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Nonreciprocity in synthetic photonic
materials with nonlinearity

Weijian Chen, Daniel Leykam, Y.D. Chong, and Lan Yang

Synthetic photonic materials created by engineering the profile of refractive index or gain/loss
distribution, such as negative-index metamaterials or parity-time-symmetric structures, can
exhibit electric and magnetic properties that cannot be found in natural materials, allowing for
photonic devices with unprecedented functionalities. In this article, we discuss two directions
along this line—non-Hermitian photonics and topological photonics—and their applications
in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic
structures have been demonstrated in systems involving judicious arrangement of optical
elements, such as optical waveguides and resonators. They can exhibit a transition between
different phases by adjusting certain parameters, such as the distribution of refractive index,
loss, or gain. The unique features of such synthetic structures help realize nonreciprocal
optical devices with high contrast, low operation threshold, and broad bandwidth. They provide
promising opportunities to realize nonreciprocal structures for wave transport.

Introduction

Photonic devices in which the flow of light is nonreciprocal,
such as optical isolators and circulators, are highly desirable
for applications ranging from communications to sensing and
metrology. For many years, nonreciprocal photonic devices
have been predominantly based on magneto-optical materials,
which break Lorentz reciprocity when subjected to a mag-
netic field. However, magneto-optical devices have several
disadvantages—they tend to be bulky, are subject to high
losses, and are difficult to integrate into current semiconduc-
tor fabrication techniques. An alternative approach to break-
ing Lorentz reciprocity is to exploit optical nonlinearities,
such as the thermo-optic effect, Kerr effect, and two-photon
absorption.'”® For instance, Fan et al. have demonstrated an
all-silicon optical isolator with a nonreciprocal transmission
ratio of more than 28 dB, based on coupled microrings with
thermo-optic nonlinearity.?

This article discusses two recent directions in designing
structured nonlinear optical media for nonreciprocal wave
transport. The first explores non-Hermitian effects found in
open systems with dissipation or amplification, and involves
judiciously tailoring the distribution of optical loss or gain.*”’
This includes “parity-time-reversal (PT) symmetric” struc-
tures that contain balanced amounts of gain and loss, as well

as structures exhibiting non-Hermitian degeneracies known
as exceptional points (EPs). The second direction consists of
photonic structures with “topologically nontrivial” photonic
bands.* ! Such structures support an unusual class of electro-
magnetic modes known as topological edge states, analogous
to electronic topological edge states in topological insulators,
which are robust to defects or perturbations.

In the absence of optical nonlinearity (and the absence
of magneto-optical effects and time modulation), synthetic
photonic materials cannot break Lorentz reciprocity, even
if loss or gain are present.'> Both effects we focus on—non-
Hermiticity and band topology—do not lead to nonreciproc-
ity by themselves. When combined with optical nonlinearity,
however, they can be used to achieve highly nonreciprocal
behaviors.

Nonlinear and non-Hermitian photonics

The time evolution of a physical system, such as the classical
electromagnetic field in a photonic device, can be described by
a Hamiltonian that is Hermitian (i.e., H = H', where T denotes
the conjugate transpose operation). Hermiticity guarantees
areal energy spectrum and unitary (probability-conserving)
time evolution. In practice, however, physical systems often
experience loss or gain—in other words, energy enters or
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NONRECIPROCITY IN SYNTHETIC PHOTONIC MATERIALS WITH NONLINEARITY

leaves the system via processes such as radiative or nonra-
diative dissipation (loss), or stimulated emission of radiation
(gain). Such systems are described by Hamiltonians that are
non-Hermitian (i.e., H # HY). They typically exhibit complex
spectra, with the imaginary part of each energy eigenvalue
representing a dissipation or amplification rate.'

