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Abstract—Nowadays, mobile devices have become an im-
portant part of our daily life. Numerous mobile sensing
applications are enabled by various mobile platforms, which
leverage machine learning techniques to detect or -classify
the events of interest such as human activities and health
conditions. To achieve this, each user is required to provide a
considerable amount of training samples. However, in practice,
a large portion of the users may provide only a few or even
zero labels, due to various reasons such as privacy concern
or simply laziness. A straightforward solution to this problem
is to gather the data of all the users in a central database,
and train a global classifier from the combined data. Such
global classifier, however, may not work well since it ignores
the variety in different users’ data. To address this challenge, we
propose PLOS, a Personalized Learning framework for mObile
Sensing applications. PLOS can jointly model the commonness
shared among the users as well as the differences between them,
which are inferred from both the label information and the
underlying structures of individual data. We further develop
the distributed PLOS where the raw data of the users are
locally processed so that the users only need to send model
parameters to the server. Through extensive experiments on
both synthetic data and real mobile sensing systems, we show
that the proposed PLOS framework is scalable and efficient
in energy, computation, and communication costs, and can
achieve more accurate classification results compared with the
baseline methods.

Keywords-personalized learning; mobile sensing; distributed
machine learning;

I. INTRODUCTION

With the rapid development of sensing, communicating,
and computing technologies, the pervasive mobile smart
devices have revolutionized our daily life with countless
mobile sensing applications [1]-[9], such as health care [1],
smart home [3], assisted driving [7], and intelligent shopping
[8], which fundamentally change the ways in which we
interact with the physical world [4].

In mobile sensing systems, machine learning techniques
are widely applied so that the sensing tasks can be fulfilled
in an automatic and adaptive manner. For example, consider
the task of activity recognition, a classifier can be trained
based on the data collected by mobile devices. When a new
motion is detected, the classifier can automatically recognize
the corresponding activity. Ideally, the classifiers should be
trained based on the individual users’ data. This requires
that each user provides sufficient amount of training samples
to the machine learning algorithms. However, in real-life
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mobile sensing systems, a large portion of the users may
provide only a few or even zero labels, due to various reasons
such as the concern of privacy leakage, the consumption
of time and other resources, or simply carelessness and
laziness. In such cases, it is hard for the classifier to achieve
satisfactory accuracy.

A naive solution to handle insufficient training data for
individual users is to collect many users’ labeled information
and put them into a centralized training pool. Then a global
classifier can be trained on the combined data. However, this
solution has some major drawbacks in real-life applications.
1) To combine the label information from multiple users, it
requires the users upload their raw data to a central server.
In many applications, due to the communication/energy
constraints as well as the privacy concern, it is not feasible.
2) Even if all the data can be delivered to the server, the
global classifier trained upon the combined data may not be
suitable for every user. For example, a classifier learned from
the activity data collected from a group in which the majority
of the people are adults cannot perform well when being
applied to recognize the activities of kids, disabled, and
senior persons. In real world, for many mobile sensing tasks,
such as health condition monitoring, activity recognition,
facial expression recognition, and handwriting recognition,
the learning process needs to be personalized to improve user
experience, since different users may demonstrate different
patterns on the same tasks. Thus, applying the same classifier
on different users will not be able to achieve satisfactory
performance due to the ignorance of individual differences.

To address the aforementioned challenges, we propose a
Personalized Learning in mObile Sensing (PLOS) frame-
work, which jointly captures the commonness and the dif-
ferences of individual users simultaneously. On one hand, by
modeling the commonness, PLOS enables the users to share
knowledge with each other, and thus can benefit the users
with insufficient or even zero training data. On the other
hand, by modeling the differences, PLOS characterizes the
structures of individual data, and thus can benefit the users
with unique data patterns. To achieve this, PLOS jointly
learns a global classifier for all the users and a bias for
each individual. By integrating the global classifier with
individual bias, PLOS produces a personalized classifier for
each user that can maximize the margin between his/her
classes. In a word, PLOS makes a full use of all the available
information from a large population, from label information
to the underlying data structure, and calibrates such informa-
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tion into personalized knowledge for each individual. Such
knowledge personalization from population to individual is
the key achievement of this work.

Moreover, the proposed PLOS framework can be im-
plemented in a distributed and parallel manner, and thus
can address a series of issues such as privacy and com-
putation/communication efficiency. In the distributed PLOS
framework, the raw data are locally processed on the smart
device of each user instead of the server, and the users only
communicate with the server. The benefit of such design is
multi-fold. Firstly, the privacy of each user is protected, as
he/she does not have to share his/her data with the server or
other users. Secondly, the cost of communication is greatly
reduced, since during the learning process, only the model
parameters instead of raw data are exchanged between each
user and the server. Last but most importantly, distributed
PLOS does not sacrifice the learning performance.

In summary, the main contributions of this paper are:

o We address the challenge of personalized learning in
mobile sensing systems, when the users provide in-
sufficient or even no label information to the system.
The proposed PLOS system jointly models users’ com-
monness and uniqueness simultaneously to improve
learning accuracy.

The proposed PLOS is a distributed framework that has
multi-fold benefits in real-life mobile sensing systems.
The users only communicate with the server with a
considerably small amount of messages. Therefore, the
privacy issue as well as the communication, energy, and
time cost are all addressed.

The PLOS framework is tested on a real mobile sensing
system, and the experimental results demonstrate its
superior performance in both accuracy and efficiency.

In the rest of the paper, we first discuss the related work
in Section II. Then we formally define the problem and
present an overview of the PLOS system in Section III
The proposed framework is introduced in Section IV and
Section V and evaluated in Section V1. Finally, we conclude
the paper and discuss some future work in Section VII.

