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Abstract—To facilitate apps to collaborate in finish complex
jobs, Android allows isolated apps to communicate through
explicit interfaces. However, the communication mechanisms
often give additional privilege to apps, which can be exploited
by attackers. The Android Task Structure is a widely-used
mechanism to facilitate apps’ collaboration. Recent research has
identified attacks to the mechanism, allowing attackers to spoof
Uls in Android. In this paper, we present an analysis on the
security of Android task structure. In particular, we analyze the
system/app conditions that can cause the task mechanism to leak
privilege. Furthermore, we identify new end-to-end attacks that
enable attackers to actively interfere with victim apps to steal
sensitive information. Based on our findings, we also develop a
task interference checking app for exploits to the Android task
structure.

I. INTRODUCTION

Android has dominated the smartphone market with a
market share of 82.8% [1], with over 1,900,000 applications
(apps) available on Google Play as of the first quarter of
2016 [2]. As smartphones are deeply integrated into our daily
life, it is becoming an information and communication hub for
tasks including communication, planning, banking, and health
care. As a result, securing the apps and data on smartphones
against malicious activities has become a top priority.

The Android system’s security is based on several layers of
security mechanisms. In particular, each app is assigned a set
of permissions, and is only allowed to access system resources
and services within the permissions given. In addition, to
prevent apps from accessing information of others, each app is
confined into its own partition. It is enforced using the process
isolation and user-based protection mechanisms provided by
Linux, where each app is assigned to a unique Linux user ID.

Strong isolation increases the bar for attackers to carry
out malicious activities, but it also hinders benign apps from
communicating and collaborating with one another. To facil-
itate apps collaboration in a complex task, Android allows
isolated apps to communicate through explicit interfaces, such
as the Intent mechanism. For example, Instagram uses intents
to access the Single Sign-On (SSO) service of Facebook to
authenticate users. Furthermore, Android provides the Android
Task Structure mechanism to allow activities from different
apps to be seamlessly integrated into a task, giving them
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the convenience when accessing common information. For
example, when Instagram uses the Facebook API for the au-
thentication service provided by Facebook, users can navigate
through activities Instagram app and Facebook app as if they
are the same app.

Though the mechanisms are designed for facilitating app
communication and collaboration, relaxing the isolation pro-
vided by the Android system often causes over-permissive
privilege to apps. As the task mechanism of Android is
developed to facilitate inter-app collaboration, apps in a task
may get additional privilege beyond what is allowed by the
isolation-based Android security mechanism. Demonstrated
by recent exploits [3], a malicious app can hijack the task
mechanism for attacks such as spoofing and phishing. The
privilege obtained by apps in the same task is well beyond
that for collaboration, effectively making the Android task
mechanism a form of authorization.

In this paper, we conduct an analysis of the security of the
Android task mechanism. First, we analyze possible ways that
an app can join a task and the privilege “leaked” to other apps
in the same task. Specifically, to explore the ways Android
controls tasks, we dynamically probe possible combinations
of the flags and system states that can affect an app’s task
status. We also analyze the additional privilege that can be
obtained by an app when it joins a task.

Second, built on the understanding of the task control
mechanism and task privileges, we identify end-to-end attacks
that steal information from other apps. In particular, we
identified four proof-of-concept attacks based on exploiting
the task mechanisms. The attacks include UI phishing, screen-
shot based password stealing, man-in-the-middle activity, and
gallery stealing. All of them only require common permis-
sions, e.g., INTERNET and READ_EXTERNAL_STROAGE.
Compared to the attacks by existing exloits, we have identified
new attack mechanisms that can actively interfere with benign
apps. The short video demos can be found in [4].

Finally, to prevent attackers from misusing the task mech-
anism, we develop an efficient scanner that can help users to
identify the risks related to Android tasks.

Contributions. In summary, we made the following contri-
butions in this paper:

o Identification of novel attacks exploiting the Android task
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mechanism. We have conducted a security study on the

Android task mechanism, in terms of both the reachability

and impact of attacks. Beyond the known passive attacks

reported in related work [3], [5], we have identified
additional threat of privilege leakage through the task
mechanism, which leads to new types of active attacks.

Task interference detection and prevention. Based on our

analysis, we have built an app to detect potential task

interference and give warning to users when they install
an app that may misuse the Android task mechanism.

o Implementation and evaluation. We presented four practi-
cal attacks targeting Android System 6.0.1 to demonstrate
the effectiveness of our method and the severity of the
identified vulnerability. To explore the feasibility of the
attacks, we also have evaluated their overhead.

Paper Organization. The rest of this paper is organized as
follows. Section II gives an overview of the target problem
and our approach. Section III presents our analysis framework
and introduces the key techniques and analysis results. Sec-
tion IV summarizes the new attacks we identified. Solutions
are discussed in Section V. Section VI presents the related
work and Section VII concludes the paper.

II. OVERVIEW

In this section, we give an overview the Android task
mechanism and the threat model, as well as an introduction
to our approach.

A. Android Security Basis and Android Task Mechanism

Components in Android include Activity, Service, Content
Provider, and Broadcast Receiver. An activity, representing a
single screen with user interface, is the most basic elements
in Android OS. A service in Android is a Ul-less component
running in the background. A content provider supplies data
from one application to another through methods of the
ContentResolver class with the ways of storing data in
databases, in files, or over the network. A broadcast receiver
responds to broadcast messages from other applications.

