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leaves the system via processes such as radiative or nonra-

diative dissipation (loss), or stimulated emission of radiation 

(gain). Such systems are described by Hamiltonians that are 

non-Hermitian (i.e., H ≠ H†). They typically exhibit complex 

spectra, with the imaginary part of each energy eigenvalue 

representing a dissipation or amplification rate.13

In the past few years, researchers have increasingly come 

to appreciate the fact that the effects of non-Hermiticity are 

not necessarily small corrections to Hermitian behavior. Non-

Hermitian systems can exhibit features intrinsically different 

from their Hermitian counterparts. Even a simple two-level 

system, for instance, can be steered to a non-Hermitian degen-

eracy known as an EP by tailoring the gain/loss and interlevel 

couplings. Unlike degeneracies found in conservative systems 

(i.e., those described by Hermitian Hamiltonians), where only 

the eigenvalues are degenerate but eigenstates remain orthog-

onal, an EP is marked by the coalescence of both the eigenval-

ues and their associated eigenstates. In other words, at an EP, 

the dimensionality of the eigenspace decreases to one.14

Photonics has proven to be an excellent platform for study-

ing (and ultimately exploiting) non-Hermitian physics, due to the 

ease with which non-Hermiticity can be controlled, via optical 

gain/loss and modal coupling.4–7 Non-Hermitian effects have 

been used to modify the flow of light,15–18 stabilize the operation 

of microlasers,19–24 perform optical sensing and metrology,25–29 

and control optomechanical interactions.30,31 Furthermore, by 

combining non-Hermitian effects with optical nonlinearities, it is 

possible to design devices with strongly nonreciprocal behavior.

Nonreciprocity and PT symmetry
Although non-Hermitian Hamiltonians typically 

have complex eigenvalues, a special class of 

them can exhibit real spectra. These are PT sym-

metric Hamiltonians,32,33 which are invariant 

under the simultaneous application of a parity  

and time-reversal operation. Although PT sym-

metric Hamiltonians were first proposed as a 

means of generalizing the fundamental laws 

of quantum mechanics, the greatest progress in 

realizing such Hamiltonians has been in photon-

ics, using classical electromagnetic fields. In the 

photonics context, the time-reversal (T) symme-

try exchanges optical amplification (gain) and 

dissipation (loss), so PT symmetry involves plac-

ing equal and opposite amounts of gain and loss 

in two parts of a photonic structure.34 In terms of 

the complex refractive index n, this means set-

ting n(x) = n(−x)∗, where x denotes the spatial 

coordinate that is flipped by the parity operation.

A typical PT symmetric photonic structure 

consists of two coupled components (e.g., opti-

cal waveguides or optical resonators), with bal-

anced gain and loss.17,18,35,36 When the coupling 

is strong, energy in the active component can 

flow rapidly into the lossy one to compensate its 

loss. Hence, each optical mode experiences no net gain or loss, 

and the corresponding eigenfrequency is real; it also maps onto 

itself under the PT operation, so that the intensities in the two 

components are equal. The system is then said to be in a “PT 

unbroken phase.” As the coupling strength is decreased below a 

critical value, however, the energy exchange is not fast enough 

to allow such gain/loss balanced modes to exist. The system 

abruptly undergoes a “PT breaking phase transition,” entering a 

“PT broken phase.” In the PT broken phase, one optical mode is 

concentrated in the amplifying component (experiencing gain), 

and another is concentrated in the lossy component (experienc-

ing loss), with the two modes mapping to each under the PT 

operation. The transition point is an EP of the Hamiltonian.

Experimental evidence for a PT breaking transition was 

first revealed in a system of two coupled optical waveguides, 

by introducing additional loss to one of them35 (Figure 1a–b). 

The waveguide with more loss served as the lossy component, 

and the one with less loss served as the active component; the 

system could be mapped to a PT symmetric one by a gauge 

transformation that shifts the background loss level. Light was 

injected into the waveguide with less loss, and a signature of 

the transition was observed in the form of a nonmonotonic 

variation in the transmittance (decrease followed by increase) 

with increasing loss. Later, PT symmetry was studied in a pair of 

coupled active-passive waveguides in a photorefractive crys-

tal.36 It was observed that in the PT unbroken phase, the opti-

cal field was distributed symmetrically in both waveguides, 

whereas in the PT broken phase, the field was localized in 

the active waveguide, regardless of which waveguide the light 

was injected into (Figure 1c).