II. RELATED WORK

Personalized Learning. Some previous work has also stud-
ied the personalized learning problem. [10]-[21], most of
them [10]-[17] cannot be applied to the scenarios where
not all the users have label information. But our proposed
framework can relax this assumption and incorporate users
who do not have any labeled data. In [20], the authors
utilize social network as a measure of similarity among
users and then group the users into cliques according to their
similarities. In contrast, we do not assume the availability
of social network information. In [18], [19], the authors
assume that the users can share their data with some of the
other users during the training process. But in our setting,
sharing personal data is not allowed for the sake of privacy
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preserving. Furthermore, our proposed method jointly learns
the commonness among the users and the difference between
the users to solve the challenge that users provide insufficient
or even no label information to the system, which are not
considered in previous works.

Transfer Learning. One related area of the proposed
method is transfer learning. Transfer learning refers to a
branch of machine learning tasks, where the knowledge is
learned from one problem domain, called source domain,
but applied to another problem domain, called target do-
main [22]. Transfer learning has been applied in many appli-
cations [23]. In [24]-[27], the authors apply Teacher/Learner
transfer learning model, where the classifier trained on the
teacher sensor provides labels to the learner sensor that is
deployed on the same object as the teacher (e.g., the teacher
sensor and learner sensor are worn on the hand and leg of
the same person). In [3], [28]-[30], the domain adaptation
techniques were applied. After the adaptation, the knowledge
of the sensor on the source object can be used by the sensor
deployed on the target object. Compared with these existing
methods, where the knowledge is one-way transferred from
one or multiple sources to a single target, the proposed
method enables knowledge sharing among all the users so
that they can mutually benefit each other.

Multi-Task Learning. Another related area is multi-task
learning. The goal of multi-task learning is to conduct
multiple similar learning tasks simultaneously. To achieve
this, the multi-task learning models need to capture the
similarities among different tasks. One line of multi-task
learning work handles the similarities among tasks from
the probabilistic point of view [11], [12], [31], [32], while
another line of work uses optimization techniques to model
the similarities [10], [15], [16], [33]-[35]. No matter how
they model the tasks in the aforementioned literature, there
is one requirement in common: all the tasks need to provide
label information. Different from existing multi-task learning
models, the proposed method relaxes this requirement and
thus can be applied to more general scenarios.

Distributed Machine Learning. Our work also relates
to distributed machine learning, which tries to learn from
data that are stored in distributed databases, and are costly
or even infeasible to be transmitted over network due to
their volumes or sensitivity [36]. Studies of distributed
machine learning include distributed classification and re-
gression [37]-[44], distributed clustering [45]-[49], and en-
semble learning [50], [51]. Though following a distributed
design, none of the above work explores personalized learn-
ing for different individuals.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

Considering a mobile sensing task where T users, indexed
ast = 1,--- T, cooperate together to train classifiers for
the same purpose, for example, to classify their activities
such as walking, jogging, laying. The data are collected from



individual users. Using the activity recognition example, the
data are the sensory data (accelerometer, gyroscope, etc)
collected from their mobile devices. Among all the users,
some do not provide any label, while others are willing to
manually label part of their samples. The data provided by
the users may follow different distributions. That is, different
persons may demonstrate different patterns in their activities.
Thus, instead of learning a common decision boundary (i.e.,
classifier) for all the users, our task is to learn a personalized
decision boundary for each user.

Mathematically, we use subscript ¢ to index the notations
with respect to user ¢, whose data points are denoted as
{x1,,X2,, "+ ,Xm, }- Without loss of generality, we assume
that the first [, samples in x; are labeled, denoted as
{(x1,,91,)s (X2,,¥92,), -, (X1,,41,)}, and the rest m; — I,
samples are unlabeled, denoted as {x;,+1,X;, 42, " »Xm, }-
Note that if a user does not provide labels, I; 0.
The decision boundary we want to learn is a hyperplane'

fi(x) = wi - x.

Cloud Server

Participating users

Classification tasks

Figure 1. Overview of the PLOS System

Figure 1 illustrates the architecture of the proposed PLOS
system. Considering the issues of privacy concern as well
as the bandwidth, computation, and communication cost,
the proposed PLOS framework follows a distributed design
where each user locally conducts calculations on the raw
data, and only communicates to the server with intermediate
model parameters. Specifically, each user has a local dataset
of raw sensory data, some users manually label part of their
data to positive (red dots in Figure 1) or negative (blue
dots), while the others do not provide any label information
(gray dots). The goal of each user is to train a personalized
classifier (arrow lines with green, orange, purple, and blue
color) to classify data into positive or negative. Since all
the users are doing the same activities, their classifiers share
some commonness. Meanwhile, since they demonstrate dif-
ferent patterns in their activities, they have some uniqueness
in their data. The PLOS system models the commonness

'In this format, the hyperplane will have to go through the origin.
Generalization can be easily achieved by adding another dimension on x;,
with constant 1. In such way, the corresponding dimension in wy is the
bias of the hyperplane.
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among the users with a global classifier (red arrow line), and
allows each individual classifier deviate the global classifier
a bit to reflect their uniqueness. Then the PLOS system
jointly learns the classifiers of each user in a distributed way,
in which the information transmitted between the server and
the users are the parameters of the local classifiers and the
global classifier, instead of the raw data of the users, thus it
can provide more privacy protection for the users and saves
the computation and communication cost. In the following
sections, we first introduce how to address the personalized
learning in the centralized scenario (Section IV), where all
the users need to upload their data to the central server. Then
we extend it to a distributed approach (Section V), in which
the users do not upload their personal data.

