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Abstract

Comprehensive and accurate energy audits are essential to maximize energy savings and
improvements in buildings realized from the design and implementation of deep retrofits
for building envelopes. This paper presents a methodology for employing drones to conduct
rapid building envelope performance diagnostics and perform aerial mapping of energy
flows. The presented framework is tested on the Syracuse University campus to showcase:
1) visually identifying areas of thermal anomalies using an Unmanned Aerial System
(UAS) equipped with thermal cameras; 2) detailed inspection applied to areas of high
mterest to quantify envelope heat-flow using computer vision techniques. The overall
precision and recall rates of 76% and 74% were achieved, respectively. A discussion of the
findings suggests refining procedure accuracy, as a step towards automated envelope

mspection.
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Introduction

The buildings sector accounts for about 76% of electricity use and 40% of all U.S. primary
energy use and associated greenhouse gas (GHG) emissions (U.S. DOE, 2015). Research
conducted in Metropolitan Boston, MA, found that within 135 residential houses surveyed
with infrared technology, heat transfer and air leaks through cracks were the reason behind
about 40% of energy lost (Shao, 2011). More than half of all U.S. commercial buildings in
operation today were built before 1970 and this large existing building stock performs with
general lower efficiency (U.S. DOE, 2015). HVAC and lighting loads in existing
residential and commercial buildings consume 35% and 11% of total building energy,
respectively, which totals more than 17 quads of residential and commercial building
primary energy use (Ibid., 2015). In order to achieve substantial energy savings in existing
and deteriorating built environments, retrofitting strategies that respond to accurate and
reliable energy audits should be implemented (U.S. DOE, 2012). To identify compromises
in the building envelope, energy auditors traditionally use tools such as blower door tests
to detect mfiltration/exfiltration regions, as well as thermal bridges (Ibid., 2012).
Unfortunately, predicted savings and delivered savings typically do not match (Shapiro,
2011). This can be attributed to imprecise energy audits, which may lead to lower than
expected energy savings, no energy savings or in some cases occasional increase in energy
use (Ibid., 2011). A myriad of negative effects follows, including environmental impacts
that were not accounted for, discrediting energy efficiency retrofits as well as loss of

investment monies (Ibid, 2011). This is typically a result of many challenges that energy



auditors face, including msufficient building information that leads to misrepresentation in
energy models, overestimated savings, ineffective selection of improvement strategies and
incomprehensive improvement scope that result in missed opportunities (Ibid., 2011). In
large commercial buildings, energy auditors typically emphasize exciting technical
challenges that focus on Heating, Ventilation and Arr Conditioning (HVAC) or integration
of renewable energy in the form of solar panels, while ignoring less attractive building
envelope issues such as window performance, thermal bridges, air sealng and insulation
deterioration (Shapiro, 2009). This can also be coupled with situations that are considered
uneasy, dangerous or inaccessible to the auditor, including high-rise or large-span structure
envelope spections, as well as building roofs (Ibid., 2009). In this paper, a methodolo gy

is presented to address these critical challenges by employing a UAS platform.

Tools such as infrared cameras and Unmanned Aerial Systems / Vehicles (UAS / UAV)
enable professionals to analyze building envelopes efficiently and accurately while
reducing operational costs and safety risks. Additionally, when paired with video
recording, photography, or multi spectral imaging, drones can safely, economically, and
efficiently carry out a building energy audit (Kylili, Fokaides, Christou, & Kalogirou,
2014). UAS provide building auditors with a unique aerial perspective. This viewpoint
allows easy access to remote or inaccessible areas (which may include natural or human
built obstructions) without compromising the safety of the auditor (Mavromatidis, L,
Saleri, & Batsale, 2014). Another benefit of utilizing UAS for building audits is its

nondestructive and non-contact nature (Grinzato, 2012); (Barreira & Freitas, 2007);



(Bonora, Tucci, & Vaccaro, 2005). This increases the accuracy of collected data and allows
for audits and visual data gathering in historical or structurally damaged buildings (Harvey,
Rowland, & Luketina, 2016); (Corsi, 2010); (Grinzato, 2012); (Clark, McCann, & Forde,
2003). To expand on limited research and practice, this paper employs a drone equipped
with a thermal camera, to conduct rapid building envelope performance diagnostics and

perform aerial assessment mapping of building energy flows.