Figure 1. Demonstration of the parity-time-reversal (PT) symmetry breaking transition 

in coupled optical waveguide experiments. (a) Two coupled passive waveguides, with 

additional loss introduced by a thin layer of chromium on one waveguide. A scanning 

electron microscope image of the waveguides is shown in the lower panel. (b) As the 

loss is increased (i.e., increasing the chromium strip width), the total power from both 

waveguides first decreases and then increases, which is a signature of PT symmetry 

breaking. (c) Intensity distribution in PT symmetric coupled waveguides generated in a 

photorefractive crystal, for the PT unbroken phase (upper plot) and the PT broken phase 

(lower plot). (a–b) Adapted with permission from Reference 35. © 2009 American Physical 

Society. (c) Adapted with permission from Reference 36. © 2010 Nature Publishing Group.
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The properties of PT symmetric systems may be exploited to 

enhance the nonreciprocity arising from optical nonlinearity. 

Ramezani et al. were the first to propose combining PT sym-

metry with nonlinearity to build a nonlinear optical isolator37 

(Figure 2a). Their system consists of two coupled waveguides 

containing balanced gain and loss, along with optical Kerr 

nonlinearity. When the Kerr nonlinearity exceeds a critical 

value, the coupled system behaves as an optical isolator—

when light is injected into the active waveguide, the output 

from the passive one is zero (upper panel in Figure 2a), where-

as for light injected into the passive waveguide, significant 

output is observed from the active waveguide (lower panel in 

Figure 2a). This system was studied in the PT unbroken phase, 

and it was found that the critical value of Kerr nonlinearity 

was reduced as the system approached the transition point. 

This work demonstrated that even though linear gain and loss 

do not themselves give rise to nonreciprocal light transport, 

they can strongly alter the effects of optical nonlinearity.

Another promising route toward PT symmetry-aided optical 

isolation is to make use of the asymmetric field distributions 

in the PT broken phase that can enhance nonlinear effects and 

subsequently reduce the operation threshold of a nonlinear opti-

cal isolator. Two groups have demonstrated ultralow-threshold 

nonlinear optical isolation in a pair of coupled optical micro-

cavities with balanced gain and loss, where the passive micro-

cavity is made of pure silica, and the active microcavity is made 

of erbium-ion-doped silica and can provide optical gain under 

optical pumping17,18 (Figure 2b). In these experiments, each 

microcavity was coupled to an input–output waveguide. Light 

was injected into the passive cavity, and the output at the second 

waveguide (coupled to the active cavity) was monitored. In the 

PT unbroken phase, the output exhibited a linear dependence 

on the input. In the PT broken phase, however, the input–output 

relation was nonlinear, due to enhanced nonlinear gain satura-

tion arising from the concentration of a PT broken mode in the 

gain resonator. As a result, for light injected into the passive 

cavity, significant output was observed from the active cavity, 

whereas for light injected into the active cavity, the output 

at the passive cavity was near zero. The onset of nonreciprocal 

behavior can be shown to correspond precisely to the PT break-

ing transition.38

Nonreciprocity via encircling EPs
As previously discussed, an EP is a point in parameter 

space (e.g., the space spanned by the coupling strength and 

frequency detuning of two coupled resonators) where a non-

Hermitian degeneracy occurs—(at least) two eigenstates of 

the Hamiltonian, along with their associated eigenvalues, 

coalesce. This phenomenon cannot occur in Hermitian systems 

due to the spectral theorem of linear algebra.

A pair of coupled resonators can be tuned to an EP by tai-

loring the frequency detuning, modal coupling, and losses. 

Near an EP, the complex eigenvalue surfaces take the form of 

two intersecting Riemann sheets39 (the red and blue surfaces 

shown in Figure 3a), which merge at the EP. 

When a non-Hermitian system is driven along 

a closed parametric loop enclosing an EP, that 

is, encircling an EP in the parameter space, the 

eigenstates undergo a “state flip.” After one 

cycle, the initial eigenstate on the upper branch 

evolves continuously into the eigenstate on the 

lower branch, and vice versa. This phenome-

non cannot be observed in a Hermitian system; 

when a Hermitian system is cycled around a 

Hermitian degeneracy point, each eigenstate 

always evolves continuously back to itself. 

The EP “state flip” has been demonstrated 

in microwave cavities,40 “exciton-polariton  

billiards” with quantum wells embedded in 

optical microcavities,41 and holographic pho-

tonic lattices.42

It is important to note, however, that the 

state flip phenomenon applies to the instanta-

neous eigenstates of the Hamiltonian, not the 

actual dynamical system state. For Hermitian 

systems, the adiabatic theorem states that 

if a system is initially an eigenstate of the 

Hamiltonian, slow parametric variations in 

the Hamiltonian induce the state to continu-

ously “follow” the evolving eigenstate (up 

to a phase), so long as there is no nearby 

Hermitian degeneracy. For non-Hermitian 

Figure 2. Nonlinear parity-time-reversal (PT) symmetric nonreciprocal optical devices.  