IV. CENTRALIZED PLOS

In this section, we describe the centralized PLOS method,
which tackles the problem of personalized learning for mo-
bile sensing tasks. We model this problem in an optimization
framework where a personalized hyperplane is learned based
on not only a user’s individual data but also the knowledge
“borrowed” from other users.

A. The PLOS framework

The proposed PLOS framework inherits the spirit of
Support Vector Machine (SVM), one of the most widely
used classification algorithms. The key idea of SVM algo-
rithm, which is applied in the design of PLOS, is to find a
hyperplane that can maximize the margin (i.e., the distance
from the hyperplane to the nearest data point on each side).
For simplicity, the labels are assumed to be in {—1,1}.

Mathematically, SVM is formulated as follows:

1 C
Il + 2 3

S.t. yi(w~xi)21—£i,Vi=1,~-~ ,m, (D
where the slack variables &; are used to allow some degree
of slackness in the constraint so that the algorithm is not
oversensitive to possible outliers.

Though sharing the same spirit, SVM algorithm is not
suitable in our setting due to the following reasons. 1) Some
users do not provide labels for their data. For these users,
SVM cannot be applied. For those who provide labels, the
labeled samples may also be too sparse to train a good
classifier. 2) If we use the data from all users to train a
single global SVM classifier, there may be enough training
samples, but the different patterns lying in individual users’
data are disregarded. Consequently, the global classifier may
not be able to accurately classify each individual user’s data.

To conquer these challenges, the idea of the proposed
model is to jointly consider the labeled and unlabeled
data from all users, identify their commonness, and at the
same time capture their individual characteristics. On one
hand, the commonness is shared among all users, so the
information from different users can be unified to help each

min
w,£; >0



other, especially the users who have no labeled data. On
the other hand, individual users may behave differently,
so the personalized learning can improve the classification
performance by characterizing the difference among users.

We model the commonness among all individual hy-
perplanes w; as a global hyperplane wy. And we let the
first n of the total 1" datasets have labels. Inspired by the
idea of maximum margin clustering [52], we formulate our
framework as the following two-layer optimization problem:

A T
Jlwol* + 7 2 lwe = woll

T Ly me
30
A

>1

min
w0, W¢,§i, >

min
{¥iy Yvi=ty 41,

,mg

Zfzﬁ— > &}

i=l¢+1

vt=1,-

Yiy (Wt Xu)

s.t.
— &, Vi=1, ,m.  (2)

The inner optimization tries to find the best hyperplanes
given the current label assignments y;,,Vi = 1,--- ,m;. The
outer optimization tries to find the best label assignments for
the unlabeled data y;,,Vi =[l; +1,--- , m;. Note that y;, is
a constant (i.e., user-provided label) if ¢ < [;.

In the objective function of the inner optimization prob-
lem, there are three parts needed to be minimized. The first
part ||wo||? maximizes the margin of the global hyperplane
Twor- The second part %ZZ 1 |[wi — wo|[? minimizes
the difference between the global hy]%erplane and those
of the users. And the third part » , 1(7nt Zi:l &, +
m"j > oith, 41 &) indicates the classification errors given the
current label assignments. The slack variable §;, can be
derived from the constraint: &;, > max{0,1—y;, (W x;,)}.
Therefore, minimizing &;, is equivalent to minimizing the
error of the model on x;,.

There are three predefined parameters in the objective
function, namely A, Cj, and C),. A is a positive regularization
parameter that controls how much w, can differ from the
global hyperplane wy. When A is large, it will give more
penalties on ||[w; — wo||2, so the hyperplanes for the users
will be more similar to each other. On the other hand,
when A is small, the hyperplanes will rely more on the
individual users’ data. C; and C, together control the
weight of &;,, the learning errors. Moreover, C; and C,, also
control the importance of the labeled data and unlabeled data
respectively.

One difficulty of solving the problem (2) comes from the
fact that we have to minimize the objective function with re-
spect to all label assignments on y;,, Vi = l;+1,--- ,m;. In
fact, for any given w( and w,, the optimal label assignments
are y;, = sign(w; - x;,). It can be easily derived from the
fact that these assignments give the minimum classification
errors, which implies the minimum &;,, and thus the optimal
objective value. Therefore, the outer optimization can be
merged into the inner optimization, and y;, (w: - X;,) can
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be replaced by |w; - x;,|. Then, the optimization problem
(2) is equivalent to:

min _ {{jwol[* + 2 an wol[?

wo,wt,§i, >0
+Z( wa— Z &)}

i=lp+1
Vtzl,-u 7T:

yit(wt'xit)Zlf&tvvz‘:l:"'
‘Wt~X1;t|Zl—&NVizlt-ﬁ-l,--'

S.t.
’ lt?

,me. (3)

In the above optimization problem, the number of slack
variables ¢;, are as many as the number of data samples.
To reduce the number of slack variables, we reformulate the
optimization problem to the following:

o, min { wol|? + = ZHWt wol[? +Z£t}
st VE=1,-- ,T, th e {0,1}™":
1 Iy myg
7{Clzcityit(wt’xit)+cu Z Cig |Wt'Xz't|}
e i=1 i=lp+1
> - {C Zcz, e Z cl,} 32 “
i=l¢+1
where each ¢; = (clt,--- sCm,) € {0,1}™ selects a

subset of the constraints in problem (3) to add them up.
The equivalence is established since problem (3) and (4)
have the same solution. For any given wg, wy, the ;, in
problem (3) can be optimized individually. The optimum of
(3) is achieved when

g* o maX{O71_yit(wt'xit)} 7“:17 7lt; (5)
7 max{0,1 — |w¢ - x4, |} t=1l+ 1, .
Similarly, the optimal &; in problem (4) is

le
= ey 2y [t )]
Cu <
+EZ cl,[l—\wtxl,\]} (6)

*

It is clear that & = ;L Cu sl mt 4165 Thus,
the objective function of problem (3) and problem (4) have
the same value. Hence, we conclude that problem (3) and
problem (4) are equivalent.

