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ABSTRACT

The recent proliferation of human-carried mobile devices has given
rise to mobile crowd sensing (MCS) systems that outsource sen-
sory data collection to the public crowd. In order to identify truth-
ful values from (crowd) workers’ noisy or even conflicting sen-
sory data, truth discovery algorithms, which jointly estimate work-
ers’ data quality and the underlying truths through quality-aware
data aggregation, have drawn significant attention. However, the
power of these algorithms could not be fully unleashed in MCS
systems, unless workers’ strategic reduction of their sensing effort
is properly tackled. To address this issue, in this paper, we propose
a payment mechanism, named Theseus, that deals with workers’
such strategic behavior, and incentivizes high-effort sensing from
workers. We ensure that, at the Bayesian Nash Equilibrium of the
non-cooperative game induced by Theseus, all participating work-
ers will spend their maximum possible effort on sensing, which im-
proves their data quality. As a result, the aggregated results calcu-
lated subsequently by truth discovery algorithms based on work-
ers’ data will be highly accurate. Additionally, Theseus bears other
desirable properties, including individual rationality and budget
feasibility. We validate the desirable properties of Theseus through
theoretical analysis, as well as extensive simulations.
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1 INTRODUCTION

The recent proliferation of increasingly capable human-carried
mobile devices (e.g., smartphones, smartwatches, smartglasses)
equipped with a plethora of on-board sensors (e.g., accelerome-
ter, compass, gyroscope, GPS, camera) has given rise to mobile
crowd sensing (MCS), a new sensing paradigm which outsources
sensory data collection to a crowd of participants, namely (crowd)
workers. Thus far, a wide spectrum of MCS systems [1-5] have
been deployed which cover almost every aspect of our lives, in-
cluding smart transportation, healthcare, environmental monitor-
ing, indoor localization, and many others.

In real practice, workers’ sensory data are usually unreliable be-
cause of various factors (e.g., lack of effort, insufficient skill, poor
sensor quality, background noise). Thus, the crowd sensing plat-
form, which is usually a cloud-based central server, has to properly
aggregate workers’ noisy or even conflicting data so as to obtain ac-
curate aggregated results. Clearly, a weighted aggregation method
that assigns higher weights to workers with more reliable data is
much more favorable than naive methods (e.g., averaging and vot-
ing) that view each worker equally, in that it shifts the aggregated
results towards the data provided by more reliable workers.

The challenge, however, is that workers’ reliability is usually
unknown a priori by the platform, and should be inferred from
the sensory data submitted by individual workers. To address this
issue, truth discovery, which refers to a family of algorithms [6—
9] that aim to discover meaningful facts from unreliable data, has
been proposed and widely studied. Without any prior knowledge
about workers’ reliability, a truth discovery algorithm calculates
jointly workers’ weights and the aggregated results, based on the
principles that the workers whose data are closer to the aggregated
results will be assigned higher weights, and the data from a worker
with a higher weight will be counted more in the aggregation.

Though yielding reasonably good performance under certain
circumstances, truth discovery algorithms still suffer from the limi-
tation that the aggregation accuracy highly depends on the quality
of input data. If a vast majority of the data sources are unreliable,
it will be hard or even impossible for these algorithms to obtain
accurate aggregated results. This is exactly why past literature on
truth discovery [6-9] assumes that most data sources have fairly
good reliability. However, in MCS systems, such assumption does
not hold, as the data sources here are selfish workers, who may
strategically reduce their costly sensing effort, such as the time, re-
sources, attention, and carefulness they put into the sensing tasks.
Clearly, the level of a worker’s sensing effort is among the major
factors that affect her data quality. The reduction of workers’ effort
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inevitably deteriorates the quality of their sensory data, which fur-
ther impairs the aggregation accuracy. For example, in air quality
monitoring applications [2], in order to save effort, workers may
carry their mobile devices in their pockets instead of holding them
on their hands as required, which may significantly degrade the
reliability of their air quality measurements. Therefore, the power
of truth discovery algorithms could not be fully unleashed in MCS
systems, unless the platform properly deals with workers’ strategic
reduction of sensing effort.

To address this issue, in this paper, we take into consideration
workers’ strategic behavior, and propose a payment mechanism,
named Theseus!, that offers payments to incentivize high-effort
sensing from workers. Our workflow of an MCS system starts
with the platform announcing the Theseus payment mechanism to
workers before all the sensing happens. Workers’ strategic behav-
ior after the announcement of Theseus is then modeled using game-
theoretic methods. In our model, Theseus induces a non-cooperative
game?, called sensing game, where workers are the players who
strategically decide their levels of effort for sensing. In order to
elicit effort from workers, Theseus is then designed such that at the
Bayesian Nash Equilibrium (BNE) of the sensing game, each par-
ticipating worker maximizes her expected utility only when she
spends her maximum possible effort. Clearly, Theseus improves
the quality of workers’ data by controlling a critical factor, that
is, the level of their sensing effort. As a result, the aggregated re-
sults calculated subsequently by truth discovery algorithms based
on workers’ sensory data will be of high accuracy.

In summary, this paper makes the following contributions.

o In this paper, we propose a payment mechanism, called Theseus,
which is used in pair with a truth discovery algorithm to ensure
high aggregation accuracy in MCS systems where workers may
strategically reduce their effort for sensing.

e Our Theseus payment mechanism deals with workers’ strategic
behavior by incentivizing workers to spend their maximum pos-
sible sensing effort at the BNE of the induced non-cooperative
game among them.

o Additionally, we ensure that Theseus bears other desirable prop-
erties, including individual rationality and budget feasibility.

2 RELATED WORK

In order to identify truthful values from workers’ noisy or even
conflicting sensory data in MCS systems, truth discovery algo-
rithms [6-9], which jointly estimate workers’ data quality and the
underlying truths through quality-aware data aggregation, have
drawn significant attention. However, these algorithms usually can-
not deal with workers’ strategic reduction of sensing effort, and thus,
may yield unsatisfactory aggregation accuracy.