(a) Numerical simulation of light propagation in PT symmetric coupled nonlinear 

waveguides. For sufficiently strong nonlinearity, light always exits from the active 

waveguide (on the left), irrespective of the waveguide used for light injection. (b) Light 

propagation through PT symmetric coupled microcavity resonators (represented by µR1 

and µR2), each coupled with an optical waveguide. The nonreciprocal effect enabled 

by the nonlinear gain saturation is enhanced by the field localization in the PT broken 

phase, resulting in substantial transmittance in one direction (upper plot) and near-zero 

transmittance in the reverse direction (lower plot). SIN and SOUT denote the input and output, 

respectively. (a) Adapted with permission from Reference 37. © 2010 American Physical 

Society. (b) Adapted with permission from Reference 17. © 2014 Nature Publishing Group.
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systems, however, the adiabatic theorem does not hold.43 

If an EP is encircled dynamically, the system state tends 

to follow the eigenstate with less loss; this means that if it 

was initially following the eigenstate with more loss, it can 

undergo an abrupt transition to the other eigenstate, even if 

the underlying parametric variation is slow43 (Figure 3a).

An intuitive explanation for the breakdown 

of adiabaticity is as follows. When the system 

is driven along a trajectory corresponding to 

the eigenstate with more loss, it suffers from 

rapid decay. At the same time, a small amount 

of energy can be coupled to the other eigen-

state, and this component grows exponentially 

(relative to the rest of the system state), and 

eventually dominates. Therefore, dynamically 

encircling an EP in the parameter space gives 

rise to “asymmetric mode switching”—the 

system state is transferred to one eigenstate, 

regardless of the initial conditions.

Asymmetric mode switching has recently 

been demonstrated in optomechanical and 

microwave devices. A silicon nitride mem-

brane with two nearly degenerate vibrational 

eigenmodes was placed in an optical cavity and 

driven by a laser (via radiation pressure).31 The 

laser power and detuning of the laser frequency 

relative to the cavity resonance were used as 

parameters for accessing and encircling an EP, 

where it was observed that the energy of one 

eigenmode was transferred to the other if the tra-

jectory with less loss was selected (Figure 3b).  

If the EP was encircled in the opposite direction, 

the system ended up in its initial state. When 

the parametric variation is slow, the efficiency 

of the interstate energy transfer was found to  

depend only on the encircling direction. This 

can be regarded as an example of nonreciproc-

ity induced by time modulation.44

Another EP encircling experiment used 

lossy metallic waveguides.45 For wave prop-

agation along the waveguides, the axial co-

ordinate plays the role of time, and changes 

in waveguide parameters (including loss 

engineering) are used to encircle the EP.  

In this configuration, the direction in which the 

light is injected (“forward” or “backward”) 

determines the direction of encirclement, 

and hence the direction of the asymmetric 

mode conversion. In other words, if light is 

injected in the “forward” direction, it is con-

verted to one of the two waveguide modes; 

if injected in the “backward” direction, it 

is converted to the other waveguide mode,  

regardless of the initial choice of waveguide 

mode.46 However, optical reciprocity is not 

broken in this scheme, as the underlying optical medium 

is linear.

By combining EP-aided asymmetric mode conversion with 

nonlinearity, it is possible to realize a nonreciprocal on-chip 

device with extremely broad bandwidth. This was recently dem-

onstrated theoretically using waveguides containing nonlinear 

Figure 3. (a) Effects of dynamically encircling an exceptional point (EP). The vertical axis 

is the real part of the eigenvalue of the Hamiltonian, denoted Re(λ), and the horizontal axes 

are a 2D parameter space, where g and δ represent the coupling and detuning, respectively. 

Suppose the EP is encircled counterclockwise (left plots); if the system starts from the 

eigenstate on the lower branch (with smaller Re[λ]), it evolves continuously to the upper 

branch, but if it starts from the upper branch, it undergoes a sudden interbranch transition 

and cycles back to itself. The result is asymmetric mode conversion to the upper branch. 

If the EP is encircled in the opposite direction (right plots), the system undergoes 

asymmetric mode conversion to the lower branch. (b) Effect of dynamically encircling 

an EP in an optomechanical system. The cycling interval is indicated by gray shading; 

after encircling the EP, the energy in one mode (red curve) is transferred to the other 

mode (blue curve). (c) Schematic of a nonlinear device that uses EP encircling to achieve 

strongly nonreciprocal transmission. A1,2 denotes the mode amplitude in each waveguide.  