Previous research work addressed the use of UAS and thermography in building inspection,
diagnostics and energy audits. An earlier attempt by Dios and Ollero presented infrared
based automated detection techniques for thermal heat losses in building windows using
UAS. The research proposed a method to detect heat losses around windows and display
them on a 3D model of the buiding. To capture data from facade and inspect its
thermography, the procedure uses a UAV which carries a video camera and a thermal
camera that operates at far-infrared band. A fixed 7° C threshold is used to segment heat
loss areas, which are then further filtered. This approach of using a fixed pre-set threshold
is prone to errors, and can become infeasible in most of the other seasons and weather
conditions, and also for different building materials, and different causes of heat losses
(Dios and Ollero, 2006). Zhang and Jung presented a method for thermal inspection of
roofs using UAVs to facilitate both visual mterpretation and autonomous detection. The
mvestigation used Markov Random Fields (MRF) to segment the anomaly regions on the
thermal mmage. Images are divided into superpixels, and MRF is applied onto superpixels

mstead of applying it onto image pixels (Zhang, Jung, Sohn, & Cohen, 2015). Guerriero



and Daliento focused on solar panels, and proposed a computer vision method for the
identification of the borders of photovoltaic cells using a thermal camera mounted on
UAVs. The work avoided use of high pass filters, and instead identified the borders by
extracting those points whose temperature is lower than the median value of the
temperature distribution (Guerriero & Daliento, 2017). Pereira and Pereira proposed to use
UAVs and visible range images for autonomous inspection of cracks on buildings. This
approach does not use thermal images. It compares two different computer vision
algorithms and evaluate their performances in many aspects including the runtime on

different platforms, binary size, code complexity etc. (Pereira & Eduardo, 2015).

The use of impulse mfrared thermography was introduced by Mavromatidis, et al. as a
method to examine old civil infrastructure and residential buildings’ energy consumption,
ageing process and life cycle. The method suggests overcoming the lLmitations of
examining passive thermal emission of surfaces by the use of a stable UAS to record
transient temperature response during the analysis time duration (Mavromatidis, et al
2014). Gonzalez-Aguilera, et al. justify collecting data only before sunrise and after sunset
to reduce the likelihood of collecting false positives due to direct solar radiation (Gonzale z-
Aguilera, et al. 2013). A technique of visual inspection of buildings was developed by
Eschmann et al. The study used UAS to create an mitial database for digital building
monitoring, It was proved that the high-resolution camera attached to the micro aerial
vehicles provided useful mformation for infrastructural mspection purposes, even under

non-optimal flight conditions. However, improvements were recommended including a



better stabilization of flight platform, anti-collision and navigation systems and route
planning algorithms. Also, improvements for manual-based frameworks for image post-
processing were recommended, as each flight produces significantly large amount of data
(Eschmann, etal 2012). A more comprehensive method to reduce manual workflows was
mtroduced by Mauriello and Froehlich. It utilized an unmodified Parrot AR. Drone 2.0 and
a FLIR thermal camera to collect RGB and thermal images of a building and generate 3D
reconstructions (Mauriello and Froehlich, 2014). The study continued and contributed to
an initial human-centered investigation of thermographic automation. The research
concluded that thermal tools should be designed for both expert users, such as auditors, and
for client interaction. Automation challenges were presented, which included data quality,
data overload, technical feasibility, privacy and problems of overreliance on automated

scans (Mauriello et al, 2015).

While UAS platforms were used in various building inspection activities, ranging from
static imaging and impulse IR, to employment of UAS n primary audit activities, a
comprehensive building envelope inspection procedure was not engaged. In this paper the
research question is: can the use of drones as part of building envelope inspection processes
accelerate energy audits and make it more accurate using computer vision? The paper aims
to address this gap in the literature by presenting a twofold approach to the mspection of
building envelopes: (1) using a geometric data-gathering process, tested in the field, and

(2) employing a CV analysis approach for the automation of envelope anomaly detection.

Research Method



The research framework is divided into two methods. First, the design of flight paths and
mplementation of data collection using photogrammetry and thermal mmaging. Second, the
use of computer-vision workflows to analyze and segment thermal images, and

autonomously detect thermal anomalies.