Another line of prior work related to this paper is a series of
incentive mechanisms [10-40] recently developed by the research
community in order to stimulate worker participation in MCS sys-
tems. Most of these past literature [10-36] adopts game-theoretic

!The name Theseus comes from incenTivizing truth discovery with strategic data
sources.

ZNon-cooperative game refers to the family of games, where each player acts indepen-
dently without collaboration or communication with others, whereas, in cooperative
games, players may communicate with each other and form coalitions.
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methods, due to their ability to deal with workers’ strategic behav-
ior. Among them, auction-based incentive mechanisms [17-31]
typically consider workers’ strategic bidding of the prices and sens-
ing task choices to the platform. Furthermore, some prior work
[32-35] tackles workers’ strategic manipulation of reported pri-
vate and sensitive data due to privacy concerns. However, none
of them study workers’ strategic reduction of sensing effort as in this
work. Mechanisms that elicit effort from crowd workers have been
investigated in past literature [10-17], but none of them is designed
to work in pair with truth discovery algorithms. Note that although
one existing incentive mechanism [40] is able to work jointly with
truth discovery algorithms, it is not based on game-theoretic mod-
els, and thus, cannot tackle workers’ strategic behavior.

Different from existing work, in this paper, we design a payment
mechanism, which is used in pair with a truth discovery algorithm
to ensure high aggregation accuracy by incentivizing workers to
spend their maximum possible sensing effort.

3 PRELIMINARIES

In this section, we introduce the system overview, truth discovery
algorithms, our game theoretic model, as well as the design objec-
tives.

3.1 System Overview

We consider an MCS system consisting of a cloud-based platform,
and a set of S potential participating workers, denoted as S =
{1,2---,S}. The platform holds a set of M sensing tasks, denoted
as M = {1,2,--- , M}, and each task requires workers to sense a
particular object, event, or phenomenon locally, and report to the
platform the sensory data in the form of continuous values. Such
MCS systems collecting continuous data from the crowd, consti-
tute a large portion of the currently deployed MCS systems, such as
environmental monitoring applications that collect air quality or
noise level measurements from participating workers. We demon-
strate the interaction between the platform and workers in Figure
1, and describe the complete workflow of our MCS system model
as follows.

Cloud-based

Platform
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Figure 1: Interaction between the platform and workers
(where circled numbers represent the order of the events).

e Firstly, the platform announces the set of sensing tasks M, as
well as the payment mechanism, to the set of all potential par-
ticipating workers S (step D).

e After such announcements, each worker s € S decides whether
or not to participate in the sensing tasks. Then, the workers
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that choose to participate decide the levels of their sensing ef-
fort (e.g., time, resources, attention, carefulness), and carry out
sensing according to the decided effort levels. We denote the
set of participating workers as 8’ € S. Each worker s € S’
then submits to the platform the sensory data x;, for each task
m € M upon completion of sensing? (step ).

e After receiving workers’ data, the platform pays each partici-
pating worker according to the payment calculated using the
payment mechanism (step 3)).

o Finally, based on the collected data, the platform calculates an
aggregated result x},, for each task m, and uses it as an estimate
for the ground truth xﬁfl“th, which is unknown to both the plat-
form and the workers.

As the quality of different workers’ sensory data typically varies,
an ideal approach is to use a weighted aggregation scheme which
assigns higher weights to workers with higher data quality. How-
ever, in practice, workers’ data quality is usually unknown a priori
to the platform. Therefore, in our model, the platform utilizes one
of the truth discovery algorithms [6-9] to aggregate workers’ data,
which calculates workers’ weights and estimates the ground truths
in a joint manner. An introduction of such algorithms is provided
in the following Section 3.2.

3.2 Truth Discovery

Although existing truth discovery algorithms [6-9] differ in their
specific ways to calculate workers’ weights and the aggregated re-
sults, their common procedure could be summarized as in the fol-
lowing Algorithm 1.

Algorithm 1: Truth Discovery Algorithm

Input: Workers’ data {x;,|m e M,s € S’};
Output: Estimated ground truths {x},|m € M};
1 Randomly initialize the ground truth for each task;

2 repeat
// Weight calculation
3 foreach s € 8’ do
4 Update the weight wg based on current estimated ground
L truths using Equation (1);
// Truth estimation
5 foreach m € M do
6 Update the estimated ground truth x},, based on workers’
L current weights using Equation (2);

7 until Convergence criterion is satisfied;
8 return Estimated ground truths {x}, |[m € M};

A truth discovery algorithm, as described in Algorithm 1, typ-
ically starts with a random guess of tasks’ ground truths, and
then iteratively updates workers’ weights, as well as the estimated
ground truths until convergence.

Weight Calculation. In this step, tasks’ estimated ground
truths are assumed to be fixed, and the weight ws of each worker

3Clearly, in practice, each individual worker may not be able to execute all the sensing
tasks hosted by the platform. Thus, a more realistic model is to introduce an affinity
term for each worker-task pair (s, m) that indicates whether or not worker s is able
to execute task m. However, to simplify the presentation of our subsequent mathe-
matical analyses, we assume that each worker is capable to execute all the tasks.
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s € 8’ is calculated as

ws = w( > d(xfn,x:;,)), (1)
meM

where w(-) is some monotonically decreasing function, and d(-)
denotes the function that calculates the distance between the
worker’s data x3, and the estimated ground truth xj,. Although
different truth discovery algorithms may adopt different functions
() and d(-), they share the same underlying principle that higher
weights are assigned to workers whose data are closer to the esti-
mated ground truths.

Truth Estimation. In this step, workers’ weights are assumed
to be fixed, and the estimated ground truth x;},, of each task m is

derived as

x;kn — ZSES' stfn . (2)
2seS Ws )
In such weighted aggregation method, the aggregated result x},,

relies more on the workers with higher weights. Usually, the con-
vergence criterion is application specific. For example, the algo-
rithm could be treated as converged as long as the difference be-
tween the estimated ground truths in two consecutive iterations is
less than a threshold.

Note that the payment mechanism that we propose in this pa-
per is independent with the specific forms of the functions «w(-)
and d(-) in Equation (1). Therefore, it is able to work jointly with
any truth discovery algorithm that shares the same procedure as
Algorithm 1. Further discussions on this point will be provided in
Section 4.

