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Reflective limiters based on self-induced violation of CT symmetry
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Non-Hermitian bipartite photonic lattices with charge-conjugation (CT ) symmetry can support resonant defect

modes which are resilient to bipartite losses and structural imperfections. When, however, a (self-)induced

violation of the CT symmetry occurs via tiny permittivity variations, the resonant mode is exposed to the bipartite

losses and it is destroyed. Consequently, the transmission peak is suppressed while the reflectance becomes

(almost) unity. We propose the use of such photonic systems as power switches, limiters, and sensors.
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I. INTRODUCTION

Symmetries and their violations constitute an important

theme of investigation, both for their own fundamental interest

[1] and for their potential technological use in managing wave

transport [2,3]. For example, the violation of time-reversal

(T ) symmetry is a necessary condition for the realization

of isolators and circulators [4–6]. Similarly, chiral (C) [7–9]

and charge-conjugation (CT ) symmetries [7] have been proven

important for the realization of defect modes which are

topologically protected against disorder and which poten-

tially enable robust unidirectional transport, mode selectivity,

etc. [10–22]. Originally these topologically protected defect

states attracted attention due to their possible realizations in

condensed matter systems [23–25]. Recently, classical wave

physics setups—like photonics, acoustics, and microwaves—

have been proven fertile platforms for the implementation of

topological defect modes [18,26–29]. In all of these cases

the topological protection invokes a combination of judi-

cious band-structure designs and symmetry implementations

[10–21]. Among the well-studied setups are coupled resonator

optical (or microwave or acoustic) waveguide (CROW) arrays

[18,20–22,26,29]. Extensions to non-Hermitian CROWs have

also been considered and were shown to support nontrivial

topologically protected defect modes [30–32]. Nevertheless,

very few studies address the transport properties of these defect

states once the system is coupled to leads [20,21,33,34].

Here, we design a family of CT -symmetric non-Hermitian

bipartite CROW arrays with (self-)regulated transport char-

acteristics. These arrays consist of resonators with the same

resonant frequencies but different linewidths. In the presence of

a topological defect [18], the associated CT -symmetric defect

mode is strongly localized around the defect resonator and has

nodal points at alternating resonators. This symmetry-induced

staggered profile shields the defect mode from structural im-

perfections and from losses associated with the “nodal-point”

resonators. We show that the symmetry protection pertains also

to the case of scattering setups where the associated resonant

defect mode has a similar staggered form—thus minimizing

the interaction with the lossy “nodal-point” resonators and

enforcing a high resonant transmission peak. We refer to

this phenomenon as symmetry-enforced transmittivity. When,

however, the defect resonator is made of a material with a

permittivity that is sensitive to either self-induced heating due

to high fluence of the incoming electromagnetic radiation,

or to high intensity field values, the resonant defect mode

experiences a CT -symmetry violation. This self-induced ex-

plicit symmetry violation exposes the defect mode to the lossy

“nodal-point” resonators, leading to its destruction together

with the dramatic suppression of the associated resonant

transmission. As a result, the entire structure becomes highly

reflective at the resonant frequency. We propose to utilize

the fragile nature of the resonant transport to CT -symmetry

violations in order to realize a different family of photonic

limiters and switches [35,36].

The structure of the paper is as follows. In Sec. II, we

present the proposed CROW microwave photonic limiter and

its symmetries. We also discuss the consequences of these

symmetries in the structure of the defect mode and its resulting

robustness against structural imperfections. In Sec. III, we

analyze the scattering setup and demonstrate the hypersensitive

nature of the defect resonant transmission against self-induced

(explicit) symmetry violations. In Sec. IV we analyze an

on-chip version of the photonic limiter and demonstrate its

efficiency against previous proposals. Finally, in Sec. V we

present our conclusions.

II. DESIGN AND MODELING OF CT -SYMMETRIC

MICROWAVE CROWs

A design of our setup is shown in Fig. 1. It consists of a one-

dimensional array of N resonators, which are arranged with

alternating short (d1) and long (d2) distances from one another.