(d) Numerical simulations of the fields in the proposed unidirectional converter; in the 

forward direction, the device allows ∼100% transmission (upper plot), while in the 

backward direction, transmission is suppressed by ∼10 dB, as the mode is incompatible 

with the Y-branch symmetry after propagating across the coupling region. The white dotted 

box in the upper panel highlights the nonadiabatic jump when dynamically encircling an EP. 

(a) Adapted with permission from Reference 45. © 2016 Nature Publishing Group.  

(b) Adapted with permission from Reference 31. © 2016 Nature Publishing Group.  

(c–d) Adapted with permission from Reference 47. © 2017 Nature Publishing Group.
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(saturable) gain47 (Figure 3c–d). The waveguides are arranged 

in a simple configuration with a pair of Y-branches, and a pair 

of parallel coupled waveguides in the “coupling region” between 

the Y-branches. The EP-encircling is accomplished by varying 

the inter-waveguide widths and spacings (and hence the effec-

tive complex refractive indices of the coupled waveguides). 

The incident light, injected in either direction, is divided into 

two symmetric parts via a Y-branch, corresponding to an even 

mode of the coupled waveguides. The two coupled wave-

guides serve as a unidirectional converter: for the forward 

direction, the even mode preserves its symmetry when pass-

ing through the coupling region and transmits to the output 

waveguide; for the backward direction, the even mode is con-

verted into an odd mode after passing through the coupling 

region, and is rejected by the second Y-branch waveguide due 

to modal incompatibility. In the linear gain regime, the device is 

reciprocal—although the even mode component in the back-

ward case occupies a small percentage of the total power, the 

light propagating in the backward direction is subject to high-

er optical gain, so the transmission in both directions ends up 

being identical. However, at higher operating powers where 

gain saturation is substantial, reciprocity breaks down and 

a forward-to-backward transmission ratio of over 10 dB was 

observed, with nearly 100% forward transmission efficiency 

over a broad (∼100 THz) bandwidth.

Nonlinear topological photonics
Another interesting direction in nonreciprocal photonics involves 

the combination of optical nonlinearity with “topological pro-

tection.” Topological photonics is a rapidly evolving field,8–11 

most of which lies outside the scope of this article. The central 

idea of topological photonics is to take the well-

known analogy between conventional photonic 

crystals and electronic insulators,48 and extend 

it to “topologically nontrivial” bands.49,50 

Such nontrivial bands cannot be adiabati-

cally deformed to a trivial band structure, just 

as a torus cannot be smoothly deformed into a 

sphere, and this “topological incompatibility” 

guarantees the existence of “topological edge 

states” at boundaries between trivial and non-

trivial media (Figure 4). This phenomenon was 

first discovered in electronic fluids,51 but within 

the past decade, there has been an explosion 

of research on topologically nontrivial band 

structures in photonics,8–11 cold atom systems,52 

acoustics,53,54 and mechanical lattices.55

The simplest topologically nontrivial band 

structure, the “Chern insulator,” occurs in 

two-dimensional (2D) crystals with broken 

time-reversal (T) symmetry (The T symme-

try breaking in this case is due to a magnetic 

field rather than gain/loss, so the Hamiltonian  

remains Hermitian.) Its topological edge 

states have the special property of being 

unidirectional; the direction is determined by the sign of the 

T breaking. The first photonic demonstration of this used a 

microwave-scale lattice of magnetized ferrite rods.56,57 Due to 

the topological edge states, the lattice edge acted as an isolat-

ing waveguide with near-unity forward transmission and ex-

ponentially suppressed backward transmission, regardless of 

disorder, over the frequency range of the photonic bandgap.

It is difficult to use this design at optical frequencies, due to 

the weakness of magneto-optical effects. However, subsequent 

researchers have developed several different designs that can  

realize topologically nontrivial photonic bands at optical frequen-

cies without using T-breaking materials.58–61 These designs are 

necessarily reciprocal in the linear optics regime, but it is interest-

ing to combine them with nonlinearity due to their potential for 

achieving disorder-robust nonlinear optical isolation.

The nonlinear topological photonic systems studied to date 

fall into two classes. The first considers nonlinear propagation 

dynamics such as self-focusing as a perturbation to an existing 

linear topological photonic model. The resulting phenomena 

can be interpreted in terms of the nonlinearity locally changing 

the system properties, such as inducing a defect or phase tran-

sition. In the second class of systems, a pump is used to induce 

a topological transition in the dynamics of a weak (linearized) 

probe beam (e.g., by mediating T-breaking parametric interac-

tions). Both approaches offer interesting prospects for nonre-

ciprocal photonics.