In the past few years, researchers have increasingly come
to appreciate the fact that the effects of non-Hermiticity are
not necessarily small corrections to Hermitian behavior. Non-
Hermitian systems can exhibit features intrinsically different
from their Hermitian counterparts. Even a simple two-level
system, for instance, can be steered to a non-Hermitian degen-
eracy known as an EP by tailoring the gain/loss and interlevel
couplings. Unlike degeneracies found in conservative systems
(i.e., those described by Hermitian Hamiltonians), where only
the eigenvalues are degenerate but eigenstates remain orthog-
onal, an EP is marked by the coalescence of both the eigenval-
ues and their associated eigenstates. In other words, at an EP,
the dimensionality of the eigenspace decreases to one.!*

Photonics has proven to be an excellent platform for study-
ing (and ultimately exploiting) non-Hermitian physics, due to the
ease with which non-Hermiticity can be controlled, via optical
gain/loss and modal coupling.*” Non-Hermitian effects have
been used to modify the flow of light,'S!® stabilize the operation
of microlasers,'”?* perform optical sensing and metrology,> %’
and control optomechanical interactions.***! Furthermore, by
combining non-Hermitian effects with optical nonlinearities, it is
possible to design devices with strongly nonreciprocal behavior.

Nonreciprocity and PT symmetry
Although non-Hermitian Hamiltonians typically

loss. Hence, each optical mode experiences no net gain or loss,
and the corresponding eigenfrequency is real; it also maps onto
itself under the PT operation, so that the intensities in the two
components are equal. The system is then said to be in a “PT
unbroken phase.” As the coupling strength is decreased below a
critical value, however, the energy exchange is not fast enough
to allow such gain/loss balanced modes to exist. The system
abruptly undergoes a “PT breaking phase transition,” entering a
“PT broken phase.” In the PT broken phase, one optical mode is
concentrated in the amplifying component (experiencing gain),
and another is concentrated in the lossy component (experienc-
ing loss), with the two modes mapping to each under the PT
operation. The transition point is an EP of the Hamiltonian.

Experimental evidence for a PT breaking transition was
first revealed in a system of two coupled optical waveguides,
by introducing additional loss to one of them* (Figure 1a-b).
The waveguide with more loss served as the lossy component,
and the one with less loss served as the active component; the
system could be mapped to a PT symmetric one by a gauge
transformation that shifts the background loss level. Light was
injected into the waveguide with less loss, and a signature of
the transition was observed in the form of a nonmonotonic
variation in the transmittance (decrease followed by increase)
with increasing loss. Later, PT symmetry was studied in a pair of
coupled active-passive waveguides in a photorefractive crys-
tal.* It was observed that in the PT unbroken phase, the opti-
cal field was distributed symmetrically in both waveguides,
whereas in the PT broken phase, the field was localized in
the active waveguide, regardless of which waveguide the light
was injected into (Figure 1c¢).

have complex eigenvalues, a special class of
them can exhibit real spectra. These are PT sym-
metric Hamiltonians,3>** which are invariant
under the simultaneous application of a parity
and time-reversal operation. Although PT sym-
metric Hamiltonians were first proposed as a
means of generalizing the fundamental laws
of quantum mechanics, the greatest progress in
realizing such Hamiltonians has been in photon-
ics, using classical electromagnetic fields. In the
photonics context, the time-reversal (T) symme-
try exchanges optical amplification (gain) and
dissipation (loss), so PT symmetry involves plac-
ing equal and opposite amounts of gain and loss
in two parts of a photonic structure.** In terms of
the complex refractive index 7, this means set-
ting n(x) = n(—x)*, where x denotes the spatial
coordinate that is flipped by the parity operation.

A typical PT symmetric photonic structure
consists of two coupled components (e.g., opti-
cal waveguides or optical resonators), with bal-
anced gain and loss.!”!#3%3¢ When the coupling
is strong, energy in the active component can
flow rapidly into the lossy one to compensate its
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Figure 1. Demonstration of the parity-time-reversal (PT) symmetry breaking transition
in coupled optical waveguide experiments. (a) Two coupled passive waveguides, with
additional loss introduced by a thin layer of chromium on one waveguide. A scanning
electron microscope image of the waveguides is shown in the lower panel. (b) As the
loss is increased (i.e., increasing the chromium strip width), the total power from both
waveguides first decreases and then increases, which is a signature of PT symmetry
breaking. (c) Intensity distribution in PT symmetric coupled waveguides generated in a
photorefractive crystal, for the PT unbroken phase (upper plot) and the PT broken phase
(lower plot). (a-b) Adapted with permission from Reference 35. © 2009 American Physical
Society. (c) Adapted with permission from Reference 36. © 2010 Nature Publishing Group.
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The properties of PT symmetric systems may be exploited to
enhance the nonreciprocity arising from optical nonlinearity.
Ramezani et al. were the first to propose combining PT sym-
metry with nonlinearity to build a nonlinear optical isolator®’
(Figure 2a). Their system consists of two coupled waveguides
containing balanced gain and loss, along with optical Kerr
nonlinearity. When the Kerr nonlinearity exceeds a critical
value, the coupled system behaves as an optical isolator—
when light is injected into the active waveguide, the output
from the passive one is zero (upper panel in Figure 2a), where-
as for light injected into the passive waveguide, significant
output is observed from the active waveguide (lower panel in
Figure 2a). This system was studied in the PT unbroken phase,
and it was found that the critical value of Kerr nonlinearity
was reduced as the system approached the transition point.
This work demonstrated that even though linear gain and loss
do not themselves give rise to nonreciprocal light transport,
they can strongly alter the effects of optical nonlinearity.