We assume, without any loss of generality, that N = 21. A

central dimerization defect at n0 = 11, assumed to consist of

a thermally (or intensity) modulated material, is introduced

by repeating the spacing d2 from the adjacent resonators

on the left and right, respectively. The permittivity variation

in the material making up the defect resonator (n0 = 11) is

assumed to be self-induced (e.g., via heating by the incident

radiation or via the local field intensity). Representatives of

such materials include germanium-antimony-tellurium alloys

[37], oxides of vanadium, etc. [38,39]. The resonant frequency

βn0
of the defect resonator matches the frequencies of the other

resonators, βn = β0. The two resonators on the left (n = 10)
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FIG. 1. (a) A CT -symmetric microwave CROW array consisting

of identical resonators separated with alternating distances d1 and

d2. A central defect (blue), which contains a permittivity modulated

material, is introduced by repeating d2. The two nearby resonators

(red) have enhanced Ohmic losses (a). For weak signals the incident

radiation is transmitted via a midgap resonant defect mode with

a staggered profile (b). When CT violation is (self-)induced via

permittivity variations of the central resonator, the structure operates

as a broadband reflector. (c) The eigenfrequencies vs their respective

indices for various disorder realizations of d1 and d2. The defect

eigenmode (middle of the gap) is spectrally protected against disorder.

The other modes are sensitive to d1 and d2 variations (shadowed area).

(d) Transmittance for different positional realizations. The resonant

peak is insensitive and spectrally protected.

and right (n = 12) of the central defect (see Fig. 1), involve

large Ohmic losses. The losses are optimally managed in a

way that these resonators maintain the same resonant mode

as the other cavities—a condition that is necessary for CT

symmetry—and at the same time overcome restrictions from

the Kramers-Kronig relations. This can be achieved through

deposition of thin layers of a metal on top of the resonators

or by using an absorbing paint like graphite powder. The

losses due to the coating will be reflected in the resonant

frequencies of these resonators which acquire an imaginary

part, i.e., β10 = β12 = β0 + iγ . In our numerics, we have

assumed that β0 = 6.55 GHz, γ = 50 MHz, t1 = 50 MHz, and

t2 = 10 MHz.

The array of Fig. 1 is described, in the resonant mode

representation of the isolated resonators, by the following

tight-binding Hamiltonian:

H =
∑

n

βn|n〉〈n| +
∑

n

tn(|n〉〈n + 1| + |n + 1〉〈n|), (1)

where n = 1, . . . ,N denotes the resonator index and tn = t1
or t2 indicates the evanescent coupling strengths between

the two nearby resonators [with their corresponding short

(d1) and long (d2) distances, respectively]. When γ = 0, the

Hamiltonian (1) is chiral symmetric, i.e., {C,H } = 0 [40],

where {· · · } indicates an anticommutation, and C = Peven −
Podd is the chiral operator with Peven/odd = ∑

n∈even/odd Pn

and Pn ≡ |n〉〈n| is the projection to a specific site n. The

eigenfrequencies νn of Hamiltonian (1) are real and occupy two

bands, β0 − t1 − t2 < ν < β0 − |t1 − t2| and β0 + |t1 − t2| <

ν < β0 + t1 + t2, separated by a gap of width � ≡ 2|t1 − t2|.
The central unpaired eigenfrequency νD = β0 corresponds to

a C-symmetric defect eigenmode ψD which is localized at

n0 = 11. At the infinite-chain limit, the field amplitude ψD
n

at the nth resonator takes the form

ψ D

n ∼
{

1√
ξ

e
−

|n−n0 |
ξ , n odd

0, n even
, (2)

where ξ = 1/ ln(t1/t2). Importantly, Eq. (2) indicates that this

state is supported only by the odd n sublattice. Therefore,

it is also an eigenstate of any diagonal operator D{n∈even} =
∑

n∈even cnPn (where cn is a complex number), with associated

zero eigenvalue.

When γ �= 0, the Hamiltonian (1) becomes non-Hermitian

and {C,H } �= 0; thus the system is no longer chiral symmetric.