Energy Audit Flisht Procedure

Preflight considerations: Energy leakage detection reliess upon certain environmental
conditions. Firstly, local climatic factors, such as ramn, snow, and heavy wind are not
typically appropriate weather conditions for drone flight. Secondly, certain environmental
factors that can affect external surface temperatures ofbuildings such as indoor and outdoor
temperature, humidity, wind speed, cloud coverage, solar radiation, and precipitation are
considered. A temperature difference of about 10° C, as well as a notable pressure
difference should be observed between the mterior and exterior of the building. Radio
mterference has the potential to affect the drone’s flight capability, therefore, ensuring that
there are no radio or Wi-Fi interferences in the air or on the ground level is important (FLIR,
2012). To address possible radio and Wi-Fi intrusion, it is recommended that residents and
owners are asked to minimize or eliminate activities that can create such interference, as
part of the expected audit notification process. Sunlight, shadows and self-shading also
have the potential to affect thermal imaging, therefore, it is useful to take regular images in
tandem with infrared (IR) images for future reference and identification and understanding
of false positives, as well as completing flight audits of envelope components at close time

mtervals on the same day. Consequently, a pre-flight checklist can include the following:



- Measure outdoor environmental conditions, and determine if the climate is suitable for
flight (temperature, humidity, wind speed, cloud coverage, etc.)

- Measure (or assume) indoor temperature, and calculate resulting temperature
difference.

- Determine if the difference is within acceptable range (10° C or more).

- Determine building usage (building type, operating hours, etc.).

- Notify occupants, and minimize radio and Wi-Fi imterference.

- Record window coverings and furniture re-configuration (if any) for audit purposes.

Flight path design: For flat facades which are mostly vertical, the flight path should begin
on a predetermined corner and follow vertical bays upward, move across to the next bay
and downward. This movement is repeated until the entire facade has been documented
and the drone proceeds to the next facade in a similar manner. For flat facades that are
mostly horizontal, the path should begn at a predetermmed corner and continue to the right
before moving up a bay and continuing in a linear manner to the left, repeating until the
entire facade has been documented. After capturing fagades, the drone should move on to
capture thermal images of the roof in a similar grid manner, starting from one corner and
moving in either a horizontal or vertical pattern along a superimposed grid, until the entire
roof has been captured (Eschmann et al, 2012). For more complex geometries, facades
should be divided into geometric zones into which a typical flight pattern may be applied.
Bays can be determined either by window placement, structural qualities of the fagade, or
predetermined regions of interest. It is important to consider the overlap in bays and ensure
that the entire facade is covered and no regions are neglected. These flight patterns

minimize the amount of time necessary to capture the entire facade.



Figure 1 - Representation of flight path distances from reviewed literature.

In order to identify flight path parameters, the literature was reviewed for inspection
distances for structural performance and building exammation (Figure 1) and the
mnvestigation concluded that envelope inspection distances vary according to equipment
and building conditions. A general distance of approximately 13m away from a building is
proposed, at changing bay heights of 2-3m, with images gathered approximately every 2m
along the flight path. The goal is to ensure approximately 70-80% overlap between photos
captured for the purposes of using 3D photogrammetry to construct CAD models (Figure

2).



Figure 2 - In-flight imaging procedure for possible dual cameras, demonstrating target %
overlap for auditing purposes.

Post-flight analysis: Gathered data should include preflight environmental conditions,
preflight interior conditions, IR images or videos, and corresponding non-thermal images
or videos. The primary goal of drone-based energy audits is to visually identify thermal
leaks and support these claims with temporal data extracted from the images (Lee and Ham,
2016). Additional comparisons can be drawn between the building being audited and
similar sized buildings in the area. It is also beneficial to support claims with energy use
index (EUI) calculations of the building before audit and after thermal leaks are repaired
(Hassouneh et al, 2015). This paper hypothesizes that the following building envelope

issues can be identified in post-flight analysis using the designed procedure:

o Exfiltration / Infiltration

As exfiltration and infiltration occur most commonly around doors, windows, and other
access points to the building, their presence will be most visible on the perimeters of such
access points. Thermal images of leaking doors or windows will have patches of either

cooler or warmer air clustered around the region, where the weather barrier is



compromised. Common false positives occur on the glass of the window where the

reflection of the drone or auditor affects the surface temperature (Hassouneh et al, 2015).

* Missing / Deteriorating Insulation

Missing insulation is identifiable i thermal images as patches of colder or warmer
temperature in between the framing of the building or roof. False positives can occur when
heavy furniture or drapes with insulating properties are not moved away from the wall
before flight, and they may appear in thermal images as missing nsulation. Other factors
such as ndoor climate control and shadows also have the potential to disrupt thermal
patterns. Cross referencing regular images captured in tandem with the thermal images

should distinguish false positives. (Lechner, 2014)

* Thermal Bridges

Thermal bridges can be classified as either geometric or material. Material thermal bridges
occur when a building material with high thermal conductivity is improperly sealed or
mstalled which created a ‘bridge’ for outdoor temperature to move indoors. In IR imaging
these can be identified as clusters of cooler or warmer air around the perimeter of any
building element which penetrates the building envelope. Geometric thermal bridges are
an effect of the geometry of the building envelope (Lechner, 2014). Examples nclude wall
corners, junctions between the roof or wall, and connections between walls and floors. In
addition, protruding elements like balconies have the potential to create enough shading

that the shaded area is consistently cooled. Geometric thermal bridges are identified



similarly to exfilration and infiltration; the mamn differentiating factor being the location
(Danielski and Froling, 2015). Construction drawings can be consulted preflight to
determine if detailing led to thermal bridging even before an inspection starts, and the

workflow can be further validated through this examination.

