fools the user by showing a “system” warning dialog telling the user the system encounter an error.

warning dialog” telling the user that the system encounters an

error (shown in Figure 4(c)).

D. Screen Shot Capturing

With the ability of knowing which Activity is

currently running in the foreground, we implement

this screen shot capturing attack which starts taking

screen shots while a user is entering username and

password in the Facebook LoginActivity which is

com.facebook.katana.LoginActivity in full. For

password typing, every time a character is entered, the

character will be shown for a short time before it turns into

a star sign. Therefore, taking screen shot every 0.1 second

should capture everything a user types in password box.

With respect to taking a screen shot programmatically, we

summarize four possible ways:

• Using READ FRAME BUFFER Permission.
Declaring READ_FRAME_BUFFER permission in

the Manifest allows an application to take screen

shots by making calls to ISurfaceComposer [22].

However, this permission is not available to third-party

application unless it has the same signature as the system

does.

• Using fb*. Some Linux systems store frame buffers in

/dev/graphics/fb* or /dev/fb*. fb0 represents

the first frame buffer, fb1 represents the second frame

buffer and so on. Using native C/C++ code to get access

to these files and copy the buffer as a GGLSurface
structure is theoretically possible. But there are two

unsolvable obstacles of this method:

– This method requires root permission.

– It is likely that fb* does not even exist.

• Using Backup Channel over USB. Android system uses

Android Debug Bridge (ADB) to listen to the debugging

connections over USB [23]. ADB has slightly more priv-

ileges than normal apps. Bai et al. [24] manage to exploit

Backup Channel through ADB to steal access tokens from

other apps. Combining ADB with Dalvik Debug Monitor

Server (DDMS) tool enables an app to get the screen shot

from the device without any permission [25].

• Using MediaProjection. For devices beginning

in Android 5.0 (API level 21), a class called

MediaProjection was added to Android SDK

which enables a third-party app to capture screen shot

and record system audio [26]. While recording system

audio requires RECORD_AUDIO permission, capturing

screen shots does not.

We employed the fourth method to capture screen shots.

The basic steps of the attack are listed as follows.

(1) It follows the first three steps of UI Phishing. What’s

different is we devise this attack to focus on Facebook App

since we are hoping to steal user’s Facebook username and

password. Hence, we declared this attack to reside in the

same task as Facebook.

(2) Once a user launches the Facebook app, a transparent

Activity is popped up start taking screenshots. Although it

does not require permission for taking screen shots, it uses

intent transition to let the user decide whether or not an app

can capture screen shots in a permission-like dialog. Again

we employ the tapjacking in Gallery Stealing attack to cover

the text to be “Allow Facebook start accessing Internet?”

(3) The attack starts capturing screens by calling

startActivityForResult() which passes a

screenshot as an intent from which we can extract an

object of MediaProjection later, and finally use this

MediaProjection object to pass the image to an

object of ImageReader through its member function

createVirtualDisplay. Since the screenshots are taken

in the RGBA_8888 format while bitmap takes ARGB_8888,

we still need to do matrix transformations to get the image.

E. Performance

In order to study the feasibility of the four attacks, we

implement them and evaluate them in two aspects, time cost
and memory usage.

1) Time Cost: We conduct 6 - 8 rounds of tests for every

attack to calculate the average running time cost. The testing

results are summarized in Table II. As shown in Table II,

our attacks are efficient since the time cost of most attacks is

less than 8 seconds: the UI Phishing attack costs 7.1 seconds,

which includes user interactions such as launching Instagram,

entering username and passwords; The Activity-in-the-middle

attack costs time 5.8 seconds; and the average time cost of the

gallery-stealing attack is 4.6 seconds.
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(a) (b) (c)

Fig. 5: Screenshot Capturing Attack: first the user launches Facebook, then the attacking app launches a transparent Activity
which quickly asks for taking screen shot, the notification dialog is again overlaid by fake text as shown in the first picture.

Once the user clicks start now, the attacking app begins to take screen shots as well as sending the screen shots to back end

server. (b) and (c) are two of the screen shots received by server which expose the password plaintext.

The Screenshot Capturing attack is an exception, taking

38.1 seconds. This attack uses much longer time because

screenshots in Android are passed in the format of RGBA,

while we need to change to ARGB in order to convert it

to common format such as JPEG and PNG. We perform

the matrix transformation required for the conversion on the

mobile device. But since the process is undertaken in the

background, it will not trigger the suspicions of the user. In the

real world attack, an adversary can leave the job of matrices

transformation to the server.