We find that H anticommutes with the charge-conjugation op-

erator CT , i.e., {CT ,H } = 0, where C is the unitary chiral sym-

metry operator (as defined above) and T is the time-reversal

operator associated with complex conjugation operations. CT

symmetry, also known as particle-hole symmetry, has recently

been explored in the context of photonic systems [31,41] and

has profound consequences on the spectrum of Eq. (1). The

latter now consists of pairs of complex eigenfrequencies β0 +
δνn, β0 − δν∗

n , where δνn is a complex number. The (unpaired)

defect mode ψD [see Eq. (2)] is an eigenstate of D{n=10,12} =
iγ (P10 + P12), with corresponding zero eigenvalue, and thus

it is also an eigenstate of the non-Hermitian Hamiltonian (1)

H (γ ) = H (0) + D{n=10,12} with an eigenfrequency νD = β0.

In order to verify the robustness of the defect state [i.e.,

both the position of the eigenfrequency νD = β0 and the

shape of the mode; see Eq. (2)] against structural disorder,

we introduced random variations of the coupling strengths t1
and t2, while preserving the dimer structure of the lattice; see

Fig. 1(c). To this end, we have replaced each of the values of

tn in Eq. (1) with a random statistically independent coupling

given by t1/2 → t̃1/2 = t1/2 + W
2
ξn t̃ , where W is the disorder

strength, and ξn is a random number drawn from a uniform

distribution in the interval [−1,1]. Finally, t̃ = t1−t2
2

. We note

that a detailed experimental study of the robustness of the

topologically protected defect mode has been performed in

[21]. It turns out (see next section) that the resilience of the

topologically protected mode carries over also in the case when

the system is coupled to two leads. In this case, the defect mode

becomes a topologically protected resonant mode, giving rise

to a robust (against structural disorder) resonant transmittance;

see Fig. 1(d).

Let us now assume that the central resonator is made

by a nonlinear material (say with a Kerr-like or thermal

nonlinearity), thus making it more susceptible (with respect

to the other resonators) to incident light radiation. In this case

its permittivity, and consequently its resonant frequency β0,

will be modified as β11 = β0 → β0 + δ whenever the power

or fluence of the incident radiation is above some critical

value. We find that the small detuning δ will formally induce a
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FIG. 2. (a) Defect mode profiles of the CT -symmetric CROW of

Eq. (1) for various detuning strengths δ. As δ increases, the staggered

form of the field is destroyed. (b) Scattering field distribution at

resonant frequency for the same systems described in (a). Note

the nonmonotonic field intensity vs δ at the position of the lossy

resonators. Eventually the destruction of the resonant localized defect

mode occurs.

violation of C symmetry for H (0) as well as a violation of CT

symmetry for H (γ ). Furthermore, at some critical value of δ

the staggered form Eq. (2) of the defect mode ψD is destroyed,

acquiring a nonzero field amplitude at the lossy resonators

at n = 10 and n = 12; see Fig. 2(a). At the same time the

associated eigenfrequency νD acquires an imaginary part—a

signature of a low Q factor due to the local losses at resonators

n = 10 and n = 12. Using second-order perturbation theory

with respect to P{n=11} we estimate that for δ < 4t1/N (4t1/N

is the spacing between nearby levels for δ = 0) the imaginary

part of νD of the perturbed system H (γ ) + δP{n=11} scales as

Im{νD} ∝ δ2.

III. HYPERSENSITIVE TRANSPORT

Next, we couple the system of Eq. (1) with two antennas,

at the first and last resonators. The antennas are modeled as

one-dimensional semi-infinite periodic tight-binding lattices

with coupling constants tL = (t1 + t2)/2 and on-site eigen-

frequencies βL = β0. These antennas support propagating

waves with an eigenfrequency ν = νL − 2tL cos k where k is

the associated wave vector. The coupling between the antennas

and the first and last resonator is assumed to be tL.