Android adopts several layers of isolation and sandboxing
mechanism as its basic mechanism of security. In particular,
it defines a set of permissions to control the access of apps.
Apps can access specific resources only if they are granted
with required permission. In addition, Android uses user-based
protection of Linux to isolate apps. It allocates a unique Linux
user ID to each app, which naturally isolates the app from
others using the process-based isolation mechanism provided
by the Linux kernel.

Android Task Mechanism

The Android task mechanism is designed for facilitate inter-
app communication and for better support app collaborating
under same tasks. It allows activities from different apps can
reside in the same task to perform communications more
conveniently [6]. As an example, when the user clicks a
“feedback” button from an activity of a game app, Android
starts the composer activity of an email app, and puts it onto
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the game app’s activity. After the user finishes sending email,
the composer activity is put off and the game app returns to
the top. In such a way, two activities are organized to finish a
task, while they are actually from different apps.

The Android task mechanism is affected by several flags of
apps. The following are the key attributes affecting how apps
are grouped.

launchMode: This is the attribute which decides how an
activity will be launched. It has four values, i.e., standard,
singleTop, singleTask and singlelnstance. Activities with stan-
dard or singleTop can be instantiated multiple times while
activities with singleTask or singlelnstance can only begin a
task and be the root of the task. Moreover, singlelnstance does
not permit other activities to be part of its task. An activity
without launchMode specifically set is assumed to be standard
by default.

taskAffinity: Activities with the same raskAffinity, normally
the name of the package, conceptually are in the same task,
but this is not always the case. We refer to Section III and
Table I for more details. An activity without this attribute set
is assumed to have the same taskAffinity as its own package
name.

allowTaskReparenting: This is a boolean attribute indicat-
ing whether an activity can be moved to the task which has
the same taskAffinity from the original task it is started. An
activity without this attribute specifically set is assumed to be
allowTaskReparenting=false.

For better demonstration, consider the example where an
app has the functionalities of viewing contacts as well as
sending emails to contacts. The app has two activities for these
two functionalities, SendEmailActivity and ViewContactActiv-
ity. For better IPC and logic concerns, designers of the app
set the taskAffinity of SendEmailActivity to be the same as the
system email app, the taskAffinity of ViewContactActivity to
be the same as system contact app and allowTaskReparenting
to be true for both activities.

B. Threat Model

To study the security of the Android task mechanism, we
consider a scenario as follows. There are two apps, i.e., AppB
and AppM, installed in the same Android device, where AppB
is benign and AppM is developed by attackers. We assume
AppM does not have to require any permission to manipulate
tasks. However, we assume AppM can be granted permissions
for following-up behaviors, such as sending the retrieved
information out or accessing local storage.

C. Approach Overview

The goal of our work is to comprehensively analyze the
Android task mechanism to identify attacks, as well as creating
solutions to prevent such attacks.

As shown in Figure 1, our research consists of four compo-
nents: Understanding Task Control, Understanding Task Privi-
lege, Exploitation Analysis and Task Interference Checking.

The first component is to analyze the Android task mech-
anism, identifying control conditions that can be leveraged
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Fig. 1: Approach Overview

by attackers. We aim to find out the interference of tasks
between two apps, and identify the dominating factors de-
ciding the apps’ property. Secondly, we focus on studying
the additional privilege apps obtained when two apps are
in the same task. We delicately test sensitive system APIs
and compare the difference of the results before and after
apps in the same task. Based on the understanding from the
previous stages, to demonstrate the achievability and severity
of the privilege escalation against Android task mechanism, we
develop four light-weight real-world attacks that can steal the
sensitive information successfully, most of which only requires
INTERNET permission. At last, we design a task interference
checking app to detect the task interference between users’
important apps and other installed apps.

III. SECURITY ANALYSIS OF ANDROID TASK STRUCTURE

In this section, we introduce our approach. We focus on two
aspects of the Android task mechanism. First, We analyze the
conditions that affect Android task control to identify different
ways that can include an app into a task. Second, we explore
the privilege an app can get when it is included into a task.
These are two necessary components to identify new attacks.

A. Understanding Android Task Control Conditions

We explore the conditions and actions of Android task

control through dynamic testing. To do this, we examine the
Android documentation [6] to create test cases to drive the
exploration. Our goal is to check the influence of the flags
introduced in Section II on the task mechanism.
Testing Methodology. We implemented the two template apps
introduced in Section II-B, AppB and AppM, as the inputs to
drive the testing process. For each combination of the task-
control-related flags, such as launchMode and taskAffinity, we
set the corresponding value in app templates, create a pair
of AppB and AppM, and test them with different sequences
of launching events, e.g., using the Android Launcher to start
AppB (denoted as Launcher—AppB) or using AppB to launch
AppM (denoted as AppB— AppM). During our test, AppB’s
taskAffinity is set to “TaskB”. We only test the conditions
where AppM’s allowTaskReparenting is set to “true”, as a
“false” value in this flag will not result in task interference.