Another promising route toward PT symmetry-aided optical
isolation is to make use of the asymmetric field distributions
in the PT broken phase that can enhance nonlinear effects and
subsequently reduce the operation threshold of a nonlinear opti-
cal isolator. Two groups have demonstrated ultralow-threshold
nonlinear optical isolation in a pair of coupled optical micro-
cavities with balanced gain and loss, where the passive micro-
cavity is made of pure silica, and the active microcavity is made
of erbium-ion-doped silica and can provide optical gain under

optical pumping'”!® (Figure 2b). In these experiments, each
microcavity was coupled to an input—output waveguide. Light
was injected into the passive cavity, and the output at the second
waveguide (coupled to the active cavity) was monitored. In the
PT unbroken phase, the output exhibited a linear dependence
on the input. In the PT broken phase, however, the input—output
relation was nonlinear, due to enhanced nonlinear gain satura-
tion arising from the concentration of a PT broken mode in the
gain resonator. As a result, for light injected into the passive
cavity, significant output was observed from the active cavity,
whereas for light injected into the active cavity, the output
at the passive cavity was near zero. The onset of nonreciprocal
behavior can be shown to correspond precisely to the PT break-
ing transition.*

Nonreciprocity via encircling EPs

As previously discussed, an EP is a point in parameter
space (e.g., the space spanned by the coupling strength and
frequency detuning of two coupled resonators) where a non-
Hermitian degeneracy occurs—(at least) two eigenstates of
the Hamiltonian, along with their associated eigenvalues,
coalesce. This phenomenon cannot occur in Hermitian systems
due to the spectral theorem of linear algebra.

A pair of coupled resonators can be tuned to an EP by tai-
loring the frequency detuning, modal coupling, and losses.
Near an EP, the complex eigenvalue surfaces take the form of
two intersecting Riemann sheets® (the red and blue surfaces

shown in Figure 3a), which merge at the EP.
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Figure 2. Nonlinear parity-time-reversal (PT) symmetric nonreciprocal optical devices.

(@) Numerical simulation of light propagation in PT symmetric coupled nonlinear
waveguides. For sufficiently strong nonlinearity, light always exits from the active
waveguide (on the left), irrespective of the waveguide used for light injection. (b) Light
propagation through PT symmetric coupled microcavity resonators (represented by pR,
and pR,), each coupled with an optical waveguide. The nonreciprocal effect enabled

by the nonlinear gain saturation is enhanced by the field localization in the PT broken
phase, resulting in substantial transmittance in one direction (upper plot) and near-zero
transmittance in the reverse direction (lower plot). S, and Sqr denote the input and output,
respectively. (a) Adapted with permission from Reference 37. © 2010 American Physical
Society. (b) Adapted with permission from Reference 17. © 2014 Nature Publishing Group.
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When a non-Hermitian system is driven along
a closed parametric loop enclosing an EP, that
is, encircling an EP in the parameter space, the
eigenstates undergo a “state flip.” After one
cycle, the initial eigenstate on the upper branch
evolves continuously into the eigenstate on the
lower branch, and vice versa. This phenome-
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non cannot be observed in a Hermitian system;
when a Hermitian system is cycled around a
Hermitian degeneracy point, each eigenstate
always evolves continuously back to itself.
The EP “state flip” has been demonstrated
in microwave cavities,* “exciton-polariton
billiards” with quantum wells embedded in
optical microcavities,*' and holographic pho-
tonic lattices.*