Within the scattering framework, the defect mode becomes

a resonant localized mode with small but finite linewidth. Its

shape and transport properties are studied using the transfer

matrix Mn:

(

ψn+1

ψn

)

= Mn

(

ψn

ψn−1

)

, Mn ≡
(

ν−βn

tn+1
− tn

tn+1

1 0

)

. (3)

Equation (3), together with appropriate boundary condi-

tions, allows us to obtain the resonant mode profile at any

resonator within the CROW. Without loss of generality we shall

use the scattering boundary conditions ψn = teink for n � N

and ψn = eink + re−ink for n � 1 describing a left incident

propagating wave with unit amplitude and reflection coefficient
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FIG. 3. (a) Transmittance (T), and (b) absorbance (A) vs fre-

quency for various detuning strengths δ. The system is shown in

Fig. 1(a).

r . The associated transmittance T = |t |2 and reflectance R =
|r|2 are evaluated via iteration of Eq. (3).

The scattering field intensities of the resonant defect mode

for different values of the detuning δ are shown in Fig. 2(b).

When δ = 0, the scattering field profile resembles the stag-

gered form Eq. (2) of the associated localized defect mode.

Importantly, the position of the lossy resonators at n = 10, 12

coincides with the position of the (quasi-)nodal points of the

resonant defect mode. Thus, the interaction of the field with

these cavities is negligible and the structure demonstrates

the phenomenon of “symmetry-enforced transmittivity”; i.e.,

we have a high resonant transmission peak at ν = ν0; see

Fig. 3(a). The spectral position of the resonant transmission

peak is robust against positional disorder, as is demonstrated

in Fig. 1(d).

When a small detuning δ is introduced, the CT symmetry

is violated and the field amplitudes at the lossy resonators

at sites 10 and 12 are different than zero; see Fig. 2(b). At

the same time the resonant transmission peak decreases; see

Fig. 3(a). Interestingly enough, also the absorbance shows the

same decreasing trend; see Fig. 3(b) and discussion below.

For even larger values of δ, the resonant localized mode is

suppressed and for δ = δcrit it is eventually destroyed; see

Fig. 2(b). One can estimate this critical detuning by realizing

that the destruction of the resonant mode is associated with

the competition between two physical mechanisms: the de-

terioration of the resonant Q factor because of the radiative

losses from the boundary which lead to broadening of the

linewidth by 	rad ∝ exp(−N/ξ ), and the bulk (Ohmic) losses

which are triggered by the interaction of the field with the

lossy resonators at sites 10 and 12. The latter contributes to

a linewidth Im{νD} ∝ δ2(see previous discussion). Equating

these two expressions we obtain δcrit ∝ exp(−N/2ξ ). In other

words, even an exponentially small detuning results in the

destruction of the resonant defect mode and a dramatic suppres-

sion of the associated resonant transmittance; see Fig. 4(a). The

underlying physical mechanism associated with this abrupt

change in the transport characteristics of the photonic structure

relies on an underdamping-to-overdamping transition. In the

former regime, the (small) radiative losses are the dominant

043864-3



ELEANA MAKRI, RONEY THOMAS, AND TSAMPIKOS KOTTOS PHYSICAL REVIEW A 97, 043864 (2018)

10
-6

10
-3

10
0

0.01 1
δ (%∆)

10
-4

10
-2

10
010

-8

10
-4

10
0

T

A

A

R

(a)

(c)

(b)

FIG. 4. (a) The resonant transmittance T, (b) reflectance R, and

(c) absorbance A vs the detuning strength δ.

mechanism that spoils the Q factor of the structure, while in

the latter case the Q factor is dominated by the (strong) Ohmic

losses. In this case, there is a strong impendence mismatch

between the incoming wave and the resonant defect mode

which, in turn, leads to the high reflection and consequently

suppressed transmittance observed in our simulations.

In Figs. 4(b) and 4(c), we report the reflectance and ab-

sorbance at the associated resonant frequency, vs the detuning

δ. We find that, for δ ≈ δcrit, the incoming photons do not

couple at all with the resonant mode (strong impedance

mismatch), but rather are reflected immediately. A quantitative

understanding of this behavior requires the analysis of the

absorbance A(ν) of the resonance mode. Using Eq. (3) we

obtain

N
∑

n=1

γn

∣

∣ψδ
n

∣

∣

2 + tLIm
{(

ψδ
1

)∗
ψδ

0 +
(

ψδ
N

)∗
ψδ

N+1

}

= 0, (4)