3.3 Game Theoretic Model

As the aggregation accuracy of truth discovery algorithms highly
depends on the quality of input data, existing work on truth dis-
covery [6-9] assumes that most data sources have fairly good reli-
ability. In MCS systems, however, such assumption does not hold,
as the data sources here are usually strategic and selfish workers,
who may reduce their sensing effort strategically, and thus, pro-
vide unreliable data.

In this paper, we take into consideration workers’ strategic be-
havior, and incentivize workers to provide high quality data using
a payment mechanism defined in Definition 1.

DEFINITION 1 (PAYMENT MECHANISM). A payment mechanism,
denoted asp : X — RS, where X denotes the set containing all possi-
ble sets of workers’ sensory data, calculates the payments to workers
based on the collected set of data x = {x5,|m € M,s € 8’}. We
use ps(x) > 0 to denote the payment to worker s, when the set of
collected data is x. Note that ps(x) = 0, if worker s drops out.

As mentioned in Section 3.1, the platform firstly announces to
workers the payment mechanism p(-), which then induces a non-
cooperative game*, referred to as sensing game in the rest of this
paper, where workers are the players. In this game, each worker
decides whether or not to participate by evaluating her own ex-
pected utility. That is, a worker s will drop out, if participation
leads to a negative expected utility, and otherwise, she will par-
ticipate with a specific effort level es that maximizes her expected

4Refer to Footnote 2 for definition.
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utility. Similar to past literature [6, 41], we assume that the differ-
ence between any worker s’s data and the ground truth follows a
zero-mean Gaussian distribution, i.e.,

X5, - Xuth © N (0, 82), (3)
where X3, and X}Trl“th are the random variables corresponding to
truth

x5, and the ground truth xIT" respectively, and N (0, §2) denotes a
Gaussian random variable with mean zero and standard deviation
ds. Although we assume that such difference follows a Gaussian
distribution, the results in this paper could be generalized, with
some adaptation, to scenarios with other types of distributions.
Clearly, the standard deviation J5 captures a worker s’s data qual-
ity, as the less the value of §s, the more likely that her sensory data
will be close to the ground truth.

As a worker’s data quality typically increases with her effort
level, we assume that s = gs(es) € [Qs,gs] for each worker s,
where g5(+) is a bounded monotonically non-increasing function.
We allow, in our model, workers to have different g (-) functions
and ranges for their d;’s, because apart from a worker’s effort, her
data quality is also affected by other factors (e.g., skill level, sensor
quality, environment noise). As each worker s is assigned a single
weight ws in the truth discovery algorithm adopted by us (Algo-
rithm 1), we assume that she spends the same amount of effort e
on all the tasks. We leave the study of the scenario where workers
have different effort levels on different tasks in our future work.

For simplicity, we use Js instead of es as a worker s’s strategy,
and use s = L to denote that the worker chooses to drop out.
Thus, a worker s’s strategy space is [QS,ES] U {Ll}. As given by
Equation (3), the distribution of any worker s’s data depends on
ds, we use x(8) to denote the set of collected data, and X(8) the
random variable corresponding to x(8), when workers’ strategy
profileis & = (61,82, -+ ,8s). Then, we define a worker’s utility in
Definition 2.

DEFINITION 2 (WORKER’S UTILITY). Given the payment mecha-
nism p(-) and workers’ strategy profile & = (61,82, ,9s), any
worker s’s utility is

us(8) = ps (x(8)) — Cs(5), @
where Cs(+) is a monotonically decreasing function for ds € [QS,SS],
and Cs(L) = 0. Cs(8s) denotes worker s’s sensing cost when her

strategy is §s. Therefore, the expected utility of worker s (evaluated
by workers) is

Es_, [us (85, 8-5)] = Bs_, [ps (X5, 8-5))] = Cs(8),  (5)
where 8_s = (81, -+ ,8s—1,0s+1, - - - ,0s) denotes workers’ strategy
profile excluding .

In general cases, the calculation of a worker s’s expected utility
in Equation (5) requires the knowledge of the joint distribution of
&_s. However, because of the specific design of our payment mech-
anism described in Section 5, the calculation can be done without
knowing such joint distribution. We leave the detailed discussion
on the required prior statistical knowledge in Section 6.

3.4 Design Objectives

In this paper, we aim to design a payment mechanism which pre-
serves several desirable properties at the Bayesian Nash Equilib-
rium (BNE), formally defined in Definition 3, of the sensing game.
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DEFINITION 3 (BNE). The strategy profile 8 = (87,8,,+ ,8%)

is a Bayesian Nash Equilibrium (BNE) of the sensing game, if
g [us(87.6%0)] 2 Bse [us(8s.8%5)| . Vs € S8, (6)
where 8Z¢ = (87, ,87_1, 05 g5 ,88)-

Clearly, BNE 8" satisfies that any worker s maximizes her ex-
pected utility by taking strategy 8; given that other workers take
strategies 8 . One desirable property we aim to achieve is indi-
vidual rationality defined in Definition 4.

DEFINITION 4 (INDIVIDUAL RATIONALITY). A payment mecha-
nism p(-) is individual rational, if and only if no worker has negative
expected utility at BNE 8%, i.e.,

Eg: [us(87.85)] 2 0.vs € S. (7)

The property of individual rationality is necessary for a payment
mechanism, as it prevents workers from being disincentivized to
participate. Because usually, in practice, the platform works un-
der a fixed budget, another design objective considered is budget
feasibility defined in Definition 5.

DEFINITION 5 (BUDGET FEASIBILITY). A payment mechanism
p(-) is budget feasible, if and only if the expected overall payment
at BNE 8" does not exceed the budget B, i.e.,

Es*[ > b (X(S*))] <B. ®)

seS§’

Another critical desirable property is that workers at BNE pro-
vide high quality data, so that the truth discovery algorithm en-
sures low error probability, which is defined in Definition 6.