We can simplify the optimization problem (4) through
feature mapping and the kernel as described in [33]. Specif-
ically, we define that

X
B(xi,) = (—=,0,- -+ ,0,%;,,0, - ,0), 7
(i) (\/TTAA/—/ ' )

t—1 T—t

where 0 is a zero vector with the same dimension as x;,.
We also define that

w' = (\/T/Awo, W1 — Wo, -+ , W — Wo). (8)

Then we have w; - x;, = w' - ®(x;,) and ||wol|* +



AST |lwe — wol> = A[[w’||>. Substituting them into
(4) and multiplying the objective function by a constant 2 s
we can reformulate the optimization problem to contain only

one hyperplane w’ as follows:

{1 Z&}

Vt=1,---,T,Vei € {0 1}me .

min ||2

w’,£4>0
s.t.

me

1
— G Zchyu w' < ®(xi,)) + Cu Z Ciy |w - (b(xit)‘}

me i—1 i1
1 Iy me

Z*{Cl Zcit + Cu Z Cit} — &t )
mt i=1 i=lg+1

B. Optimization via concave-convex process

Problem (9) is non-convex since the constraints are non-
convex. However, if the constraints can be expressed as the
difference of two convex functions less than or equal to a
constant, the concave-convex process (CCCP) can be used
to solve this problem [53]. CCCP is an iterative process.
The main idea is that at each iteration, the constraints are
approximated by convex functions localized at the previous
estimations (or an initialization if this is the first iteration),
and then solve the approximated problem and update the
estimations. To construct the convex approximation, the
second convex function is replaced by its first-order Taylor
expansion at the previous estimation.

Specifically in problem (9), the constraints can be
expressed as the difference of the following two con-

Vex functlons less than or equal to a constant: —&; —
Cu
Zz 1Cltylt( g (I)(Xlt)) and me Zz tlt+1 Ciy - |W/ '

<I>(x,t)|. If the previous estimation is (W'(k)7§t(k)), then

|w’ - ®(x;,)| in the second convex function is replaced by

its first-order Taylor expansion at (w’(F), §£k)) as follows:
W' (i, )| + sign(w' ™ - B(xi,)) (W' —
= sign(w'™ - @(x;,)) (W' - @(xi,)).

W) a(x,)
(10)

Plugging Equation (10) into the problem (9), we get:

w?lﬁltnEO {7H th}
st. Vt=1,--- ,T,Ve, € {0,1}™ :

It
1 /
E{Clgcityit(w @(X“))

mg

+Cu Z Ciy * Sign(wl(k) (I:'(X“))(W, : @(X“))}
i*lt+1
>7{clzc“ voo S e} — € (1

i=lt+1
Problem (11) is a convex optimization problem and we
can get a new estimation (w’(k+1),§t(k+1)) by solving it.
The CCCP process will monotonically decrease the objective
value [54], which is also bounded. So the convergence is
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guaranteed.

Problem (11) is still difficult to solve because there are
as many as ZtT:l 2™t constraints which come from the
2™t possible assignments of vector c;. In order to solve
(11) efficiently, we apply the cutting plane algorithm [55].
The main idea of the cutting plane algorithm is to construct
successively tighter relaxations to the problem until getting
a sufficiently accurate solution. Specifically, we keep a
constraint subset ); (empty set as initialization). At each
step, we solve the problem with respect to Vc; € €y, t =
1,---,T. Then we find the most violated constraint and
add it to the constraint subset €2;. With the growth of €2,
a successively tightened approximation of the problem (11)
is constructed. The algorithm stops when the most violated
constraint is violated by no more than e.

Mathematically, the optimization problem in each step of
the cutting plane algorithm has the following form:

w%ltnzo {7H ng}
S.t. Vt:1,~~~,T,Vct€Qt:
1 &
- C Ci Yi W/ - O Xi
e liz:; Y ( (xi,))
+Cu Y e -sign(w' ™ - (k) (W - B(xi,)) |
i:lt+1
1 myg
ZE{CIZCZt +Cu Y )€ (12)

i=l¢+1
The most violated constraint is defined as the constraint
c; that produces the largest &, i.e.,

It

C ,
c; = argma — ci, |1 —yi, (W - ®(x; 13
' CtE{gO,l}it{mt 12:31 t[ Yir( ( t)):| 13)
Cu mg 11 . (k) ® ] , P )
—I——t Z ci, |1 —sign(w'"™ - &(x,)) (W' - ®(x4,))]| b
i=lg+1

Since each c¢;, can be optimized individually, it is easy to
find that the most violated constraint can be chosen as:

1 y’it(wl q)(xlt)) <17V’L:13 ali;
o — 1 &gn(w’i ) SB(x,)) (W B(xi,)) < 1, (14)
it
Vi=1l+1,--- ,my;
0 otherwise.