where ψδ
n is the nth component of the scattering field associated

with a detuning δ and we have used the fact that the frequency

ν(k) of the incident wave is real. Substituting in Eq. (4) the

expressions of the field ψn = teink for n � N and ψn = eink +
re−ink for n � 1, and taking into consideration that γn = γ for

n = 10, 12, and zero otherwise, we obtain

A ≡ 1 − T − R = 2γ

∣

∣ψδ
10

∣

∣

2 +
∣

∣ψδ
12

∣

∣

2

vg

, (5)

where vg = ∂ν(k)/∂k is the group velocity. From Eq. (5)

one concludes that the absorbance depends on the (Ohmic)

dissipation γ , the value(s) of the scattering field intensities

at the position of the dissipative resonators, and is inversely

proportional to the group velocity vg(k). In our case, γ is

constant. At the same time, vg(k) at the resonant mode can also

be considered constant, to a good approximation (a small shift

of the resonant position ∼ δ is irrelevant for our discussion).

On the other hand, the change of the scattering field

intensities |ψδ
10|2, |ψδ

12|2 can vary by orders of magnitude

as δ increases; see Fig. 2(b). Specifically, for δ = 0 we

have |ψδ
10|2,|ψδ

12|2 ≈ 0 and thus A = 0. For small detuning

strengths δ < δcrit, the scattering field intensities |ψδ
10|2, |ψδ

12|2
increase [see δ = 2% in Fig. 2(b)] and as a result the absorbance
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FIG. 5. Frequency spectrum for various realizations of random

distances d1, d2 of a CT -symmetric CROW consisting of nine rings.

The two (quasidegenerate) defect modes in the middle of the gap

remain unaffected by the disorder and preserve the staggered form of

Eq. (2) (see inset for a density plot— even rings are not visible).

A also increases [see Fig. 4(c)]. However, when δ > δcrit the

field intensities at n = 10, 12 begin to decrease [see δ = 4%

in Fig. 2(b)] due to the destruction of the resonant defect mode

(see previous discussion). As a result, we expect from Eq. (5)

that the absorbance A will decrease to zero [see Fig. 4(c)].

Consequently, the reflectance R ≡ 1 − T − A reaches values

close to unity.

IV. ON-CHIP OPTICAL CROWs WITH SELF-INDUCED

VIOLATION OF CT SYMMETRY

We have also considered a CT -symmetric CROW array

consisting of N = 9 coupled optical rings, placed at alternate

distances d1 = 35.54 μm, d2 = 36.4 μm. The defect ring

resonator is located at the center of the chain at a distance d2

from the adjacent resonators; see Fig. 5. Each ring resonator

supports a clockwise (CW) and a counterclockwise (CCW)

degenerate mode. The array can be theoretically investigated

using a coupled mode theory. The associated Hamiltonian is

given by Eq. (1) with

βn → β̂n =
(

βCW
n 0

0 βCCW
n

)

; tn → t̂n = tn

(

0 1

1 0

)

, (6)

where β
CW/CCW
n = 28.3 THz are the degenerate eigenfrequen-

cies of the CW and CCW modes of the nth ring. Hamiltonian

(1) with Eq. (6) satisfy the CT symmetry and has two

quasidegenerate topologically protected defect modes.

In our simulations below we have assumed that the rings are

made of Si (εSi = 10.89) while the cladding is made of SiO2

(εSiO2
= 4). The defect resonator consists of a material with a

temperature-dependent permittivity. In our numerical example,

we have assumed that εd (θ ) = ε0[1 + 3/(e−[θ−θ0]/5K + 1)],

where θ0 = 342 K and ε0 = εSi. We note that this temperature-

dependent permittivity has been extracted from experimental

measurements and it is associated with a VO2 material in the

midinfrared (MIR) regime [42]. Finally, the lossy rings at the

left and right of the central resonator have complex permittivity
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FIG. 6. The density plot of the scattering electric field intensity

profiles displayed for the case when the CROW photonic structure

with CT symmetry is irradiated with a low (high) fluence incident

wave.

εlossy = 10.89 + 0.162 85i. Using COMSOL’S eigenmode rou-

tine we evaluate the CROW’s frequency spectrum associated

with the fundamental mode of the individual resonators. The

degenerate defect modes at the middle of the band gap (see

Fig. 5) have the typical staggered form imposed by the CT

symmetry (see inset of Fig. 5) and they are spectrally protected

against positional disorder (i.e., random d1,d2) as long as the

bipartite nature of the CROW is preserved.