The results are summarized in Table I. We are interested
in cases with potential task interference, i.e., AppM ends up
running as part of TaskB. We mark the cases for task inter-
ference, i.e., AppM running as part of TaskB, with an asterisk
“¥”_ The cases without an asterisk attached are considered to
be safe. We list four identified dangerous cases below.

o Case 2. Under the conditions of this case, AppM is
launched first by the Android Launcher, followed by
AppB. Only AppM runs at the foreground, while AppB
cannot be executed.

In this case, AppM blocks AppB from execution, which
is a case of denial-of-use to AppB.

o Case 4. Under the conditions of this case, AppM is
launched by the Android Launcher, followed by AppB.
AppB runs in the foreground, and AppM runs in the
background, both in TaskB.

o Case 9. Under the conditions of this case, the Android
Launcher starts AppM. AppM then starts AppB. AppB
runs in the foreground, and AppM runs in the back-
ground, both in TaskB.

o Case 10. Under the conditions of this case, the Android
Launcher starts AppB. AppB then starts AppM. AppM
runs in the foreground, and AppB runs in the background,
both in TaskB.

Whether two Apps are in the same task can be determined
by viewing the Recents screen which renders all processes that
were opened since last clearance [7]. Recents screen is ren-
dered when a user presses the Recents button which is located
at the third from left to right at the button bar followed by Back
and Home buttons. If two Apps are in the same task, Recents
screen will only show one process other than two when they
do not reside in the same task. Note that according to our
experiment, flags such as FLAG_ACTIVITY_CLEAR_TOP
and FLAG_ACTIVITY_REORDER_TO_FRONT do not pose
a difference than the SIGLE_TOP in our case. Therefore, we
only include the SINGLE_TOP flag in our Table I.

B. Understanding Privilege Obtained in the Same Task

From the results in Table I, we can see that AppM has
several ways to be included into the task of AppB, often
without involving actions from other apps or the system. Next,
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TABLE I: Task Interference Table. We assume AppB is running with the task “TaskB.” In the events, the operation A—B stands
for A launches B. In the resulting state’s status, F stands for execution in foreground; B stands for execution in background;

X stands for not-running.

Case # Initial Conditions Events Resulting State
AppB [ AppM AppB_| AppM
LaunchMode | LaunchMode [ TaskAffinity [ Reparenting Status | Status | Task
1 standard or standard or TaskB True Launcher— AppB; Launcher— AppM F X -
singleTop or singleTop or
flag(SINGLE_TOP) | flag(SINGLE_TOP)
2 standard or standard or TaskB True Launcher— AppM; Launcher— AppB X F TaskB
* singleTop or singleTop or
flag(SINGLE_TOP) flag(SINGLE_TOP)
3 singleTask or standard or TaskB True Launcher— AppB; Launcher— AppM F X -
flag(NEW_TASK) singleTop or
flag(SINGLE_TOP)
4 singleTask or standard or TaskB True Launcher— AppM; Launcher— AppB F B TaskB
* flag(NEW_TASK) singleTop or
flag(SINGLE_TOP)
5 singleTask or singleTask or TaskB True Launcher— AppB; Launcher— AppM B F TaskM
flag(NEW_TASK) flag(NEW_TASK)
6 singleTask or singleTask or TaskB True Launcher— AppM ; Launcher— AppB F B TaskM
flag(NEW_TASK) flag(NEW_TASK)
7 singleInstance or any or TaskB True Launcher— AppB; Launcher—AppM F X -
8 singlelnstance or any or TaskB True Launcher— AppM; Launcher— AppB F B TaskM
9 standard or standard or TaskB True Launcher— AppM; AppM— AppB F B TaskB
* singleTop or singleTop or
flag(SINGLE_TOP) | flag(SINGLE_TOP)
10 standard or standard or TaskB True Launcher— AppB; AppB— AppM B F TaskB
* singleTop or singleTop or
flag(SINGLE_TOP) | flag(SINGLE_TOP)

we explore the privilege obtained through the Task mechanism,
including privilege for retrieving other apps’ information and
privilege for changing other apps’ states. Therefore, if the
privilege given to apps in the same task allows them to carry
out dangerous actions, it can be potentially misused by the
malicious app.

1) Retrieving Information of Other Apps:

Figuring out the execution state of a victim app, such as
whether it is running and which activity is in foreground,
is often used as the first step in several attacks, such as Ul
hijacking [5]. Therefore, Android by default disallows one app
from directly querying another app’s runtime information from
through the Android sandbox policy.

In older versions of Android, there were APIs allowing
inter-app runtime information checking. For devices that are
prior to Android Lollipop (v5.0), directly calling the API
getRunningTasks (int maxNum) will return the infor-
mation of as many as maxNum running activities [8]. However,
this function is deprecated after Lollipop since allowing third-
party apps to invoke the function directly will cause informa-
tion leakage in important apps.

For devices prior to Android MarshMallow (v6.0), directly
calling getRunningAppProcesses () returns a list of
application processes that are running on the device [8].
This function returns a RunningAppProcessinfo object, which
includes a member variable called importance that represents
the importance level that the system places on the process [9].
It has one of these values: IMPORTANCE_FOREGROUND,
IMPORTANCE_VISIBLE, IMPORTANCE_SERVICE,
IMPORTANCE_BACKGROUND and IMPORTANCE_EMPTY.
If importance is IMPORTANCE_FOREGROUND, the
corresponding process is running in the foreground. This
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method, however, cannot accurately point out which activity
running in the foreground since it operates on a process level
and accesses only the package name. This method is also no
longer supported for MarshMallow devices with API level
23 unless the third-party app who is making a call to this
function has the same process ID as the target process.