Waveguide arrays
Topological waveguide arrays can be fabricated either using 

traditional silicon photonics, or via laser writing into bulk 

media.62 Evanescent coupling between adjacent waveguides 

Figure 4. Schematic illustrating how topological edge states arise at an interface between two 

media with topologically distinct band structures (ω, angular frequency; k, wave number). 

The purple lines illustrate the localization of the edge state to the interface.
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mimics quantum tunneling of particles between lattice sites, 

with the role of time played by the axial coordinate. This can 

be used to produce many single-particle lattice phenomena, 

including topologically nontrivial photonic band structures 

in one-dimension (1D)63,64 and 2D,59,65,66 as well as simulating 

higher-dimensional (e.g., four-dimensional) topological struc-

tures via parametric “synthetic dimensions.”67

The simplest type of topologically nontrivial lattice in 

1D is the Su–Schrieffer–Heeger (SSH) lattice.51,68 This is a 

T-symmetric lattice that exhibits topologically protected states 

localized to edges or domain walls. Proposals for achieving 

strong nonreciprocal response using this lattice are based on 

having the edge state only exist for one propagation direction. 

El-Ganainy and Levy have shown that this can be achieved by 

applying a magnetic garnet thin film to the edge waveguide.69  

In the backward direction, the edge state’s propagation constant 

is shifted into resonance with bulk modes and it becomes delo-

calized, suppressing the backward transmission (Figure 5a).

The previously discussed approach can be extended to 

nonlinear nonreciprocity using nonlinear lattices exhibiting  

a power-dependent edge state localization. Hadad et al.70,71 

studied nonlinear edge states in the SSH lattice, and showed 

that a nonlinear SSH lattice can undergo a “self-induced” 

topological transition. The lattice is topologically trivial at 

low powers, but at high powers, a robust nonlinear edge state 

emerges70 (Figure 5b). This requires nonlinear intersite 

couplings that drive the system toward the phase boundary as 

the power increases.

Waveguide arrays can also be used to realize 2D topo-

logical lattices. Rechtsman et al. used laser-written helical 

waveguides59 to introduce effective T-breaking along the 

propagation axis. The two propagation directions (“for-

ward” or “backward”) experience opposite T-breaking, and 

are decoupled if the waveguides are sufficiently smooth and 

vary slowly in the axial direction; the system as a whole  

is T-symmetric and reciprocal. Variant designs can exhibit 

topological transitions between convention-

al and topologically nontrivial behaviors by 

tuning the operating frequency or structural 

parameters.66,72

In the presence of optical nonlinearities 

such as the Kerr nonlinearities present in 

glass at high optical powers, the 2D lattices 

formed by waveguide arrays are predicted to 

exhibit topological solitons—self-focusing 

localized wave packets. Depending on the 

design parameters of the waveguide array, 

the solitons may circulate around a station-

ary point within the lattice,73 or move uni-

directionally along the edge like the linear 

topological edge states (Figure 5c), includ-

ing bypassing corners and defects.74,75 The 

latter behavior distinguishes the 2D solitons 

from 1D edge solitons (which are always 

stationary), and may be interesting for sig-

nal processing applications (e.g., for routing 

solitons between different positions in a lat-

tice).75 To date, topological optical solitons 

have yet to be observed experimentally.

To achieve nonlinear optical isolation using 

solitonic edge states, one can combine the 1D or 

2D topological lattice with asymmetric input– 

output coupling. This allows high-power sig-

nals to be transmitted along the waveguide 

array in the “forward” direction, mediated by 

the robust nonlinear edge state, while in the 

backward direction the power coupled into the 

array is insufficient to form a nonlinear edge 

state.76 In this scheme, the role of band topology 

is to provide a qualitative difference between the 

high-power and low-power modal profiles—

similar to the role played by PT transitions, but 

without the effects of gain/loss.

Figure 5. (a) Numerical simulations showing nonreciprocity in a magneto-optical  

Su–Schrieffer–Heeger (SSH) lattice. Light injected in the forward direction (left panel) excites a 

topological edge state and remains strongly localized during propagation along direction z, 

while in the reverse direction (right panel), the edge state is shifted into resonance with bulk 

modes and diffracts away. (b) Emergence of solitonic edge states at high peak intensity (I) 

in a nonlinear SSH lattice, where n is the site number. (c) Numerical simulations showing 

the formation of a self-induced topological soliton at the critical input power P = Pes, which 

moves unidirectionally along the edge of a 2D lattice, in a nonlinear waveguide array. 