Next, we evanescently couple the first and last ring with

a Si bus waveguide and study the transmittance T ≡ |S31|2 +
|S41|2, and reflectance R = |S11|2 + |S21|2 of an incident wave

from port 1 (associated with the left bus waveguide). The

scattering parameters S31,S41 describe transmission ampli-

tudes from port 1 to ports 3 and 4 of the right waveguide,

while S11,S21 describe transmission amplitudes from port 1

to port 2 and back to port 1 of the left waveguide (see top

and bottonsetsm of Fig. 6). Since there are intrinsic radiative

losses we evaluate the Ohmic absorption (due to the metallic

rings) directly via the expression A = ν
2
∫ d3�r|E(�r)|2ε′′(�r)

[43]. The scattering parameters and the steady-state scatter-

ing field E(�r) associated with an incident monochromatic

wave at frequency ν are calculated using the Maxwell’s

equations coupled with the heat transport equations that

dictate the steady-state temperature θ (�r) within the CROW

array:

∇2 �E + μ0ε(�r,θ )ν2 �E = 0, ∇ · [κ(�r)∇θ (�r)] = Q, (7)

where ε(
−→
r, θ ) = ε′(−→r, θ) + iε′′(�r) is the permittivity of the

CROW array at position z and steady-state temperature θ and

ε′′(�r) = σ (�r)/ω. The portion of the incident radiation which

is absorbed by the defect resonator leads to a gradual heating

of this resonator. This temperature increase, in turn, leads to a

variation of the permittivity as we discussed above. Therefore,

one needs to solve simultaneously the Maxwell’s and heat-

transfer equations in a self-consistent manner in order to

achieve steady-state transmittance, reflectance, and absorbance

of the CROW array. Furthermore, we have assumed a fixed

ambient temperature (293 K) at the boundaries surrounding

the SiO2 cladding. The parameter Q = 0.5 × Re( �J · �E), where
�J = σ �E, describes the electromagnetic energy deposited at the

lossy metal-coated rings adjacent to the defect ring resonator
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FIG. 7. (a) The transmittance T, reflectance R, and absorbance

A, evaluated for the proposed CROW photonic structure with CT

symmetry (empty symbols), obtained using COMSOL MULTIPHYSICS

software. The transmittance T is compared with that of a stand-alone

(SA) ring resonator made of the same highly thermal nonlinear ma-

terial (VO2) (filled circles) and with an array of VO2-based nonlinear

resonators (dashed line with stars). In our case, the limiting threshold

is achieved at incident fluences which are at least one order smaller

than that required for the SA ring resonator (compare leftmost black

and orange vertical dashed lines). Similarly, the limiting threshold for

the VO2 CROW is achieved for fluencies which are at least one order

higher than the ones of our proposed CROW array (not marked in the

figure). The two vertical orange (black) lines indicate the borders for

which transmittance at the CROW (SA ring resonator) drops by an

order, for an order (almost two orders) increase in incident fluence.

(b) Thermally induced change in real permittivity of the defect ring

resonator in the case of the CROW photonic structure (empty symbols)

and SA ring-resonator structure (solid symbols).

which leads to an increase in temperature θ . Finally, κ(�r)

denotes the thermal conductivity of the rings making up the

CROW array structure.

The upper (lower) panel of Fig. 6 shows the density plot

of the scattering electric field intensity for incident signals

with small (large) fluence. In the former case, the profile of

the resonant defect mode respects the staggered form imposed

by CT symmetry. In contrast, in the latter case (lower panel

of Fig. 6), the staggered profile is completely destroyed, thus

leaving the defect mode exposed to the metallic resonators. In

this case, the resonant transmission is completely suppressed.