If the solution (w'*, &) of the problem (12) and most
violated constraint c; of all the tasks satisfy the following
inequality:

It
* C
'§t +e€ Zﬁizcit [1 7y’it(wl

i=1

" 0(x,)| (1)

mi

> a1 —sign(w® - o(xi)(w' - 0(xi,) ],
i=l¢+1
it means (w'*, £ + ¢) is a feasible solution to the problem

(11). Then the cutting plane algorithm can stop.
We can optimize the dual form of problem (12) through

Cu
+7
me



quadratic programming. The primal problem (12) is a convex
problem, so Karush-Kuhn-Tucker (KKT) conditions are nec-
essary and sufficient conditions for optimization. The dual
optimization problem is as followed:

T [ T Q4]
ma>X0 77”22’7’%”%” +ZZ'Yszkt
Tkt = t=1 k=1 t=1 k=1
[
.. Zm < 2)\ (16)
where l
O <
Z, = — ik Yin P(X4
Zky mt;cthyt (xt,)
Cu &
+ 23 ik sign(w' P @(x))@(x,), (D)
i i71,+1
. _ G
Cky = — Zczm + — Z Cisky- (18)
i=l¢+1

This is a quadratic programming (QP) problem with vari-
ables (Vk,)1x5°7 | |q,|- SO it can be solved via the standard
form. We omit the details of derivations in this paper.
After solving the QP problem, we get the solution w’* and
therefore can calculate the slack variable & and the optimal
value of the objective function L = L[|w'[|? + ZtT:1 &t
in the primal problem (12).

The algorithm flow is summarized in Algorithm 1.

Algorithm 1 : Centralized PLOS

1. Initialization. Set A, C}, Cu, €, w'(;

2. The CCCP process. Apply first-order Taylor expansion to
|[w' - ®(x;,)| to get the convex optimization (11);

3. The cutting plane process. Initialize Q2 = ¢;

4. Solve problem (12) via its dual problem (16) to get w'* an
the primal form (12) to get & and L™;

5. Calculate the most violated constraint c; of each user via
equation (14).

6. If Vt, c; violate £ no more than e, goto step 7; otherwise,
Q¢ = Q¢ Ucy and goto step 4;

7. If the difference between two consecutive L™ is less than a
given threshold, output w’*; otherwise goto step 2.

d

V. DISTRIBUTED PLOS

The centralized PLOS method requires all users upload
their data to the central server, so that the server can conduct
all the computations. However, in real-life scenarios, the cen-
tralized methods may be inapplicable due to various reasons,
such as privacy issues, bandwidth/energy constraints, and
computation time requirement. Therefore, we further extend
the centralized PLOS into a distributed method, where each
user can locally conduct computations on the raw data, and
only upload the intermediate results to the server. Compared
with the centralized PLOS, the proposed distributed PLOS
method can better handle the aforementioned problems.

The distributed PLOS method is developed based on
the alternating direction method of multipliers (ADMM)
framework [56]. ADMM is designed to solve a convex
problem with equality constraints and it splits the variables
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into two parts x and z to exploit the decomposability of the
variables.

In order to apply ADMM to solve the optimization
problem (4), we firstly use the CCCP approach to convert it
into a convex problem and add w; = wq-+V; as a constraint
to the problem. Thus, the problem is transformed as follows:

T T
{liwoll* + 2 S lwilP + 3¢
t=1 t=1

VE=1,---

min
w0, Vi, Wi, Er >

st ,T,Ye, € {0,1}™

It
1{
—=2C E Ci, Vi, (Wt - X5
me li:1 tyt( t t)

mg
+Cu Y e sign(wi® xi)(we - xi) |
i*lt+1

my

>—{Cz ZCH + Cy Z clt} — &,

i=l¢+1

19

As an equivalent transformation, if we replace the slack
variables &;’s by their optima

Z ci, (1 — vy, (Wt - x4,))

Wi = W0 + V¢

cte{O 1}"% {
me

Z ¢, (1— sign(wik)

timl+1

we can movelttﬁe inequality constraint to the objective
function and remove the slack variables &. Then the rest
variables are partitioned as v = [wi, vl ... wl vI|T
and z = w. Then, we can define function g(z) = ||wyo||?
and f(z) the rest in the objective function (19). Obviously,
g(z) and f(x) are convex. The objective function in (19)
is decomposable with respect to each variable in x. The

augmented Lagrangian [57] is then

+(p/2) Z\lwt —Vvi—

t=1

Cu
_‘_7
m

xi)(weexi) o (20)

)

wo + w|?,
@n

where u = (uy,--- ,ur) are the scaled dual variables.

The calculation of z can be decomposed. Specifically, the
update of w; and v; can be locally conducted by user ¢
without communicating with any other user. Each user solves
the following QP problem using the cutting plane algorithm
with his/her local constraint subset €2;.
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The solution (wy, vy, &) is then uploaded to the central
server where the closed form of z(*t1) 4 (+1) and the
objective function value L can be derived as:
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After the central server updates z and w, it scatters
them back to each user to locally update = again until
convergence. In this way, the individual users only need to
communicate with the server and exchange the estimations
of the parameters. There is no raw data involved in the com-
munication and there is no information exchange between
users. Thus the privacy of individual users are protected and
the communication cost is also greatly reduced.

The ADMM loop can be set to stop when the norm of the
dual residuals s(**1) and the primal residuals r**t1) are less
than their thresholds v/2T'¢*** and +/T¢*® respectively [56].

k k
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The detailed steps are summarized in Algorithm 2.

Algorithm 2 : Distributed PLOS

1. Initialization. Set \, Cj, Cu,€7w(()0), 117(50)9

2. The CCCP process. The server applies first-order Taylor
expansion to |wy - X;, | to get the convex optimization (19);

3. The ADMM process. The server delivers wo, u; to all users
and each user set local Cy, C, €%, p, Qs = ¢;

4. The cutting plane process. Each user solves the problem (22)
to get (w;,vi, &) and send them to the server;

5. The server calculates wo, u;, the objective function value L
using (23), and the residuals using (24);

6. If the residuals are less than the thresholds €
7; otherwise, goto step 3;

7. If L does not converge, goto step 2.

dual prioot0 step

VI. EXPERIMENTS

In this section, we test the proposed method on both
real-world and synthetic datasets. We also implement the
distributed PLOS framework upon a real mobile sensing
system. The experimental results show that PLOS performs
considerably better than the state-of-the-art methods under a
wide spectrum of scenarios. We first discuss the experiment
setup in Section VI-A. We then present experimental results
on the body sensor data in Section VI-B, on the smartphone
data in Section VI-C, and on different scenarios of simulated
datasets in Section VI-D. Finally, the distributed PLOS is
tested on a smartphone platform in Section VI-E.