Getting App Running Information in a Task: Although the
Android API getRunningTasks () is deprecated for direct
usage, we have found that it still works if the calling app and
the target app are in the same task. The official documentation
of getRunningTasks () does not explicitly point it out but
only states that if it is called, this function only returns a small
subsets of information, e.g., the information of the caller’s own
task and home task which is considered to be not sensitive [8].

2) Changing States of Other Apps:

Ul Injection: ldeally, if an app is running in the
foreground, other apps isolated from this app should
not perform sensitive operations on it. Chen et al. [5]
show two Ul-injection methods that do not require
any permissions: (1) starting an Activity by setting
lauchMode=singleInstance. This is also how most
system apps, such as the alarm app, pop up a window on
the top of another app [10]; (2) starting an Activity from
the Android broadcast receiver [11].

In our analysis, we find that if two apps are in the
same task, the Ul-injection attack becomes easier. The
attacker can simply call the function startActivity ()
to achieve the same effect. Through understanding
the Android SDK source code, startActivity ()
invokes startActivityForResult ()
with requestCode=-1. Later
startActivityForResult () invokes



execStartActivity () in the Instrumentation class,
a base class for implementing application instrumentation
code [12]. execStartActivity () then checks
the base package of the calling activity by invoking
getBasePackageName (). If the base package of calling
activity matches with that of target activity, the Android
system launches the target activity.

Terminating Ul: Android does not allow a third-party
app to terminate a running app unless they are in the same
process. Although an app is not in the foreground, the An-
droid system still allows any third-party apps to make calls
to killBackgroundProcesses () [13] to terminate any
specific background app. There is no direct way to terminate
a foreground-running activity.

Unlike startActivity (), even if two apps are in
the same task, calling finish () or finishActivity ()
will not terminate the foreground activity, but will termi-
nate the activity that makes the call. However, we found
that as long as two apps are in the same task, calling the
API finishAndRemoveTask () results in terminating the
whole Task regardless of whether an activity is running in the
foreground [14] or not. This provides the malicious app an
interface to terminate other apps which are within the same
task as it.

IV. INFORMATION STEALING ATTACKS

Based on analysis from Section III, we develop four proof-
of-concept attacks: UI Phishing, Activity-in-the-middle Attack,
Gallery Stealing, and Screen Shot Capture. These four attacks
demonstrate the severity of the security problems we identi-
fied. In this section, the attacks are illustrated using two most
popular social apps, Instagram and Facebook. Except Gallery
Stealing, which requires READ_EXTERNAL_STORAGE, all
other three attacks only require the INTERNET permission (in
order to send out the information stolen).

A. UI Phishing

UI Phishing is a popular type of attacks to spoof users.
The difficulty of phishing attack is to decide the timing
when the spoofing interface should be prompted, in order to
prevent the victim from noticing it. Ren et al. [3] introduced
“Back Hijacking”, which directs users to a spoofed bank
LoginActivity. The key difference is that the attack method
identified in our approach actively interact with the victim
app using the privilege obtained through the approaches we
discussed in Section III-B.

Our proof-of-concept Ul Phishing attack is implemented
against the scenario when a user logs in to Instagram using
his/her Facebook account. In order to ease understanding the
phishing attack against this scenario, we brief the Facebook
SSO service. According to the Facebook Android developer
documentation [15], Facebook SDK takes three ways for apps
who require Facebook Login as part of functionality:

« Native App Login. If the Android device already has

the Facebook app installed, pressing the Facebook login
button directly opens the Facebook app where user can

log in his/her Facebook account and grants permission to
the third-party app to access his/her Facebook personal
information.

o Chrome Custom Tab Login. If the Android device does
not have the Facebook app installed, a third-party app can
ask the Chrome browser to open Facebook login page by
registering a scheme in the Manifest with the format
fb+facebook_app_id.

o WebView Login. Finally if neither the Android device
has Facebook app installed, nor does the third-party app
register for Chrome Custom Tab Login, an embedded
WebView will be launched dynamically rendering the
content of Facebook login page.

Our attack works when a user presses the “Log in with
Facebook” button in Instagram. We assume that a user
already has Facebook App installed in the device. Instagram
includes Facebook Login as a part of its functionality. It
does not register for Chrome Custom Tab Login. In other
words, after pressing the “Log in with Facebook” button in
Instagram, it will launch Facebook App directly. The package
name of Facebook app is "com.facebook.katana",
the  package name of  self-build WebView s
"com.android.webview" and the package name of
Instagram is "com.instagram.android". Shown in
Figure 2, it works in the following steps.

(1) Attacking app declares the same task as Instagram. This
step can be achieved by setting the attributes of taskAffinity
and allowTaskReparenting as follows.

<activity
android:name=".UIPhishingActivity"
android:allowTaskReparenting="true"
android:taskAffinity="com.instagram.
android">

(2) The launcher first launches the attacking app, which
launches Instagram immediately through invoking the task
parent since Instagram is the parent of the current task. Before
Instagram’s setContentView (R.layout.main) func-
tion can be called, the attacking app launches Launcher
(Home), meaning that Instagram cannot be displayed in order
to achieve the stealthiness. The process can be completed in
a fairly short time and will not be noticed by the victim with
bare eyes. After that, our attacking app waits for victim to
launch Instagram herself.