It is important to note, however, that the
state flip phenomenon applies to the instanta-
neous eigenstates of the Hamiltonian, not the
actual dynamical system state. For Hermitian
systems, the adiabatic theorem states that
if a system is initially an eigenstate of the
Hamiltonian, slow parametric variations in
the Hamiltonian induce the state to continu-
ously “follow” the evolving eigenstate (up
to a phase), so long as there is no nearby
Hermitian degeneracy. For non-Hermitian
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Figure 3. (a) Effects of dynamically encircling an exceptional point (EP). The vertical axis

is the real part of the eigenvalue of the Hamiltonian, denoted Re(}), and the horizontal axes
are a 2D parameter space, where g and & represent the coupling and detuning, respectively.
Suppose the EP is encircled counterclockwise (left plots); if the system starts from the
eigenstate on the lower branch (with smaller Re[}]), it evolves continuously to the upper
branch, but if it starts from the upper branch, it undergoes a sudden interbranch transition
and cycles back to itself. The result is asymmetric mode conversion to the upper branch.
If the EP is encircled in the opposite direction (right plots), the system undergoes
asymmetric mode conversion to the lower branch. (b) Effect of dynamically encircling

an EP in an optomechanical system. The cycling interval is indicated by gray shading;
after encircling the EP, the energy in one mode (red curve) is transferred to the other
mode (blue curve). (c) Schematic of a nonlinear device that uses EP encircling to achieve
strongly nonreciprocal transmission. A, , denotes the mode amplitude in each waveguide.
(d) Numerical simulations of the fields in the proposed unidirectional converter; in the
forward direction, the device allows ~100% transmission (upper plot), while in the
backward direction, transmission is suppressed by ~10 dB, as the mode is incompatible
with the Y-branch symmetry after propagating across the coupling region. The white dotted
box in the upper panel highlights the nonadiabatic jump when dynamically encircling an EP.
(a) Adapted with permission from Reference 45. © 2016 Nature Publishing Group.

(b) Adapted with permission from Reference 31. © 2016 Nature Publishing Group.

(c—d) Adapted with permission from Reference 47. © 2017 Nature Publishing Group.

systems, however, the adiabatic theorem does not hold.*
If an EP is encircled dynamically, the system state tends
to follow the eigenstate with less loss; this means that if it
was initially following the eigenstate with more loss, it can
undergo an abrupt transition to the other eigenstate, even if
the underlying parametric variation is slow* (Figure 3a).

is linear.

An intuitive explanation for the breakdown
of adiabaticity is as follows. When the system
is driven along a trajectory corresponding to
the eigenstate with more loss, it suffers from
rapid decay. At the same time, a small amount
of energy can be coupled to the other eigen-
state, and this component grows exponentially
(relative to the rest of the system state), and
eventually dominates. Therefore, dynamically
encircling an EP in the parameter space gives
rise to “asymmetric mode switching”—the
system state is transferred to one eigenstate,
regardless of the initial conditions.

Asymmetric mode switching has recently
been demonstrated in optomechanical and
microwave devices. A silicon nitride mem-
brane with two nearly degenerate vibrational
eigenmodes was placed in an optical cavity and
driven by a laser (via radiation pressure).’! The
laser power and detuning of the laser frequency
relative to the cavity resonance were used as
parameters for accessing and encircling an EP,
where it was observed that the energy of one
eigenmode was transferred to the other if the tra-
jectory with less loss was selected (Figure 3b).
If the EP was encircled in the opposite direction,
the system ended up in its initial state. When
the parametric variation is slow, the efficiency
of the interstate energy transfer was found to
depend only on the encircling direction. This
can be regarded as an example of nonreciproc-
ity induced by time modulation.*

Another EP encircling experiment used
lossy metallic waveguides.* For wave prop-
agation along the waveguides, the axial co-
ordinate plays the role of time, and changes
in waveguide parameters (including loss
engineering) are used to encircle the EP.
In this configuration, the direction in which the
light is injected (“forward” or “backward”)
determines the direction of encirclement,
and hence the direction of the asymmetric
mode conversion. In other words, if light is
injected in the “forward” direction, it is con-
verted to one of the two waveguide modes;
if injected in the “backward” direction, it
is converted to the other waveguide mode,
regardless of the initial choice of waveguide
mode.* However, optical reciprocity is not