(a) Reprinted with permission from Reference 69. © 2015 OSA Publishing. (b) Reprinted 

with permission from Reference 70. © 2016 American Physical Society. (c) Reprinted with 

permission from Reference 75. © 2016 American Physical Society.
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Resonator lattices
A second platform for realizing topologically nontrivial 

photonic lattices is coupled optical resonators, which can be 

integrated into on-chip devices compatible with established 

semiconductor photonics technologies. The resonant light 

confinement allows for much stronger nonlinear effects com-

pared to waveguide lattices.

The previously discussed 1D SSH model is simple to 

realize using lattices of resonating plasmonic or dielectric 

nanodisks; the effective intersite couplings, which tune the 

topological transition, can be controlled by varying the inter-

resonator displacement. The SSH model edge states have been 

used to mediate nonreciprocal third-harmonic generation,77 as 

well as disorder-robust lasing.78–80 The nonlinear dynamics of  

these lasers and how they interact with the SSH topological 

transition are exciting topics to explore in the future.

Topologically nontrivial 2D lattices have also been realized. 

This is accomplished by dividing the optical modes into two  

decoupled “sectors” (e.g., clockwise/anticlockwise ring reso-

nator modes or left- and right-hand circular polarizations), 

such that T is effectively broken in each sector58,60,61 (Figure 6a). 

Similar to the forward and backward propagation sectors 

in waveguide arrays, the overall structure is T symmetric and 

reciprocal. For example, decoupled sectors can be realized 

via a bipartite lattice of ring resonators, such that clockwise 

modes in one sublattice couple to anticlockwise modes in the 

other sublattice, and vice versa. Such lattices can exhibit both 

conventional insulator and Chern insulator phases, with the 

topological transition driven by the resonator detunings or 

inter-resonator couplings.81–83

The nonlinear regime of topologically nontrivial 2D lattices is 

a subject of ongoing study. As in the waveguide case, topological 

transitions in these lattices can be driven by the nonlinearity. For 

example, an edge state can exist at high powers, but not at low 

powers, which may be useful for isolation76 (Figure 6b). A novel 

feature of coupled cavity arrays is the ability to explore pump-

induced topological phases, which can be based on incoherent 

tuning (e.g., using cross-phase modulation),83 or via coherent 

parametric interactions. The latter is particularly interesting 

because the system’s behavior becomes sensitive to the phase 

of the pump beam, which can be used to effectively break T 

symmetry and induce nonreciprocal edge states as linearized 

perturbations to the pump (Figure 6c).84,85 This approach is 

promising for nonreciprocal frequency conversion.86,87

Outlook and conclusions
We have reviewed the role of non-Hermitian physics and band 

topology in designing nonlinear photonic devices, with a focus 

on enhancing nonreciprocal light transport. 

Although these two sets of phenomena have 

different origins, what they have in common 

is that by carefully managing the distribution 

of refractive index, loss, and/or gain, a transi-

tion among distinct different phases is induced 

(between PT unbroken and broken phases, or 

between topologically trivial and nontrivial 

band structures), and the qualitatively distinct 

mode behaviors in the two phases can enhance 

the reciprocity-breaking of an underlying non-

linear medium.

The results we have summarized point to a 

number of promising lines of future research. 

In topological photonics, for instance, crys-

talline symmetry-protected topological phases 

are now being implemented as photonic crys-

tals,88–91 which are extremely compact and could 

be coupled to resonant defects or atoms90 to 

produce nonreciprocal or frequency-converting 

devices.86,87,92,93 Another area of active research 

involves “topological polaritons,” which can be 

induced by circularly polarized optical pump-

ing (which effectively breaks T).94,95

Another highly promising direction is to 

combine the two concepts together (i.e., to 

explore non-Hermitian topological photonics).  

There are several pioneering works along this 

direction, including topological transitions in  

non-Hermitian waveguide arrays,96 topologically 

protected modes based photonic limiters,97 and 

Figure 6. (a) Scanning electron microscope image of a topologically nontrivial 2D lattice 

of silicon ring resonators (left panel), and the spatially imaged topological edge states 

(right panel). (b) Numerical simulation of transmittance through a nonlinear coupled-

resonator array, as a function of input power. The band structure is topologically nontrivial 

in the linear limit, so the transmittance is negligible at low powers. At high powers, the 

transmittance becomes large due to the emergence of a self-induced edge state (intensity 

plot shown inset). (c) Schematic of using a pump field (blue) in the form of a vortex lattice 

to induce a topological phase transition, creating a topological edge state for the signal 

(red) to propagate along. (a) Adapted with permission from Reference 60. © 2011 Nature 

Publishing Group. (b) Adapted with permission from Reference 76. © 2017 IOP Publishing.
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topological edge states in PT-symmetric quantum walks.98 