A. Experiment Setup

In this part, we introduce the baseline methods and the
performance measures used in the evaluation.
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Baseline Methods. We consider three types of baseline
methods: a totally centralized method, a totally localized
method and a group-based method. The details of the
baseline methods are as follows.

o All. This baseline is a centralized method. All users
are required to upload their data to the server along
with the labels if there are any. The server will train a
single global hyperplane from all the labeled samples,
and apply this global hyperplane on the data of all the
users.

Single. This baseline is a localized method. Each user
locally conducts classification/clustering based on only
his own data. If a user has labels, then an SVM classi-
fier is trained from the labeled samples. Otherwise, the
k-means algorithm is applied to derive the clusters. The
evaluation is also conducted locally. Since the cluster
may mismatch with the ground truth labels, we conduct
label matching on the clustering results and evaluate
them under the best class assignments. On a specific
type of users, we report the average.

Group. This baseline is a group-based method. We
measure the similarity between the users based on
their sensory data. Specifically, given two users u,v,
we first apply the random hyperplane algorithm [58]
on their sensory data, which hashes the continuous
sensory data to n discrete buckets while keeping the
distance between the data. Let (up,us,---,up) and
(v1,ve,- - ,vy,) represent the frequencies that the data
of u and v appear in these buckets respectively, the
similarity between u and v can be defined as the overlap
between their sensory data, S(u,v) = %,
which is known as the Jaccard similarity ‘coefficient.
Knowing the similarity between the users, we further
cluster similar users into a group through spectral
clustering, within which the users share their data and
labels. Finally, we conduct classification/clustering in
each group and apply the learned hyperplane to all the
users in that group. In all our experiments, n is set to
be 128 and the number of clusters is set to be 3.

Performance Measures. In the experiments, to evaluate
the performance, we adopt the accuracy of the classifi-
cation/clustering results. More specifically, we apply the
learned hyperplanes on the data and calculate the difference
between the labels assigned by the hyperplanes and the
ground truth labels. We report the accuracy on users with
labels and without labels separately, since the methods may
behave differently on different types of users. In addition,
we select parameters for both the baseline methods and our
proposed method based on the accuracy reported by leave-
one-out cross-validation.

B. Experiments on Body Sensor Data

In this section, we build a body sensor network for each
user to collect his/her motion information. In this sensor



network, data are collected from multiple human motion
sensing nodes placed in different body areas, and then
we apply our personalized learning approach to verify its
advantage.

Experimental Setup. The human motion sensing node in
our experiment is TelosB, which carries a custom-built
sensor board containing a triaxial accelerometer and a biaxial
gyroscope. It also includes IEEE 802.15.4/ZigBee compliant
RF transceiver so that data from all the nodes can be
gathered at one base station through ZigBee.

Sensing
Accelerometer Node 1

Gyroscope

Sensing
Node 2

TelosB

Sensing
Node 3

Figure 2. Sensors are placed on 3 different regions on the body: waist,
left shin, and right shin.

20 subjects (age between 18 and 35) participated in
our study. Each subject wore three sensing nodes on three
different regions of his/her body, i.e., waist, left shin, and
right shin as shown in Figure 2. In order to make the settings
more practical, no instruction was given to the subjects
regarding the exact placement and orientation of the sensing
nodes and the subjects are allowed to place the devices
anywhere in the requested body areas. They can also choose
to attach the sensing nodes to the skin or to the clothes. Each
subject wore the sensing nodes for 5 minutes, during which
he/she was asked to perform two kinds of activities: rest at
standing and rest at sitting.

The data collected from each sensing node contain 5
signals, i.e., X,y,z axis of the accelerometer and u,v axis of
the gyroscope. They were first downsampled to 20 Hz and
normalized. Then we split all the signals by a fixed-width
sliding window of 3.2 seconds with 50% overlap, which gen-
erates 70 segments of accelerometer and gyroscope signals
for each activity. Next, we convert each segment into feature
vectors by extracting features from two aspects. The first
aspect contains the features that can characterize each single
signal, such as: mean, standard deviation, median absolute
deviation (MAD), maximum, minimum, energy, interquartile
range. The second aspect contains the features that are
derived from several related signals: magnitude of three axes
of accelerometer, the angles between the acceleration and the
three axes, and signal magnitude area (the normalized inte-
gral of absolute value) of accelerometer output. Finally, the
feature vectors of all the three sensing nodes are combined
to create a feature vector of 120 dimensions.

Effect of the Number of Users Who Provide Labels.
We first evaluate whether increasing the number of users
who provide labels can help learn more accurate classifiers
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on the collected dataset. In order to do this, we gradually
increase the number of users who provide labels, from 2
users to 18 users. Meanwhile, for users who provide labels,
we set that they randomly labeled 6% of their data, (i.e.,
approximately 4 samples for each activity). We present the
results in Figure 3.