* Regions of Failure

After identifying thermal leaks, certain regions of interest may arise and necessitate further
maging. Smaller scale cracks and leaks may need to be documented with a handheld
camera by the auditor on foot (Ibid., 2015), or a closer drone flight around the area of
mterest. Different distances generate different data; greater distances generate data of the
whole form of the mspected building, while smaller distances generate greater detail; both

are needed to generate a comprehensive model

Computer Vision Algorithms

The developed computer vision framework for heat leakage detection is composed of two
stages: 1) A global lookup of a thermal image and 2) edge filtering and segmentation, where
the actual leakage regions are identified. The detection framework (Figure 3) assumes that
a thermal anomaly is defined as regions where sudden or abnormal temperature changes
happen i the thermal image. When an expert mspects a color-mapped thermal image which
is taken outdoor during a cold winter season, she/he observes the leakage as a light (cold)
region surrounded by darker (hotter) regions. Therefore, the main concept behind the

detection algorithm is to find sharp temperature changes on the thermal image.



Figure 3 - Computer vision workflow, from image capturing and analysis to mapping of
thermal anomalies.

In this framework, a thermal image is considered as a 2D matrix, whose cells (pixels) are
temperature values. A naive solution to segment out the heat leakage regions involves
looking for “hot-enough” pixels (in winter, for outdoor images) and labeling them as
leakage pixels. However, this approach can introduce multiple false positive results since
this kind of strong, pixel-wise separation simply detects hot regions without taking any
distinctive characteristic of heat leakages into account. Sharp temperature changes on a
single-layer thermal image could be explained as nothing but thermal edges, which can
possibly be the contours of leakage regions, and thermal anomalies are regions which have

thermal edges. Consequently, by detecting those edges, anomaly regions would be



segmented out. However, this argument is also not always true, since not all the edges
found on thermal images are edges of leakage regions. For instance, red regions in Figure
6b represent window leakage, and an edge detector would separate those regions. Yet, there
are other visible edges, which will be detected on the same image such as trees as seen in
Figure 6d, which do not correspond to thermal anomalies. In order to address this challenge,
this framework eliminates these false detections and eventually segments out the leakage
regions by not only detecting thermal edges, but also following along and monitoring each
side of the edge to filter out false positives, and then applying region growing technique on

the residual leakage regions.
Dynamic threshold detection

The first stage of the algorithm outputs two thresholds that are calculated per image based
on the temperature distribution, seasonal conditions, and the location of mspection.
Consequently, instead of defining a strict, preset threshold, the algorithm finds appropriate
thresholds for each image before further processing. These two thresholds are referred to as
“leakage threshold” and “difference threshold.” The leakage threshold is used to determine
whether aregion should be considered as a leakage candidate, while the difference threshold
is used to check if there is enough temperature change happening ata certain region. They
are computed by employing a temperature histogram, whose size is dynamic based on the
representativeness of its bins (Figure 4). The leakage bin is defined as the bin where actual
heat leakage pixel values fall, and the opposite bin is defined as the bin at the opposite side

of the leakage bin. In order to eliminate some of the false positives, a lower o limit is used



on the representativeness of the opposite bin, since the expectation is for it to contain
enough number of values. If the opposite bin contains less than o, the values that fall mto it
are removed and the histogram is recalculated until the opposite bin has strong
representativeness. Next, an upper B limit is used on the leakage bin, which is not expected
to dominate the temperature distribution since the total area of potential leakage regions is
likely to occupy a smaller portion of the entire image. If the representativeness of the
leakage bin is higher than B, the histogram’s number of bins is incremented and recomputed
until the limiting condition is met. The aforementioned o and B limits are variable

percentage values that can vary from one experimental setup to the other.

Figure 4 — An example 5-bin histogram of a thermal image taken during winter. The
pixels which fall nto the leftmost bin are likely to be from a leaking region.