TABLE II: Time Cost of Proof-of-Concept Attacks

Attack Time Cost (s)
UI Phishing 7.1

Man-in-the-Middle 5.8
Gallery Stealing 4.6

Screenshot Capturing 38.1

2) Memory Usage: We conduct 3-round experiments for

each attacks to get the memory distractions of attacks and

evaluate their average memory usage. The testing results are

illustrated in Figure 6. It shows that the maximum memory

usage of most attacks is less than 70MB except Gallery

Stealing attack, whose memory usage is around 100MB. Our

testing results also disclose the memory usage distribution on

different period, in which the major memory usage of each

attack is to launch victim app (normal app), e.g., Instagram and

Facebook. The memory usage differences caused by stealthy

behaviors/operations are negligible.

In addition, we also conduct experiment to monitor the

battery consuming status and evaluate the battery usage of

our attacks. The results show that our attacks may not cause

influence on battery aspect (the battery usage rates of most

attacks are 0%). Above all, the experiment results demonstrate

that our proof-of-concept attacks are light-weight with limited

permission requirements.

V. SOLUTIONS TO ELIMINATE TASK INTERFERENCE

In this section, we discuss solutions on mitigating An-

droid task interference. Based on our study, we design and

implement a task interference checking tool to detect the

(a) UI Phishing (b) Activity-in-the-middle

(c) Gallery Stealing (d) Screenshot Capturing

Fig. 6: Memory Distribution Curves

potential risk of task interference among apps. It protects apps

specified by users from being manipulated by untrustworthy

apps. In addition, we also propose some suggestions to limit

the additional privilege achieved by the apps in the same task.

A. Task Interference Checking

In this subsection, we present the design and implementation

of our Task Interference Checking app named TICK.

Based on our understanding of the task interference prob-

lem, which includes the necessary conditions, events and their

dependency, we design a method to check the task interference

status among Android apps. Table I provides us with the basis

of evaluating task interference checking.

Design. As shown in Figure 7, TICK consists of two

basic modules, Pre-processing and Interference Checking, and

two supporting databases, Protected App Signature and Task

Interference Table.

• Protected App Signature. For the apps users who want

to protect against attacks to Android tasks, this database

includes the abstracted conditions of such attacks of each

app, which is stored as signatures in this database.
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Fig. 7: Task Interference Checking Architecture

• Task Interference Table. This database is the output from

our research in Section III, which includes the fundamen-

tal rules of task interference.

• Pre-processing. The module takes as inputs the manifest

files of apps to be checked, abstracts and outputs their

task interference features for checking.

• Interference Checking. The interference checking module

takes inputs from Pre-processing module and Protected

App Signature database, and checks the suspiciousness

of the testing apps according to the rules specified in the

Task Interference Table.

There are two application scenarios for deploying TICK.

C-1: Before a user installs an app, she/he can use TICK to

detect the potential risk of task-related attacks from

the app. TICK will parse the app meta data and check

with our table and signature database to see if it

interferes with an existing app. If the app is detected

to cause interference, TICK will issue a warning to

the user and suggest she/he not install the app.

C-2: Our checking app can do chronically scan from time

to time, check if new packages are added to the

device, audit if they have security concerns, and

notify users if and suspicious package were installed.

Getting Meta Data of an Activity. Currently, our checking

app only considers static declarations of task related attributes

from the app package. Moreover, the key attributes related to

Android Task cannot be altered during runtime, e.g., taskAffin-
ity and allowTaskReparenting.

Android SDK provides standard APIs to get an app’s

Manifest meta data without requiring any permission.

Given a package name and a flag, one can retrieve an

object of PackageInfo through the PackageManager.

Here, we set the flag to GET_ACTIVITIES and we

retrieve a list of ActivityInfo by fetching the attribute

PackageInfo.activities. ActivityInfo contains all

the meta data described in the Manifest about every

activity of a package, including those we care, e.g.,

taskAffinity, FLAG_ALLOW_TASK_REPARENTING,

LAUNCH_SINGLE_TASK and so on. The key APIs of getting

packageManager and packageInfo are respectively

getPackageManager() and getPackageInfo().

Effectiveness. To verify the effectiveness, we used In-

stagram and our UI-Phishing app as inputs to TICK. It

parsed the meta data of each activity in both apps and

found that most activities of Instagram with taskAffinity set

to “com.instagram.android”, while the rest has taskAffin-
ity of “com.instagram.android.ShareHandlerActivity”. Most of

the activities in Instagram have launchMode set to “stan-

dard”. A small portion of the activities have the launch-
Mode set to “singleTop”, e.g., the LoginActivity. Very

few activities have launchMode set to “singleInstance”.