broken in this scheme, as the underlying optical medium

By combining EP-aided asymmetric mode conversion with
nonlinearity, it is possible to realize a nonreciprocal on-chip
device with extremely broad bandwidth. This was recently dem-
onstrated theoretically using waveguides containing nonlinear
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(saturable) gain?’ (Figure 3c—d). The waveguides are arranged
in a simple configuration with a pair of Y-branches, and a pair
of parallel coupled waveguides in the “coupling region” between
the Y-branches. The EP-encircling is accomplished by varying
the inter-waveguide widths and spacings (and hence the effec-
tive complex refractive indices of the coupled waveguides).
The incident light, injected in either direction, is divided into
two symmetric parts via a Y-branch, corresponding to an even
mode of the coupled waveguides. The two coupled wave-
guides serve as a unidirectional converter: for the forward
direction, the even mode preserves its symmetry when pass-
ing through the coupling region and transmits to the output
waveguide; for the backward direction, the even mode is con-
verted into an odd mode after passing through the coupling
region, and is rejected by the second Y-branch waveguide due
to modal incompatibility. In the linear gain regime, the device is
reciprocal—although the even mode component in the back-
ward case occupies a small percentage of the total power, the
light propagating in the backward direction is subject to high-
er optical gain, so the transmission in both directions ends up
being identical. However, at higher operating powers where
gain saturation is substantial, reciprocity breaks down and
a forward-to-backward transmission ratio of over 10 dB was
observed, with nearly 100% forward transmission efficiency
over a broad (~100 THz) bandwidth.

Nonlinear topological photonics

Another interesting direction in nonreciprocal photonics involves
the combination of optical nonlinearity with “topological pro-
tection.” Topological photonics is a rapidly evolving field,* !
most of which lies outside the scope of this article. The central
idea of topological photonics is to take the well-

unidirectional; the direction is determined by the sign of the
T breaking. The first photonic demonstration of this used a
microwave-scale lattice of magnetized ferrite rods.>**” Due to
the topological edge states, the lattice edge acted as an isolat-
ing waveguide with near-unity forward transmission and ex-
ponentially suppressed backward transmission, regardless of
disorder, over the frequency range of the photonic bandgap.

It is difficult to use this design at optical frequencies, due to
the weakness of magneto-optical effects. However, subsequent
researchers have developed several different designs that can
realize topologically nontrivial photonic bands at optical frequen-
cies without using T-breaking materials.***' These designs are
necessarily reciprocal in the linear optics regime, but it is interest-
ing to combine them with nonlinearity due to their potential for
achieving disorder-robust nonlinear optical isolation.

The nonlinear topological photonic systems studied to date
fall into two classes. The first considers nonlinear propagation
dynamics such as self-focusing as a perturbation to an existing
linear topological photonic model. The resulting phenomena
can be interpreted in terms of the nonlinearity locally changing
the system properties, such as inducing a defect or phase tran-
sition. In the second class of systems, a pump is used to induce
a topological transition in the dynamics of a weak (linearized)
probe beam (e.g., by mediating T-breaking parametric interac-
tions). Both approaches offer interesting prospects for nonre-
ciprocal photonics.

Waveguide arrays

Topological waveguide arrays can be fabricated either using
traditional silicon photonics, or via laser writing into bulk
media.®> Evanescent coupling between adjacent waveguides

known analogy between conventional photonic

crystals and electronic insulators,* and extend
it to “topologically nontrivial” bands.**°
Such nontrivial bands cannot be adiabati-
cally deformed to a trivial band structure, just
as a torus cannot be smoothly deformed into a
sphere, and this “topological incompatibility”
guarantees the existence of “topological edge
states” at boundaries between trivial and non-
trivial media (Figure 4). This phenomenon was
first discovered in electronic fluids,>! but within
the past decade, there has been an explosion
of research on topologically nontrivial band
structures in photonics,®!' cold atom systems,*
acoustics,”** and mechanical lattices.>

The simplest topologically nontrivial band
structure, the “Chern insulator,” occurs in
two-dimensional (2D) crystals with broken
time-reversal (T) symmetry (The T symme-

Topologically trivial
bulk band structure

Topological edge state
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bulk band structure
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try breaking in this case is due to a magnetic
field rather than gain/loss, so the Hamiltonian
remains Hermitian.) Its topological edge

Figure 4. Schematic illustrating how topological edge states arise at an interface between two
media with topologically distinct band structures (o, angular frequency; k, wave number).
The purple lines illustrate the localization of the edge state to the interface.

states have the special property of being
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mimics quantum tunneling of particles between lattice sites,
with the role of time played by the axial coordinate. This can
be used to produce many single-particle lattice phenomena,
including topologically nontrivial photonic band structures
in one-dimension (1D)%* and 2D, as well as simulating
higher-dimensional (e.g., four-dimensional) topological struc-
tures via parametric “synthetic dimensions.”?’