Thermal edge filtering and segmentation

In the second stage of the algorithm, the thermal edges are found by using a Canny edge

detector (Canny 1986). Then, by utilizing the two thresholds established in the earlier stage,



some of the edges generated by the Canny edge detector are fitered out. The filtering
operation is done by processing every pixel on each edge line along the edge direction as
shown in Figure 5 and judging if they are pixels on the edge of a heat leakage or not. During
this process, the algorithm compares the values in the neighborhood of the pixel that is
currently being processed. The neighborhood is a set of values perpendicular to the edge
direction. If the highest value in the neighborhood is less than the leakage threshold (that
is, the corresponding pomnt of the material is not hot enough), the current edge pixel is
removed. If it is larger than the leakage threshold, then the algorithm checks whether the
difference between the highest and lowest values is larger than the difference threshold. If
the difference is not larger, the current edge pixel is removed. Otherwise, the algorithm
keeps the edge pixel and moves on to the next one. Thermal leakage edges are found after

processing every pixel on each edge and performing elimination.

Figure 5 illustrates the above-described process on a single thermal edge pixel. The red line
is the edge segment being followed, and the black 7-cell strip is the neighborhood of the
pixel that is currently being processed (with value 27.27°C in Figure 5). For this example,
if the maximum value in the neighborhood (27.71°C) is larger than the leakage threshold
found in the earlier stage, and the maximum temperature difference in the neighborhood
(13.95°C) is greater than the difference threshold, the current pixel is kept as part of the
leakage edge. Otherwise, if any of these two conditions are not met, the current edge pixel

is removed.



Next, the actual leakage regions enclosed by these edges are segmented out. To group the
actual leakage pixels and segment the heat leakage regions, region growing is first applied
to min/max pixels saved during the edge following operation. In the region growing
operation, for each thermal pixel that is considered as a leak in the edge filtering stage, a
cluster of pixels is created whose values are at most with a temperature difference (0)
different than the leak pixel. Then, by merging these clusters, the actual leakage regions
appear. However, the segmented leakage regions contain gaps mside them due to the
rregularity of a surface’s temperature distribution. In order to fill those gaps, morphological
closing is applied as postprocessing. The residual binary image shows the leakage regions

as seen in Figure 6e.

Figure 5 — Illustration of the Computer Vision edge following process.



a- Captured Thermal Image b- 2D matrix of temperature c- Sample threshold histogram
cells

d- Edge detection e- Leakage segmentation
Figure 6 - Edge processing and analysis of a sample thermal image.

Experiment Design

For this study, a proof-of-concept experiment was designed by the research team to inspect
acluster of dormitory buildings on the Syracuse University campus in Syracuse, New York.
The team used a DJI Inspire 1 drone paired with a FLIR Zenmuse XT thermal camera. The
accompanying DIJI app was used during flight to monitor the thermal data. The flight path
was predetermined and automated using the Litchi app version 1.17.2, and Pix 4D 2.1.61
for roof images, and the images were processed and analyzed using the FLIR Tools
program. Figure 7 illustrates the flight path and data-gathering processing for CV analysis.

Note that, due to proximity to trees, all eastern facades of the buildings and limited portions



of the northern and southern facades were not mspected. Figure 8 shows the drone in the

mspection setup and a facade of an nspected building,

The data was collected externally during winter, so the algorithm was set to search for hotter
anomalies i the experiment. In the first stage of the algorithm, o and B were set to
empirically found values of 10% and 15%, respectively. Therefore, it was assumed that the
total area of leakage regions would be less than 15% of the image, and to be representative
enough, the number of' samples in the opposite bin needed to be larger than 10% of the total.
For the second stage of the algorithm, the Canny edge detector was used to generate the
edge images of the thermal capture. The standard deviation (o) of the blurring filter of the
Canny edge detector was set to 1, and the other two parameters of the detector—low
threshold and high threshold—were set to 0.08 and 0.2, respectively. Small values for
thresholds were chosen to preserve as many edges as possible. Although this would possibly
mntroduce many false edges, they would be eliminated in the subsequent stages. The only
parameter used at the edge following the procedure was the neighborhood size. A total of
13 values were checked (6 onthe right, 6 on the left, and the pixel itself) in the experiment.
This value was set based on the image’s resolution and the smoothness of the leakage
regions’ spread. In the region growing part of the postprocessing, the maximum allowable
temperature difference (0) to merge the neighboring pixels with the leakage region was set

to 0.05°C. This criterion allowed the algorithm to include neighboring pixels with



temperature values that vary within 0.1°C so that the results were reported as regions mstead

of thermal edge lines.

Figure 7 - The experiment’s flight path and imaging procedure.