From Figure 3, we can observe that the performance of
Single on users with and without labels does not improve
because the users do not have sufficient labeled data and
they do not borrow information from their peers. All is able
to learn a better global classifier when the number of people
increases because they bring more labels, which overcomes
the issue of insufficient labels in Single. But it still has the
defect of ignoring the difference among different users. The
performance of Group can also improve as more people
provide label information. However, the improvement lags
behind All because the increased label information cannot
be used by the users in the other groups. PLOS further
improves the performance since it can capture the structures
of individual users’ data and train a personalized classifier
for each of them. The improvement is more obvious to
users who provide labels, because the label information
can strongly guide the discovery of the underlying data
structures.
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Figure 3. Accuracy comparison on body sensor dataset w.r.t. the number
of users who provide labels

Effect of the Size of Training Data. In this experiment, we
randomly pick 9 users as label-providers and then observe
how the number of labels they provide will influence their
classification accuracy. In Figure 4, we vary the percentage
of labels from 4% to 48% (i.e., around 3 samples to 34
samples out of the total 70 samples are labeled) and plot
the classification accuracy of our approach and the two
baselines.

All performs similarly compared with the previous ex-
periment. In fact, the two experiments have an equivalent
effect on All: the accuracy improves because there are more
training data. Single performs poorly when the training
data size is small, but improves dramatically on the users
who provide labels as the training data increases and finally
exceeds All. This implies that the users indeed demonstrate
different patterns in their activities. However, the accuracy
remains low on the users without labels. This is because
that the users cannot help each other by sharing information.
The performance of Group is in the middle. For users with
labels, when there are enough labels, Group performs better



than All but worse than Single because it only considers the
individual difference among the groups, but not inside the
groups. For users without labels, Group performs better than
Single but worse than All because it only utilizes the labels
inside the group but not those outside the group. By jointly
modeling the commonness and differences among users,
the proposed PLOS framework combines the strengths of
All and Single, and conquers their weaknesses. Therefore,
PLOS performs the best on all users in all scenarios.
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Figure 4. Accuracy comparison on body sensor dataset w.r.t. the percentage
of labeled data on the users who provide labels

C. Experiments on Smartphone Data

In this section, we conduct experiments on a real world
mobile sensing dataset. The results clearly demonstrate the
advantages of the proposed personalized learning frame-
work.

HAR Dataset. UCI Human Activity Recognition (HAR)
dataset [59] contains the recordings of 30 persons perform-
ing six different activities while wearing smartphones with
embedded inertial sensors (accelerometer and gyroscope) on
the waist. The activities include walking, walking upstairs,
walking downstairs, sitting, standing, and laying. The read-
ings form 561 features. In the following experiments, we
consider the classification of sitting and standing, as this
is the least separable pair among these six activities. There
are around 50 samples for each activity from each person
for this classification task, but only a very small portion (or
none) of them are labeled.

To evaluate the performance of the proposed method, we
conduct a series of experiments with different settings.

Effect of the Number of Users Who Provide Labels.
Like previous experiment, we gradually add more users who
provide labels, and we also set that they randomly label 6%
of their data (i.e., around three samples for “sitting” and
three samples for “standing” for each user who provides
labels).

In Figure 5, we plot the accuracies on the users with labels
and without labels with respect to the number of users who
provide labels. It shows the same pattern as the experiment
on body sensor dataset, except that gap of accuracy between
All and PLOS is smaller. The reason may be that the body
sensor dataset captures more personal traits of the users
from two aspects. 1) sensor nodes placed on more body
regions can provide a more complete view of the motion of
a user; and 2) we allow the users to place the motion sensor
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anywhere in the required area, so users are more likely
to place the motion sensors according to his/her personal
habit, perhaps in different positions or different orientations.
These reasons can also explain the phenomenon that Group
performs similar to All and better than Single on users with
labels. The results in this experiment further back up the
advantage of the proposed PLOS framework.
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Figure 5. Accuracy comparison on HAR dataset w.r.t. the number of users
who provide labels

Effect of the Size of Training Data. In this experiment,
we randomly pick 15 users as the label providers. We
gradually increase the number of labeled data in each of
label provider’ data. The results on labeled dataset are
presented in Figure 6(a). The trend of all the methods is
similar to that on the body sensor dataset. We find that
when there are plenty of labels from users, the accuracy
of Single and Group are closer to All than on the body
sensor dataset. This conforms to our previous analysis that
the body sensor dataset embodies more personal traits due
to more sensing nodes and flexible experimental setup. In
such condition, PLOS still performs the best among the
three. The experimental results on unlabeled dataset are
shown in Figure 6(b). Since the increase of the labeled data
will not influence the clustering on unlabeled dataset, the
accuracy of Single keeps low. When the number of training
data increases, the performance of Group, All and PLOS
increases. These patterns are similar to the experiment on
body sensor dataset.
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Figure 6. Accuracy comparison on HAR dataset w.r.t. the percentage of
labeled data on the users who provide labels

Effect of \. As discussed earlier, the proposed PLOS frame-
work performs the best because it can train personalized
classifiers learned based on both individual data and the
knowledge borrowed from other users. The balance of the
two is controlled by A. If A is large, PLOS would enforce
that the users share a similar hyperplane, so the results
would lean towards All; If )\ is small, then the results would



lean towards Single. We examine the performance of PLOS
with respect to log(\) in the scenario that 15 users provide
labels and they label 6 samples in their data. The results are
presented in Figure 7.

It can be seen that the accuracy of all users reaches
the best value when log()\) is around 2. The performance
degrades when log()\) is either too small or too large.
These experimental results confirm that there exist both com-
monness and difference in the activity patterns of different
people.
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D. Experiments on Synthetic Data

In this section, we use synthetic data to further test
the proposed method under more general scenarios. In
particular, we generate datasets containing two classes: +1
and —1. For each class, we generate 200 data points from
a Normal distribution. More specifically, Normal(u

(10,10), % = _21250;12850 ) for +1 class and Normal(p =
(-10,-10), X = [212850_212850 ) for —1 class. To make the

simulation more realistic, we randomly swap 10% of the
ground truth labels, as in the real world applications, the
data are rarely separable.