The UI-Phishing app’s first activity has the following flags

set: taskAffinity = "com.instagram.android",

allowTaskReparenting = true and launchMode
= standard. This matches Case 9 and Case 10 in our task

interference table. When we use TICK to scan the device,

specifying the Instagram app as the one to be protected, TICK

successfully warns users about the potential risk from the UI-

Phishing app. The overhead of TICK can vary based on a

number of factors such as device hardware and number of

third-party Apps installed in the device. In our experiment,

excluding all system-level Apps, there are totally 65 third-

party Apps installed in our device. It rougly took 4-5 seconds

to scan all Apps and identify suspicious ones.

B. Design Suggestions

From security issues we have demonstrated in the above

attacks, it is clear that the privilege given to apps in the

same task is well beyond what is expected for a mechanism

that facilitates app collaboration and interaction. In fact, the

task mechanism should be treated as a way of authorization,

and the security mechanism around the task mechanism also

should be designed accordingly.

In particular, when treating a task as a boundary for au-

thorization, we need to be explicit about the ownership of a

task and its authenticity. For example, if an app specifies the

taskAffinity of an existing task, there needs to be a form of

authorization before the app can be included into the task,

and the authorization should be carried out by entities with

privilege greater than the privilege given to the task. This is

similar to the requirement made by the UNIX group mecha-

nism. In addition, as the name of “task affinity” becomes an

identifier for a security object, the system should avoid name

conflicts. In case they occur, they need to be resolved with all

involving entities to avoid unexpected privilege escalation.

VI. RELATED WORK

IPC Security: IPC security is one of the top concerns while

designing OSes. Some early studies have reported security

threats in the Android IPC mechanism. More specifically,

161



Ren et al. [3] have proposed the first study of the security

of Android task mechanisms and showed the possibilities

of several enabled attacks, such as back-button hijacking

and uninstalling-prevention attack. Other popular mobile sys-

tems like iOS are also not immune to the risks. Xing et

al. [27] registered a counterfeit scheme which hijacks the real

Facebook scheme in iOS and successfully stole a Facebook

access token that was supposed to be passed onto the relying-

party app. Besides problematic designs of IPC of OSes, mis-

implementation of certain IPC-based protocols can also lead to

security concerns. Chen et al. [16] have conducted an analysis

on 149 mobile applications and showed 89 of them (59.7%)

incorrectly implemented OAuth and thus are vulnerable to

SSO-oriented attacks. Furthermore, IPC vulnerabilities were

also documented on other platforms besides mobile OSes.

Take browser platform for an example. Wang et al. [28]

discovered 8 serious logic flaws among the traffics between

high-profile ID provider and relying website through browser

platform. Wang et al. [29] discovered logic flaws in several

shopping websites and finally purchasing goods without or

with little payment.

GUI Security: As for traditional desktop and browser

environment, GUI security issues have been studied exten-

sively [30], [31]. Niemietz et al [32] implement a UI redress-

ing attacks on Android devices base on clickingjacking and

tapjacking and the attack is feasible to be transferred from

desktop to mobile and to browser, enabling the attack to be

adapted to multiple platforms and functionalities. As mobile

market begins to thrive, GUI security is more concerned in

mobile platforms than ever before. Chen et al. [5] managed to

impose Hidden Markov Model (HMM) on a public resource

shared_vm combining a bundle of data to perform UI Infer-

ence Attack and successfully stole sensitive information from

users such as user names, passwords and check images. Wang

et al. [33] implemented a malicious app which circumvented

the Apple Code Review system and successfully stole user

secrets stealthily.

Defending against Malicious Behaviors: Defending ma-

licious behaviors can be categorized into two branches, de-

tection and prevention. In previous studies, various detection

schemes have been introduced to prevent GUI-related attacks.

Fu et al. [34] employ the Earth mover’s distance (EMD)

mechanism to detect possible malicious web page through

measuring the similarity between two web pages by first

converting web pages to images, and then grabbing and

comparing the feature points through training data set. More

generally, Chen et al! [35] introduce the concept of permission

event graph (PEG) with model checking mechanisms to detect

abnormal behaviours of Android apps. As for prevention, one

idea is to prevent sensitive data from being leaked to the

malicious server party. Hornyack et al. [36] develop a system

for Android called AppFence, which can block the sensitive

data from being transmitted, or substitute the fine-grained data

to coarse-grained data if transmission is unpreventable. Ren

et al. [37] develop WindowGuard which protect against GUI

attacks by enforcing the Android Window Integrity (AWI).

VII. CONCLUSION

The Android task mechanism provides a mechanism for

apps to closely collaborate under a task. It offers flexibility

on top of the Android isolation mechanism. However, the

flexibility results in unexpected privilege escalation in Android

apps. In this paper, we study of the Android task mechanism.

We explore the ways to reach a task and analyze the privilege

obtained through the task mechanism. Based on our study, we

developed four new active attacks, ranging from UI spoofing

to gallery/screen stealing. We also develop a detection tool to

detect apps that can potentially leads to privilege escalation

and task interference.
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