DEFINITION 6 (ERROR PROBABILITY). Given anya > 0, we define
the error probability of a truth discovery algorithm as

M
1
Pr(M PR a), )
m=1
where X, denotes the random variable corresponding to the esti-
mated ground truth xj,,. Clearly, it is the probability that the mean
absolute error (MAE), ﬁ Zﬁ\r’f:l |X;kn - X},rl“th|, of a truth discovery
algorithm is no less than a given threshold a.

In summary, our objective is to design an individual rational and
budget feasible payment mechanism, which ensures that the truth
discovery algorithm guarantees low error probability at BNE.

4 MATHEMATICAL FORMULATION

In this section, we formally formulate the payment mechanism de-
sign problem mathematically. Firstly, we introduce the following
Lemma 1 that establishes an upper bound for the error probability
of a truth discovery algorithm defined in Definition 6.

LeEmMA 1. Given any a > 0 and workers’ strategy profile & =
(61,82, -+, 8s), we have that

M
! * truth 2 ZSES’ S
Pr(ﬂ mZ::1 |Xm = Xm | zal=s = (10)
that is, the error probability of a truth discovery algorithm is upper
bounded by \/gzs%"ss



Theseus: Incentivizing Truth Discovery in Mobile Crowd Sensing Systems

Proor. The MAE of a truth discovery algorithm satisfies that

LM LM X
o mZ::l IX;, — Xtk = L ,,,Z‘l SZESSE—S/ iv sm — x(ruth
B v, - x)
- M mzzl ZSES’ Ws
. 1 Z 12565’ WS|XS Xtruth|
B M ZSES’ Ws
| Saes o AL X5, - X
- M 2seS Ws
< Z Z |Xs Xtruth|
sES’ =

As X;, — X;,ﬁ“th ~ N(0, 5?), we have that EHX,Sn - Xﬁ,r,uth” =

,/%55, Thus, given any a > 0, we have that

Pr( i ‘X* Xtruth| > a) < Pr( Z 2 Z |Xs Xtruth| > a)

seS’

Z S _ XS _Xtruth
(Markov’s Inequality) < [ < M 1| i - H
a
_ Toes A7 Tt B[|X - X5
a [24
' ZSES' 5
which is exactly Inequality (10). O

Given any fixed a, the upper bound of the error probability of
a truth discovery algorithm given by Lemma 1 is proportional to
Yses s, ie., the sum of all participating workers’ §;’s. Thus, we
aim to minimize } ;¢ g J; in order to get a good guarantee for
the error probability at BNE 8% = (67,6, -- ,5;). The formal
mathematical formulation of the payment mechanism design (PMD)
problem is given in the following optimization program.

PMD Problem:

min 5: (11)
p(-)e?sg;,
st.Bge [us(85,8%5)] 20, Vs e S (12)
Eé*[ Z ps(x(s*))] <B (13)
seS’

Constants. The PMD problem takes as inputs the worker set S,
the budget B, as well as the set $, which denotes the set consisting
of all the possible payment mechanisms, such that a BNE exists for
the corresponding sensing game.

Variable. The variable of the PMD problem is the payment
mechanism p(-). Furthermore, §* denotes the BNE corresponding
to p(-), and S’ and X(8") denote, respectively, the set of partic-
ipating workers and collected sensory data at the BNE 8*. Note
that as 8%, 83, 8*, and S’ in the PMD problem are determined by
p(+), more comprehensive notations of them are §*(p(-)), 82 (p(+)),

8% (p(+)), and 8’ (p(-)), respectively. For simplicity, however, we
denote them as &%, 83, 8%, and S’ as in the PMD problem.
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Objective function. The objective (Equation (11)) of the PMD
problem is to find the payment mechanism from # with the mini-
mum Y ;s J; at the corresponding BNE &%, which is equivalent
to minimizing the upper bound, as derived in Lemma 1, of a truth
discovery algorithm’s error probability at BNE for a fixed a.

Constraints. Constraint (12) and (13) ensure, respectively, that
any feasible solution p(-) to the PMD problem satisfies individual
rationality and budget feasibility.

Thus, the PMD problem aims to find the individual rational and
budget feasible payment mechanism, which minimizes the upper
bound (given by Lemma 1) of a truth discovery algorithm’s error
probability at the corresponding BNE for any fixed . Clearly, our
formulation of the PMD problem is valid for an arbitrary way of
assigning workers’ weights. Therefore, the above formulation and
the proposed payment mechanism to be presented in the following
section can be applied to any truth discovery algorithm that has the
same procedure as Algorithm 1.

5 PROPOSED PAYMENT MECHANISM

As solving directly the optimal payment mechanism is hard, in
this section, we propose our own payment mechanism, named The-
seus, in Algorithm 2, which approximately solves the PMD prob-
lem with good performance guarantees.

Algorithm 2: Theseus Payment Mechanism
Input: M, S, &', x, {(as, bs)|s € S}
Output: {ps|s € S};

1 foreach worker s € S do
2 if s € S’ then
3 Randomly pick another worker r € S’;

1 M
= a5 37 oy (65, = x7)%

4 ps < bs
5 else
6 L Pps < 05

7 return {ps|s € S};

Algorithm 2 takes as inputs the set of tasks M, workers S, and
participating workers S’, as well as the set of collected sensory
data x, and {(as, bs)|s € S} where ag and by are positive parame-
ters related to the payment to worker s. The calculation of the pay-
ment to any participating worker (line 2-4) borrows the high-level
idea of the peer prediction method [42], which basically decides
the payment based on the difference between her data and that of
a randomly selected reference worker. That is, if worker s partici-
pates (ie., s € S’), Algorithm 2 randomly picks another reference
worker r from the set of participating workers S’ (line 3). Next,
the payment p; to this worker s is set as

M
1
ps=bs—aso Zl(xfn —xh)2. (14)

Clearly, the more worker s’s data agrees with that of the randomly
selected reference worker r, the higher her payment ps will be. If
any worker s drops out (i.e, s ¢ S’), the algorithm will set her
payment as 0 (line 6). Finally, the algorithm returns the set of pay-
ments to all workers {ps|s € S} (line 7). By now, our description
of Theseus has been finished except for one missing piece, that is,
how the parameters {(as, bs)|s € S} are set, which is presented in
the following Section 6.
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Clearly, another intuitive way of deciding the payment ps to
each participating worker s is to set ps to be positively correlated
to her weight w; calculated by the truth discovery algorithm using
Equation (1). However, we do not adopt this approach due to the
difficulty in analyzing the properties of the induced sensing game.