The simplest type of topologically nontrivial lattice in
1D is the Su—Schrieffer—Heeger (SSH) lattice.’'*® This is a
T-symmetric lattice that exhibits topologically protected states
localized to edges or domain walls. Proposals for achieving
strong nonreciprocal response using this lattice are based on
having the edge state only exist for one propagation direction.
El-Ganainy and Levy have shown that this can be achieved by
applying a magnetic garnet thin film to the edge waveguide.®
In the backward direction, the edge state’s propagation constant
is shifted into resonance with bulk modes and it becomes delo-
calized, suppressing the backward transmission (Figure 5a).

The previously discussed approach can be extended to
nonlinear nonreciprocity using nonlinear lattices exhibiting
a power-dependent edge state localization. Hadad et al.”®"!
studied nonlinear edge states in the SSH lattice, and showed
that a nonlinear SSH lattice can undergo a “self-induced”
topological transition. The lattice is topologically trivial at
low powers, but at high powers, a robust nonlinear edge state
emerges” (Figure 5b). This requires nonlinear intersite
couplings that drive the system toward the phase boundary as
the power increases.

Waveguide arrays can also be used to realize 2D topo-
logical lattices. Rechtsman et al. used laser-written helical
waveguides® to introduce effective T-breaking along the
propagation axis. The two propagation directions (“for-
ward” or “backward”) experience opposite T-breaking, and
are decoupled if the waveguides are sufficiently smooth and
vary slowly in the axial direction; the system as a whole
is T-symmetric and reciprocal. Variant designs can exhibit

topological transitions between convention-
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Figure 5. (a) Numerical simulations showing nonreciprocity in a magneto-optical
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al and topologically nontrivial behaviors by
tuning the operating frequency or structural
parameters.*®7?

In the presence of optical nonlinearities
such as the Kerr nonlinearities present in
glass at high optical powers, the 2D lattices
formed by waveguide arrays are predicted to
exhibit topological solitons—self-focusing
localized wave packets. Depending on the
design parameters of the waveguide array,
the solitons may circulate around a station-
ary point within the lattice,”® or move uni-
directionally along the edge like the linear
topological edge states (Figure 5c), includ-
ing bypassing corners and defects.”*” The
latter behavior distinguishes the 2D solitons
from 1D edge solitons (which are always
stationary), and may be interesting for sig-
nal processing applications (e.g., for routing
solitons between different positions in a lat-
tice).” To date, topological optical solitons
have yet to be observed experimentally.

To achieve nonlinear optical isolation using
solitonic edge states, one can combine the 1D or
2D topological lattice with asymmetric input—

100 0 ) 100

T (pm

200 output coupling. This allows high-power sig-
nals to be transmitted along the waveguide

array in the “forward” direction, mediated by

Su-Schrieffer—Heeger (SSH) lattice. Light injected in the forward direction (left panel) excites a
topological edge state and remains strongly localized during propagation along direction z,
while in the reverse direction (right panel), the edge state is shifted into resonance with bulk
modes and diffracts away. (b) Emergence of solitonic edge states at high peak intensity (/)
in a nonlinear SSH lattice, where n is the site number. (c) Numerical simulations showing
the formation of a self-induced topological soliton at the critical input power P = P, which
moves unidirectionally along the edge of a 2D lattice, in a nonlinear waveguide array.
(a) Reprinted with permission from Reference 69. © 2015 OSA Publishing. (b) Reprinted
with permission from Reference 70. © 2016 American Physical Society. (c) Reprinted with
permission from Reference 75. © 2016 American Physical Society.

the robust nonlinear edge state, while in the
backward direction the power coupled into the
array is insufficient to form a nonlinear edge
state.” In this scheme, the role of band topology
is to provide a qualitative difference between the
high-power and low-power modal profiles—
similar to the role played by PT transitions, but
without the effects of gain/loss.
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Resonator lattices

A second platform for realizing topologically nontrivial
photonic lattices is coupled optical resonators, which can be
integrated into on-chip devices compatible with established
semiconductor photonics technologies. The resonant light
confinement allows for much stronger nonlinear effects com-
pared to waveguide lattices.