Effect of the Difference Levels among Users. In this
experiment, we examine how the levels of differences among
users can affect the proposed personalized leaning method.
Intuitively, if the differences are large, then All may not
perform well since it ignored the differences among the
users. On the other hand, Single will not be affected much
as it is trained on individual users’ data. Group will be
in the middle because it is able to learn different hyper-
planes for different groups. The proposed PLOS method,
considering both differences and commonness among the
users, can perform much better than the baseline methods.
To simulate different users, we first generate a data set from
the aforementioned Gaussian distribution and then rotate the
data around the origin with different angles. One rotation of
the original data corresponds to the data from one user. Thus,
with a given maximum rotation angle, we can generate 10
users with uniform rotation angles. Among the users, 5 of
them provide labels for 8 samples (four from +1 class and
four from —1 class).

The experimental results are shown in Figure 8. The
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curves match our expectation perfectly. When the maximum
rotation angle increases, the users are more different from
each other, so the performance of All degrades quickly. The
performance of Single stays the same and the performance
of Group decreases slower than All, which are all expected.
The accuracy of PLOS also decreases slightly but it is
still the best. Note that the decrease is faster on the users
without labels than the users with labels. This is because that
when the users differ a lot, the users without labels cannot
“borrow” too much helpful knowledge from the users with
labels, and thus suffer more on the performance.
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(a) Accuracy on users with labels  (b) Accuracy on users w/o labels

Figure 8. Accuracy comparison on the synthetic dataset w.r.t. the rotation
angles

Effect of Other Settings. Similar to the experiments on the
real dataset, we also examine the performance of the pro-
posed method with respect to the number of label providers
and labeling percentage, respectively. In both experiments,
we fix the maximum rotation angles to be /2. For the
former, we set the labeling percentage to be 2%, and for
the latter, we set the number of label-providing users to
be 5. The results are presented in Figures 9 and 10. The
figures show similar patterns as the experiments on the
real dataset, which confirms the advantages of the proposed
method. In addition, in Figure 9 the standard deviation
of PLOS decreases from 7.37% to 0.75% on users with
labels and decreases from 8.39% to 3.19% on users without
labels when the labeling percentage increases from 1% to
10%, which means as the labeling percentage increases, the
uncertainty of the PLOS decreases on both types of users.
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Figure 9. Accuracy comparison on synthetic dataset w.r.t. the number of
users who provide labels

E. Experiments on Distributed PLOS

In this section, we evaluate the accuracy and the scal-
ability of the proposed distributed PLOS on a distributed
mobile sensing system. The server is emulated by an Intel(R)
Core(TM) 3.4GHz computer with 16GB of memory, and the
users use Nexus 5 android phones as their sensing devices.
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Figure 10. Accuracy comparison on synthetic dataset w.r.t. the percentage
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Each user generates his/her own data as discussed before. In
order to evaluate the performance of the distributed PLOS
method on different scales, we vary the number of users
from 10 to 100. We set the p = 1,¢*P® = 0.001 as the step
size and the stopping criteria respectively.

Accuracy Comparison with the Centralized PLOS. We
first evaluate the classification accuracy of the distributed
PLOS algorithm. As shown in Figure 11, the difference of
accuracy between the distributed PLOS and the centralized
PLOS is close to zero for both users with and without
labels, which indicates that the distributed PLOS is a good
approximation to the centralized PLOS.
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Figure 11. Difference of accuracy between the centralized PLOS and the
distributed PLOS

Computational Cost. We further compare the running time
of the centralized PLOS and the distributed PLOS. The
centralized PLOS runs on the server and the running time is
determined by how fast it can solve the optimization problem
(4). On the other hand, the distributed PLOS allocates
most of the calculation to smartphones. The smartphones
conduct calculations in parallel, so the total running time is
determined by the time consumption of the smartphone that
processes the most amount of data. From Figure 12, we find
that the centralized PLOS runs faster than the distributed
PLOS when the number of users is small. However, as the
number of users increases, the running time of centralized
PLOS increases superlinearly, while that of the distributed
PLOS almost keeps the same. This is because that adding
more users increases the variables to the QP problem on
the server, so it takes longer to solve the optimization
problem. However, for the distributed PLOS, adding more
users does not add variables to the QP problem on individual
smartphones, so for each user, the running time stays almost
the same.
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Figure 13. The message
overhead of one user in the
distributed PLOS
Communication Overhead and Convergence. Finally, we
evaluate the number of messages that each user has to send
to and receive from the server in the distributed PLOS. As
discussed before, users do not upload their raw data to the
server, but only exchange model parameters with the server.
Thus, the communication overhead is determined by the total
number of iterations that the algorithm needs to converge.
We can see from Figure 13 that the message overhead of the
individual users is reasonable and remains stable regardless
of the number of users in the system. This result also implies
that distributed PLOS converges at a stable rate.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study personalized learning in mobile
sensing. The proposed PLOS framework enables person-
alized learning without requiring all of the users’ data
delivered to the server. It combines the knowledge from the
users but at the same time also recognizes their uniqueness.
The distributed nature of PLOS enables the knowledge
sharing among the users with their privacy being preserved
since the users neither upload the raw data nor communicate
with other users. It is also efficient in terms of energy,
computation, and communication costs.

In this paper, we mainly focus on SVM as it is one of the
most widely adopted classification models. In the future, we
will consider to extend the proposed framework to other ma-
chine learning models. Additionally, the current distributed
algorithm is mainly designed for the synchronous distributed
system. For the asynchronous scenario, for instance, some
users may delay their responses for arbitrarily long, we will
leave it as our future work.
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