Results

The experiment outcomes follow the methodology and are divided mto detailing the

inspection outcomes and the image segmentation results.

Building Envelope Audit

The audit flight took place on two separate days, the first day inspected 3 buildings using
3 batteries taking infrared videos, and the second flight mspected two buildings taking still
pictures. Each flight date was undertaken in 120 minutes, and 100 to 200 pictures were

captured per building surface. Building D was not fully inspected due to the proximity of



trees on the southern facade as well. Each flight date was undertaken in 90 minutes. Figure

9 showcases 5 major categories of audit results that include:

* Rust — showcased through deterioration in the building facade. This is observed as a
thermal anomaly in IR images, and is confrmed with RGB images or auditor
observations.

*  Water damage — mfiltration and puddling of water on the roof at seams. This can be
detected typically post rain events.

* Thermal bridges —due to faulty construction practice while installing roofs, or possible
unfit detailing. The reason cannot be concluded, because construction drawings were
not consulted. As an example, a number of roof nails were observed tearing through
the envelope and creating thermal bridges.

* Penetration — malfunction of envelope integrity (in fagades and roofs). Fixing of the
roof using nails penetrated through the roof, and caused integrity damage beyond
thermal bridges.

* Brickwork deterioration — at openings and penetrations in the fagade. Although this is

not a direct msulation observation, it is effecting heat retention through the facade.



Figure 8 - Sample results from building envelope audit.

Thermal Anomaly Segmentation

The developed algorithm was tested on 149 collected thermal images. Building scientists
within the research group identified a total of 1018 heat leakage regions in the images. The
algorithm was applied, and it successfully detected 751 of identified anomaly regions, and
missed 267 actual thermal leakage regions. The workflow also reported 237 regions that
are considered false positives. The method was evaluated based on precision and recall
measures, which are two well-known measures for evaluation of a model n machine
learning. Precision is defined as the fraction of true positive samples over all positive
samples, which also include false positives. Recall, similarly, defined as the fraction of true

positive samples over the relevant examples, which also include the false negatives.



. Tp Tp
precision = ————, recall = ————
Tp+ Fp Tp+ Fn

Tp:True positive, Fp: False positive, Fn: False negative (miss)

The model is expected to perform well on precision and recall measures for a detection
task. A higher precision score means that most of the detections are actual leakages, while
a higher recall score means that most of the actual leakages are detected. The importance
of these measures can differ based on the needs of the application. In this scenario while
some false positives can be tolerated, ie., relatively lower precision, the recall rate was
expected to be as high as possible, since the aim is to not miss any of the actual thermal
leakages. The method resulted in precision and recall rates of 76% and 74%, respectively.
In order to increase the recall rate, the techniques for elimination of false positives could
be less restrictive, by tuning some parameters such as decreasing the threshold in Canny
edge detection or modifying the representativeness factors i threshold selection stage.
Although this will decrease the precision rate, the number of missed leakages will decrease
too. In addition to low-level tuning of the algorithm, a comprehensive and systematic audit
procedure will also increase the recall rate by inspecting a location from multiple
viewpoints and capturing overlapping thermal pictures. Figure 9 and 10 highlight a series

of sample heat leakage images and ther corresponding detection results.



c) False positive detection of infiltration and missing envelope deterioration.

Figure 9 - Experimental results from different sides of the nspected buildings. In each
triplet, the left images are the IR scenes, the middle are the edge detection, and the right
are the segmented leakage regions.



L

Figure 10 - Various successful detection of thermal leakage. In each pair, the left images
are the IR scenes and the right are the segmented leakage regions.

Discussion

The findings are discussed by investigating the presented framework and computer vision
algorthm i terms of novelty, potentials, Lmitations and suggested future research

directions.

Research Novelty in Architectural Design

The aspiration for this work is to profoundly mnform building retrofitting design by radically
altering the methods and modes of performance evaluation. The use of drones creates the
opportunity for evaluators to have limited physical barriers when accessing the built
environment, and not to rely on single frame images for inspection. By developing three-

dimensional models, designers are able to mteract and engage in terms of developing



solutions for building wvulnerabilities. The evaluations of the built condition will allow
designers to be strategic with the solutions used, targeting compromised building areas, and
designing retrofitting to address directed, efficient and specific building envelope and skin

1SSues.