6 PARAMETERIZATION

In this section, we introduce our careful selection of the parameters
{(as, bs)|s € S} in order to ensure that Theseus achieves good per-
formance. To simplify our analysis, we assume that each worker
s’s cost function Cs(+) is linear in §5 € @3,35], ie.,

Cs(8s) = —cs5,105 + ¢5,2, V65 € [és,(ss]’ (15)
where ¢, 1 and cg 2 are positive parameters. Note that such selec-
tion of each worker s’s cost function conforms to the requirement
that her cost should decrease with the increase of §s.

According to how much prior knowledge the platform has about
workers’ cost functions, we parameterize Theseus in the following
two scenarios, namely the complete information scenario where the
platform knows exactly each worker s’s c¢s,1 and cs,2 (Section 6.1),
as well as the incomplete information scenario where only limited
information about cs,1 and cs,2 is known by the platform (Section
6.2). In both scenarios, we assume that QI s éz’ S ,QS, i.e, the lower
bounds of workers’ §s’s, are i.i.d. random variables within the
range [J, §] with PDF f (). Furthermore, the PDF f(-) is assumed
to be a priori known by the platform and workers, which, as will be
shown in Section 6.1.2 and 6.2.2, is the only prior statistical knowl-
edge needed to evaluate workers’ expected utilities.

6.1 Complete Information Scenario
6.1.1 Parameter Selection

As aforementioned, in this section, we assume that the platform
knows exactly both cs 1 and cs 2 in each worker s’s cost function.
Although, in practice, it might be hard for the platform to obtain
such exact knowledge, the complete information scenario is still
relevant and interesting to study, because it sheds light upon the
philosophy of parameterizing Theseus in the incomplete informa-
tion scenario in Section 6.2. For any given A; € [J, 3] we can
parameterize Theseus with any set of parameters {(as, bs)|s € S}
that satisfy Condition (16)-(18).

as > Czs—g, VseS  (16)
bs = as(AZ + A(Ar)) — 1A + e VsE€S  (17)
S S
st SB+ZZa5§2, (18)
s=1 s=1

where A(A;) = f(SA' w? =L 4 The criterion of selecting the

5 f@)do
additional parameter A, will be discussed in Section 6.1.2 as we an-
alyze the performance guarantees of the parameter selection given
by Condition (16)-(18). For each s € S, as b is exactly determined
by as due to Condition (17), one way of parameter selection is to
choose an ag > 625_51 such that Condition (18) is satisfied.

6.1.2  Analysis

In this section, we carry out analyses about the desirable properties
of Theseus by parameterizing it according to Condition (16)-(18).
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We derive the BNE of the sensing game that corresponds to such
parameterization in the following Theorem 1.

THEOREM 1. If parameters {(as, bs)|s € S} satisfy Condition (16)
and (17), we have that 8* = (5;‘, 5;, .-+, 8%), where, for each worker

S
seS,
st 4, lfés > Ay
s = éS’ lfés < Al” (19)
is a BNE of the sensing game in the complete information scenario.

Proor. If any worker s chooses to participate, her expected
utility, when other workers take strategies 87 , and her reference

T
worker r’s strategy 5 is given, can be calculated as
Eus (85, 8%)[87 ] =E[ps (X(J5, 8%,))[67] = Cs(86)
5;*]
+ cs,15s — Cs,2-
As X3, —-X}, = (XThN(0,62)) - (XN (0,62)) = N(0,62)-
N(0,62), we have E[(X,sn - X,’n)z] = 82 + 52. Therefore, we have

M

i 2 (=)’

m=1

=bs — asE

E[us (85, 82)|07 | = bs — as (62 + (57)%) + 5,105 — ¢s.2,
and thus,
Cs,1 * *
max{—,és} =arg max_ E[us((SS,S_S) 5,].
2as 85€[0,,55]

That is, regardless of the value of §;, the strategy s € [4, 8] that

maximizes E[us (6, 8%) 5;‘] is the maximum between 73! and S,

2a

Because of Condition (16), we have that §; > § > g’a: . Therefore,
if any worker s chooses to participate, her strategy must be § , and

thus, her expected utility is
Blus0, 8°)] =B [B[us (@, 82,)|6;]| = Bs, [B[us@,. 52,8, ]]

=Es, [bs —as (éi + éi) +es18, — 03,2]

=by— ay (82 + B [82]3, < A/]) + 0B, - e
:(as (A2 + AAD) - conhs + cs,z)—
(as(82 + 40) = 018, + 52,
where A(Ar) = [ u? T du, and the last equality is due

[5" fo)dv
to Condition (17). Therefore, we have that for each worker s € S
E[us(8,.8%5)] <0, 8 > A,
{E[us(gs,sis)] >0, ifs, <A,
and thus, given that other workers take the strategies 8* ;, worker
s will drop out, if §; > Ay, and will take strategy d, if §; < Ay.
Hence, the strategy profile 8" given in Theorem 1 is a BNE of the
sensing game. ]

Theorem 1 gives us a BNE of the sensing game, where every
worker s with §_ > A; will voluntarily drop out, and as long as
d, < Ay, the worker s will participate with strategy §, which is
exactly the smallest standard deviation of the difference between
her data and the ground truths. That is, by satisfying Condition (16)
and (17), Theseus will only incentivize workers who potentially is
capable of providing high quality data to participate, and those
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who choose to participate will exert their maximum amount of ef-
fort, leading them to provide reliable data. Note that there might
be multiple BNEs for the sensing game. However, to the best of
our knowledge, we have not found other BNEs except for the one
given in Theorem 1, on which our further analyses in this section
are based. We leave the derivation of other BNEs or the proof of
the uniqueness of BNE in our future work. Next, we prove in the
following Theorem 2 that Theseus satisfies budget feasibility in the
complete information scenario by satisfying Condition (18).