(3) The attacking app then creates a background thread
which runs in a cycle of, we devise, every 100 milliseconds.
In the meantime, it checks whether there is a change in
the foreground package name, i.e., in our case, the pack-
age name changes from "com.android.webview" to
"com. facebook.katana". This can be achieved by sim-
ply making API call to getRunningTasks (). Once the
foreground package has been changed to Facebook, our attack
pops up our counterfeit Facebook LoginActivity overriding the
real one. The spoofed UI collects the user’s login information
and send it to adversary’s back-end server.
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B. Activity-in-the-middle Attack

The Facebook SSO process is based on OAuth 2.0 [16]. The
main steps of this mechanism are: (1) When the user opens
the relying party (RP) app, in our case, Instagram, it passes
its Facebook_app_id and directed URL to the Android
System. (2) The Android system then redirects user to the
Service Provider (SP), in our case, Facebook, and passes it
the Facebook_app_id. (3) If the user requests to grant the
permission to the RP, SP will issue an access token to the
Android system. (4) The Android system passes the access
token to RP, by which RP is able to access the user’s protected
resource on SP.

Facebook has two types of access tokens, short-term and
long-term [17]. Short-term access token lasts several hours and
long-term lasts for 60 days. Unless specifically required, Face-
book usually issues short-term access token. RPs use graph
API provided by Facebook to retrieve protected resources
hosted on Facebook server [18]. Graph API is an HTTP-based
API, which is implemented as the following URL:

https://graph.facebook.com/me?fields=xxx&
access_token=xxx

In other words, any party who has the access token can
access the user’s protected resources hosted on Facebook
servers. In Android, redirecting to the Facebook app is done by
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intent transition based on startActivityForResult ()
and onActivityResult (). We implement an MITM at-
tacking app whose model runs in the following steps, shown
in Figure 3.

(1) It follows the first three steps in the UI Phishing attack
model.

(2) Instead of popping up a phishing login page like
Ul Phishing, the MITM attack pops up a transparent ac-
tivity, which blocks the traffic that is supposed to be re-
layed to Facebook server from user’s device system and
passes our own traffic to Facebook. This step can be eas-
ily realized by creating an invisible Facebook Login But-
ton and sending a button pressed event itself by invoking
mFacebookLoginBtn.performClick ().

(3) After the user grants the permission, which he/she
intends for Instagram, the MITM app retrieves the access
token. Since Instagram runs in the background, once the
foreground finishes, Instagram will be invoked.

(4) To finalize the process, the adversary needs to verify
APP_1ID and App Secret with Facebook. An adversary can
either register its attacking app in Facebook Developer Website
and use its own APP_ID and App Secret or steal other RP
apps’ ID and Secret. Facebook RP Apps will post an HTTP
message when user system launches native Facebook App.

C. Gallery Stealing

Starting from Android 6.0 (API level 23), in
order to access gallery, an app has to request for
READ_EXTERNAL_STORAGE  permission at runtime

rather than at the installation time, which is classified as one
of the dangerous permissions [19]. This mechanism provides
more secure and flexible protection to user’s photo gallery.
However, this new security mechanism can be bypassed by
exploits to the Android task mechanism, as shown in this
section.

Timing. For Android devices before marshmallow (API level
lower than 23), permissions are requested at the time when
an app is being installed. Apps with suspicious permissions
will easily trigger the user’s attention and likely be denied
access. However, with the new requesting-permissions-at-run-
time mechanism, our attacking app can avoid requesting
permission when being installed since it is requested at the
run time. To figure out the suitable timing, it continuously
monitors Instagram. Once the victim clicks the “Camera”
button on Instagram which allows Instagram to access the
gallery and camera, our attacking app instantly kills Instagram
and pops up our requesting dialog for access photos in gallery.
User mistakenly believes that he/she is granting the permission
to Instagram. After the permission is granted, our attacking
app retrieves all the photos from user’s gallery and send them
to the back-end server. In order to be stealthier, the attacking
app pops up a dialog shows “System encounters errors” and
finally kills itself.

Permission Dialog. Even though timing improves the natural-
ness of the attack, Android permission dialog shows the name
of the app in bold who makes the request. We propose two

ways to circumvent this problem.

(1) By employing the idea of social engineering, the attacker
can name the attacking app using a name similar to the target
app. In our case, e.g., “Instgram” or “Instagam”. However,
naming the app in this way can hardly pass the review of
Google Play. Even if it does, careful users may still notice
the difference. Therefore, in our attack, we do not use this
method.