The novelty of this process lies in the comprehensiveness and specificity of the prescribed
methodology. The work has been designed based on a comprehensive review of
comparable methods utilizing thermal imagery in the buildings sector, and the research was
not limited to the combination of thermal imagery and drones nor the use of thermal
imagery for the identification of poor thermal performance i the building envelope.
Established methods of anomaly detection with building thermography were assessed,
whixh include, but are not limited to, aerial surveys, automated fly-past surveys, street pass-
by surveys, perimeter walk around surveys, walk through surveys, repeat surveys, and time-
lapse surveys (Fox, et al, 2014). Some of these methods take their research a step further
by proposing various combinations of either piloted or robotic vehicles for the thermal
cameras such as vans (Hogner & Stilla, 2007) or specifically designed terrestrial robots
(Borrmann et al, 2014). The research varied greatly when detailing (or not detailing) the
number ofimages required and the post processing workflow. From this variety ofresearch,
the literature gap was identified, and a novel combination of flight path design, in-flight
recommendations, and post processing workflow was developed based on the strengths and

weaknesses of comparable methods. The presented method combines accessible tools, as



the drones, thermal cameras, and software used are publicly available to consumers, with a

technical understanding of building envelope performance and thermal imaging principles.

Framework Potentials

The framework is presented as a workflow for building envelope diagnostic missions that
would be administered by auditors to fly the UAS, which allows the use of thermal imaging
for structural inspection, heat losses, mfiltration, insulation conditions, glazing
performance, as well as giving access to challenging to reach situations such as the roof.
The proposed solution is being tested as a proof of concept that will significantly reduce
the number of hours spent to produce high-quality, large-scale audits. Currently, anauditor
may choose a repetitive pattern in a building envelope and assume that the performance is
the same for all similar parts of the skin. The developed approach allows for comprehensive
and accurate assessment with no such assumptions. It is therefore recommended that future
research should compare this workflow and a typical envelope audit to outline potentials
and limitations with the proposed procedure. The presented method also addresses
challenges faced by traditional methodologies in mspecting high-rise and large-span
structures via inspections performed remotely through UAS technologies, and it is capable
of carrying various sensors to conduct building diagnostics on-the-fly. Therefore, the use

of multi-spectral sensors should be studied.

At this stage, the current approach cannot replace traditional audit processes entirely. The
equipment used is able to detect a difference in temperature, and the process is not designed

to rationalize the source of temperature differential, or consider how in certain instances



there will be an anomaly for reasons other than leakage, such as material change, solar
gains, or various components separate from the building. However, the use of drones can
drastically enhance the whole building audit process, and become a part that completes
envelope mspection in a faster and possibly expansive approach. Inspection of whole
neighborhoods to identify potential targets for enhancement efficiently needs multiple
scarce and valuable resources such as time, expertise, equipment, and more. This qualifies
the value of the framework, and complements existing audit processes. The process still
needs a critical human eye to be able to employ the vast amount of information generated,
and make complex design decisions. Envelope inspection can be automated using drones
and computers, but human oversite is needed, and designer reactions to detected anomalies

is imperative.

Limitations and Challenges

Several challenges need to be addressed as technology evolves, and the framework is

further developed.

* Angular Deflection — IR and RGB images maybe be compromised due to angular
deflection, which is a challenge with respect to camera angle when the camera captures
deflection of light particularly from shiny materials such as glass and metal. Although
images are currently perpendicular to the facade, future work will focus on using
complementary paths that better capture artifact depths. Presently, reflection affects

temperature readings, and in many instances, would not be considered as reliable.



Inspection Distance - The distance from the drone to mspected buildings is presented
as a fixed value i this work, but n real applications it could be approximated,
especially when changing infrared and RGB photographing methods. The use of wide
lens cameras has a varying effect on the resulting images and models. Approximated
distances were achieved through numerous trials, and they are a function of the size
and geometry of buildings, as well as the Field of Vision (FOV), and are therefore
subject to change if given different existing conditions.

Calibration - IR sensor calibration before flights is critical, and when flying calibration
may include editing out the emissivity of the sky. Some input values can be manipulated
in post-flight evaluations, but settings should be consistent, mn order for outputs to be
comparable across models.

Data Gaps - Obstructions on the fagade can lead to gaps in the gathered data. These
gaps make energy audits for those portions of the building mcomplete. This is a
weakness of the procedure and will need to be explored further in the future, but
different flight paths can be considered to address the best possible evaluation given
the existing condition of the building. It is recommended to investigate potential data
gaps through close up investigations on foot, without the use of drones.

Manual Setup - The manual procedure definition pre, during and post flight is critical,
despite the current goals of ful-automation. Site conditions, solar radiation,

construction materials, validation of gathered data, etc. are all varying parameters for



each audit project. Manuel mput allows an individual to adjust the experimental
parameters to maximize effectiveness.