THEOREM 2. Condition (18) ensures that Theseus is budget feasible
in the complete information scenario.

Proor. At the BNE 8§ given in Theorem 1, the expected overall
payment satisfies that

B Zps(x<6*>)] = 2 Blps(x(8))]

seS’ seS’

=> (— as(éi +E[5),

ses’
s
Z ( - 2as§2 + 2as§2) +B =B,

<Z - 2a,8" + by)
s=1

where the last 1nequahty is because of Condition (18), which ex-
actly proves that Theseus is budget feasible in the complete infor-
mation scenario. o

5, < A,]) + bs)

Clearly, as stated in the following Theorem 3, Theseus satisfies
individual rationality in the complete information scenario.

THEOREM 3. Theseus is individual rational in the complete infor-
mation scenario.

Proor. Theorem 3 is an obvious fact, which directly follows
from the fact that only workers with non-negative expected utili-
ties at the BNE will choose to participate. Hence, no worker will
have negative utility, and thus, individual rationality is satisfied in
the complete information scenario. O

Next, we discuss our selection criterion of the parameter A;.
Following notational conventions in order statistics, we denote
84y = min{g;,8,,---,8¢}. We assume that the CDF F(:) of any
d, isinvertible, and its inverse is F~1(.). Based on Theorem 1, if A;
is set to be too small, no workers will participate at the BNE. Thus,
we establish a lower bound for A; in the following Theorem 4.

THEOREM 4. Given any 6, € (0,1), if Ay > F’l(l - V1= 96),
then Pr(é(l) < At) > O, i.e., the probability that at least one worker

chooses to participate at the BNE of the sensing game, in the complete
information scenario, is no less than the threshold 0,.

Because of space limit, we place the proof of Theorem 4 in our
technical report [43]. In the rest of our analyses, we use APP to de-
note the the value of the PMD problem’s objective function guaran-
teed by Theseus. Theorem 4 gives us that if A; > F~1 (1 -¥1- GC),
the probability that there exists at least one participating worker
at the BNE of the sensing game is guaranteed to be no less than the
predefined threshold 8. € (0, 1). However, this does not mean that
Ay could be infinitely large, because the greater A; is, the farther
APP will drift apart from the minimum value of the PMD prob-
lem’s objective function. Thus, in the following Theorem 5, we
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derive an upper bound for the parameter A;. Note that for any
payment mechanism that ensures the participation of at least one
worker, the minimum possible value for the objective function is
OPT =4, 1)° which is the optimal benchmark that we compare APP
with.

THEOREM 5. In the complete information scenario, given ac > 1
and B € (0,1), we have that

APP
Pr(m > (Zc) < ﬁc, (20)

if Ay < Ay, where A, is the solution to

Zthf—ﬁ(}z(&)s—go&) =0, (21)

. — A; f(w)
thR(A;) = S A CO N
wi ( t) fé u éAtf(v)dv u

Proor. At the BNE §* given in Theorem 1, we have that

S
APP = Z o5 = Z g = Zésﬂ{ésﬁﬂt}
sesS’ ses’ s=1
where, for each s € S, 1, S_<A.) is an indicator function, such that
0, lf(SS > At
Lis <p,y = s ,
6,4, 1, if§, <A

and thus, és]l{ésSAz] € [0, A¢]. Thus, for a fixed @ > 1, we have

OPT
(2§1§515<A,) ) (ZS 1915 <a,) )
=Prl ————————— >a. | <Prl ———————— > «a,
Sa [
2o (8 Mys <o —EI8,18, < A s
:Pr( 8 S D, == -B[elo, <ol

252( £ _E[5,18, <A,]) 2(aed — R(A)S)?
<exp SA% = exp _S—Ai’

where the last inequality is because of the Hoeffding’s inequality,

Ay f(u) .
dR(A —————du. For a fixed fic € (0, 1), by sett
and R(A;) = 5 U éAtf(v)dv u. For a fixed fc € (0, 1), by setting

_ 2
eXP(_%) < e, we get that Ay + [~ 527 (R(A)S-

50{0) < 0. Therefore, by setting A; to be no greater than the upper

bound At given in Theorem 5, we have Pr(o—Pg > ac) < Be. O

By Theorem 5, we have that, as long as A; < A;, the probabil-
ity that the approximation ratio 81;}; > ac is no greater than S,
for the predefined constants @, > 1 and f. € (0,1). This shows
the probabilistic guarantee on the approximation ratio of Theseus
compared to the optimal payment mechanism. Next, we have the
following Corollary 1 about the range from which the parameter

Ay should be selected.

COROLLARY 1. By jointly considering Theorem 4 and 5, the pa-
rameter Ay should satisfy that F_l(l - V1= 90) < A+ < A;in
the complete information scenario, in order to guarantee that with
high probability there exist participating workers at the correspond-
ing BNE (Theorem 4), and that with high probability Theseus has a
small approximation ratio (Theorem 5).
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6.2 Incomplete Information Scenario
6.2.1 Parameter Selection

In this section, we study a more practical incomplete informa-
tion scenario, where the platform does not know the exact val-
ues of each worker s’s cs,1 and cs, 2, but instead, only knows that
cs,1 € [¢q,¢1], and ¢s2 € [cy, C2], for each worker s. In this case,
given any A; and Ay, such that § < A; < Aj, < 8, we can param-
eterize Theseus with any set of parameters {(as, bs)|s € S} such
that Condition (22)-(25) are satisfied.

as > %, VseS  (22)
bs < as(Af + A(Ap)) = €1Ap + ¢y VseS (23)
bs > as (A} + A(Ap)) —¢;Ap+C2. VsES (24)
S S
Z bs < B+ Z 20,6, (25)
s=1 s=1
where A(Ap) = féAh w?— LW 1, Note that the criterion of se-

J5" fo)do
lecting A; and Ay, will be discussed in Section 6.2.2 as we introduce
the corresponding analyses. Given these conditions, one specific
way of parameter selection for each s € S is to choose an as > 2%

such that Condition (22)-(25) are satisfied.