(2) Employing the tapjacking. The idea of tapjacking
is putting message the attacker wishes to display
on the top of the real system message by setting a
window layout flag TYPE_SYSTEM OVERLAY. Android
realizes the potential threat and adopts the mechanism
MotionEvent .FLAG_WINDOW_IS_OBSCURED
which alerts the real dialog is being
[20]. Unfortunately, Banas [21] found that
MotionEvent .FLAG_WINDOW_IS_OBSCURED is not
triggered if the covered text does not cover the touch points,
which are the buttons in the dialog. Android does not give a
patch to the issue. Instead, it adopts an intent transition scheme
to notify the user that the content is being overlaid starting
from Android 6.0 (API level 23). We managed to circumvent
the issue by implementing our main attacking app with
targetSdkVersion=23, and in the target app we tricked
the user to install a helper package, which is an activityless
service. Only app which has the targetSdkVersion=22
and has the overlaying functionality implemented. It seems
tricking users to install additional package is not applicable,
but it is in fact a very common situation for many apps such
as those who require Android SQLite Manager.

overlaid

The basic steps of the attack model are listed as follows.

(1) The attack follows the first three steps of UI Phishing
attack.

(2) Once a user presses the camera but-
ton of Instagram as shown in  Figure 4(a),
the foreground Activity will change to

"com.instagram.android.creation.activity.-
MediaCaptureActivity". Therefore, Instead of
detecting whether the foreground package has changed to
another app, we zoom in the design to focus on changing of
the foreground Activity.

(3) Instead of popping up a counterfeit page like UI Phishing
does, it pops up an Activity which immediately asks a
user for READ_EXTERNAL_STORAGE so that the user thinks
he/she is granting the permission to Instagram.

(4) Once the attack app gets the permission, it traverses all
the pictures and transmits the image buffers to server.

(5) To achieve better stealthiness, we introduce the Tap-
jacking to assist our attack. Its basic idea is to cover the real
texts with some fake texts. Then we are able to change the
text of the permission dialog to “Allow Instagram to access
...7” instead of the real text which is “Allow GalleryStealing to
access ...7”, which is shown in Figure 4(b). Once user grants
the permission, the app quickly sends all images as buffer to
the server. Meanwhile, it fools the user by showing a “system
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Fig. 4: Gallery Stealing Attack: first the user clicks the camera button highlighted in the first picture. Then the attacking app
kills the real Instagram and pops up its Activity asking for user permission, the text of permission dialog is overlaid by
the fake text as shown in the second picture. Once user grants the permission, the app quickly sends all images as buffer to
the server, meanwhile, it fools the user by showing a “system” warning dialog telling the user the system encounter an error.

warning dialog” telling the user that the system encounters an
error (shown in Figure 4(c)).

D. Screen Shot Capturing

With the ability of knowing which Activity is
currently running in the foreground, we implement
this screen shot capturing attack which starts taking
screen shots while a wuser is entering username and
password in the Facebook LoginActivity which is
com. facebook.katana.LoginActivity in full. For
password typing, every time a character is entered, the
character will be shown for a short time before it turns into
a star sign. Therefore, taking screen shot every 0.1 second
should capture everything a user types in password box.

With respect to taking a screen shot programmatically, we
summarize four possible ways:

« Using READ_FRAME_BUFFER Permission.
Declaring READ_FRAME_BUFFER permission in
the Manifest allows an application to take screen
shots by making calls to ISurfaceComposer [22].
However, this permission is not available to third-party
application unless it has the same signature as the system
does.

o Using fb*. Some Linux systems store frame buffers in
/dev/graphics/fbx or /dev/fb«. £b0 represents
the first frame buffer, fb1 represents the second frame
buffer and so on. Using native C/C++ code to get access
to these files and copy the buffer as a GGLSurface
structure is theoretically possible. But there are two
unsolvable obstacles of this method:

— This method requires root permission.
— It is likely that fbx does not even exist.

« Using Backup Channel over USB. Android system uses
Android Debug Bridge (ADB) to listen to the debugging
connections over USB [23]. ADB has slightly more priv-
ileges than normal apps. Bai et al. [24] manage to exploit
Backup Channel through ADB to steal access tokens from
other apps. Combining ADB with Dalvik Debug Monitor
Server (DDMS) tool enables an app to get the screen shot
from the device without any permission [25].

o« Using MediaProjection. For devices
in Android 5.0 (API level 21),

beginning
a class called

MediaProjection was added to Android SDK
which enables a third-party app to capture screen shot
and record system audio [26]. While recording system
audio requires RECORD_AUDIO permission, capturing
screen shots does not.

We employed the fourth method to capture screen shots.
The basic steps of the attack are listed as follows.
(1) It follows the first three steps of UI Phishing. What’s
different is we devise this attack to focus on Facebook App
since we are hoping to steal user’s Facebook username and
password. Hence, we declared this attack to reside in the
same task as Facebook.
(2) Once a user launches the Facebook app, a transparent
Activity is popped up start taking screenshots. Although it
does not require permission for taking screen shots, it uses
intent transition to let the user decide whether or not an app
can capture screen shots in a permission-like dialog. Again
we employ the tapjacking in Gallery Stealing attack to cover
the text to be “Allow Facebook start accessing Internet?”
(3) The attack starts capturing screens by calling
startActivityForResult () which passes a
screenshot as an intent from which we can extract an
object of MediaProjection later, and finally use this
MediaProjection object to pass the image to an
object of ImageReader through its member function
createVirtualDisplay. Since the screenshots are taken
in the RGBA_ 8888 format while bitmap takes ARGB_8888,
we still need to do matrix transformations to get the image.

E. Performance

In order to study the feasibility of the four attacks, we
implement them and evaluate them in two aspects, time cost
and memory usage.