We anticipate that non-Hermitian topological photonics will 

provide a new route to control light transport as well as 

optical nonreciprocity.
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(2009).
58. M. Hafezi, E.A. Demler, M.D. Lukin, J.M. Taylor, Nat. Phys. 7, 907  
(2011).
59. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, 
S. Nolte, M. Segev, A. Szameit, Nature 496, 196 (2013).
60. M. Hafezi, S. Mittal, J. Fan, A. Migdall, J.M. Taylor, Nat. Photonics 7, 1001 
(2013).
61. S. Mittal, J. Fan, S. Faez, A. Migdall, J.M. Taylor, M. Hafezi, Phys. Rev. Lett. 
113, 087403 (2014).
62. A. Szameit, S. Nolte, J. Phys. B At. Mol. Opt. Phys. 43, 163001 (2010).
63. Y.E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg, Phys. Rev. Lett. 
109, 106402 (2012).
64. M. Verbin, O. Zilberberg, Y. Lahini, Y.E. Kraus, Y. Silberberg, Phys. Rev. B 
Condens. Matter 91, 064201 (2015).
65. L.J. Maczewsky, J.M. Zeuner, S. Nolte, A. Szameit, Nat. Commun. 8, 13756 
(2017).
66. J. Noh, S. Huang, D. Leykam, Y.D. Chong, K. Chen, M.C. Rechtsman,  
Nat. Phys. 13, 611 (2017).
67. O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K.P. Chen, Y.E. Kraus, 
M.C. Rechtsman, Nature 553, 59 (2018).
68. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B Condens. Matter 22, 
2099 (1980).
69. R. El-Ganainy, M. Levy, Opt. Lett. 40, 5275 (2015).
70. Y. Hadad, A.B. Khanikaev, A. Alu, Phys. Rev. B Condens. Matter 93, 155112 
(2016).
71. Y. Hadad, V. Vitelli, A. Alu, ACS Photonics 4, 1974 (2017).
72. D. Leykam, M.C. Rechtsman, Y.D. Chong, Phys. Rev. Lett. 117, 013902 
(2016).
73. Y. Lumer, Y. Plotnik, M.C. Rechtsman, M. Segev, Phys. Rev. Lett. 111, 
243905 (2013).
74. M.J. Ablowitz, C.W. Curtis, Y.-P. Ma, Phys. Rev. A At. Mol. Opt. Phys. 
90, 023813 (2014).
75. D. Leykam, Y.D. Chong, Phys. Rev. Lett. 117, 143901 (2016).
76. X. Zhou, Y. Wang, D. Leykam, Y.D. Chong, New J. Phys. 19, 095002 
(2017).
77. S. Kruk, A. Slobozhanyuk, D. Denkova, A. Poddubny, I. Kravchenko,  
A. Miroshnichenko, D. Neshev, Y. Kivshar, Small 13, 1603190 (2017).
78. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet,  
I. Sagnes, J. Bloch, A. Amo, Nat. Photonics 11, 651 (2017).
79. H. Zhao, P. Miao, M.H. Teimourpour, S. Malzard, R. El-Ganainy, H. Schomerus, 
L. Feng, Nat. Commun. 9, 981 (2018).
80. M. Parto, S. Wittek, H. Hodaei, G. Harari, M.A. Bandres, J. Ren,  
M.C. Rechtsman, M. Segev, D.N. Christodoulides, M. Khajavikhan, Phys. Rev. 
Lett. 120, 113901 (2018).
81. G.Q. Liang, Y.D. Chong, Phys. Rev. Lett. 110, 203904 (2013).
82. M. Pasek, Y.D. Chong, Phys. Rev. B Condens. Matter 89, 075113 (2014).

https://www.cambridge.org/core/terms. https://doi.org/10.1557/mrs.2018.124
Downloaded from https://www.cambridge.org/core. Washington University St. Louis, on 15 Jun 2018 at 21:25:34, subject to the Cambridge Core terms of use, available at