6.2.2  Analysis

In this section, we firstly characterize the BNE of the sensing game
by parameterizing Theseus in the incomplete information scenario
according to Condition (22)-(25) in the following Theorem 6.

THEOREM 6. Ifparameters{(as, bs)|s € S} satisfy Condition (22)-
(24), we have a BNE §* = (5;‘, 5;, cee 5;) of the sensing game in the
incomplete information scenario, such that, for each workers € S,

if és > Ah

1,
8 = {ésv 5 <A (26)

Because of space limit, we place the proof of Theorem 6 in our
technical report [43]. Theorem 6 characterizes a BNE of the sens-
ing game, where each worker s with §; > Ay will drop out, and as
long as §; < Ay, she will participate with strategy J,. Note that,
at the BNE, each worker s with § € (A;, Aj] has to evaluate her
expected utility based on the specific choice of {(as, bs)|s € S} in
order to make the decision of whether or not to participate. All of
the following analyses in this section are based on the BNE char-
acterized in Theorem 6. We also leave the proof of the uniqueness
of BNE or the derivation of other BNEs in our future work. Next,
we introduce in Theorem 7 and 8 about the budget feasibility and
individual rationality of Theseus in the incomplete information sce-
nario.

THEOREM 7. Condition (25) ensures that Theseus is budget feasible
in the incomplete information scenario.

THEOREM 8. Theseus is individual rational in the incomplete in-
formation scenario.

The proof of Theorem 7 is the same as that of Theorem 2 except
that the A; is replaced by Ay, and the proof of Theorem 8 is exactly
identical to that of Theorem 3. Thus, we omit the formal proofs of
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Theorem 7 and 8 in this paper. Similar to Section 6.1.2, we estab-
lish ranges from which we select parameters A; and Aj. In the
following Theorem 9, we introduce a lower bound for A;.

THEOREM 9. Given any 0;c € (0,1), if A} > F’l(l - V1- Hic),
then Pr(é(l) < Al) > O, ie., the probability that at least one
worker chooses to participate at the BNE of the sensing game, in the
incomplete information scenario, is no less than the threshold 0;..

The proof of Theorem 9 is omitted in this paper as well, because
it can be directly adapted from that of Theorem 4 by changing A;
to A; and 6, to 0;.. By Theorem 9, we have that, in the incomplete
information scenario, it is A; that decides the probability that at
least one worker chooses to participate at the BNE of the sensing
game. That is, as long as A; > F~! (1 - 1= Gic), this probability,
ie., Pr(é(l) < Al), will be no less than the predefined threshold
Oic. Next, in the following Theorem 10, where APP and OPT have
the same meanings as in Theorem 5, we derive an upper bound for
the parameter Ay,.

THEOREM 10. In the incomplete information scenario, given ajc >
1 and Bic € (0, 1), we have that

APP
Pr(ﬁ 2 aic) < Bic> (27)

if A, < Ay, where Ay, is the solution to

Ap+ 4 /—Slnzﬁic (R(Zh)s - Qaic) =0, (28)

. —\ _ rAn fw
hR(Ay) = ———du.
wit ( h) fé u éAhf(v)dv u

Proor. Atthe BNE 8 of the sensing game characterized in The-

orem 6, we have that
S

APP = Z és = ZQSH{QSSAH’
seS’ s=1
where, for eachs € S, 1 8, <An) is an indicator function, such that
1 0, ifés > Ap
(8 ,<Ap} = 1, ifés <Ay
Thus, similar to the proof of Theorem 5, for a fixed a;. > 1, we
have that

S
APP Ye=18s1(s <a
Pr( > aic) < Pr(sls—[5<h] > aje

OPT 50
2(aicd — R(AR)S)°
<exp| - ————,
SAY
where R(Ap) = fAh u#du. Thus, for any fixed Bic €
ST fo)do
- s 2
(0,1), by setting exp( - W) < Pic, we get Ap +
h

/—#ﬁic(R(Ah)S - Qaic) < 0. Therefore, by setting Aj, to be

no greater than the upper bound Ay, given in Theorem 10, we have
that Pr( &% > aic) < fic. o

Similar to Theorem 5, Theorem 10 gives us a probabilistic guar-
antee on the approximation ratio of Theseus compared to the opti-
mal payment mechanism in the incomplete information scenario.
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That is, as long as A, < Ay, the probability that the approximation
ratio % > aj¢ is no greater than f;., for the predefined constants
ajc > 1and fic € (0,1). Next, we introduce in Corollary 2 about
the ranges from which we select the parameters A; and Ay,

COROLLARY 2. By jointly considering Theorem 9 and 10, in the
incomplete information scenario, the parameters A; and Ay, should
satisfy F~! (l - W) A < Ap <
tee, with high probability, the existence of at least one participating
worker at the corresponding BNE (Theorem 9), and that with high
probability Theseus yields a small approximation ratio (Theorem 10).

A}, in order to guaran-

6.3 Summary of Parameterization

Thus far, we have finished our discussion of parameterizing The-
seus in both the complete (Section 6.1) and incomplete (Section
6.2) information scenario. In summary, in the complete informa-
tion scenario, if parameters {(as, bs)|s € S} and A; satisfy Con-
dition (16)-(18) and Corollary 1, at the BNE derived in Theorem 1,
Theseus satisfies budget feasibility (Theorem 2), individual ratio-
nality (Theorem 3), as well as with high probability it has a small
approximation ratio (Theorem 5), and with high probability it guar-
antees that there exist participating workers (Theorem 4). Simi-
larly, in the incomplete information scenario, if we set parameters
{(as,bs)|s € S}, Aj, and Ay, according to Condition (22)-(25) and
Corollary 2, at the BNE characterized in Theorem 6, Theseus also
satisfies budget feasibility (Theorem 7), individual rationality (The-
orem 8), as well as with high probability it guarantees that there
will be participating workers (Theorem 9), and with high probabil-
ity it has a small approximation ratio (Theorem 10).