The previously discussed 1D SSH model is simple to
realize using lattices of resonating plasmonic or dielectric
nanodisks; the effective intersite couplings, which tune the
topological transition, can be controlled by varying the inter-
resonator displacement. The SSH model edge states have been
used to mediate nonreciprocal third-harmonic generation,”” as
well as disorder-robust lasing.”** The nonlinear dynamics of
these lasers and how they interact with the SSH topological
transition are exciting topics to explore in the future.

Topologically nontrivial 2D lattices have also been realized.
This is accomplished by dividing the optical modes into two
decoupled “sectors” (e.g., clockwise/anticlockwise ring reso-
nator modes or left- and right-hand circular polarizations),
such that T is effectively broken in each sector’3%*°! (Figure 6a).
Similar to the forward and backward propagation sectors
in waveguide arrays, the overall structure is T symmetric and
reciprocal. For example, decoupled sectors can be realized

via a bipartite lattice of ring resonators, such that clockwise
modes in one sublattice couple to anticlockwise modes in the
other sublattice, and vice versa. Such lattices can exhibit both
conventional insulator and Chern insulator phases, with the
topological transition driven by the resonator detunings or
inter-resonator couplings.®-3

The nonlinear regime of topologically nontrivial 2D lattices is
a subject of ongoing study. As in the waveguide case, topological
transitions in these lattices can be driven by the nonlinearity. For
example, an edge state can exist at high powers, but not at low
powers, which may be useful for isolation” (Figure 6b). A novel
feature of coupled cavity arrays is the ability to explore pump-
induced topological phases, which can be based on incoherent
tuning (e.g., using cross-phase modulation),® or via coherent
parametric interactions. The latter is particularly interesting
because the system’s behavior becomes sensitive to the phase
of the pump beam, which can be used to effectively break T
symmetry and induce nonreciprocal edge states as linearized
perturbations to the pump (Figure 6¢).%* This approach is
promising for nonreciprocal frequency conversion.%7

Outlook and conclusions

We have reviewed the role of non-Hermitian physics and band
topology in designing nonlinear photonic devices, with a focus
on enhancing nonreciprocal light transport.

Although these two sets of phenomena have
different origins, what they have in common
is that by carefully managing the distribution
of refractive index, loss, and/or gain, a transi-
tion among distinct different phases is induced
(between PT unbroken and broken phases, or
between topologically trivial and nontrivial
band structures), and the qualitatively distinct

-
o

o
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©
©
©
©
©
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v
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mode behaviors in the two phases can enhance
the reciprocity-breaking of an underlying non-
linear medium.

The results we have summarized point to a
number of promising lines of future research.
In topological photonics, for instance, crys-
talline symmetry-protected topological phases
are now being implemented as photonic crys-
tals,® ! which are extremely compact and could
be coupled to resonant defects or atoms® to
produce nonreciprocal or frequency-converting
devices.®6879293 Another area of active research
involves “topological polaritons,” which can be
induced by circularly polarized optical pump-

Figure 6. (a) Scanning electron microscope image of a topologically nontrivial 2D lattice
of silicon ring resonators (left panel), and the spatially imaged topological edge states
(right panel). (b) Numerical simulation of transmittance through a nonlinear coupled-
resonator array, as a function of input power. The band structure is topologically nontrivial
in the linear limit, so the transmittance is negligible at low powers. At high powers, the
transmittance becomes large due to the emergence of a self-induced edge state (intensity
plot shown inset). (c) Schematic of using a pump field (blue) in the form of a vortex lattice
to induce a topological phase transition, creating a topological edge state for the signal
(red) to propagate along. (a) Adapted with permission from Reference 60. © 2011 Nature
Publishing Group. (b) Adapted with permission from Reference 76. © 2017 IOP Publishing.

ing (which effectively breaks T).**%*

Another highly promising direction is to
combine the two concepts together (i.e., to
explore non-Hermitian topological photonics).
There are several pioneering works along this
direction, including topological transitions in
non-Hermitian waveguide arrays,’ topologically
protected modes based photonic limiters,’” and
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topological edge states in PT-symmetric quantum walks.’®
We anticipate that non-Hermitian topological photonics will
provide a new route to control light transport as well as
optical nonreciprocity.
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