* Technology Limitations - the technology-based process to be addressed beyond the
teams’ area of focus include: A) Battery power limitations, with land-and-charge
potential, which can be addressed with more efficient flight design and less stopping
time. B) Obstacle interference with UAS and possible crashing, where pre-designing
flights with minimum obstacles and tailoring paths around site conditions is a possible
solution. C) Required input for drone navigation in unfamiliar or obstacle-heavy
spaces, therefore visiting the site prior to flights allows for preliminary flight plans to
address this limitation. D) challenging to reach building systems due to the size and
navigation of the UAS, and as drone technologies develop smaller drones will enable
us to inspect building systems in detail (Zhang, etal 2017) E) Signal acquisition risks
as well as signal mterpretation challenges, which are not as evident i less dense urban
areas. F) Variance between drone GPS and satellte acquired GPS, with accuracy

being more evident with on-board drone GPS signaling,

3D CAD Model Development

Further development for the procedure is to combine GPS positioning and 3D
photogrammetry to collect accurate as-built data that would be used to create detailed CAD
models and thermal performance maps. Thermal imaging would then be used for structural
mspection, as well as heat flow assessment for msulation examination. Aerial roof

inspection will result in rapid understanding of installed building energy systems, as well



as providing data to enable highly accurate evaluations of potential for photovoltaic
mstallation and performance. As a demonstration of this discussion, further photos were
taken beyond the experiment during the drone flight at various angels, and were employed
using 3D photogrammetry software Pix4D to generate a 3D point cloud from the 2D
mmages. The program extracts pixels from 2D images, and with multiple geo-located 2D
image triangulates individual pixels from photos within a 3D pomt cloud model (Figure
11). The generate3d model can be exported to other 3D modeling software and design
environments, such as Rhino3D (Figure 12). Such possible outputs from a building
inspection using drones can be used as a communication tool with building professionals,
as well as a new tool for visualizing thermal performance, and as an educational visual to

demonstrate envelope properties.

Figure 11 - Example model construction using 3D photogrammetry software Pix4D.



Figure 12 - Constructed 3D model using IR images in °C, demonstrated in the design
environment of Rhino3D.

Envelope Inspection Automation

The developed computer vision algorithm’s success rate is acceptable in terms of
experimental performance. However, the algorithm should be further developed to limit
false positive results. As future work, the algorithm is intended to run in real time on the
UAS platform, while it is inspecting a building, to reveal thermal anomalies autonomously.
Therefore, the primary contribution of this work is a novel computer-vision-based
framework, which autonomously detects and segments thermal anomalies in building
structures by using images obtained by a UAS equipped with a thermal imaging camera.
Real time imaging can have further challenges, such as minimum control over false

positives and minimum control of thresholds that produce positive results.



To the best of the authors’ knowledge, this is the first autonomous heat leakage
segmentation framework which can inspect thermal leaks independent of the mspected
structure and the temperature distribution of the surrounding environment. Currently, the
developed algorithm mvolves a few empirically determined numbers that are based on
certain assumptions. These will be addressed in future work. It is also recommended to
further validate the workflow through experimentation repeatability, where the results are
tested by deploying two different paths, or using the same path multiple times, and validate

the outcome through error graphing analysis.
4 Conclusion

The first UAS to fly was an explosive laden balloon sent to damage Venice in 1849
(McDaid, 2013). Since then, UAS have evolved in tandem as both cutting-edge military
technology and commonplace consumer equipment (Corsi, 2010). This shift towards public
use presents opportunity for cost efficient, expedient, and safer operational procedures that
can be applied to a vast variety of disciplines (Ibid., 2010). In regard to architectural
practice, UAS equipped with thermal cameras present a unique opportunity for building
mspection and more specifically, building energy auditing. The use of UAS in conjunction
with building mspection and energy audits is ideal for a market saturated with degrading
and energy mefficient infrastructure (U.S. DOE, 2015). In this paper, an inspection
framework that employs a developed computer vision algorithm to autonomously detect
thermal anomalies was presented. The procedure was detailed, potentials were nvestigated

and limitations were stated. The aim of this work is to provide stitutions, developers and



owners with the means to examine buildings accurately and rapidly. The ultimate goal is
to enable assessments of entire campuses, neighborhoods and cities and map their energy
performance accurately for identification of potential energy savings through retrofitting
strategies. Future work should compare the workflow with traditional envelope mspection
methods, develop the workflow to produce 3D CAD and thermal mapping digital models,

as well as test the computer vision framework for on-the-fly capabilities.
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