NONRECIPROCITY IN SYNTHETIC PHOTONIC MATERIALS WITH NONLINEARITY

451MRS BULLETIN • VOLUME 43 • JUNE 2018 • www.mrs.org/bulletin

83. D. Leykam, S. Mittal, M. Hafezi, Y.D. Chong, Phys. Opt. (2018), https://arxiv.
org/abs/1802.02253.
84. C.E. Bardyn, T. Karzig, G. Refael, T.C.H. Liew, Phys. Rev. B Condens. Matter 
93, 020502(R) (2016).
85. H. Sigurdsson, G. Li, T.C.H. Liew, Phys. Rev. B Condens. Matter 96, 115453 
(2017).
86. V. Peano, M. Houde, C. Brendel, F. Marquardt, A.A. Clerk, Nat. Commun. 
7, 10779 (2016).
87. V. Peano, M. Houde, F. Marquardt, A.A. Clerk, Phys. Rev. X 6, 041026 (2016).
88. L.-H. Wu, X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
89. J. Noh, S. Huang, K.P. Chen, M.C. Rechtsman, Phys. Rev. Lett. 120, 063902 
(2018).
90. S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, 
E. Waks, Science 359, 666 (2018).
91. M.I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, N.M. Litchinitser, Phys. Opt. 
(2017), https://arxiv.org/abs/1712.07284v2.
92. Y. Xu, A.E. Miroshnichenko, Phys. Rev. B Condens. Matter 89, 134306 
(2014).
93. Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, J. Mork, Laser Photon. Rev. 9, 
241 (2015).
94. Y.V. Kartashov, D.V. Skryabin, Phys. Rev. Lett. 119, 253904 (2017).
95. D.D. Solnyshkov, O. Bleu, G. Malpuech, App. Phys. Lett. 112, 031106 (2018).
96. J.M. Zeuner, M.C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M.S. Rudner, 
M. Segev, A. Szameit, Phys. Rev. Lett. 115, 040402 (2015).
97. U. Kuhl, F. Mortessagne, E. Makri, I. Vitebskiy, T. Kottos, Phys. Rev. B Condens. 
Matter 95, 121409(R) (2017).
98. L. Xiao, X. Zhan, Z.H. Bian, K.K. Wang, X. Zhang, X.P. Wang, J. Li,  
K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B.C. Sanders, P. Xue, 
Nat. Phys. 13, 1117 (2017).	 

Weijian Chen is a doctoral candidate in elec-
trical and systems engineering at Washington 
University in St. Louis. He received his BS 
degree in optical information science and tech-
nology from the University of Science and Tech-
nology of China in 2012, and his MS degree in  
electrical engineering from Washington Uni-
versity in St. Louis in 2015. His current research 
interests include high-quality optical microcavi-
ties, non-Hermitian optics, optical sensing, and 
quantum light sources. Chen can be reached by 
email at wchen34@wustl.edu.

Daniel Leykam leads a junior research team at the 
Institute for Basic Science, South Korea, where he 
is supported by a Young Science Fellowship. He 
completed his PhD degree in 2015 at the Nonlin-
ear Physics Centre at The Australian National Uni-
versity, and then worked as a postdoctoral fellow 
at Nanyang Technological University, Singapore, 
for two years. Leykam can be reached by email at 
dleykam@ibs.re.kr.

Yidong Chong joined Nanyang Technological 
University, Singapore, as an assistant professor 
in 2012. He received his BSc degree in physics 
from Stanford University in 2003, and his PhD 
degree in physics from the Massachusetts Insti-
tute of Technology in 2008. From 2008 to 2012, 
he was a postdoctoral researcher at Yale Uni-
versity. His research interests include topologi-
cal photonics, non-Hermitian photonics, and 
random optical media. Chong can be reached 
by email at yidong@ntu.edu.sg.

Lan Yang is the Edwin H. and Florence G. Skinner 
Professor in the Department of Electrical and 
Systems Engineering at Washington University 
in St. Louis. She received her BS degree from 
the University of Science and Technology of 
China, and her PhD degree in applied physics  
from the California Institute of Technology in 
2005. She is the recipient of a 2010 Presidential 
Early Career Award for Scientists and Engineers. 
She is a Fellow of The Optical Society. Her 
research interests include optical microcavities, 
non-Hermitian photonics, lasers, sensing, and 
imaging. Yang can be reached by email at 
yang@seas.wustl.edu.

With the new EU General Data Protection Regulation (GDPR)* now in place, it is imperative 
that you log in to MyMRS at www.mrs.org/alerts to reset your email  preferences. 
Your decision to selectively opt in allows us to continue to send the timely information you 
have come to expect from MRS, including calls for papers for MRS Spring and Fall Meetings, 
journal alerts and more.

Don’t delay. Opt in today and stay connected to MRS—your home to present and publish in 
the most important and rapidly advancing fields.

Be sure that you are receiving all of the content you  

want and need from the Materials Research Society (MRS).

STAY CONNECTED  OPT IN TO MRS TODAY! 

* To learn more about the GDPR, visit the EU GDPR Information Portal at www.eugdpr.org.
   If you have forgotten your MRS login credentials, you can request them at www.mrs.org/password. 



https://www.cambridge.org/core/terms. https://doi.org/10.1557/mrs.2018.124
Downloaded from https://www.cambridge.org/core. Washington University St. Louis, on 15 Jun 2018 at 21:25:34, subject to the Cambridge Core terms of use, available at