In Figs. 7(a) and 7(b), we report T , R, A, and εd (θ ) vs incident

fluences for the CROW array (empty symbols). We observe that

when the fluence of the incident light increases by an order of

magnitude [i.e., from 104 to 105 W/cm2—see vertical orange
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lines in Fig. 7(a)] the resonant transmission is also suppressed

by an order. In Fig. 7(b), we also report the tiny relative

permittivity variations (∼0.1%) which are associated with the

increase of fluence of the incident light [see dashed vertical

orange lines in Fig. 7(b)], due to the self-induced heating at

the defect resonator caused by the incident radiation. Similarly,

the Ohmic absorption A decays as the fluence increases, thus

protecting the CROW from self-damaging due to overheating.

At the same time the reflectance R increases as high as

∼0.55. Note that R does not reach unity because there is

a strong residual radiative absorption in the bus waveguide

(A ∼ 0.4).

For comparison purposes, we also show in the same figure

the transmittance T and the permittivity variation εd (θ ) vs inci-

dent fluences for the case of a stand-alone (SA) ring resonator

(filled circles) made by the same material (VO2) as the defect

resonator of the CROW arrangement. The resonator is now

directly coupled to the bus waveguides. A similar SA resonator

setup has been already investigated in Ref. [44] where it was

shown experimentally that it can act as an on-chip limiter. The

limiting action mechanism in this case relies on a resonant

redshift—thus leaving the sensitive photonic elements exposed

to damage in case of high-power broadband signal attacks.

For extremely high fluencies the on-resonant transmittance

is also suppressed due to an excessive heating which can

lead to damage of the resonator [see Fig. 7(a)]. Conversely

our design relies on complete suppression of the resonant

mode at moderate fluences, thus protecting sensitive elements

from any broadband (up to the size of the band gap) incident

signal. In comparison, a complete resonant suppression in

the case of the SA resonator requires a relative permittivity

variation which is more than 1% (see the transmittance drop

between the two black dashed lines in Fig. 7), which has to

be compared with the 0.1% permittivity variation needed in

the case of the CROW structure. Finally, we mark that our

design demonstrates a limiting threshold (i.e., fluence value

for which the transmittance drops to small values), which is

smaller by an order of magnitude as compared to the SA ring-

resonator structure; see Fig. 7(a). For completeness, we also

compare the limiting performance of our photonic limiter with

a CROW array consisting of the same number of VO2-based

resonators [dashed-star line in Fig. 7(a)]. The behavior of the

latter is qualitatively similar to the one associated with the SA

resonator. We find again that our CROW limiter has a lower

(at least by an order) damage threshold.

V. CONCLUSION

We have investigated topologically protected defect modes

and the transport properties of the associated resonant modes

emerging in the frame of non-Hermitian bipartite CROW

arrays. We show that an underlying CT symmetry enforces

high resonant transmission and protects the resonant mode

from positional disorder or local Ohmic losses that can poten-

tially degrade the transport. When, however, a (self-)induced

violation of CT symmetry occurs due to tiny variations of

the permittivity of the defect, the resonant mode is destroyed

and the transmission is completely suppressed. The fragile

nature of resonant transport has been demonstrated for on-chip

photonic and microwave CROW setups. Furthermore, it can

be utilized in a variety of other frameworks including rf and

acoustics for the realization of a different class of power

limiters, switches, sensors, and modulators as well as for matter

waves circuitry.

Finally, we want to stress that the underlying physical

mechanism invoked in this study is completely different from

the one utilized in Ref. [20] for suppressing high-power

signals. In the latter case, for low incident field intensities or

fluences, the system was chiral symmetric (notCT symmetric),

and for high incident intensities or fluences one needed to

utilize the presence of a strong nonlinear lossy mechanism

in order to spoil the resonant Q factor. Such strong nonlinear

mechanisms are typically hard to realize in the microwave

domain and require high incident field intensities or fluences

in order to be activated. Here, instead, the structure is initially

respecting a CT symmetry which guarantees the existence of

high transmittivity for low incident field intensities or fluences

via the phenomenon of symmetry-enforced transmittivity. In

the opposite limit of high incident field intensities or fluences,

the abrupt drop of transmittance is triggered by the self-induced

violation of CT symmetry which is achieved via (weak)

nonlinear effects that change the value of the permittivity (for

very small incident field powers) of the defect resonator by one

to two percentage points—or even less.
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