7 PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, as well as sim-
ulation settings and results.

7.1 Baseline Methods

In the first baseline method, called Max Std, considered in this pa-
per, each worker s takes strategy 53, i.e., the maximum standard
deviation of the difference between her data and the ground truths.
Max Std actually corresponds to the family of payment mecha-
nisms that provide rather insufficient incentives so that workers
are only willing to spend little amount of effort. Different from
Max Std, in the second baseline method, called Random Std, each
worker s selects her strategy s uniformly at random from the
range [§ s,gs]. We compare these two baseline methods with the
BNEs of the sensing game induced by Theseus in both the com-
plete and incomplete information scenario, which are established
in Theorem 1 and 6, respectively. Note that we do not compare
Theseus with existing mechanisms in past literature, because, as
indicated in Section 2, none of them consider the same scenario as
this paper, and thus they are not comparable with Theseus.

7.2 Simulation Settings

For the complete information scenario, we consider setting I and
II given in Table 1. In both of these two settings, for each worker
5,9 Rt generated uniformly at random from the range [0.1, 4], i.e.,
Qs ~ U[0.1, 4]. Furthermore, we set 6. = 0.9, ac = 5, and . = 0.1,
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and generate 5 and xtruth uniformly at random from the range

[5,10] and [0, 10], respectively. In setting I, we fix the number of
tasks as M = 30 and vary the number of workers S from 120 to
150, whereas in setting I, we fix the number of workers as S =
130 and vary the number of tasks M from 10 to 40. Note that the
parameter A is generated uniformly at random from the range

F1(1 — 1=00), Ar]

1nformat10n scenario, we generate the parameters §, s, ic, tic,

. In setting IIl and IV for the incomplete

Bic, xtruth S, and M in the same way as in setting I and II, and
select A; and Aj, uniformly at random from the range [F~1(1 —

1= 0;c), Ap] such that A; < Ay,

lsetﬁng[ é [ [‘9(.9 ezc [ X, Xic [ﬁ(_v ﬁu [ :;Jth [ S [ l
[ LI J[o.1, 4]][5, 10][ 5 ] 0.1 J[o,10]][120,150]] 30 |
[ L1V (0.1, 4][[5, 10]] 0. 9 [ 5 ] 0.1 [[o,10][ 130 [[10, 40]|

Table 1: Simulation settings

truth orker s data on task

In all these settings, given J; and x;,,
m, which is x3,, is generated by addmg a randomly sampled noise
from the distribution N(0,52) to the ground truth x™**  Then,
workers’ data generated by Max Std and Random Std, as well as at
the BNEs of the sensing game induced by Theseus, are treated as
the inputs to a truth discovery algorithm, respectively, to calculate
the estimated ground truths. In our simulation, the truth discovery
algorithm that we implement is the widely adopted CRH [7], which
calculates each participating worker s’s weight wg as

~ (zs/es/ Smem x5, —x:;,|2>
ws = log .

29
SimeM X = xp|? )

7.3 Simulation Results

In this section, we firstly demonstrate our simulation results re-
garding the comparison among Max Std, Random Std, and Theseus,
in terms of the truth discovery algorithm CRH’s MAEs (defined in
Definition 6), in Figure 2-5. Note that for each specific worker and
task number, we repeatedly generate workers’ data, run the truth
discovery algorithm CRH, and calculate the corresponding MAE
for 10000 times.

—<— Max Std
Random Std 18
—o6— Theseus

—%— Max Std
—=~— Random Std
—©— Theseus

TIITIIITIIIIT
TYTTITYTTYYYYY|

=
e

-9% 0.9) 11T
v %%ﬁ%ﬁ‘%ﬁ%%%%% “HE s

o aiaia iaiais 9
120 123 126 129 132 135 138 141 1 E
Number of Workers

0 10 13 16 19 22 25 28 31 34 37 40

Number of Tasks

Figure 2: MAE comparison Figure 3: MAE comparison
(setting I) (setting IT)

In Figure 2 and 3, we plot the means and standard deviations of
the MAEs corresponding to Max Std, Random Std, and Theseus for
setting I and II of the complete information scenario. From these
two figures, it is easily observable that the means and standard
deviations of the MAEs that correspond to Theseus are far less
than those that correspond to Max Std and Random Std, which
is because Theseus incentivizes workers to exert their maximum
amount of effort, so that the standard deviation between each
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worker’s data and the ground truths is minimized. Note that, in Fig-
ure 2, the mean of MAE largely decreases as the number of workers
increase, because more data that are close to the ground truths will
be inputted to CRH with more number of workers. Figure 4 and
5 demonstrate similar trends for the MAEs in setting IIl and IV of
the incomplete information scenario.

Basically, Figure 2-5 indicate collectively that a truth discovery
algorithm will return rather inaccurate aggregated results, when a
vast majority of the participating workers provide unreliable data.
Therefore, our Theseus payment mechanism is highly necessary
in order to achieve high aggregation accuracy, even though the
platform aggregates workers’ data using a state-of-the-art truth
discovery algorithm.

—— Max Std
—4— Rando
—©— Theseus

—— Max Std

1'5HHUTITTINITTHTHUHTUTTT
- Lz\HHHHIHIHILHHHMMMM
E
= 0.9)
HHH‘%%HHHHQ;H@{H 5543

120 123 126 129 132 135 138 141 144 147 150 o 13 16 19
Number of Workers

2 25 28 31 34 37 40
Number of Tasks

Figure 4: MAE comparison Figure 5: MAE comparison
(setting III) (setting IV)

8 CONCLUSION

In conclusion, in this paper, we propose a payment mechanism,
called Theseus, which is used in pair with a truth discovery algo-
rithm to ensure high aggregation accuracy in MCS systems where
workers may strategically reduce their sensing effort. Theseus
tackles workers’ strategic behavior, and incentivizes workers to
spend their maximum possible effort at the BNE of the induced
sensing game among workers. Furthermore, we ensure that The-
seus bears other desirable properties, including individual rational-
ity and budget feasibility. The desirable properties of Theseus are
validated through theoretical analysis, and extensive simulations.
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