1) Time Cost: We conduct 6 - 8 rounds of tests for every
attack to calculate the average running time cost. The testing
results are summarized in Table II. As shown in Table II,
our attacks are efficient since the time cost of most attacks is
less than 8 seconds: the Ul Phishing attack costs 7.1 seconds,
which includes user interactions such as launching Instagram,
entering username and passwords; The Activity-in-the-middle
attack costs time 5.8 seconds; and the average time cost of the
gallery-stealing attack is 4.6 seconds.
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Once the user clicks start now, the attacking app begins to take screen shots as well as sending the screen shots to back end
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The Screenshot Capturing attack is an exception, taking
38.1 seconds. This attack uses much longer time because
screenshots in Android are passed in the format of RGBA,
while we need to change to ARGB in order to convert it
to common format such as JPEG and PNG. We perform
the matrix transformation required for the conversion on the
mobile device. But since the process is undertaken in the
background, it will not trigger the suspicions of the user. In the
real world attack, an adversary can leave the job of matrices
transformation to the server.

TABLE II: Time Cost of Proof-of-Concept Attacks

\ Attack | Time Cost (s) |
UI Phishing 7.1
Man-in-the-Middle 5.8
Gallery Stealing 4.6
Screenshot Capturing 38.1

2) Memory Usage: We conduct 3-round experiments for
each attacks to get the memory distractions of attacks and
evaluate their average memory usage. The testing results are
illustrated in Figure 6. It shows that the maximum memory
usage of most attacks is less than 70M B except Gallery
Stealing attack, whose memory usage is around 100M B. Our
testing results also disclose the memory usage distribution on
different period, in which the major memory usage of each
attack is to launch victim app (normal app), e.g., Instagram and
Facebook. The memory usage differences caused by stealthy
behaviors/operations are negligible.

In addition, we also conduct experiment to monitor the
battery consuming status and evaluate the battery usage of
our attacks. The results show that our attacks may not cause
influence on battery aspect (the battery usage rates of most
attacks are 0%). Above all, the experiment results demonstrate
that our proof-of-concept attacks are light-weight with limited
permission requirements.

V. SOLUTIONS TO ELIMINATE TASK INTERFERENCE

In this section, we discuss solutions on mitigating An-
droid task interference. Based on our study, we design and
implement a task interference checking tool to detect the
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potential risk of task interference among apps. It protects apps
specified by users from being manipulated by untrustworthy
apps. In addition, we also propose some suggestions to limit
the additional privilege achieved by the apps in the same task.

A. Task Interference Checking

In this subsection, we present the design and implementation
of our Task Interference Checking app named TICK.

Based on our understanding of the task interference prob-
lem, which includes the necessary conditions, events and their
dependency, we design a method to check the task interference
status among Android apps. Table I provides us with the basis
of evaluating task interference checking.

Design. As shown in Figure 7, TICK consists of two
basic modules, Pre-processing and Interference Checking, and
two supporting databases, Protected App Signature and Task
Interference Table.

o Protected App Signature. For the apps users who want
to protect against attacks to Android tasks, this database
includes the abstracted conditions of such attacks of each
app, which is stored as signatures in this database.
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o Task Interference Table. This database is the output from
our research in Section III, which includes the fundamen-
tal rules of task interference.

Pre-processing. The module takes as inputs the manifest
files of apps to be checked, abstracts and outputs their
task interference features for checking.

Interference Checking. The interference checking module
takes inputs from Pre-processing module and Protected
App Signature database, and checks the suspiciousness
of the testing apps according to the rules specified in the
Task Interference Table.

There are two application scenarios for deploying TICK.
C-1: Before a user installs an app, she/he can use TICK to
detect the potential risk of task-related attacks from
the app. TICK will parse the app meta data and check
with our table and signature database to see if it
interferes with an existing app. If the app is detected
to cause interference, TICK will issue a warning to
the user and suggest she/he not install the app.

Our checking app can do chronically scan from time
to time, check if new packages are added to the
device, audit if they have security concerns, and
notify users if and suspicious package were installed.

Getting Meta Data of an Activity. Currently, our checking
app only considers static declarations of task related attributes
from the app package. Moreover, the key attributes related to
Android Task cannot be altered during runtime, e.g., taskAffin-
ity and allowTaskReparenting.

Android SDK provides standard APIs to get an app’s
Manifest meta data without requiring any permission.
Given a package name and a flag, one can retrieve an
object of PackageInfo through the PackageManager.
Here, we set the flag to GET_ACTIVITIES and we
retrieve a list of ActivityInfo by fetching the attribute
PackageInfo.activities. ActivityInfo contains all
the meta data described in the Manifest about every
activity of a package, including those we care, e.g.,
taskAffinity, FLAG_ALLOW_TASK_ _REPARENTING,
LAUNCH_SINGLE_TASK and so on. The key APIs of getting
packageManager and packageInfo are respectively
getPackageManager () and getPackageInfo ().

Effectiveness. To verify the effectiveness, we used In-
stagram and our UI-Phishing app as inputs to TICK. It
parsed the meta data of each activity in both apps and
found that most activities of Instagram with taskAffinity set

C-2:
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to “com.instagram.android”, while the rest has raskAffin-
ity of “com.instagram.android.ShareHandlerActivity”. Most of
the activities in Instagram have launchMode set to “stan-
dard”. A small portion of the activities have the launch-
Mode set to “singleTop”, e.g., the LoginActivity. Very
few activities have launchMode set to ‘singlelnstance”.
The UI-Phishing app’s first activity has the following flags
set: taskAffinity = "com.instagram.android",
allowTaskReparenting true and launchMode
standard. This matches Case 9 and Case 10 in our task
interference table. When we use TICK to scan the device,
specifying the Instagram app as the one to be protected, TICK
successfully warns users about the potential risk from the Ul-
Phishing app. The overhead of TICK can vary based on a
number of factors such as device hardware and number of
third-party Apps installed in the device. In our experiment,
excluding all system-level Apps, there are totally 65 third-
party Apps installed in our device. It rougly took 4-5 seconds
to scan all Apps and identify suspicious ones.

B. Design Suggestions

From security issues we have demonstrated in the above
attacks, it is clear that the privilege given to apps in the
same task is well beyond what is expected for a mechanism
that facilitates app collaboration and interaction. In fact, the
task mechanism should be treated as a way of authorization,
and the security mechanism around the task mechanism also
should be designed accordingly.

In particular, when treating a task as a boundary for au-
thorization, we need to be explicit about the ownership of a
task and its authenticity. For example, if an app specifies the
taskAffinity of an existing task, there needs to be a form of
authorization before the app can be included into the task,
and the authorization should be carried out by entities with
privilege greater than the privilege given to the task. This is
similar to the requirement made by the UNIX group mecha-
nism. In addition, as the name of “task affinity” becomes an
identifier for a security object, the system should avoid name
conflicts. In case they occur, they need to be resolved with all
involving entities to avoid unexpected privilege escalation.

VI. RELATED WORK

IPC Security: IPC security is one of the top concerns while
designing OSes. Some early studies have reported security
threats in the Android IPC mechanism. More specifically,



Ren et al. [3] have proposed the first study of the security
of Android task mechanisms and showed the possibilities
of several enabled attacks, such as back-button hijacking
and uninstalling-prevention attack. Other popular mobile sys-
tems like iOS are also not immune to the risks. Xing et
al. [27] registered a counterfeit scheme which hijacks the real
Facebook scheme in iOS and successfully stole a Facebook
access token that was supposed to be passed onto the relying-
party app. Besides problematic designs of IPC of OSes, mis-
implementation of certain IPC-based protocols can also lead to
security concerns. Chen et al. [16] have conducted an analysis
on 149 mobile applications and showed 89 of them (59.7%)
incorrectly implemented OAuth and thus are vulnerable to
SSO-oriented attacks. Furthermore, IPC vulnerabilities were
also documented on other platforms besides mobile OSes.
Take browser platform for an example. Wang et al. [28]
discovered 8 serious logic flaws among the traffics between
high-profile ID provider and relying website through browser
platform. Wang et al. [29] discovered logic flaws in several
shopping websites and finally purchasing goods without or
with little payment.

GUI Security: As for traditional desktop and browser
environment, GUI security issues have been studied exten-
sively [30], [31]. Niemietz et al [32] implement a UI redress-
ing attacks on Android devices base on clickingjacking and
tapjacking and the attack is feasible to be transferred from
desktop to mobile and to browser, enabling the attack to be
adapted to multiple platforms and functionalities. As mobile
market begins to thrive, GUI security is more concerned in
mobile platforms than ever before. Chen et al. [5] managed to
impose Hidden Markov Model (HMM) on a public resource
shared_vm combining a bundle of data to perform UI Infer-
ence Attack and successfully stole sensitive information from
users such as user names, passwords and check images. Wang
et al. [33] implemented a malicious app which circumvented
the Apple Code Review system and successfully stole user
secrets stealthily.

Defending against Malicious Behaviors: Defending ma-
licious behaviors can be categorized into two branches, de-
tection and prevention. In previous studies, various detection
schemes have been introduced to prevent GUI-related attacks.
Fu et al. [34] employ the Earth mover’s distance (EMD)
mechanism to detect possible malicious web page through
measuring the similarity between two web pages by first
converting web pages to images, and then grabbing and
comparing the feature points through training data set. More
generally, Chen et al! [35] introduce the concept of permission
event graph (PEG) with model checking mechanisms to detect
abnormal behaviours of Android apps. As for prevention, one
idea is to prevent sensitive data from being leaked to the
malicious server party. Hornyack et al. [36] develop a system
for Android called AppFence, which can block the sensitive
data from being transmitted, or substitute the fine-grained data
to coarse-grained data if transmission is unpreventable. Ren
et al. [37] develop WindowGuard which protect against GUI
attacks by enforcing the Android Window Integrity (AWI).

VII. CONCLUSION

The Android task mechanism provides a mechanism for
apps to closely collaborate under a task. It offers flexibility
on top of the Android isolation mechanism. However, the
flexibility results in unexpected privilege escalation in Android
apps. In this paper, we study of the Android task mechanism.
We explore the ways to reach a task and analyze the privilege
obtained through the task mechanism. Based on our study, we
developed four new active attacks, ranging from UI spoofing
to gallery/screen stealing. We also develop a detection tool to
detect apps that can potentially leads to privilege escalation
and task interference.
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